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Abstract. The main result of the present talk is motivated by the non-vanishing
property for real analytic solutions to the p-Laplace equation and was inspired
by the following question of John Lewis [4]: Does there exist a real homogeneous
polynomial u(x) of degree m = deg u ≥ 2 in Rn, n ≥ 3 satisfying

∆pu := |Du|2∆u+
p− 2

2
〈Du,D|Du|2〉 = 0, (1)

where p > 1, p 6= 2? Lewis itself answered in negative this question in two dimen-
sions in [4]. On the other hand, notice that for any d ≥ 2 and n ≥ 2 there exist
plenty quasi-polynomial Cd,α-smooth solutions of (1) in Rn [3], [1], [2], [8], [6].

We have the following particular answer on the Lewis question.

Theorem 1. Any real homogeneous cubic polynomial solution of (1) in Rn for
n ≥ 2 is identically zero.

The proof of Theorem 1 makes use of a nonassociative algebra argument devel-
oped earlier for similar problems in [7], [5].
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