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The exponential transform and quadrature domains

Ω := a quadrature domain (for analytic functions) if

∫
Ω

h dxdy =

n∑
i=1

cih(zi) ∀h ∈ L1
(Ω), for fixed zi ∈ Ω, ci ∈ C.

By Richardson’s theorem, the complex moments preserved under Hele-Shaw flow:

d

dt

∫
Ωt

z
k
dz ∧ dz̄ = 0, ∀k ≥ 1.

The exponential transform of a bounded closed set Ω is defined by

EΩ(z, w) = exp(−
1

π

∫
Ω

dA(ζ)

(ζ − z)(ζ̄ − w̄)
) = 1−

∞∑
m,n=0

bm,n

zm+1w̄n+1
.

where the moments am,n =
∫∫

Ω
ζmζ̄ndA(z) a recovered by

∞∑
m,n=0

bm,n

zm+1w̄n+1
= 1− exp(−

∞∑
m,n=0

am,nz
m+1

w̄
n+1

).

EΩ(z, w) = 1− 1
w̄CΩ(z) +O( 1

|w|2
), as |w| → ∞, where CΩ(z) = 1

2πi

∫
Ω

dζ∧dζ̄
z−ζ is

the Cauchy transform of Ω.
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The exponential transform and quadrature domains

The following conditions are equivalent (Aharonov, Shapiro, 1976; Gustafsson, 1983,
Putinar, 1996):

CΩ(z) is rational (:= R(z)) outside Ω;

EΩ(z, w) is rational =
Q(z,w)

P (z)P (w)
, |z|, |w| � 1;

Ω is a quadrature domain;

∃S(z) meromorphic in Ω: S(z) = z̄ on ∂Ω,

S(z) = z̄ − CΩ(z) + R(z), z ∈ Ω.

Ω is determined by finitely many moments ajk;

det(bjk)N0 = 0 for some N .

There is a bounded linear operator T acting on a Hilbert space, with spectrum
equal to Ω, with rank one self commutator [T∗, T ] = ξ ⊕ ξ and such that the

linear span (T∗kξ)k≥0 is finite dimensional.
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Some properties and examples

E(z, z) can be viewed as equation of the boundary:

E(z, z) = exp

[
−

1

π

∫
Ω

dA(ζ)

|ζ − z|2

]
=

{
0, on ∂Ω;
> 0, outside Ω,

if Ω1 and Ω2 are disjoint then EΩ1∪Ω2 = EΩ1EΩ2 .

Example 1: the unit disk Ω = D(0, 1):

CD = 1
z , S(z) = 1

z , ED = 1− 1
zw̄ .

Example 2: Ω = D(−1, r)⊕ D(1, r), r > 1:

CΩ(z) = 2r2z
z2−1

, EΩ = 1− 1+A(r)zw̄

(w̄2−1)(z2−1)
.

Riemann and Klein Surfaces, Symmetries and Moduli Spaces June 27, 2013



The exponential transform The meromorphic resultant Elimination function Applications

The exponential transform as a resultant

Let Ω be a quadrature domain and let S be the associated Schwarz function of ∂Ω.

Then
f(ζ) = (ζ, S(ζ)), g(ζ) = (S(ζ), ζ̄)

are meromorphic on the Schottky double

Ω̂ = Ω ∪ ∂Ω ∪ Ω̃.

Theorem (B. Gustafsson, V.T., Comm. Math. Phys., 2009)

The exponential transform EΩ(z, w) of a QD can be viewed as the resultant (an

elimination function) on the Schottky double Ω̂:

EΩ(z, w) = R(f − z, g − w̄) ≡ Ef,g(z, w̄).
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The polynomial resultant
Given two polynomials

P (z) = P0 + P1z + . . .+ Pmz
m

= Pm

m∏
i=1

(z − pi)

Q = Q0 +Q1z + . . .+Qnz
n

= Qn

n∏
j=1

(z − qj)

the classical (polynomial) resultant is defined by either of the following relations:

Rpol(P,Q) = P
n
mQ

m
n

∏
i,j

(pi − qj)

=

m∏
i=1

Q(pi) = (−1)
mn

n∏
j=1

P (qj)

= det



P0 P1 . . . Pm
P0 P1 . . . Pm

. . .
. . .

. . .
P0 P1 . . . . . . Pm

Q0 Q1 . . . Qn
Q0 Q1 . . . Qn

. . .
. . .

. . .
Q0 Q1 . . . Qn


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The polynomial resultant

The elimination property: Rpol(P,Q) = 0 ⇔ P and Q have a common zero.

Skew-symmetry:
Rpol(P,Q) = (−1)

mnRpol(Q,P ).

Multiplicativity:

Rpol(P1 · P2, Q) = Rpol(P1, Q) · Rpol(P2, Q).

The Fisher-Hartwig formula: let q0 6= 0 and
P (z)
Q(z)

=
∑∞
k=0 skz

k. Then for any

k ≥ n = degQ

Rpol(P,Q) = p
n−k
m q

m+k
0

∣∣∣∣∣∣∣∣∣
sm sm−1 . . . sm−k+1
sm+1 sm . . . sm−k+2

.

.

.
.
.
.

. . .
.
.
.

sm+k−1 sm+k−2 . . . sm

∣∣∣∣∣∣∣∣∣
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The polynomial resultant

Recent development:

elimination algebra Jouanolou (1991);

A-resultants: Gelfand, Kapranov Zelevinsky (1994);

resultants via Koszul complex by Chardin (1993);

A ”differential resultant” (for commuting differential operators), due to
E. Previato (1991);

toric geometry, resultants and residues, Cattani, Cox, Dickenstein, (1995).
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The meromorphic resultant

Let M be a compact Riemann surface and let f , g be meromorphic functions on M .
Denote by

(f) = f
−1

(0)− f−1
(∞) =

∑
ai −

∑
bi, (g) = g

−1
(0)− g−1

(∞) =
∑

cj −
∑

dj

their (principal) divisors.

Definition

Suppose that x→ ordxf · ordxg is semi-definite on M . Then the meromorphic
resultant of f is defined by

R(f, g) := g((f)) =
g(f−1(0))

g(f−1(∞))

=
∏
x∈M

g(x)
ordx(f)

=
m∏
i=1

g(ai)

g(bi)
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Example: M = the Riemann sphere

Let M = P1 and

f(z) = λ

m∏
i=1

z − ai
z − bi

, g(z) = µ

n∏
j=1

z − cj
z − dj

.

The product formula:

R(f, g) =
m∏
i=1

n∏
j=1

ai − cj
ai − dj

·
bi − dj
bi − cj

=
m∏
i=1

n∏
j=1

(ai, bi, cj , dj)

where (a, b, c, d) := a−c
a−d ·

b−d
b−c is the classical cross ratio of two points.

Symmetry: R(f, g) = R(g, f) when M = P1. We shall see that this holds true in
general.

Homogeneity of degree 0: R(f, g) depends only on divisors.

Multiplicativity: R(f1f2, g) = R(f1, g)R(f2, g).

The elimination property: if f and g are admissible on M then R(f, g) = 0 iff
f and g have a common zero or a common pole. In particular, R(f, g) = 0 if f
and g are polynomials.
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The general meromorphic resultant

In general, by the Weil reciprocity law (1940):

m∏
i=1

g(ai)

g(bi)
=

n∏
j=1

f(cj)

f(dj)

one has the symmetry relation:

R(f, g) = R(g, f).

Integral representation:

R(f, g) = exp[
1

2πi

∫
M

df

f
∧ dLog g],

where the latter integral representing R(f, g) over M the integrand vanishes outside a
one-dimensional set of singularities.
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Potential theoretic interpretations

Recall that the mutual energy between two signed measures (“charge distributions”) µ
and ν with compact support in C is

I(µ, ν) = −
∫∫

log |z − ζ| dµ(z)dν(ζ) =

∫
U
µ
dν,

where

U
µ

(z) = −
∫

log |z − ζ| dµ(ζ).

Now, notice that

|R(f, g)|2 = exp[
1

2πi

∫
M

df

f
∧
dḡ

ḡ
].

(the expression is a true two-dimensional integral). Then if dµ = δ(f)dx ∧ dy and
dν = δ(g)dx ∧ dy are regarded as charge distributions then, up to constant factors,

I(µ, ν) = − log |R(f, g)|

is the mutual energy between µ and ν.
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Elimination function
With z, w ∈ C free variables, consider the elimination function:

Ef,g(z, w) := R(f − z, g − w)

=
(g − w)(f−1(z))

(g − w)(f−1(∞))
=

∏m
i=1(g(f−1

i (z))− w)∏m
i=1(g(f−1

i (∞))− w)

Theorem (B. Gustafsson, V.T., 2009)

Let f and g be meromorphic and have no common poles. Then the elimination function
is a rational function of the form

Ef,g(z, w) =
Q(z, w)

P (z)R(w)
, (1)

where Q, P , R are polynomials. Notice that Ef,g may be well-defined even if R(f, g) is
not defined.

Corollary: The elimination property

E(f(ζ), g(ζ)) = 0 (ζ ∈ M).

In particular,
Q(f, g) = 0,

i.e., the classical polynomial relation between two functions on a compact Riemann
surface.
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Extended elimination function
Suppose f and g be arbitrary meromorphic functions and let us consider the extended
elimination function of four complex variables:

Ef,g(z, w; z0, w0) = R
(
f − z
f − z0

,
g − w
g − w0

)
,

which is now well-defined and is also rational.

Example

Let f be any meromorphic function of order n and g = f . Then

Ef,f (z, w; z0, w0) = (z, w; z0, w0)
n
,

where (z, w; z0, w0) is the cross-product, while Ef,f (z, w) is not defined at all.

Remark. If Ef,g(z, w) is well-defined then

E(z, w; z0, w0) =
E(z, w)E(z0, w0)

E(z, w0)E(z0, w)
,

and in the other direction,

lim
z0,w0→∞

E(z, w; z0, w0) = E(z, w).
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Main example
Ω is a quadrature domain and, M = Ω̂ = Ω ∪ ∂Ω ∪ Ω̃, and

f(ζ) = (ζ, S(ζ)), g(ζ) = (S(ζ), ζ̄).

Consider
f(ζ)− z, g(ζ)− w̄

for ζ ∈ Ω̂, |z|, |w| � 1. Then

Ef,g(z, w̄) = exp[
1

2πi

∫
M

df(ζ)

f(ζ)− z
∧ dLog (g(ζ)− w̄)]

(contributions only from jumps ⇒ only from Ω)

= exp[
1

2πi

∫
Ω

dζ

ζ − z
∧ dLog (S(ζ)− w̄)]

= exp[−
1

2πi

∫
∂Ω

dζ

ζ − z
∧ Log (S(ζ)− w̄)]

= exp[−
1

2πi

∫
∂Ω

dζ

ζ − z
∧ Log (ζ̄ − w̄)]

= exp[
1

2πi

∫
Ω

dζ

ζ − z
∧

dζ̄

ζ̄ − w̄
]

= EΩ(z, w),

as claimed.
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Applications: the determinantal representations

Let a ∈ L∞(T) and T (a) : H2 → H2 be the Toeplitz operator acting on the Hardy

space H2:
T (a) : φ→ P+(aφ),

(P+ : L2 → H2 is the orthogonal projection).

Theorem (B. Gustafsson, V.T., 2009)

Let f and g be rational functions such that |(f)| ⊂ D, |(g)| ⊂ C \ D. Then

R(f, g) = detT (f/g)T (g/f) = det[T (f)
−1
T (g)T (f)T (g)

−1
]

= lim
N→∞

(
g(∞)g(0)

f(∞)

)N
· det tN (

f

g
),

(2)

where

det tN (a) ≡

∣∣∣∣∣∣∣∣∣
a0 a−1 . . . a1−n
a1 a0 . . . a2−n
.
.
.

.

.

.
. . .

.

.

.
an−1 an−2 . . . a0

∣∣∣∣∣∣∣∣∣ , an =
1

2π

∫ 2π

0

e
−inθ

a(e
iθ

)dθ.

Remark. The Szegö strong limit theorem.
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Applications: A punctured quadrature domain

Let Ω = P (D), where P (ζ) = a1ζ + . . .+ anζ
n, then for all small enough u, v:

EΩ(z, w) =
1

znw̄n
Rpol(P − z, P∗ − w̄ζn)

= det



− 1
z ān

a1

. . .
.
.
.

. . .

.

.

. − 1
z ā1 ān

an a1 − 1
w̄

.

.

.

. . .
.
.
.

. . . ā1

an − 1
w̄


,

where
P
∗
(ζ) = ān + ān−1ζ + . . .+ ā1ζ

n−1
.

Riemann and Klein Surfaces, Symmetries and Moduli Spaces June 27, 2013



The exponential transform The meromorphic resultant Elimination function Applications

Applications: Rational morphisms

Theorem (B. Gustafsson, V.T., 2009)

Let F (ζ) : Ω1 → Ω2 be a p-valent proper rational mapping. Then

(i) for all z, w ∈ C \ Ω2

E
p
Ω2

(z, w) = Ru(F (u)− z,Rv(F (v)− w,E1(u, v)))

where Ru denote the resultant in u-variable.

(ii) If additionally EΩ1 is a rational function then EpΩ2
is also rational.

Example: let 1 < a < b and Ω = f(D(a) \ D(b)) be the confocal elliptic domain,

then

EΩ =
a4

b4
·

(b4 − 1)2 − 4b2(1 + b4)zw̄ + 4b4(z2 + w̄2)

(a4 − 1)2 − 4a2(1 + a4)zw̄ + 4a4(z2 + w̄2)
.
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Applications: Polynomial vs Meromorphic

Note that the meromorphic resultant for polynomials degenerates: R(A,B) = 0. A
näıve way to correct this ’defect’ is to assign the ”value at infinity”:

B(∞) = z
n
B(1/z)|z=0 = Bm

and use the original definition

R(A,B) :=
m∏
i=1

B(ai)

B(∞)
=

m∏
i=1

n∏
j=1

(ai − bj),

which is consistent with the new definition. In practice, the role of such a ’blow-up’
plays the local (or tame) symbol introduced by Serre by

τx(f, g) := (−1)
ordxfordxg ·

fordxg

gordxf
(x) 6= 0

• τx(f, g) = 1 a.e. in M ;

• Weil’s reciprocity law: on a compact M ,

∏
x∈M

τx(f, g) = 1.
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Applications: Polynomial vs Meromorphic
A pair (f, g) := admissible on A ⊂M if the function

x→ ordx(g)ordx(f)

is sign semi-definite in A. For examples, polynomials on P1 \ {∞}.
Let f and g be admissible on M \ {ξ} and ω is a local coordinate near ξ, ω(ξ) = 0. The
reduced resultant:

Rω(f, g) = τξ(ω, f)
ordξg

∏
x 6=ξ

g(x)
ordx(f)

,

Main example: M = P1, A = P1 \ {∞}, ξ =∞, ω(z) = 1
z . Then for any polynomial

A(z) = A0 + A1z + . . .+ Amz
m:

τξ(ω,A) = lim
z→∞

zm

A(z)
=

1

Am
,

where m = −ord∞(A) = degA. Hence

Rω(A,B) = A
n
m

∏
x6=∞

B(x)
ordx(A)

coincides with the classical definition:

Rz,∞(A,B) = Rpol(A,B).
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