The resultant on compact Riemann surfaces and the exponential transform

Vladimir Tkachev

joint work with Björn Gustafsson

Linköping University

In honour of Emilio Bujalance

 \bullet $\Omega := a quadrature domain (for analytic functions) if$

$$\int_{\Omega} h \, dx dy = \sum_{i=1}^n c_i h(z_i) \quad \forall h \in L^1(\Omega), \quad \text{for fixed } z_i \in \Omega, c_i \in \mathbb{C}.$$

By Richardson's theorem, the complex moments preserved under Hele-Shaw flow:

$$\frac{d}{dt} \int_{\Omega_t} z^k \, dz \wedge d\bar{z} = 0, \quad \forall k \ge 1.$$

• The exponential transform of a bounded closed set Ω is defined by

$$E_{\Omega}(z, w) = \exp(-\frac{1}{\pi} \int_{\Omega} \frac{dA(\zeta)}{(\zeta - z)(\bar{\zeta} - \bar{w})}) = 1 - \sum_{m, n = 0}^{\infty} \frac{b_{m, n}}{z^{m+1} \bar{w}^{n+1}}.$$

where the moments $a_{m,n} = \iint_{\Omega} \zeta^m \bar{\zeta}^n dA(z)$ a recovered by

$$\sum_{m,n=0}^{\infty} \frac{b_{m,n}}{z^{m+1} \bar{w}^{n+1}} = 1 - \exp(-\sum_{m,n=0}^{\infty} \mathbf{a_{m,n}} z^{m+1} \bar{w}^{n+1}).$$

• $E_{\Omega}(z,w) = 1 - \frac{1}{\bar{w}}C_{\Omega}(z) + \mathcal{O}(\frac{1}{|w|^2})$, as $|w| \to \infty$, where $C_{\Omega}(z) = \frac{1}{2\pi i}\int\limits_{\Omega} \frac{d\zeta \wedge d\bar{\zeta}}{z-\zeta}$ is the Cauchy transform of Ω .

The exponential transform and quadrature domains

The following conditions are equivalent (Aharonov, Shapiro, 1976; Gustafsson, 1983, Putinar, 1996):

- $C_{\Omega}(z)$ is rational (:= R(z)) outside Ω ;
- $E_{\Omega}(z,w)$ is rational = $\frac{Q(z,w)}{P(z)\overline{P(w)}}$, $|z|,|w|\gg 1$;
- Ω is a quadrature domain:
- $\exists S(z)$ meromorphic in Ω : $S(z) = \bar{z}$ on $\partial \Omega$,

$$S(z) = \bar{z} - C_{\Omega}(z) + R(z), \qquad z \in \Omega.$$

- Ω is determined by finitely many moments a_{ik} ;
- \bullet det $(b_{ik})_0^N = 0$ for some N.
- There is a bounded linear operator T acting on a Hilbert space, with spectrum equal to Ω , with rank one self commutator $[T^*, T] = \xi \oplus \xi$ and such that the linear span $(T^{*k}\xi)_{k>0}$ is finite dimensional.

Some properties and examples

• E(z, z) can be viewed as equation of the boundary:

$$E(z,z) = \exp\left[-\frac{1}{\pi} \int\limits_{\Omega} \frac{dA(\zeta)}{|\zeta - z|^2}\right] = \left\{ \begin{array}{cc} 0, & \text{on } \partial\Omega; \\ > 0, & \text{outside } \Omega, \end{array} \right.$$

• if Ω_1 and Ω_2 are disjoint then $E_{\Omega_1 \cup \Omega_2} = E_{\Omega_1} E_{\Omega_2}$.

Example 1: the unit disk $\Omega = \mathbb{D}(0,1)$:

Example 2: $\Omega = \mathbb{D}(-1, r) \oplus \mathbb{D}(1, r), r > 1$:

$$C_{\Omega}(z) = \frac{2r^2z}{z^2-1}, \ E_{\Omega} = 1 - \frac{1+A(r)z\bar{w}}{(\bar{w}^2-1)(z^2-1)}.$$

The exponential transform as a resultant

Let Ω be a quadrature domain and let S be the associated Schwarz function of $\partial\Omega$.

Then

$$f(\zeta) = (\zeta, \overline{S(\zeta)}), \quad g(\zeta) = (S(\zeta), \overline{\zeta})$$

are meromorphic on the Schottky double

$$\widehat{\Omega} = \Omega \cup \partial \Omega \cup \widetilde{\Omega}.$$

Theorem (B. Gustafsson, V.T., Comm. Math. Phys., 2009)

The exponential transform $E_{\Omega}(z, w)$ of a QD can be viewed as the resultant (an elimination function) on the Schottky double $\widehat{\Omega}$:

$$E_{\Omega}(z, w) = \mathcal{R}(f - z, g - \bar{w}) \equiv \mathcal{E}_{f, g}(z, \bar{w}).$$

Given two polynomials

$$P(z) = P_0 + P_1 z + \dots + P_m z^m = P_m \prod_{i=1}^m (z - p_i)$$
$$Q = Q_0 + Q_1 z + \dots + Q_n z^n = Q_n \prod_{i=1}^n (z - q_i)$$

the classical (polynomial) **resultant** is defined by either of the following relations:

$$\mathcal{R}_{\text{pol}}(P,Q) = P_{m}^{n} Q_{n}^{m} \prod_{i,j} (p_{i} - q_{j})$$

$$= \prod_{i=1}^{m} Q(p_{i}) = (-1)^{mn} \prod_{j=1}^{n} P(q_{j})$$

$$= \det \begin{pmatrix} P_{0} & P_{1} & \dots & P_{m} \\ P_{0} & P_{1} & \dots & P_{m} \\ & \ddots & \ddots & & \ddots \\ Q_{0} & Q_{1} & \dots & Q_{n} \\ & \ddots & \ddots & & \ddots \\ Q_{0} & Q_{1} & \dots & Q_{n} \end{pmatrix}$$

$$= \det \begin{pmatrix} P_{0} & P_{1} & \dots & P_{m} \\ Q_{0} & Q_{1} & \dots & Q_{n} \\ & \ddots & \ddots & & \ddots \\ & & & Q_{0} & Q_{1} & \dots & Q_{n} \end{pmatrix}$$

The polynomial resultant

- The elimination property: $\mathcal{R}_{pol}(P,Q) = 0 \Leftrightarrow P$ and Q have a common zero.
- Skew-symmetry:

$$\mathcal{R}_{\text{pol}}(P,Q) = (-1)^{mn} \, \mathcal{R}_{\text{pol}}(Q,P).$$

Multiplicativity:

$$\mathcal{R}_{\text{pol}}(P_1 \cdot P_2, Q) = \mathcal{R}_{\text{pol}}(P_1, Q) \cdot \mathcal{R}_{\text{pol}}(P_2, Q).$$

• The Fisher-Hartwig formula: let $q_0 \neq 0$ and $\frac{P(z)}{Q(z)} = \sum_{k=0}^{\infty} s_k z^k$. Then for any $k \geq n = \deg Q$

$$\mathcal{R}_{\text{pol}}(P,Q) = p_m^{n-k} q_0^{m+k} \begin{vmatrix} s_m & s_{m-1} & \dots & s_{m-k+1} \\ s_{m+1} & s_m & \dots & s_{m-k+2} \\ \vdots & \vdots & \ddots & \vdots \\ s_{m+k-1} & s_{m+k-2} & \dots & s_m \end{vmatrix}$$

Recent development:

- elimination algebra Jouanolou (1991);
- A-resultants: Gelfand, Kapranov Zelevinsky (1994);
- resultants via Koszul complex by Chardin (1993);
- A "differential resultant" (for commuting differential operators), due to E. Previato (1991);
- toric geometry, resultants and residues, Cattani, Cox, Dickenstein, (1995).

Let M be a compact Riemann surface and let f, g be meromorphic functions on M. Denote by

$$(f) = f^{-1}(0) - f^{-1}(\infty) = \sum a_i - \sum b_i, \qquad (g) = g^{-1}(0) - g^{-1}(\infty) = \sum c_j - \sum d_j$$

their (principal) divisors.

Definition

Suppose that $x \to \operatorname{ord}_x f \cdot \operatorname{ord}_x q$ is semi-definite on M. Then the **meromorphic resultant** of f is defined by

$$\mathcal{R}(f,g) := g((f)) = \frac{g(f^{-1}(0))}{g(f^{-1}(\infty))}$$
$$= \prod_{x \in M} g(x)^{\operatorname{ord}_{x}(f)}$$
$$= \prod_{i=1}^{m} \frac{g(a_{i})}{g(b_{i})}$$

Example: M =the Riemann sphere

Let $M = \mathbb{P}^1$ and

$$f(z) = \lambda \prod_{i=1}^m \frac{z-a_i}{z-b_i}, \qquad g(z) = \mu \prod_{j=1}^n \frac{z-c_j}{z-d_j}.$$

The product formula:

$$\mathcal{R}(f,g) = \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{a_i - c_j}{a_i - d_j} \cdot \frac{b_i - d_j}{b_i - c_j} = \prod_{i=1}^{m} \prod_{j=1}^{n} (a_i, b_i, c_j, d_j)$$

where $(a, b, c, d) := \frac{a-c}{a-d} \cdot \frac{b-d}{b-c}$ is the classical cross ratio of two points.

- Symmetry: $\mathcal{R}(f,g) = \mathcal{R}(g,f)$ when $M = \mathbb{P}^1$. We shall see that this holds true in general.
- Homogeneity of degree 0: $\mathcal{R}(f,g)$ depends only on divisors.
- Multiplicativity: $\mathcal{R}(f_1, f_2, q) = \mathcal{R}(f_1, q) \mathcal{R}(f_2, q)$.
- The elimination property: if f and g are admissible on M then $\mathcal{R}(f,g)=0$ iff f and g have a common zero or a common pole. In particular, $\mathcal{R}(f,g)=0$ if f and q are polynomials.

The general meromorphic resultant

In general, by the Weil reciprocity law (1940):

$$\prod_{i=1}^{m} \frac{g(a_i)}{g(b_i)} = \prod_{j=1}^{n} \frac{f(c_j)}{f(d_j)}$$

one has the symmetry relation:

$$\mathcal{R}(f,g) = \mathcal{R}(g,f).$$

Integral representation:

$$\mathcal{R}(f,g) = \exp\left[\frac{1}{2\pi i} \int_{M} \frac{df}{f} \wedge d \operatorname{Log} g\right],$$

where the latter integral representing $\mathcal{R}(f,g)$ over M the integrand vanishes outside a one-dimensional set of singularities.

Recall that the mutual energy between two signed measures ("charge distributions") μ and ν with compact support in $\mathbb C$ is

$$I(\mu,\nu) = -\iint \log|z - \zeta| \, d\mu(z) d\nu(\zeta) = \int U^{\mu} d\nu,$$

where

$$U^{\mu}(z) = -\int \log|z - \zeta| \, d\mu(\zeta).$$

Now, notice that

$$|\mathcal{R}(f,g)|^2 = \exp\left[\frac{1}{2\pi i} \int_M \frac{df}{f} \wedge \frac{d\bar{g}}{\bar{g}}\right].$$

(the expression is a true two-dimensional integral). Then if $d\mu = \delta_{(f)} dx \wedge dy$ and $d\nu = \delta_{(g)} dx \wedge dy$ are regarded as charge distributions then, up to constant factors,

$$I(\mu, \nu) = -\log |\mathcal{R}(f, g)|$$

is the mutual energy between μ and ν .

Elimination function

With $z, w \in \mathbb{C}$ free variables, consider the elimination function:

$$\begin{split} \mathcal{E}_{f,g}(z,w) &:= \mathcal{R}(f-z,g-w) \\ &= \frac{(g-w)(f^{-1}(z))}{(g-w)(f^{-1}(\infty))} = \frac{\prod_{i=1}^m (g(f_i^{-1}(z))-w)}{\prod_{i=1}^m (g(f_i^{-1}(\infty))-w)} \end{split}$$

Theorem (B. Gustafsson, V.T., 2009)

Let f and g be meromorphic and have no common poles. Then the elimination function is a rational function of the form

$$\mathcal{E}_{f,g}(z,w) = \frac{Q(z,w)}{P(z)R(w)},\tag{1}$$

where Q, P, R are polynomials. Notice that $\mathcal{E}_{f,g}$ may be well-defined even if $\mathcal{R}(f,g)$ is not defined.

Corollary: The elimination property

$$\mathcal{E}(f(\zeta), q(\zeta)) = 0 \quad (\zeta \in \mathcal{M}).$$

In particular,

$$Q(f,q) = 0,$$

i.e., the classical polynomial relation between two functions on a compact Riemann surface.

Suppose f and g be arbitrary meromorphic functions and let us consider the extended elimination function of four complex variables:

$$\mathcal{E}_{f,g}(z,w;z_0,w_0) = \mathcal{R}\left(\frac{f-z}{f-z_0},\frac{g-w}{g-w_0}\right),\,$$

which is now well-defined and is also rational.

Example

Let f be any meromorphic function of order n and g = f. Then

$$\mathcal{E}_{f,f}(z,w;z_0,w_0) = (z,w;z_0,w_0)^n,$$

where $(z, w; z_0, w_0)$ is the cross-product, while $\mathcal{E}_{f,f}(z, w)$ is not defined at all.

Remark. If $\mathcal{E}_{f,g}(z,w)$ is well-defined then

$$\mathcal{E}(z, w; z_0, w_0) = \frac{\mathcal{E}(z, w)\mathcal{E}(z_0, w_0)}{\mathcal{E}(z, w_0)\mathcal{E}(z_0, w)},$$

and in the other direction,

$$\lim_{z_0, w_0 \to \infty} \mathcal{E}(z, w; z_0, w_0) = \mathcal{E}(z, w).$$

Elimination function

Main example

 Ω is a quadrature domain and, $M=\widehat{\Omega}=\Omega\cup\partial\Omega\cup\widetilde{\Omega},$ and

$$f(\zeta) = (\zeta, \overline{S(\zeta)}), \quad g(\zeta) = (S(\zeta), \overline{\zeta}).$$

Consider

$$f(\zeta) - z$$
, $g(\zeta) - \bar{w}$

for $\zeta \in \widehat{\Omega}$, $|z|, |w| \gg 1$. Then

$$\mathcal{E}_{f,g}(z,\bar{w}) = \exp\left[\frac{1}{2\pi i} \int_{M} \frac{df(\zeta)}{f(\zeta) - z} \wedge d \operatorname{Log}\left(g(\zeta) - \bar{w}\right)\right]$$

(contributions only from jumps \Rightarrow only from Ω)

$$\begin{split} &= \exp[\frac{1}{2\pi \mathrm{i}} \int\limits_{\Omega} \frac{d\zeta}{\zeta - z} \wedge d \operatorname{Log}\left(S(\zeta) - \bar{w}\right)] \\ &= \exp[-\frac{1}{2\pi \mathrm{i}} \int\limits_{\partial \Omega} \frac{d\zeta}{\zeta - z} \wedge \operatorname{Log}\left(S(\zeta) - \bar{w}\right)] \\ &= \exp[-\frac{1}{2\pi \mathrm{i}} \int\limits_{\partial \Omega} \frac{d\zeta}{\zeta - z} \wedge \operatorname{Log}\left(\bar{\zeta} - \bar{w}\right)] \\ &= \exp[\frac{1}{2\pi \mathrm{i}} \int\limits_{\Omega} \frac{d\zeta}{\zeta - z} \wedge \frac{d\bar{\zeta}}{\bar{\zeta} - \bar{w}}] \\ &= E_{\Omega}(z, w), \end{split}$$

Applications: the determinantal representations

Let $a \in L^{\infty}(\mathbb{T})$ and $T(a): H^2 \to H^2$ be the Toeplitz operator acting on the Hardy space H^2 :

$$T(a): \phi \to P_+(a\phi),$$

 $(P_+:L^2\to H^2 \text{ is the orthogonal projection}).$

Theorem (B. Gustafsson, V.T., 2009)

Let f and g be rational functions such that $|(f)| \subset \mathbb{D}$, $|(g)| \subset \mathbb{C} \setminus \mathbb{D}$. Then

$$\mathcal{R}(f,g) = \det T(f/g)T(g/f) = \det[T(f)^{-1}T(g)T(f)T(g)^{-1}]$$

$$= \lim_{N \to \infty} \left(\frac{g(\infty)g(0)}{f(\infty)}\right)^N \cdot \det t_N(\frac{f}{g}), \tag{2}$$

where

$$\det t_N(a) \equiv \begin{vmatrix} a_0 & a_{-1} & \dots & a_{1-n} \\ a_1 & a_0 & \dots & a_{2-n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \dots & a_0 \end{vmatrix}, \qquad a_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\theta} a(e^{i\theta}) d\theta.$$

Remark. The Szegö strong limit theorem.

Applications: A punctured quadrature domain

Let $\Omega = P(\mathbb{D})$, where $P(\zeta) = a_1 \zeta + \ldots + a_n \zeta^n$, then for all small enough u, v:

$$E_{\Omega}(z,w) = \frac{1}{z^n \bar{w}^n} \, \mathcal{R}_{\text{pol}}(P - z, P^* - \bar{w}\zeta^n)$$

$$= \det \begin{pmatrix} -\frac{1}{z} & & \bar{a}_n & & \\ a_1 & \ddots & & \ddots & \\ \vdots & & -\frac{1}{z} & \bar{a}_1 & & \bar{a}_n \\ \vdots & & a_1 & -\frac{1}{\bar{w}} & & \vdots \\ & \ddots & \vdots & & \ddots & \\ & a_n & & a_n & & -\frac{1}{\bar{w}} \end{pmatrix},$$

where

$$P^*(\zeta) = \bar{a}_n + \bar{a}_{n-1}\zeta + \ldots + \bar{a}_1\zeta^{n-1}.$$

Applications: Rational morphisms

Theorem (B. Gustafsson, V.T., 2009)

Let $F(\zeta): \Omega_1 \to \Omega_2$ be a p-valent proper rational mapping. Then

(i) for all $z, w \in \mathbb{C} \setminus \overline{\Omega}_2$

$$E_{\Omega_2}^p(z,w) = \mathcal{R}_u(F(u) - z, \mathcal{R}_v(F(v) - w, E_1(u,v)))$$

where \mathcal{R}_u denote the resultant in u-variable.

(ii) If additionally E_{Ω_1} is a rational function then $E_{\Omega_2}^p$ is also rational.

Example: let 1 < a < b and $\Omega = f(\mathbb{D}(a) \setminus \mathbb{D}(b))$ be the confocal elliptic domain,

then

$$E_{\Omega} = \frac{a^4}{b^4} \cdot \frac{(b^4 - 1)^2 - 4b^2(1 + b^4)z\bar{w} + 4b^4(z^2 + \bar{w}^2)}{(a^4 - 1)^2 - 4a^2(1 + a^4)z\bar{w} + 4a^4(z^2 + \bar{w}^2)}.$$

Note that the meromorphic resultant for polynomials degenerates: $\mathcal{R}(A,B) = 0$. A naïve way to correct this 'defect' is to assign the "value at infinity":

$$B(\infty) = z^n B(1/z)|_{z=0} = B_m$$

and use the original definition

$$\mathcal{R}(A,B) := \prod_{i=1}^{m} \frac{B(a_i)}{B(\infty)} = \prod_{i=1}^{m} \prod_{j=1}^{n} (a_i - b_j),$$

which is consistent with the new definition. In practice, the role of such a 'blow-up' plays the local (or tame) symbol introduced by Serre by

$$\tau_x(f,g) := (-1)^{\operatorname{ord}_x f \operatorname{ord}_x g} \cdot \frac{f^{\operatorname{ord}_x g}}{g^{\operatorname{ord}_x f}}(x) \neq 0$$

- $\tau_{\tau}(f, g) = 1$ a.e. in M:
- Weil's reciprocity law: on a compact M,

$$\prod_{x \in M} \tau_x(f, g) = 1.$$

Applications

Applications: Polynomial vs Meromorphic

A pair (f,g) := admissible on $A \subset M$ if the function

$$x \to \operatorname{ord}_x(g)\operatorname{ord}_x(f)$$

is sign semi-definite in A. For examples, polynomials on $\mathbb{P}^1 \setminus \{\infty\}$. Let f and g be admissible on $M \setminus \{\xi\}$ and ω is a local coordinate near ξ , $\omega(\xi) = 0$. The **reduced** resultant:

$$\mathcal{R}_{\omega}(f,g) = \tau_{\xi}(\omega, f)^{\operatorname{ord}_{\xi} g} \prod_{x \neq \xi} g(x)^{\operatorname{ord}_{x}(f)},$$

Main example: $M = \mathbb{P}^1$, $A = \mathbb{P}^1 \setminus \{\infty\}$, $\xi = \infty$, $\omega(z) = \frac{1}{z}$. Then for any polynomial $A(z) = A_0 + A_1 z + \ldots + A_m z^m$:

$$\tau_{\xi}(\omega, A) = \lim_{z \to \infty} \frac{z^m}{A(z)} = \frac{1}{A_m},$$

where $m = -\operatorname{ord}_{\infty}(A) = \operatorname{deg} A$. Hence

$$\mathcal{R}_{\omega}(A,B) = A_m^n \prod_{x \neq \infty} B(x)^{\operatorname{ord}_x(A)}$$

coincides with the classical definition:

$$\mathcal{R}_{z,\infty}(A,B) = \mathcal{R}_{\text{pol}}(A,B).$$