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The exponential transform

The exponential transform and quadrature domains

@ Q := a quadrature domasin (for analytic functions) if

/ hdzxdy = ch (z¢) VYh e ! (), for fixed z; € Q,¢; € C.

i=1
@ By Richardson’s theorem, the complex moments preserved under Hele-Shaw fow:
d k _
— [ 2"dzANdz =0, Vk2>1.
dt
24

@ The exponential transform of a bounded closed set €2 is defined by

dA(¢) _ S~ bman
Eq(z,w) = exp(— /m) =1- m%::() P p———

where the moments a,,, , = ffn ¢™¢"dA(z) a recovered by

oo oo

bim,n m+1 _n+1
> gy Wl —exp(= D amanz w').

m,n=0 m,n=0

@ Eq(z,w)=1- 1Ca(z)+ O(hu\2)’ as |w| — oo, where Cq(z) = 5% [ dEAde g
Q

the Cauchy transform of Q.
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http://vimeo.com/22212386

The exponential transform

The exponential transform and quadrature domains

The following conditions are equivalent (Aharonov, Shapiro, 1976; Gustafsson, 1983,
Putinar, 1996):

@ Cq(z) is rational (:= R(z)) outside ;

@ Eq(z,w) is rational = %, |z|, Jw| > 1;

@ Q is a quadrature domain;
@ 35(z) meromorphic in Q: S(z) = z on 99,

S(z) = 2 — Ca(z) + R(2), z €.

@  is determined by finitely many moments ay;

@ det(b;x)) = 0 for some N.

@ There is a bounded linear operator 7" acting on a Hilbert space, with spectrum
equal to Q, with rank one self commutator [T*,T] = £ @ £ and such that the

linear span (T*kf)kzo is finite dimensional.
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The exponential transform

Some properties and examples

@ E(z,z) can be viewed as equation of the boundary:

B( ) = 71 dA(C) _ 0, on 09;
%, %) = €xp e - > 0, outside 2,

@ if Q; and Q3 are disjoint then Eq,uq, = Eq, Eqa,-

Example 1: the unit disk Q = D(0, 1):

Example 2: Q =D(—1,r) ® D(1, r), r> 1

/ N 7\
\ 2 1+A(r)zw
* Ca(z) = %%, Ba=1- (m271§(2271)‘
\ N /

and Klein S S d Moduli S




The exponential transform

The exponential transform as a resultant

Let 2 be a quadrature domain and let S be the associated Schwarz function of 9.

Then N _
F(Q) =(¢,5(6),  9(¢) = (5(¢); Q)

are meromorphic on the Schottky double

Q=quaoqua.

Theorem (B. Gustafsson, V.T., Comm. Math. Phys., 2009)

The exponential transform Egq (z,w) of a QD can be viewed as the resultant (an
elimination function) on the Schottky double Q:

Eq(z,w) = R(f — 2,9 — w) = Ef 4(2,w).
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The meromorphic resultant

The polynomial resultant

Given two polynomials

P(z)=Po+Piz+...4 Ppnz" = Po [[(z = pi)

i=1

Q=Qo+Qiz+...+Qnz" =Qn [[(z—a;)

j=1

the classical (polynomial) resultant is defined by either of the following relations:

Rpot(P, Q) = PrQi [ [(pi — a5)
i,

m n

= H Q(pi) = (=1)™" H P(q;)

i=1 j=1
Py P Py,
Py P P,
_ Py P B
= det QD Ql ce Qn
QO Ql Qn
Qo Q1 ... Qn
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The meromorphic resultant

The polynomial resultant

@ The elimination property: R,01(P,Q) =0 < P and Q have a common zero.

@ Skew-symmetry: o
Rpol(Pv Q) = (_1) 7?‘pol(cx?v P)

@ Multiplicativity:

Rpol(P1 - P2, Q) = Rpo1(P1, Q) - Rpo1(P2, Q).

@ The Fisher-Hartwig formula: let qo # 0 and PEZ>

=322, skz". Then for any

Q(z)
k>n=degQ
Sm Sm—1 Sm—k+41
k r Sm41 Sm Sm—k+4+2
n— m
Rpol(Pv Q) =Pm 9
Sm4k—1 Sm+tk—2 Sm
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The meromorphic resultant

The polynomial resultant

Recent development:
@ elimination algebra Jouanolou (1991);
@ A-resultants: Gelfand, Kapranov Zelevinsky (1994);
@ resultants via Koszul complex by Chardin (1993);

@ A 7differential resultant” (for commuting differential operators), due to
E. Previato (1991);

@ toric geometry, resultants and residues, Cattani, Cox, Dickenstein, (1995).
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The meromorphic resultant

The meromorphic resultant

Let M be a compact Riemann surface and let f, g be meromorphic functions on M.
Denote by

H=F0)—fHoo)=Dai—=Y b, (=g " (0)—g ()= c;i—> d;

their (principal) divisors.

Suppose that z — ordy f - ord, g is semi-definite on M. Then the meromorphic
resultant of f is defined by

R(f,9) = 9(()) = %

_ H g(r)ordz(f)

TzEM
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The meromorphic resultant

Example: M = the Riemann sphere

Let M = P! and

CREY | =S CRY | =

Jj=1

@ The product formula:

m n

a; — c;
R(fH9) =[]1] — 7, b H]‘[(a“bucww
iZ1j=1 9 _CJ i=1j=1
where (a,b,c,d) := £=5 - 2:? is the classical cross ratio of two points.

@ Symmetry: R(f,g) = R(g, f) when M = P*. We shall see that this holds true in
general.

@ Homogeneity of degree 0: R(f, g) depends only on divisors.
@ Multiplicativity: R(f1f2,9) = R(f1,9) R(f2,9).
@ The elimination property: if f and g are admissible on M then R(f,

g)=0
f and g have a common zero or a common pole. In particular, R(f,g) = 0 if f
and g are polynomials.
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The meromorphic resultant

The general meromorphic resultant

In general, by the Weil reciprocity law (1940):

Crogla)
I (b;)

=19

S fleg)
]1:[1 f(dy)

one has the symmetry relation:

R(f,9) = R(g, f).

Integral representation:
1 df
R(f 9) = exp[f./ — A dLog g],
2mi Jar f

where the latter integral representing R(f, g) over M the integrand vanishes outside a
one-dimensional set of singularities.
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The meromorphic resultant

Potential theoretic interpretations

Recall that the mutual energy between two signed measures (“charge distributions”) p
and v with compact support in C is

1uv) = = [[ 1081z = ¢lan)av(c) = [vran,

where

U () = = [ loglz = ¢ du(©).

Now, notice that

d, dg
LN
f g

(the expression is a true two-dimensional integral). Then if du = d(fydz A dy and
dv = §(4ydx A dy are regarded as charge distributions then, up to constant factors,
(9)

2_6)( L
| R(f, 9)I? = exp| /N !

27i

I(p,v) = —log | R(f, 9)I

is the mutual energy between p and v.
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Elimination function

Elimination function

With z,w € C free variables, consider the elimination function:
Er gz, w) :=R(f — 2,9 —w)
_ - IR U ) —w)
(g —w)(f=1(c0)) ™ (g(fi (00) — w)

i=1

Theorem (B. Gustafsson, V.T., 2009)

Let f and g be meromorphic and have no common poles. Then the elimination function
is a rational function of the form

Q(z, w)

P(2)R(w)’ &

Epg(z,w) =

where Q, P, R are polynomials. Notice that £¢ ; may be well-defined even if R(f, g) is
not defined.

4

Corollary: The elimination property

E(f(©):9(¢)) =0 (¢ eM).

In particular,

Q(f,9) =0,

i.e., the classical polynomial relation between two functions on a compact Riemann
surface.
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Elimination function

Extended elimination function

Suppose f and g be arbitrary meromorphic functions and let us consider the extended
elimination function of four complex variables:

6oz = m( L5 278,

f—z20 g—wo

which is now well-defined and is also rational.

Let f be any meromorphic function of order n and g = f. Then

Ef,5 (2, w; 20, wo) = (2, w; 20, wo)",

where (z,w; 2o, wo) is the cross-product, while £¢ ¢(z,w) is not defined at all.

Remark. If £ 4(z,w) is well-defined then

E(z, w)€(z0, wo)

E(z, w; 20, =0
(2, w; 20, wo) E(z,wo)E(z0, w)

and in the other direction,

lim  &(z,w;z0,wo) = E(z,w).
z(,wy—> 00
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Elimination function

Main example

Q is a quadrature domain and, M = Q=QuUanu ﬁ, and

FO =68, 9(Q) = (5(6), ).

Consider

Q) -2 g(¢) —w
for ¢ € Q, |z, |w| > 1. Then

1

Er o(z, @) = —
1otz w) = expls— [
M

daf ()

70 A dLog (g(¢) — )]

z

(contributions only from jumps = only from )

B 1 d¢ _
_cxp[%ﬂ/giz A dLog (S(¢) — w)]

L[ .
— ool [ £ ALor(S(©O) ~ )]
o0
1 d
—expl- g [ 25 ALos(@ - )
o0
_ 1 d¢ dc
_eXp[ZTriQ/C—zAf—u’/]

= Eq(z,w),
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Applications

Applications: the determinantal representations

Let a € L°(T) and T(a) : H?> — H? be the Toeplitz operator acting on the Hardy
space H?:
T(a) : ¢ = Py (ad),

(Py : L? — H? is the orthogonal projection).

Theorem (B. Gustafsson, V.T., 2009)

Let f and g be rational functions such that |[(f)| C D, |(g)] € C \ D. Then
R(f,9) = det T(f/9)T(g/f) = det[T(f) ' T(9)T(f)T(9) "]
_ 9(2)g(0)\ ¥ f (2)
= () Q)
where
ag a1 ... ai_n
ay ao az—n 1 2m . .
dettn(a) = , an = 5- =08 ('Y dp
. . . o 0
QAn—1 An—2 ao

Remark. The Szego strong limit theorem.
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Applications

Applications: A punctured quadrature domain

Let Q@ = P(D), where P({) = a1{ + ...+ an(", then for all small enough u, v:

1 .
— =T
E(Z(sz) = — Rpol(P_zvp — w( )
Z7Lu)’7l
1 _
z an
ay
. 1 _ _
X —= a a
= det z b o,
1
Qn al -
ai
1
an -
where )
* _ _ _ n—
P*(() =an t@n-1C+... +ai¢(" .
iemann and K1
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Applications

Applications: Rational morphisms

Let F(¢) : Q1 — Q2 be a p-valent proper rational mapping. Then
(i) for all z,w € C\ Qs
Egz (z,w) = Ru(F(u) — z, Ry (F(v) — w, E1(u,v)))

where R, denote the resultant in u-variable.

(ii) If additionally Eq, is a rational function then ES2 is also rational.
”

Example: let 1 < a < b and 2 = f(D(a) \ D(b)) be the confocal elliptic domain,

OEE =

then
o a*  (b* —1)% —4b2(1 + b*)zw + 4b* (2% + @?)
© T e (at —1)2 — 4a2(1 + at)zw + 4a4 (22 + @2)
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Applications

Applications: Polynomial vs Meromorphic

Note that the meromorphic resultant for polynomials degenerates: R(A, B) = 0. A
naive way to correct this 'defect’ is to assign the ”value at infinity”:

B(oo) = 2" B(1/2)|z=0 = Bm
and use the original definition

R(A, B) := B(m H H<a7 — b)),

=1j=1

which is consistent with the new definition. In practice, the role of such a 'blow-up’
plays the local (or tame) symbol introduced by Serre by

ordg g
7 (f.g) = (—priatories S

Sy () £ 0

e 7,(f,g) =1a.e. in M;

o Weil’s reciprocity law: on a compact M,

H Tm(fvg)zl'

xeM
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Applications

Applications: Polynomial vs Meromorphic

A pair (f, g) := admissible on A C M if the function

z — ordg(g)ords (f)

is sign semi-definite in A. For examples, polynomlals on P! \ {oo}.

Let f and g be admissible on M \ {£} and w is a local coordinate near &, w(§) = 0. The
reduced resultant:

Ruw (fvg) = T¢ (w, f)ordﬁg H g(x)ordz (f)’
TH#E

Main example: M = P!, A =P\ {cc}, € = 00, w(z) = 1. Then for any polynomial
A(z) = Ao+ Ar1z+ ...+ Apz™

zm 1

el )=l A T A

where m = —ord (A) = deg A. Hence

R (A, B) » I Ba)d=™
z#00

coincides with the classical definition:

R:,00(A, B) = Rpoi(A, B).
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