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Motivations

Among others:

o Bernstein's problem on entire minimal graphs

©

Hsiang problem on minimal cubic cones
Non-classical and singular solutions to nonlinear elliptic PDEs [NTV14]

Classification of isoparametric hypersurfaces (Yau's Problem 34)

© ©

©

Some further problems having importance in an algebro-geometric context, such as
homaloidal polynomials, prehomogeneous varieties, cubic hypersurfaces with
vanishing hessian (Gordan-Noether problem)
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How it works

Elliptic type PDEs
Hessian equations
Variational problems

Defining

identitites
Blow-up/down Viscousity Metrized Singling out
d luti .etr'lze <«— | Jordan algebras
procedures solutions nonassociative algebras e
Trialities
Generic .
m The Springer
norms

construction

Singular solutions
Minimal cones
Isoparametric polynomials
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Minimal surface equation

The following conditions are equivalent:

o A critical point of the area functional

o The mean curvature =0

o If £ny1 = u(x) is a graph over R™ then div \/% =0
Theorem (S. Bernstein, 1915)
If w is an entire solution on R? then u = az + by + c.

Notice that if we remove a tiny disk from the plane, there is a function defined
everywhere outside that disk whose graph is a minimal surface!

The Bernstein result holds true for 3 < n < 7: FLEMING (1962), DE GIORGI (1965),
ALMGREN (1966), SIMONS (1968). For n > 8 there exist non-linear solutions:
BOMBIERI-DE GIORGI-GIUSTI (1969), L. SIMON (1986).
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How do minimal cones enter?

e A submanifold M C S"~! C R™ is minimal iff the cone CM C R" is so.
e Blowing-down entire graphs yields area minimizing cones, FLEMING, DE GIORGI.

©Lawson, 2011

Theorem (Bombieri-De Giorgi-Giusti, 1969)
The Clifford-Simons cone

{(z,9) €R* xR : [2” — |y|* = 0}

is area-minimizing in R®. In particular, Bernstein theorem fails for n > 8
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HSIANG's Problem

In 1967, W.-Y. HSIANG publishes a paper in the 1st issue of J. of Differential Geometry.
He remarks

is essentially larger than that of homogenéous ones. It is then quite interest-
ing to classify real algebraic minimal submanifolds of degree higher than two

up to equivalence under the orthogonal transformations. It turns out that the
algebraic difficulties involved in such a problem are rather formidable.

What we have?

o All minimal cones known so far are algebraic
o Hsiang classified all cones of deg < 2 in all dimensions.

o Any algebraic cone comes from a polynomial solution u € R[z1,...,z,] of
Aru = |Dul*Au — 2(Du, D|Dul’) =0 mod u (1)

A,u being the p-Laplace operator.

o In particular, if degu = 3 then

Aqu = a quadratic form - u(z) (2)
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HSIANG's Problem

In fact, all known so far cubic minimal cones satisfy

Avu = Nz|*u(z), XeR.

Hsiang suggests the following problem:

(ii) Partly due to the lack of “canonical” normal forms for r < 2 and
partly due to the rapid rate of increase of the dimension of ] with respect
to r, the little help obtained from the normal forms is not enough to solve the
problem of classifying minimal algebraic cones of higher degrees. For ex-
ample, it is very difficult to solve even the following very special equation:
F(x) = 0, where F(x) is an irreducible cubic form in # variables such that

(4F)-'FF* — PF-HF -PFt = 4+ (X + -+ + x2)-F

Since the above equation is invariant with respect to the orthogonal linear
substitutions, we may assume that F is given in some kind of “normal form™
which amounts to reduce the number of indeterminant coefficients by
n{n — 1)/2. A systematic attempt to soive the above equation will involve the
job of solving over-determined simultaneous algebraic equations of many va-
riables. So far, we have only four non-trivial solutions (cf. §§ 1, 2), but there
is no reason why there should be no others.

... Which four solutions?
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HSIANG's trick

Let F =R or C and u(X) := tr X*, where
X € Hermy,(F),

the real vector space of trace free hermitian matrices of order k£ with the inner product
tr XY Hsiang shows that A; is an O(n)-invariant operator, which implies

Aju € Fltr X2, ... tr X"].
Further, N =deg Aju = 3degu — 4= 5 hence
Aru = ertr X2 tr X2 + cotr X°
If additionally k = 3,4 then c2 = 0, thus
Au(X) = e tr X2 tr X° = 1| X Pu(X).
This yields the four Hsiang examples in R(FF—D @R dim®)/2 5 o
k=3: Hermj(R)=R® Hermj(C)=R®

k=4: Hermj(R)=R’ Herm}(C)=R"
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Isoparametric hypersurfaces of the unit sphere
A hypersurface is called isoparametric if its principal curvatures are constant.
Origins in geometrical optics and wavefronts SEGRE, LEVI-CIVITA in the 1920's.
E. CARTAN, 1937-1939:

o Among R", H" and S", the latter case is the most mysterious.

o If m = 3 then there are exactly four solutions of (4) given by
u(z) = tr X3, X € A (Fq) 2R de{1,24,8},

where 4 (FF4) is a hermitian rank 3 Jordan algebra over a real division algebra Fg.

o For d =1 and 2, one actually has 743 (Fq) ~ Herms(Fq4). E.g. for d =1

3 3 3v3
u(z) = 2 + 5:05(:0? + x5 — 225 — 23) + T\[m(mg —a7) + 3V3z1 2073,

Theorem (Miinzner) The number of distinct principal curvatures m € {1,2,3,4,6} and
M = v '(t) NS™, where u is a homogeneous degree m polynomial solution of

(a) IDf(@)]* =m?[z*™%,  (b) Af(z)=Cla|". (4)
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A short introduction into Jordan algebras

An algebra V' with a commutative product e is called Jordan if
[LzyLy2] =0 Ve eV.

P. JORDAN (1932): a program to discover a new algebraic setting for quantum
mechanics by capture intrinsic algebraic properties of Hermitian matrices.

Example. The Jordan algebra W obtained from an associative algebra W replacing the

product zy by z ey = %(azy + yz) (a so-called special J. algebra)

o V(z) (= a subalgebra generated by z) is associative for any = € V.
o 1k (V) = max{dimV(z) : z € V}

o Any z € V satisfies the minimum polynomial equation m.(z) = 0, with
ma(N) =X — o1 ()N .+ (1) o (x).

0 o1(z) = Trx = the generic trace of z,

0 on(xz) = N(z) = the generic norm (or generic determinant) of .
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A short introduction into Jordan algebras

JORDAN-VON NEUMANN-WIGNER (1934): Any finite-dimensional formally real Jordan
algebra is a direct sum of the simple ones:

o the spin factors .7 (R™ 1) with (zo,2) @ (y0,y) = (zoyo + (z,y); Toy + yox)

o the Jordan algebras J#,(F1), 4, (F2), 7, (F4) of Hermitian matrices of order
n > 3 over the reals, complexes and quaternions, resp.;

o #3(Fg), the Albert exceptional algebra.

In particular, the only formally real Jordan rank three algebras are
L4 %(Fd)a d= 1725478
e R@.7(R"M)

Theorem 1 (Eiconal & cubic Jordan, [Tkal4])

There is a natural correspondence

cubic solutions of |Du(zx)|?> = 9|z|* <«  rank 3 formally real Jordan algebras

In this picture,

u(z) = =N(z), zelt

V2

and congruent solutions corresponds to isomorphic Jordan algebras.
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The Springer Construction

Recall that a function u : V — F is called a cubic form if the linearization
u(z,y,2) =u(x +y+2) —ul@+y) —ul+2) —uly +2) +u(x) +u(y) + u(2)
is a trilinear form.

(SPRINGER, 1962; MCCRIMMON, 1969) A cubic form N : V — F, N(e) =1, is called
a Jordan cubic form if the bilinear form

T(z;y) = N(e;z)N(e;y) — N(e; z;y)

is a nondegenerate and the map # : V' — V uniquely determined by T'(z%;y) = N(z;y)
satisfies the adjoint identity

(«®)* = N(z)z.
If N is Jordan and z#y = (z +y)* — 2% — y* then
z ey = 3(z#y + N(e;x)y + N(e;y)z — N(e; x;9)e)
defines a Jordan algebra structure on V' and
z*3 — N(e;2)z*> + N(z;e)z — N(z)e =0, Vz V.
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Freudenthal-Springer algebras

The main idea (inspired by Springer's Characterization of a class of cubic forms, 1961):

a cubic form + an inner product space = a metrised algebra J

Given a cubic form w on an inner product space (V, (,)) define the multiplication by
(zy, 2) = u(z,y,z)

Thus obtained algebra V75 (w) is called the Freudenthal-Springer algebra of w.

Proposition 1

V¥S(u) is commutative and metrised, i.e. (zy,z) = (z,yz)

u(z) = §(z,2%)

2? = 2Du(x), i.e. the square of x is proportional to the gradient of u at

L, = D*u(x), i.e. the multiplication operator by x is the Hessian of u at

© © © o o

If V is Euclidean then there are nonzero idempotents: % (V¥ (u)) # 0.

Vladimir Tkachev Nonassociative algebras and nonlinear PDEs Uppsala 2015 13/36



Examples: Polar algebras

Definition. A commutative metrised algebra V' = V{, @ V; is called polar if
(i) VoVo = {0} and ViVj C Vitjmod 2
(i) Vo € Vo : L2 = |z|® on V4.

Example. u(z) = z12z223 on R =Vo® Vi with V; = {z1 =0} and Vo = Vit

Definition. A pencil of symmetric endomorphisms A : X — End®(Y) is called a
symmetric Clifford system, denoted A € Cliff(X,Y), if A(x)® = |z|*1y for all z € X.

Proposition 2

If A € Cliff(X,Y) then (X x Y)"(u), where u(z,y) = 3(y, A(z)y), is a polar algebra
with Vo = X, Vi =Y. Conversely, if V. = Vo @ Vi is a polar algebra then

L, € Cliff(Vo, Vi). Furthermore,

Cliff(X,Y) # 0 < dimX <14 p(3dimY),

where p(m) = 8a + 2°, if m = 2%°° . odd, 0 < b < 3 s the Hurwitz-Radon function.
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Examples: Cartan algebras

Definition. A commutative metrised algebra satisfying 2® = |z|?z and tr L, = 0 is said
to be a Cartan algebra.

Example. Let u be a cubic solution of (4). Then Au(z) =trL, =0 and

4 F-S. algebra

| Du(x)|* = 9]z| (@*,2%) = |a|*

polarization 3 9
z° = |z|°z

Remark. Using Theorem 1 above, any Cartan algebra V is the trace free subspace in an
Euclidean rank 3 Jordan algebra V' x R with unit e = (1,0) and the multiplication

&1 0 & = (tite + (x1,x2), tixo + tox1 + %331902)

Conversely, if W is a unital Euclidean rank 3 Jordan algebra then V = 1 with the
induced FS-multiplication is a Cartan algebra.
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Hsiang algebras

The definition of a Hsiang eigencubic, i.e. a solution of (3), is translated to

(2®, 2%V tr Ly — (2%, 2%) = %A(x,x}(mZ,x), A€ER. (5)

Definition

A metrised Euclidean commutative algebra with (5) is called a Hsiang algebra.

Remarks.
(a) V is a Hsiang algebra < u(z) = %(z,2”) is a Hsiang eigencubic.
(b) The classification of Hsiang algebras is much more transparent conceptually.

(c) Similar (congruent) cones correspond to similar Hsiang algebras:

Metrised algebras V and V' are called similar if there are k € F* and F € O(V,V'):

k F(zy) = F(z)F(y), Vr,y € V.
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Examples of Hsiang algebras

Proposition 3
(a) Any rank 1 metrised algebra (i.e. dim V'V = 1) is a Hsiang algebra.

(b) Any Cartan algebra is a Hsiang algebra.
(c) Any polar algebra is a Hsiang algebra.

Proof of (b). Then 2* = |z|*z yields
Ly 4202 =2z @z + |z
therefore z?2% + |z|?2? = 2(x, 2%)z, implying
(2%,5%) = (%2%, 2) = (2, 2%)]al?

therefore, in virtue of tr L, = 0, V satisfies (5) with A = —32.
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How to classify?

Definition. A Hsiang algebra V is said to be of Clifford type if it is similar to a polar
algebra; otherwise it is called exceptional. J

Polar algebras Symmetric Clifford
/ systems
Hsiang
algebras

\> Exceptional algebras <—>_

Proposition 4
Any Cartan algebra V is exceptional. J

Proof. Indeed, in a Cartan algebra (22, 2?) = (2®,z) = |z|* # 0 for £ # 0. On the other
hand, if V is a Clifford type algebra then x? = 0 on a nontrivial subspace (= V)
implying a contradiction.
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The harmonicity

Theorem 2

Any non-trivial Hsiang algebra V is harmonic, i.e. tr L, = 0 for all x € V. Equivalently,
any Hsiang eigencubic in R™, n > 2, is a harmonic function.

Corollaries:

e A Hsiang algebra possesses a simpler identity (z°,2°) = —2X(z, 2%)|z|°.
e lf c€ #(V) then |c|> = —2, i.e. all idempotents have the same norm.

e A Hsiang algebra is called normalized if |c|* = 2, equivalently A = —2.

e Let V be a normalized Hsiang algebra. Then
(«®,2%) = %(w,w)(m,f),

dax® 4+ 2°2” — Az’ — %(wz,:@x =0.

Remark. Cf. with baric algebras and algebras satisfying identities of deg < 4
(WALCHER, MEYBERG, OSBORN, OKUBO, ELDUQUE, LABRA)
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The Peirce decomposition

o Let c € #(V) and V.(t) = ker(L. — tI), then V(1) = Rc and
V=Re® Ve(-1) @ Ve(~3) @ Ve(3)

e The Peirce dimensions

ni(c) =dimV.(—1), n2(c) =dimVe(—1), ns(c) =dimV.(3)

satisfy
nz(c) = 2n1(c) + na(c) — 2
3ni1(c) +2n2(c) — 1 =dimV = n.
In particular, any of n;(c) completely determines two others.
Examples.
e If V is a polar algebra then (ni(c),n2(c)) = (dim Vo — 1, 1 dim Vi —dim Vp + 2).

e If V is a Cartan algebra then (ni(c), n2(c)) = (H42Y 0).
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The Peirce decomposition

Proposition 5
Setting Vo = Vo(1), Vi=V.(-1), Va=Vc(—3), Vz=V(3) we have

Vo |41 Va Va
Vo Vo %1 % V3
1% 1% Vo V3 Va® V3
Vo Vo Vi | Vo @ Va Vi@ Ve
Vs Vs | VadVa | ViaVe | o Vi® Ve

In particular, Vo @& Vi and Vo @ Vo are subalgebras of V. Notice however that these
subalgebras may be Hsiang subalgebras or not.
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The cubic trace identity

We already know that tr L, = 0 for any x € V. The following property provides an
effective and simple recovering tool for the Peirce dimensions.

Theorem 3
Any normalized Hsiang algebra satisfies the cubic trace identity
tr L2 = (1 — ni(c))(z, 2°), Vee #(V),z e V. (6)

In particular, the Peirce dimensions (n1(c),n2(c)) are similarity invariants of a general
Hsiang algebra and do not depend on a particular choice of an idempotent c.

In what follows, we write (n1(V'), n2(V)), or just (ni,n2).
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Classification of Hsiang algebras, |

Theorem 4 (A hidden Clifford algebra structure)

ni— 1< p(ni+n2—1),

where p is the Hurwitz-Radon function.

Proof. One can prove that A(z) = V3L, — 1+ \/g)(LILC + LcLy), © € Vi satisfies
A(z)? =|z)> on Va® V3

which implies A € Cliff(V4, V> @ V3) and the desired obstruction. O

Example 5
If n2(V) = 0 then n1 (V) < p(n1(V) — 1), hence n1(V) € {0,1,2,3,5,9}.

Corollary 1

Given na > 0, there are finitely many admissible Peirce dimensions (n1,nz).
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Classification of Hsiang algebras, Il

Theorem 6 (A hidden Jordan algebra structure)

Given ¢ € #(V), let us define the new algebra structure on A. = (Vo @ Va, ) with the
multiplication

zey = zxy + (z,c)y + (y, c)z — 2(ay, c)c. (7
Then A. is a Euclidean Jordan algebra with unit ¢* = 2¢, the associative trace form
T(z;y) = (x,y) and
rk Ac = min{3,n2(V) + 1} < 3.

Idea of the Proof: to verify that the cubic form N(z) = £ (z,z*) on Vi @ V2 with a
basepoint ¢* = 2c¢ is Jordan for any ¢ € .# (V') and apply the Springer-McCrimmon
construction. To get the rank property requires a finer analysis of the cubic identity on
A. together with the defining identity on V.

O
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Classification of Hsiang algebras, Il

Theorem 7 (The dichotomy of Hsiang algebras)

The following conditions are equivalent:
(i) A Hsiang algebra V is Clifford

(if) The Jordan algebra A. is reducible for some c

Prove, for example, (ii)=(i). Define A5(V) = {w : w? =0, |w| = 1}.

(A) If Ac is reducible then ; & Spect L?, for some w € % (A.).

(A") Replacing w by w’ = 2¢ — w one still has (A).

(B) One of the w and w' is in A(V); denote it by w. Then

(Q) V = Vi(0) ® Vi (—1) @ Vi (1), and Ac(w) := [c,w]" N Ac C Vi (0) @ Viu(—1).
(D) On the other hand, L}, = 3(Lw + 1) on Ac(w), implying Ac(w) C Viy(—1)
(F) (Lw + 1)(Ve(—1)) is a zero algebra

(G) Vao(0) = Ruv @ (Lus + 1)(V(=1)) = Vu (0)Vas (0) = {0}.
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Classification of Hsiang algebras, Il

Combining Theorem 4 and Theorem 7, one obtains

Corollary 2

There are at most 24 classes of exceptional Hsiang algebras with the Peirce dimensions

n 2 5 8| 14| 26| 9 12 21| 15| 18 27| 30 54
nq| 1 2 3 5 @ 0 1 4 0 1 0 1

nol Of Of O O 0 5 5 5 8 8 14| 14 26

The cells in gray color represents non-realizable Peirce dimensions and the cells in gold
color represents unsettled cases

Proof. The case no = 0 yields Cartan algebras. Suppose that V is exceptional and
ng > 1. Then rk A. = 3, hence the Jordan-von Neumann-Wigner classification yields
dim A, € {6,9, 15,27}, implying ns € {5,8,14,26}, and therefore by Theorem 4 the
desired Peirce dimensions.
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Some existence results

Thus, we have ny € {0,5,8,14,26}. Which Peirce dimensions of exceptional algebras in
the table above are actually realizable?

o For na = 0 the are four Cartan algebras with ny € {0,1,2,3,5,9}.

o For n1 = 0 there are Hsiang algebras with ny € {5,8,14} only. One can show that

z=rt+y—>zZ=x-—y, x@er:ACGBAi‘,

is a self-adjoint involution on V, and the cubic form N(z) = (2,32 — z) is
Jordan with basepoint ¢* = 2¢. The corresponding Jordan algebra Vi is Euclidean
and A. is a Jordan subalgebra of V. Furthermore, V' is an exceptional Hsiang
algebra iff Vv is a simple Jordan algebra.
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Mutants, symmetric algebras and trace identities

Definition. A Hsiang algebra := mutant if no = 2 for some ¢ € # (V).
e Any mutant V is a reducible algebra and

1%

V = 5(Fy)/{diag=0} = V'5(Re(z122)x3),

where & = (1, 29, 23) € V = ®5_,F,.

e Formally, a mutant can be thought of as an exceptional Hsiang algebra with d = 0.
Furthermore, mutants occupy an intermediate place between Clifford type and
exceptional algebras by sharing certain characteristic properties of both these classes.

Definition. A Hsiang algebra := symmetric if it is either exceptional or mutant. Notice
that the second Peirce dimensions of a symmetric algebra is

ne=3d+2,  de{0,1,2,4,8}.

Proposition 6 (The quadratic trace identity)
If V is a (normalized) symmetric Hsiang algebra then

tr L2 = 2(3n1+n2 + Dlz|® = 2(n1 +d + 1)|z|>. (8)
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Mutants, symmetric algebras and trace identities

Theorem D. The cubic trace identity

Any normalized Hsiang algebra satisfies the cubic trace identity
tr L2 = (1 — ny)(z, z°), Vee Z(V),z V. (9)

In particular, the Peirce dimensions (n1(c),n2(c)) are similarity invariants of a general
Hsiang algebra and do not depend on a particular choice of an idempotent c.

The latter provides an effective and simple recovering tool for the Peirce dimensions.

Corollary 3

e A Hsiang algebra is symmetric if and only if it permits a quadratic trace identity.

e A Hsiang algebra is exceptional < it permits a quadratic trace identity and ny # 2.
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The existence: Hsiang algebras with ny(c) =0

Theorem D

Given a Hsiang algebra, the following conditions are equivalent:
(i) V is a Cartan Hsiang algebra (in dimension n =3d+ 2, d = 1,2,4,8).
(ii) For any c € .#(V) there holds nz(c) = 0.
(iii) There exists ¢ € # (V') such that na(c) = 0.
(V) A6(V) = 0.

Since nz(c) implies A. 2 R we have
Corollary

If na(c) = 0 for some ¢ € .7 (V) then V is exceptional.
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REC algebras

Theorem 1: (1) implies the trace free condition tr L, =0 Vz € V.

The Classification Theorem
Let V be a REC algebra. Then for any idempotent ¢ € V' there exists a subalgebra of

JoCV
carrying a rank 3 Jordan algebra structure such that the following holds:
O J. = J. for any two idempotents c,c’ € V
O V is a Clifford REC algebra <= J is a reducible Jordan algebra

@ There are finitely many REC algebras with irreducible J (=: exceptional REC algebras)

The Tetrad structure of Exceptional REC algebra o

S A triality system
OV =B,cnc5(5a®Sa® M), /

@ each M, is nilpotent, i.e. M,M, = {0}

@ any 'vertex-adjacent’ triple So @ Sg @ S forms a
triality
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Isoparametric cubics, J-algebras and singular solutions

For instance, for d = 1
u(z) = o3 + Sos (2] + 23 — 223 — 227) + 2By (25 — 21) + 3312273,

is a unique (up to isometries) solution of

V() = 9)z|*, Au(z) =0, z€R°.

Theorem (NADIRASHVILI-V.T.-VLADUT, [NTV12]). The function

w(x) = w ()

||

is a singular viscosity solution of the uniformly elliptic Hessian equation

(Aw)® 4 2°32 (Aw)® + 2'23° Aw + 2'° det D*(w) = 0,

This give the best possible dimension (n = 5) where homogeneous order 2 real analytic
functions in R™ \ {0}
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Some very related problems

e Classify all cubics solutions of (2), i.e. cubic minimal cones.

Remark. For all known irreducible cubic solutions Q = A|z|?.

e J.L. LEWIs (1980): Do there exist homogeneous polynomial solutions in R™, n > 3 of
the general p-Laplace equation

Apu = |Dul* Au + ¥<DU7D|DU|2> =07

Answer is "no” for n = 2 (LEWIS), and n > 2 and degu = 3 [Tkal5]. There are however
quasi-polynomial solutions for any n > 2 (G. ARANSSON, KROL-MAZ’YA, [Tka06])

e Cubic hypersurfaces with vanishing Hessian, function dividing their Hessian
determinants, Segre varieties (R. GonDIM, F. Russo, D. Fox).
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THANK YOU FOR YOUR ATTENTION!
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