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Dediated to V. G. Maz′ya on the oasion of his 80th birthdaySPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRASAND BREAKING REGULARITY FOR NONLINEAR ELLIPTICTYPE PDES© V. G. TKACHEVIn this paper, we address the following question: Why ertain nonasso-iative algebra strutures emerge in the regularity theory of ellipti typePDEs and also in onstruting nonlassial and singular solutions? Ouraim in the paper is twofold. First, to give a survey of diverse exampleson nonregular solutions to ellipti PDEs with emphasis on reent resultson nonlassial solutions to fully nonlinear equations. Seond, to de�nean appropriate algebrai formalism, whih makes the analyti part of theonstrution of nonlassial solutions more transparent.�1. IntrodutionThe �rst examples of nonassoiative algebras (inluding otonions and Liealgebras) appeared in the mid-19th entury. Sine then the theory has evolvedinto an independent branh of algebra, exhibiting many points of ontat withother �elds of mathematis, physis, mehanis, biology and other sienes.Algebras whose assoiativity is replaed by identities (as the famous Jaobiidentity in Lie algebras or the Jordan identity [ad(x), ad(x2)] = 0 in Jordanalgebras) were a entral topi in mathematis in the 20th entury.Very reently, ertain ommutative nonassoiative algebra strutures emer-ged in a very di�erent ontext: regularity of visosity solutions to fully nonlinearellipti PDEs. More preisely, it turns out that subalgebras of simple rank threeformally real Jordan algebras an be employed for onstruting truly visositysolutions to uniformly ellipti Hessian equations. To explain this relationships,we �rst review some relevant onepts and results.Aknowledgments. The author thanks the anonymous referee for severalhelpful omments.Key words: visosity solutions, ellipti type PDEs, ompositions algebras.1



2 V. G. TKACHEV1.1. Linear and quasilinear ellipti type PDEs. Starting with the pio-neering works of S. N. Bernstein, the maximum priniple and a priori estimateshave provided deisive instruments in proving the existene of solutions of gen-eral linear and quasilinear ellipti type PDEs Lw = 0. Important progress inthis diretion was made in the late 1950s by E. De Giorgi, J. Moser, and J. Nashby establishing fundamental a priori regularity results. A fundamental resultof the regularity theory asserts that every solution w from a `natural' lass
W 1,2 of Lw = 0 must be H�older ontinuous, i.e., w ∈ C0,α for a ertain α > 0.On the other hand, the important ounterexamples independently onstru-ted in 1968 for salar equations by V. G. Maz′ya [31℄ and for linear elliptisystems by De Giorgi [14℄ and E. Giusti and M. Miranda [17℄ showed that thereis no natural generalization of De Giorgi's theorem on the H�older ontinuity forgeneralized solutions to strongly ellipti di�erential equations of order greaterthan two.In partiular, in [31℄ Maz′ya onstruted several examples of quasilinearstrongly ellipti equations of order 2l > 2 with C∞-oe�ients whose gen-eralized solutions are not C∞ regular. The strong elliptiity of an operator
Lu =
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ν + 2κ + µis a weak solution of the above equation in W 2,2(B1), where B1 is the openunit ball in R
n. For κ = n(n−2), µ = n2 and ν = (n−2)2+ ε, with ε < 0, theabove strong elliptiity ondition is satis�ed and the orresponding solution

w = |x|a is unbounded in B for all dimensions n > 5 and su�iently small ε.A very related problem is the regularity of p-harmoni funtions. It is wellknown that for p > 1, p 6= 2, a weak (in the distributional sense) p-harmonifuntion is normally in the H�older lass C1,α [59℄, but need not to be H�olderontinuous or even ontinuous in a losed domain with nonregular boundary, asit follows from examples onstruted by Krol′ and Maz′ya in [26℄. On the otherhand, if ess sup |Du(x)| > 0 holds loally in a domain, then u(x) is in fat a realanalyti funtion in E [30℄. It is interesting whether the onverse nonvanishingproperty holds true. This question naturally leads to homogeneous p-harmoni



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 3funtions (also alled quasiradial solutions in [4℄); see the paper of M. Akman,J. Lewis, A. Vogel [1℄ in the present volume for the modern status of theproblem and further disussion. We only mention that in ertain dimensions
n > 4 one an expliitly onstrut rational homogenous p-harmoni funtionsfor some distinguished values p, 2 < p < n, based on isoparametri forms andgeneralizing the angle solutions onstruted by Krol′ and Maz′ya, see [55℄.Another prominent example of breaking regularity is the existene of glob-ally minimal ones and entire solutions of the minimal surfae equation indimensions n > 8; see [6℄. The higher-dimensional examples onstruted byBombieri, De Giorgio, and Giusti [6℄ make an essential use of the quadratiisoparametri form

u2(x) := x21 + x22 + x23 + x24 − x25 − x26 − x27 − x28, (1)see also [50℄ and [49℄ for the general isoparametri ase. The funtion u2(x)oinides with the norm in the split otonion1 algebra [5℄. It is not lear whetherthis is merely a oinidene or there is some natural explanation in the ontextof singular and entire solutions.On the other hand, Lawson and Osserman [29℄ onstruted nonparamet-ri minimal ones of high odimensions providing examples of Lipshitz butnon-C1 solutions to the minimal surfae equations, thereby making sharp on-trast to the regularity theorem for minimal graphs of odimension one. TheLawson�Osserman examples based on Hopf foliations orresponding to thelassial division algebras Ad: A2 = C, A4 = H, and A8 = O. More expliitly,for d = 2, 4, 8 let
w(x) =

1

2

√
2d+ 1

d− 1

η (x)

|x| : R2d → R
d+1, (2)where

η(x) = (|z1|2 − |z2|2, 2z1z̄2), x = (z1, z2) ∈ A
2
d
∼= R

2d. (3)Then the map w(x) : R2d → R
d+1 provides a nontrivial Lipshitz solution tothe Bernstein problem in odimension d+ 1.We �nally mention some further lasses of semilinear and quasilinear el-lipti PDEs with similar phenomena, for example, the reent entire solutionsof the Ginzburg�Landau system onstruted by A. Farina in [16℄ by usingisoparametri forms; see also Setion 3 in [33℄ for a reent survey of furtherounterexamples as well as regularity results.1The author is grateful to Seidon Alsaody for pointing out this.



4 V. G. TKACHEV1.2. Fully nonlinear ellipti type PDEs. In the general, fully nonlinearase, the regularity and existene issues beome more involved and requiretwo prinipal ingredients: (i) the Harnak inequality for solutions of the 2ndorder nondivergene ellipti equations with measurable oe�ients establishedin 1979 by N. Krylov and M. V. Safonov, see [27,28℄, and (ii) a suitable exten-sion of the onept of a generalized solution, the so-alled visosity solution, animportant tool developed by Crandall�Lions, Evans, Jensen, and Ishii. We re-fer to [11℄ for exat de�nitions and self-ontained exposition of the basi theoryof visosity solutions and brie�y note that this onept generalizes weak solu-tions for divergene type ellipti equations by utilizing the maximum priniple.Visosity solutions play a entral role in many problems from global geoemtryand analysis, and �t naturally into the ontexts of optimal ontrol, di�erentialand stohasti di�erential games, as well as mathematial �nane.An important model example with a far-ranging set of appliations in pureand applied mathematis is the Dirihlet problem for the uniformly elliptiequation of the form
F (D2w) = 0 in B1

w = φ on ∂B1
(4)with a uniformly ellipti operator F . The latter means that there exist 0<λ6Λsuh that

λ‖N‖ 6 F (M +N)− F (M) 6 Λ‖N‖whenever M,N are symmetri matries with N nonnegative semide�nite.For many geometrial appliations, an important partiular ase of (4) isthe Hessian equations, i.e., when F (X) depends only on the eigenvalues of the(symmetri) matrix X. The Hessian equations inlude the lassial examples ofLaplae's equation, urvature Weingarten equation, Monge-Amp�ere equationand speial Lagrange equation, and, more reently, the alibrated geometriesand Dirihlet duality theory [19, 20℄. Aording to the general theory [11℄, afully nonlinear ellipti equation (4) always has a unique ontinuous visositysolution for any ontinuous data φ. The question whether a visosity solutionis lassial, i.e., twie di�erentiable, has turned out to be very hallenging. Forertain ases the regularity is known:(i) If n = 2, then w is a lassial (C2,α) solution (Nirenberg [44℄)(ii) If n > 2 and Λ 6 1 + ǫ(n), then w is C2,α (Cordes [10℄)(iii) w ∈ C1,α(B1/2), α = α(Λ, n) (Trudinger [58℄, Ca�arelli [7℄)(iv) F onvex (onave) ⇒ w ∈ C2,α(B1/2) (Krylov, Evans [15℄)(v) w is C2,α(B1 \ Σ), where the Hausdor� dimension dimH Σ is stritlysmaller than n− ǫ, ǫ = ǫ(Λ, n) (Armstrong�Silvestere�Smart, [3℄).



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 5Further regularity results inluding the modulus of ontinuity of visositysolutions an be found in [22, 51℄; see also [13℄ for the VMO-regularity andgradient estimates for visosity solutions to nonhomogeneous fully nonlinearellipti equations F (D2u) = f with f ∈ Lp.1.3. Truly visosity solutions. From the above, it follows that in the gen-eral ase and in dimensions n > 3 only C1,α-regular visosity an be expeted.Until very reently the very existene of nonlassial solutions for n > 3 wasnot known. A major breakthrough in this diretion was ahieved in a series ofpapers of Nadirashvili and Vl�adu�t [37,38,41℄ by establishing �rst the existeneof nonlassial and then also truly singular (H�older ontinuous) visosity solu-tion in any dimension n > 12. The method of onstrution makes an essentialuse of an aumulation property of the spetrum of the Hessian of a ertainubi form u12 in R
12. This fopm is also well known as a triality form andomes from the Hamilton quaternions H, [5℄.Theorem 1.1 (see [37, 41℄). Let

u12(x) = Re(z1z2z3), where x = (z1, z2, z3) ∈ H
3 ∼= R

12 (5)and
w12,α(x) =

u12(x)

|x|α . (6)If 1 6 α < 2, then w12,α is a visosity solution in R
12 of a uniformly elliptiHessian equation (4) with a smooth F .In view of the appearane of the quaternions in (6), it is natural to expetthat the orresponding ubi form u24 based on the otonions also produessingular visosity solutions. The paper [40℄ established that this is atually thease. Furthermore, in [35℄ a nonlassial visosity solution w5 in R

5 based onthe Cartan isoparametri ubi form u5 was onstruted and, shortly after,in [43℄ Nadirashvili and Vl�adu�t established that the orresponding w5,α is asingular visosity solutions in R
5. More preisely, one has the following fat.Theorem 1.2 (see [35℄). There a ubi form u5(x) suh that w5,α(x) =

u5(x)
|x|αis a visosity solution in B1 ⊂ R

5. If 1 6 α < 2, then w5,α is a visositysolution in R
12 of a uniformly ellipti Hessian equation (4) with a smooth F .Furthermore, w5 := w5,1 satis�es (4) with

F (D2w) = (∆w)5 + 2832(∆w)3 + 21235∆w + 215 detD2(w).This establishes the lowest possible dimension known so far where singularvisosity solutions to uniformly ellipti equations may exist.



6 V. G. TKACHEVThe algebrai part of the above onstrution relies heavily on ertain au-mulation properties of the spetrum of the ubi forms uk involved. It was no-tied in [39℄ that to obtain a nonlassial visosity solution, the orrespondingubi form un must be rather exeptional. Furthermore, numerial simulationsshow that a random (`generi') ubi form does not produe a nonlassial so-lution to (4). This makes it reasonable to ask why u12, u24, and u5 are so exep-tional and how to haraterize the ubi forms produing singular/nonlassialvisosity solutions.We have already mentioned that u12 and u24 ome from the triality oneptand are intimately related to exeptional Lie groups and the lassial divisionalgebras in dimensions 4 and 8 respetively. From [39℄, it follows that theorresponding triality ubi form u6 over the �eld of omplex numbers C alsoprodues a visosity solution but only for a degenerate ellipti equation.The ubi form u5 is also rather speial and has many important relation-ships in analysis and geometry. In the present ontext, at least the followingproperties are essential:(a) u5 is the generi norm on (the trae free subspae of) rank 3 formallyreal Jordan algebra H3(R) of symmetri 3× 3 matries, and(b) u5 is the simplest Cartan isoparametri ubi form.There exists a natural orrespondene between the onepts in (a) and (b),see [52℄. Expliitly, the ubi form u5 is given by the determinant representation
u5(x) =

∣∣∣∣∣∣∣

1√
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x1 + x2 x3 x4
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−2√
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x4 x5
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∣∣∣∣∣∣∣
(7)Taking the above observations into aount, it is highly desirable to �nda oneptual explanation of the existene of nonlassial solutions and relatethem to appropriate algebrai strutures. In this paper, we disuss some pos-sible approahes to these questions.The appearane of Jordan algebras in (7) and (a) makes it natural to askwhether these algebras are also relevant for the examples in Subsetion 1.1. Aswe have already mentioned, the isoparametri form u2 in (1) reminises thenorm of split otonions. Moreover, the Hopf map (3) oinides with the multi-pliation in Cli�ord type Jordan algebras (the so-alled spin-fators), see [5℄.Remark 1.3. In all the above examples of nonregular solutions, inluding the

p-harmoni homogenous examples, the regularity breaks at an isolated pointwhere (the blow-down of) a solution has a H�older type singularity. Remarkably,the asymptoti one at the singular point is always a minimal one. It is alsointeresting to know whether the appearane of the minimality in this ontext



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 7is mere oinidene or there is a general explanation of this phenomenon. Thisquestion also naturally arises in onnetion with phase transitions and the DeGiorgi onjeture, see [46℄.The rest of the paper is strutured as follows. In �2 we disuss the main ideasunderlying the onstrution of homogeneous nonlassial visosity solutionsof (4). There we also de�ne an algebrai formalism, whih onnets ubi formswith ertain ommutative nonassoiative algebras. In this setting, the gradientof a ubi form determines the multipliative algebra struture; in partiular,algebra idempotents orrespond to stationary points of the ubi form. A ubiform is alled speial if it generates a nonlassial solution. We reformulate thisde�nition in terms of the Peire spetrum. We disuss the Peire deompositionand generi ubi forms in Subsetions 2.4 and 2.5. In Subsetion 2.6 we applythe algebrai approah to speial forms. In the last �3 we revisit Cartan'sisoparametri ubis and determine their Peire spetrum.�2. Ingredients and de�nitions2.1. Preliminaries. Reall that aording to the regularity result [3℄, if w isa nonlassial solution to (4) in the unit ball B1, then its singular set must beompatly ontained in B1. It is natural to onsider the simplest single pointsingularity and look for andidates for nonlassial visosity solutions in theunit ball B1 ⊂ R
n in the lass of homogeneous solutions, i.e., the funtions wsatisfying

w(tx) = tkw(x), x ∈ R
n, t > 0.The ambient dimension must be n > 5. Indeed, for n = 2 from the Nirenbergresult (i) mentioned above it follows that any (not neessarily homogeneous)visosity solution is lassial, and also if 3 6 n 6 4, then [42℄ shows thata nonlassial visosity solution, if exists, is never homogeneous (the ase of

n = 3 follows from a theorem of A. D. Alexandro� in [2℄).Furthermore, it is natural to speify w(x) and assume that it has the fol-lowing form:
w(x) =

u(x)

|x|α , (8)
u(x) being a ubi form2 in the variable x ∈ R

n and α > 1. Under the made as-sumptions, it follows from [35℄ that the lass of nonlassial visosity solutionswith α = 1 is nonempty for any dimension n > 5.2In fat, one an also onstrut some ounterexamples w as in (8) by using isoparametrihomogeneous forms u of degree 3, 4, and 6, see Chapter 5 in [36℄. Interestingly, there are alsoquadrati isoparametri forms, but they are nonappropriate for onstruting nonlassialsolutions. In this paper we on�ne ourselves to the degree 3 ase.



8 V. G. TKACHEVIn all known ases, the existene of a nonlassial visosity solution (8) fora ertain u(x) with α = 1 guarantees that (8) with 1 < α < 2 will also bea singular visosity solution to a ertain F in (4), see Chapter 4 in [36℄ (it isbelieved that this observation holds true in general, though no proof is known).In view of this, we shall only onsider nonlassial solutions.2.2. Nonlassial visosity solutions. We brie�y reall the main ideas ofthe onstrution along the line of [35,39℄. For more information and the proofs,the reader is referred to Chapters 4 and 5 in [36℄. Let w be an arbitrary homo-geneous funtion of order 2 de�ned on R
n and smooth in R

n \ {0}. Then theHessian D2w(x) is homogeneous of order 0 at any point x ∈ R
n \ {0} and itindues the Hessian map

D2w : Rn \ {0} → Symn,where Symn denotes the spae of symmetri (n× n)-matries with real oe�-ients. By the homogeneity assumption, we have
D2w(tx) = D2w(x) for any t > 0,hene the Hessian D2w is ompletely determined by its values on the unitsphere ∂B1. We denote by

Hw = D2w|∂B1the orresponding restrition map. By O(n) we denote the group of isometriesin R
n.As in [39℄, we say that a symmetri matrix A is M -hyperboli for some real

M > 1 if either all λi are equal to 0 or
1

M
6

−λ1

λn
6 M, (9)where λ1 6 · · · 6 λn denote the eigenvalues of A.A subset A ⊂ Symn is alled hyperboli if there exists a onstant M suhthat for any two matries A,B ∈ A, the di�efene A−B is M -hyperboli.The importane of the last onepts is lear from the following result.Lemma 2.1 (Main Lemma in [37℄). Let a funtion w be de�ned by (8) with

α = 1. Suppose that the restrition map Hw : ∂B1 → Symn is a smoothembedding. Then(i) if Hw(∂B1) is hyperboli, then w is a visosity solution of a uniformlyellipti equation (4) in R
n;(ii) if additionally the (larger) subset {UAU−1 : A ∈ Hw(∂B1), U ∈ O(n)}is hyperboli, then w is a solution of a Hessian uniformly ellipti equa-tion (4) in R

n.



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 9Thus, the above hyperboliity ondition is ruial for onstruting visositysolutions. Note also that all examples disussed in Subsetion 1.3 satisfy in fatthe stronger ondition (ii). This suggests the following de�nition.De�nition 2.2. A ubi form u(x) is alled speial if w = u(x)/|x| satis�eshypotheses (ii) in Lemma 2.1.It is also interesting to haraterize the ubi forms u that satisfy the weakerondition (i). For ontinuity reasons, if u satis�es (i), then all ubi forms`su�iently lose' to u will also satisfy (i).Remark 2.3. An example of suh a form is the determinant u9(x) = detX,where X ∈ R
3×3 ∼= R

9 (X is an arbitrary nonsymmetri matrix over R). Thenit is easy to see that u9 is the speialization of the triality form u12 on theimaginary subspae (ImH)3, see (5). On the other hand, it is known, see Re-mark 4.1.5 in [36℄, that u9 satis�es the elliptiity riterion (i) and thus produesa nonlassial solution w = u/|x| of a uniformly ellipti fully nonlinear equa-tion in R
9. However, a more sophistiated analysis reveals that this funtionfails to satisfy the su�ient onditions (ii) and thus may be not a solution ofa Hessian uniformly ellipti fully nonlinear equation. Remarkably, u9 is one ofthe exeptional Hsiang ubi forms emerging in lassi�ation of ubi minimalones [36, Chapter 6℄, f. also with the remarks in �4 below.2.3. Algebras of ubi forms. The main obstrution for identifying whihubi forms u are speial is an a priori hard problem to ontrol the spetrumof the di�erene Hw(x) −Hw(y) for all possible pairs x, y ∈ ∂B1. This prob-lem beomes more tratable and oneptually more transparent if one passesto a ertain natural nonassoiative algebra attahed to the ubi form u. Be-low, we reall some relevant onepts and results following [53,54,56℄; see alsoSetion 6.3 in [36℄.By an algebra we always mean a (�nite dimensional) vetor spae V overthe real numbers R with a multipliation on V , i.e., a bilinear map (denotedby juxtaposition) (x, y) 7→ xy ∈ V. By an abuse of notation, we denote by Vboth the vetor spae and the orresponding algebra.In this paper, by an algebra we mean a ommutative algebra. A symmetribilinear form b : V × V → R on an algebra V is alled assoiating if

b(xy, z) = b(x, yz), x, y, z ∈ V. (10)An algebra arrying an assoiating bilinear form is alled metrised. The stan-dard example is the generi trae form on a Jordan algebra, see [32℄.The most striking onsequene of the existene of an assoiating bilinearform is that the operator of left (=right) multipliation
Lx : y → xy = yx



10 V. G. TKACHEVis selfadjoint, i.e.,
〈Lxy, z 〉 = 〈 y, Lxyz 〉, x, y, z ∈ V. (11)Now we want to assoiate an algebra with an arbitrary ubi form. Reallthat a ubi form is a funtion u : V → R suh that its full linearization

u(x, y, z) = u(x+ y+ z)− u(x+ y)− u(x+ z)− u(y + z) + u(x) + u(y) + u(z)is a trilinear form. The trilinear form u(x, y, z) is obviously symmetri and theubi form is reovered by
6u(x) = u(x, x, x). (12)A positive de�nite symmetri bilinear form 〈x, y 〉 on V is alled an innerprodut. Given an inner produt and a ubi form u, its gradient ∇u(x) at xis uniquely determined by the duality

〈∇u(x), y 〉 = 1

2
u(x, x, y), y ∈ V. (13)From the above de�nitions, it follows, that thus de�ned, ∇u oinides with thestandard gradient of a funtion u.De�nition 2.4. Let u be a ubi form on an inner produt vetor spae

(V, 〈 , 〉). De�ne the multipliation (x, y) → xy as a unique element satisfying
〈xy, z 〉 = u(x, y, z) for all z ∈ V (14)The multipliation is ommutative but may be nonassoiative. We all thusde�ned algebra on V the algebra of the ubi form u and denote it by V (u).It is easy to see that V (u) is a zero algebra (i.e., V (u)V (u) = 0) if and onlyif the ubi form u is identially zero.An important onsequene of the above de�nition and the symmetry ofthe trilinear form u(x, y, z) is that the inner produt on the algebra V (u) isassoiating, i.e., V (u) is a metrised ommutative algebra.Furthermore, it also follows from the de�nition that, given an inner prod-ut vetor spae (V, 〈 , 〉), there is a anonial bijetion between the vetorspae C(V ) of all ubi forms on V and ommutative metrised algebra stru-tures A(V ) on V , where the orrespondene C(V ) → A(V ) is given by (14),and the onverse orrespondene A(V ) → C(V ) is de�ned by

u(x) :=
1

6
〈x2, x 〉. (15)With the above onepts at hand, we are able to identify the standard al-ulus operations on V as appropriate algebrai onepts on V (u). First note



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 11that (13) ombined with (14) yields immediately the fat that the gradient of
u(x) is essentially the square of the element x in V (u):

∇u(x) =
1

2
xx =

1

2
x2, (16)and, similarly, the multipliation in V (u) is expliitly reovered by

(D2u(x))y = xy, (17)where D2u(x) is the Hessian map of u at x. This implies that the Hessian mapof u at x is none other else than the multipliation operator Lx:
D2u(x) = Lx. (18)Then from (10) it follows that Lx is a selfadjoint operator with respet to theinner produt 〈 , 〉.In summary, starting with a ubi form on an inner produt vetor spae,one an onstrut an algebra struture that translates the standard alulusinto appropriate algebrai onepts. Then the Peire deomposition relative toan idempotent is a signi�ant tool in identifying the underlying nonassoiativealgebra struture, see [32, 47℄. Therefore, it is important to know whether theset of idempotents in V (u) is empty or not. The next proposition answers thisquestion in the positive; its proof an be found in the author's papers [54,56℄.Proposition 2.5. Let V (u) be the algebra of a ubi form u 6≡ 0 on an innerprodut vetor spae V . Denote by E the (nonempty) set of stationary pointsof the variational problem

〈x, x2 〉 → max subjet to the onstraint 〈x, x 〉 = 1. (19)Then for any x ∈ E, either x2 = 0 or c := x
〈 x2,x 〉 is an idempotent in V . Inpartiular, the set of idempotents of V (u) is nonempty. Furthermore, if E0 ⊂ Edenotes the subset of loal maxima in (19), then the orresponding idempotent

c = x/〈x2, x 〉 satis�es the extremal property
spectrum(Lc|c⊥) ⊂ (−∞, 12 ], (20)where c⊥ = {x ∈ V : 〈x, c 〉 = 0}. In partiular, the eigenvalue 1 of Lc issimple (i.e., c is a primitive idempotent).2.4. Jordan algebras. Jordan algebras onstitute an important lass in theontext of ubi forms and having numerous appliations in mathematis andmathematial physis. Reall that a ommutative algebra V is said to be Jordanif

[Lx, Lx2 ] = 0. (21)It is well known that (21) implies that any Jordan algebra is power-assoiative,i.e., the powers xn do not depends on assoiations, see [23℄.



12 V. G. TKACHEVIn the most interesting ase for appliations when V is formally real, thebilinear form b(x, y) := trLxy (the generi trae form) is positive de�nite andassoiating, i.e., satis�es (10). In their famous work [24℄, Jordan, von Neumann,and Wigner proved that the only simple formally real Jordan algebras are theJordan algebras of n×n selfadjoint matries over Ad, d = 1, 2, 3, the exeptional
27-dimensional Albert algebra of 3×3 selfadjoint matries over otonions, andthe so-alled spin-fators, or Cli�ord type Jordan algebras.Reall that the (Peire) spetrum of an idempotent c in a ommutativealgebra is alled the spetrum of the orresponding multipliation operator Lc.The algebra spetrum is the union of all idempotent spetra.An important struture property of any Jordan algebra V is that the spe-trum of any idempotent is a subset of {0, 12 , 1}. In partiular, V admits theso-alled Peire deomposition:

V = V0(c)⊕ V 1

2

(c)⊕ V1(c), (22)where Vλ is the λ-subspae of Lc. Then the Vc(λ) are subalgebras of V for
λ ∈ {0, 1}.The eigenvalue 1

2 and the orresponding subspae is distinguished in manyways. For example, a Jordan algebra is simple if and only its 1
2 -eigenspae isnontrivial for any idempotent. Moreover, V 1

2

satis�es the Jordan fusion laws
Vc(λ)Vc(

1
2) ⊂ Vc(

1
2), λ ∈ {0, 1}; Vc(

1
2)Vc(

1
2) ⊂ Vc(0) ⊕ Vc(1). (23)As we shall see, 1

2 plays an essential role in onstruting nonlassial solutions.2.5. Generi ubi forms. As we remarked in Subsetion 1.3 above, somenumerial simulations support the believe that a randomly hosen ubi form isnot speial. To give this observation a rigorous meaning, we need to formalizewhat we mean by a generi ubi form. One natural way to do this is toombine the orrespondene given in the proeeding setion with the oneptof a generi algebra introdued reently in [25℄.Reall that an algebra over C is said to be generi if it has exatly 2nidempotents (ounting x = 0). The idea dates bak to the lassial work ofSegre [48℄: given a �xed basis of an arbitrary nonassoiative algebra V of di-mension n > 2 over omplex numbers C, one an identify the multipliationwith a degree 2 homogeneous map on V . In this setting, the idempotent de�n-ing relation x2 = x beomes a system of quadrati polynomial equations on
C
n. It is well known that a generi (in the Zariski sense) polynomial system hasthe B�ezout number of solutions equal to the produt of the prinipal degreesof the system equations. In our ase, the B�ezout number is 2n.More preisely, let {ei}16i6n be an arbitrary �xed basis of a �nite dimen-sional vetor spae V . Then any algebra struture on V is uniquely determined



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 13by its multipliation table M := (aijk)16i,j,k6n, where eiej =
∑n

k=1 aijkek. Inthis notation, the algebra produt f(x, y) := xy in V is given omponent-wiseby
fk(x, y) :=

n∑

k=1

aijkxiyj, k = 1, 2, . . . , n. (24)Also, the idempotent de�ning relation beomes
f(x, x) = x. (25)Then the algebra V is generi if (25) has exatly 2n distint solutions over C.In partiular, this fat implies that eah solution is a nondegenerate point of(25). The last ondition is important beause it an be reformulated in termsof the spetrum of the algebra V .Now it is natural to all a ubi form u on V generi if so is the orrespondingalgebra V (u).Note that the above de�nitions work equally well in both analyti and alge-brai settings. However, it is more preferable to work with the latter beausethe generiity onept is easily translated to the well-developed nonassoiativealgebra theory, inluding the Peire deomposition.In [25℄, the following riterion was established.Proposition 2.6. A ommutative algebra V over C is generi if and only ifthe spetrum of any idempotent in V does not ontain 1

2 .Beause of the essential role 1
2 plays in the present ontext and also for thereader onveniene, we give a sketh of the proof.Proof. Note that f̃(x) := f(x, x) is an endomorphism of V homogeneous ofdegree 2. Sine V is ommutative, we have

f̃(x+ y)− f̃(x)− f̃(y) = f(x, y) + f(y, x) = 2f(x, y).In partiular, ∂f̃k
∂xj

(x) = 2fk(x, ej), whih yields
Df̃(x) = 2Lx,where Df̃(x) is the Jaobi matrix of g at x. Rewriting system (25) as gk(x) :=

f̃k(x)− xk = 0, k = 1, 2, . . . , n, we see that
Dg(x) = 2Lx − I.Thus, Dg(x) is nondegenerate if and only if 2Lx − I is so, i.e., 1

2 is not in thespetrum of Lx. In order to �nish the proof, it remains to note that system (25)has the maximal �nite number of solution if and only if eah solution is anondegenerate point of g, see for instane [12℄. �



14 V. G. TKACHEVWe have already seen in Setion 2.4 that any Jordan algebra has 1
2 in its spe-trum and plays a distinguished role in the lassi�ation of formally real algebrasby Jordan, von Neumann, and Wigner, see [24℄. In general, the exeptionality ofthe Peire eigenvalue λ = 1

2 in the spetrum of many well-established nonas-soiative algebra strutures (inluding Jordan algebras, Bernstein algebras,and general geneti algebras) is a rather ommon phenomenon. We mentionits very reent appearane in the ontext of axial algebras (generalizing theMonster algebra of the largest sporadi �nite simple group), see [18℄. Hsiangalgebras emerging in the ontext of ubi minimal ones present another ex-ample of ommutative nonassoiative algebras where the presene of 1
2 playsa distinguished role, see Chapter 6 in [36℄. In a wider ontext of algebras withidentities, the universality of 1

2 was disussed reently in [57℄.Our next step is to explain why the Peire eigenvalue 1
2 is also distinguishedin the ontext of nonlassial solutions.2.6. The spetral properties of the Hessian of w. It was remarked inLemma 3.2 in [39℄ that the hyperboliity ondition (Lemma 2.1 above) for aubi form u would be ful�lled if there would exist δ > 0 suh that for any�xed diretion d ∈ V the spetrum λ1(d) 6 . . . 6 λn(d) of the quadrati form

∂du(x) satis�es
ρ(d) := max{λ1(d)

λ3(d)
,

λn(d)

λn−2(d)
} < 2− δ. (26)Unfortunately (see the remark after Lemma 3.2 in [39℄), the above onditionis too strong and fails for ertain d for any ubi form. Indeed, using (16), thequadrati form ∂du(x) may be rewritten as

∂du(x) =
1
2〈x

2, d 〉 = 1
2 〈x, xd 〉 = 1

2〈x,Ldx 〉,therefore its spetrum oinides with the spetrum of the saled multipliationoperator 1
2Ld. Now, hoosing d ∈ E0 in the notation of Proposition 2.5, wededue from (20) and the fat that d is an idempotent that λ1(d) = 1 and

λ2(d) 6
1
2 , hene ρ(d) > 2.Thus, the failure if the gap inequality (26) is diretly related to the Peirespetrum of ertain idempotents3 in the orresponding algebra V (u). Below wetry to larify its nature in more detail and relate it to generi ubi forms.Let u 6≡ 0 be an arbitrary ubi form on an inner produt vetor spae V .Using (15), we rewrite (8) for α = 1 as

w(x) =
6u(x)

|x| =
〈x2, x 〉

|x| .3These idempotents have interesting extremal properties and an be related to Cli�ordtype Jordan algebras, see our reent paper [56℄



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 15Then we have for the diretional derivative
〈∇w(x), y 〉 = ∂yw|x =

3〈x2, y 〉|x|2 − 〈x2, x 〉〈x, y 〉
|x|3 , (27)implying by duality the expression for the gradient

∇w(x) =
3x2|x|2 − 〈x2, x 〉x

|x|3 .Arguing similarly, we �nd for the Hessian
H(x) := D2w(x) =

6

|x|Lx −
〈x2, x 〉
|x|3 − 3

x⊗̂x2

|x|3 + 3
x⊗ x

|x|5 〈x2, x 〉, (28)where
(a⊗ b)(x) = a〈 b, x 〉, a⊗̂b = a⊗ b+ b⊗ a.Note that the Hessian is homogeneous degree 0 but it is an odd map. i.e.,

H(−x) = −H(x). Furthermore,
∆w(x) = trD2w(x) =

6

|x| trLx − (n+ 3)
〈x2, x 〉
|x|3 . (29)Reall that u is speial if there exists M > 1 suh that H(x) − H(y) is

M -hyperboli for any pair x, y ∈ V . The following elementary observationimmediately follows if one hooses y = −x in (27) and refers to the oddnessof H(x).Lemma 2.7. If w is speial, then the set {H(x)}|x|=1 is hyperboli.The partiular ase when x = c is an idempotent of V (u) is very speialbeause x2 and x oinide, implying onsiderable simpli�ations in (28), suhthat the spetrum of H(c) an be alulated expliitly.Lemma 2.8. If c is a nonzero idempotent of V (u), then
spectrum(H(c)) =

{
2

|c| ,
6λ1 − 1

|c| , . . . ,
6λn−1 − 1

|c|

} (30)where 1, λ1, . . . , λn−1 are the eigenvalues of Lc ounting the multipliities. Inpartiular, the harateristi polynomial of H(c) is given by
χH(c)(t) =

6n(6|c|t− 2)

|c|n(|c|t− 5)
· χc

(
1 + |c|t

6

) (31)where χc(z) is the harateristi polynomial of Lc.



16 V. G. TKACHEVProof. Indeed, sine c2 = c, from (28) we obtain
H(c) =

1

|c|

(
6Lc − 1− 3

|c|2 c⊗ c

)
. (32)In partiular, H(c)c = 2

|c|c, i.e., c is an eigenvetor of H(c) with eigenvalue 2
|c| .Sine H(c) is selfadjoint, the orthogonal omplement c⊥ is its invariant sub-spae. We have

H(c) =
1

|c| (6Lc − 1) on c⊥.This yields (30), and therefore (31). �Remark 2.9. As an immediate onsequene of (31), we obtain
χc(z) = (z − 1)

|c|n
6n

·
χH(c)

(
6z−1
|c|

)

z − 1
2

. (33)We point out a remarkable appearane of the eigenvalue 1
2 in the denominator.This implies by virtue of Proposition 2.6 that if u is a generi ubi form, thenthe eigenvalue λ = 2

|c| must be a simple eigenvalue of the Hessian H(c).�3. Algebras of Cartan's isoparametri ubisIn this setion we onsider the prinipal model example, whih lari�es somealgebrai ingredients of the onstrution of nonlassial solutions. We establishthe orresponding Peire deomposition and derive the �niteness of the eionalalgebras in Proposition 3.5.3.1. Cartan�M�unzner equations. Presently, the only known example of anonlassial solution in the lowest dimension n = 5 (see Theorem 1.2) is basedon the ubi form u5, whih naturally appears in the ontext of isoparametrihypersurfaes in the Eulidean spheres.Aording to �E. Cartan, a hypersurfae of the unit sphere Sn−1 ⊂ R
n is saidto be isoparametri if it has onstant prinipal urvatures. Isoparametri hyper-surfaes have been shown to be useful in various areas of mathematis, see [9℄for the modern aount of the isoparametri theory. Cartan himself lassi�edall isoparametri hypersurfaes with g = 1, 2, 3 onstant prinipal urvaturesand also established that all these are homogeneous and algebrai. The ele-brated result of M�unzner [34℄ states that g ∈ {1, 2, 3, 4, 6}, all �ve possibilitiesare realized, and eah isopaprametri hypersurfae with g distint prinipalurvatures is obtained as a level set of a homogeneous degree g polynomial onthe unit sphere.



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 17The ase of g = 3 is quite distinguished in many way. In [8℄ Cartan provedthat for any isoparametri hypersurfae M3d with g = 3 distint prinipalurvatures, eah prinipal urvature must have the same multipliity, and thepossible multipliities are d = 1, 2, 4, 8 orresponding the dimensions of lassi-al division algebras Ad. More preisely, M3d is a tube of onstant radius overa standard Veronese embedding of a projetive plane into the standard sphereover the division algebra Ad. Equivalently, M3d is a lous of a ubi form u(x)in S3d+1 ⊂ R
3d+2 with u satisfying the Cartan�M�unzner system

|∇u(x)|2 = 9|x|4, (34)
∆u(x) = 0. (35)Cartan lassi�ed all ubi solutions of (34)�(35) and showed that the orre-sponding de�ning ubi polynomials are given expliitly by

u = x31 +
3
2x1

(
|z1|2 + |z2|2 − 2|z3|2 − 2x22

)
+ 3

√
3

2
x2

(
|z2|2 − |z1|2

)

+ 3
√
3Re(z1z2)z3,

(36)where x = (x1, x2, z1, z2, z3) and zi ∈ R
d ∼= Ad and d ∈ {1, 2, 4, 8}. We refer to(36) as to a Cartan isoparametri ubi. Eah Cartan isoparametri ubi alsosatis�es a determinantal representation like (7) above, where the determinantinvolved should be properly understood in an appropriate sense. More preisely,

u is the generi determinant in the Jordan algebra of (3×3)-Hermitian matrieswith entries in the division algebra Ad.3.2. Algebras attahed to (34). Below, we apply the de�nitions given inSubsetion 2.3 to Cartan isoparametri ubis. A somewhat di�erent approahemploying the Freudenthal�Springer onstrution was suggested in [52℄.Our starting point is an arbitrary ubi homogeneous polynomial solution
u(x) of the Cartan�M�unzner equation (34) alone. By abusing terminology, weall u an eional ubi. The harmoni eional ubis are exatly the Cartanisoparametri ubis. Using (16), we introdue the ommutative algebra stru-ture V (u) on V = R

n equipped with the standard Eulidean inner produt.Then u(x) = 1
6〈x2, x 〉 and (34) beomes

〈x2, x2 〉 = 36〈x, x 〉2.The exat value of the onstant fator 36 is not essential and may be hosenarbitrarily (positive) by a suitable saling of the inner produt.Now we want to onsider an arbitrary algebra satisfying the above identity.This motivates the following de�nition.



18 V. G. TKACHEVDe�nition 3.1. A ommutative, maybe nonassoiative, algebra with a posi-tive de�nite assoiating form 〈 , 〉 satisfying
〈x2, x2 〉 = 〈x, x 〉2 (37)is alled an eional algebra.If V is an arbitrary eional algebra, then the ubi form u(x) = 1

6 〈x, x2 〉satis�es the (saled) eional equation (34). This translates the study of (34)into a purely algebrai ontext.Note also that the sense of (37) beomes more lear if one introdues thenorm N(x) = 〈x, x 〉. Then (37) takes form of the omposition algebra identity
N(x2) = N(x)2. (38)Note, however, that (38) does not imply that N(xy) = N(x)N(y)Our goal is the Peire deomposition of V . To this end we need the standardlinearization tehnique, whih is an important tool in nonassoiative algebra,see [32℄. More preisely, we linearize (37) at x in the diretion y to get

4〈xy, x2 〉 = 4|x|2〈x, y 〉.Sine the inner produt is assoiating, we have
〈xy, x2 〉 = 〈 y, x2x 〉 = 〈 y, x3 〉.(Note that by virtue of the ommutativity of V the third power in V is wellde�ned: x3 = x2x = xx2.) Therefore, 〈x3 − 〈x, x 〉x, y 〉 = 0 for all y ∈ V,implying by the nondegeneray of the inner produt that x3 − 〈x, x 〉x = 0 forall x. Conversely, if the last identity holds, one easily gets (37). This provesthe following statement.Proposition 3.2. An arbitrary ommutative algebra with a positive de�niteassoiating form 〈 , 〉 is eional if and only if

x3 = 〈x, x 〉x, x ∈ V. (39)Next, note that the harmoniity ondition (35) is equivalent (if we take (18)into aount) to the trae free ondition
trLx = 0, x ∈ V. (40)A further linearization of (39) in diretion y ∈ V yields

x2y + 2x(xy) = 〈x, x 〉y + 2〈x, y 〉x,and eliminating y, we get
Lx2 + 2L2

x = 〈x, x 〉 + 2x⊗ x. (41)



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 19Remark 3.3. The last identity implies that eional algebras are `nearly Jor-dan'. Indeed, reall that any Jordan algebra satis�es (21). On the other hand,from (39) and (41) we have
[Lx2 , L2

x] = 2[x⊗ x,L2
x] = 2(x⊗ x3 − x3 ⊗ x) = 0,i.e., Lx2 ommutes with L2

x. In fat, from [52℄ it follows that any eional algebrahas a natural struture of the trae free subspae in a rank 3 Jordan algebra.3.3. The Peire deomposition and fusion laws. From the de�nition ofan eional algebra V , it follows that x2 6= 0 for any x 6= 0, i.e., V is a nonzeroalgebra. Therefore, Proposition 2.5 ensures that there are nonzero idempotentsin V . Denote by Idm(V ) the set of all nonzero idempotents. Note also that by(37) |c| = 1 for any c ∈ Idm(V ).The multipliation operator Lc is selfadjoint with respet to the inner prod-ut 〈 , 〉, hene V deomposes into orthogonal sum of Lc-invariant subspaes.We determine the spetrum of Lc. To this end, note that c2 = c, hene c is aneigenvetor of Lc with eigenvalue 1, thus, Rc is an invariant subspae of Lc.Therefore, the orthogonal omplement c⊥ is also an invariant subspae of Lc.Applying (41), we obtain
2L2

c + Lc − 1 = 2c⊗ c = 0 on c⊥, (42)hene spectrum(Lc|c⊥) ⊂ {−1, 12}. Note that from the above inlusion it followsthat the eigenvalue 1 has multipliity one, i.e., any idempotent in V is primitive.Remark 3.4. We point out that the presene of the eigenvalue 1
2 is ruialfor onstruting the nonlassial solutions and losely related to the onditionof being generi, disussed in Subsetions 1.3 and 2.5 above, f. Lemma 3.2in [39℄.Let Vλ(c) be the λ-eigenspae of Lc. Then the Peire deomposition of V is

V = Rc⊕ V−1(c)⊕ V 1

2

(c).In order to extrat the multipliation table (the so-alled fusion laws) be-tween the eigenspaes Vλ(c), we linearize (41) further. This yields
Lyx + (LxLy + LyLx) = 〈x, y 〉+ x⊗̂y. (43)Applying (43) to an arbitrary element z ∈ V yields the full linearization

x(yz) + y(zx) + z(xy) = 〈x, y 〉z + 〈 y, z 〉x+ 〈 z, x 〉y. (44)Speializing z = c ∈ Idm(V ) in (44) and setting x, y ∈ c⊥ yields
(cx)y + x(cy) + c(xy) = 〈x, y 〉c.



20 V. G. TKACHEVTaking the salar produt with z in the last identity and assuming that x ∈
Vλ1

(c), y ∈ Vλ1
(c), and z ∈ Vλ3

(c), where λi ∈ {1
2 ,−1}, we obtain

〈x1x2, x3 〉(λ1 + λ2 + λ3) = 0. (45)As a orollary, we have
Vλ1

(c)Vλ2
(c)⊥Vλ3

(c) whenever λ1 + λ2 + λ3 6= 0.For example, setting λ1 = λ2 = −1 immediately implies that V−1(c)V−1(c) isperpendiular to both V−1(c) and V 1

2

(c), hene
V−1(c)V−1(c) ⊂ Rc. (46)Similarly, for λ1 = −1 and λ2 =

1
2 one has V−1(c)V 1

2

(c) ⊂ Rc⊕ V 1

2

(c). On theother hand, sine eigenspaes Vλ(c) are perpendiular for distint λ we have
〈V−1(c)V 1

2

(c), c 〉 = 〈V−1(c), V 1

2

(c)c 〉 = 〈V−1(c), V 1

2

(c) 〉 = 0,implying that V−1(c)V 1

2

(c) ⊂ V 1

2

(c). Arguing similarly for λ1 = λ2 = 1
2 , onearrives at the fusion (multipliation) laws shown in Table 1.

V−1 V 1

2

V−1 Rc V 1

2

V 1

2

V 1

2

Rc⊕ V−1Table 1. Fusion laws of an eional algebraReall that a linear map A : X × Y → Y suh that A(x, · ) : Y → Y isselfadjoint for all x ∈ X and A2(x, · ) = 〈x, x 〉 idY is alled a symmetriCli�ord system, f. [9,45℄. It is well known that in this ase dimY is even and
dimX 6 1 + ρ(12 dimY ), and the Hurwitz�Radon funtion ρ is de�ned by

ρ(m) = 8a+ 2b if m = 24a+b · odd, 0 6 b 6 3. (47)Proposition 3.5. If dimV > 2, then
dimV−1(c)− 1 6 ρ(12 dimV 1

2

). (48)If additionally V satis�es (40), then the possible dimensions of the Peire sub-spae V−1(c) oinide with those of lassial division algebras. In partiular,there are only �nitely many isomorphy lasses of harmoni eional algebras indimensions dimV ∈ {5, 8, 14, 26}.



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 21Proof. First we show that V−1(c) is nontrivial. Indeed, assume by ontradi-tion that V−1(c) = {0}. Then V = Rc ⊕ V 1

2

(c), hene dimV 1

2

(c) = n − 1 > 1.From Table 1, V 1

2

(c)V 1

2

(c) ⊂ Rc. Hene for any x ∈ V 1

2

(c) we have
x2 = 〈x2, c 〉c = 〈x, xc 〉c = 1

2 〈x, x 〉c.Therefore x3 = 1
4 〈x, x 〉x 6= 〈x, x 〉x, and a ontradition with (39) follows.Thus dimV−1(c) > 1. Next, note that for any x ∈ V−1(c) Table 1 showsthat Lx is an endomorphism of V 1

2

(c). Sine
x2 = 〈x2, c 〉c = 〈x, xc 〉c = −〈x, x 〉c,by (46), from (41) we �nd

L2
x = 3

4〈x, x 〉 on V 1

2

(c). (49)Thus, 2√
3
Lx is a symmetri Cli�ord system. This imposes the dimensionalobstrution (48). If additionally V satis�es (40), then

0 = trLc = 1 +
1

2
dimV 1

2

(c) − dimV−1(c),thus dimV 1

2

(c) = 2m, where m = dimV−1(c)−1, implying by (48) the inequal-ity ρ(m) > m. It is well known and also easily follows from (47) that the lastinequality holds true only if m = 1, 2, 4, 8, whih implies that dimV = 3m+2.
��4. Conluding remarks and open questionsMinimal ones onstitute an important sublass of singular minimal hyper-surfaes in the Eulidean spae R

n for n > 4, plying a ruial role in thestudy of both the loal and global strutures of general (regular) minimal hy-persurfaes. Many examples known so far of minimal hyperones are algebraivarieties oming essentially from two lassial algebrai strutures: the Jordanand the Cli�ord algebras.An important lass is minimal ones de�ned by a degree three homogeneouspolynomials, i.e., ubi minimal ones. These were onsidered by W. Y. Hsiangin the late 1960s in [21℄. On the other hand, all known examples of ubi formssatisfying the hyperboliity riteria (i) or (ii) (inluding the examples disussedabove and the determinant form u9 in Remark 2.3) are exeptional Hsiang ubiminimal ones (or radial eigenubis in the sense of Chapter 6 in [36℄). It isknown that there are only �nitely many (ongruene lasses of) suh ubisin some distinguished dimensions 5 6 n 6 72, see Table 1 on p. 158 in [36℄.From an analytial point of veiw, any exeptional Hsiang ubi form an be



22 V. G. TKACHEVharaterized as a ubi polynomial solution of the following Hessian traeequations:
trD2u(x) = 0,

tr(D2u(x))2 = C1|x|2,
tr(D2u(x))3 = C2u(x),
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