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Dedi
ated to V. G. Maz′ya on the o

asion of his 80th birthdaySPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRASAND BREAKING REGULARITY FOR NONLINEAR ELLIPTICTYPE PDES© V. G. TKACHEVIn this paper, we address the following question: Why 
ertain nonasso-
iative algebra stru
tures emerge in the regularity theory of ellipti
 typePDEs and also in 
onstru
ting non
lassi
al and singular solutions? Ouraim in the paper is twofold. First, to give a survey of diverse exampleson nonregular solutions to ellipti
 PDEs with emphasis on re
ent resultson non
lassi
al solutions to fully nonlinear equations. Se
ond, to de�nean appropriate algebrai
 formalism, whi
h makes the analyti
 part of the
onstru
tion of non
lassi
al solutions more transparent.�1. Introdu
tionThe �rst examples of nonasso
iative algebras (in
luding o
tonions and Liealgebras) appeared in the mid-19th 
entury. Sin
e then the theory has evolvedinto an independent bran
h of algebra, exhibiting many points of 
onta
t withother �elds of mathemati
s, physi
s, me
hani
s, biology and other s
ien
es.Algebras whose asso
iativity is repla
ed by identities (as the famous Ja
obiidentity in Lie algebras or the Jordan identity [ad(x), ad(x2)] = 0 in Jordanalgebras) were a 
entral topi
 in mathemati
s in the 20th 
entury.Very re
ently, 
ertain 
ommutative nonasso
iative algebra stru
tures emer-ged in a very di�erent 
ontext: regularity of vis
osity solutions to fully nonlinearellipti
 PDEs. More pre
isely, it turns out that subalgebras of simple rank threeformally real Jordan algebras 
an be employed for 
onstru
ting truly vis
ositysolutions to uniformly ellipti
 Hessian equations. To explain this relationships,we �rst review some relevant 
on
epts and results.A
knowledgments. The author thanks the anonymous referee for severalhelpful 
omments.Key words: vis
osity solutions, ellipti
 type PDEs, 
ompositions algebras.1



2 V. G. TKACHEV1.1. Linear and quasilinear ellipti
 type PDEs. Starting with the pio-neering works of S. N. Bernstein, the maximum prin
iple and a priori estimateshave provided de
isive instruments in proving the existen
e of solutions of gen-eral linear and quasilinear ellipti
 type PDEs Lw = 0. Important progress inthis dire
tion was made in the late 1950s by E. De Giorgi, J. Moser, and J. Nashby establishing fundamental a priori regularity results. A fundamental resultof the regularity theory asserts that every solution w from a `natural' 
lass
W 1,2 of Lw = 0 must be H�older 
ontinuous, i.e., w ∈ C0,α for a 
ertain α > 0.On the other hand, the important 
ounterexamples independently 
onstru
-ted in 1968 for s
alar equations by V. G. Maz′ya [31℄ and for linear ellipti
systems by De Giorgi [14℄ and E. Giusti and M. Miranda [17℄ showed that thereis no natural generalization of De Giorgi's theorem on the H�older 
ontinuity forgeneralized solutions to strongly ellipti
 di�erential equations of order greaterthan two.In parti
ular, in [31℄ Maz′ya 
onstru
ted several examples of quasilinearstrongly ellipti
 equations of order 2l > 2 with C∞-
oe�
ients whose gen-eralized solutions are not C∞ regular. The strong ellipti
ity of an operator
Lu =

∑
Dα(aαβD

βu) means that there exists c > 0 su
h that the inequality∫
Rn

∑
aαβD

αφDβφdx > c
∫
Rn

∑
(Dαφ)2 dx is ful�lled for any φ ∈ C∞(Rn)with a 
ompa
t support, where summation is over all |α| = |β| = l. ThenMaz′ya noted that the equation

ν∆2w+κ∆

(
xixj
|x|2 wxixj

)
+κ∆

(
xixj
|x|2 ∆w

)

xixj

+µ

(
xixjxkxl

|x|4 wxixj

)

xkxl

= 0is strongly ellipti
 for κ
2 < µν and the radial symmetri
 fun
tion w = |x|awith

a = 2− n

2
+

√
n2

4
− (n− 1)(κn+ µ)

ν + 2κ + µis a weak solution of the above equation in W 2,2(B1), where B1 is the openunit ball in R
n. For κ = n(n−2), µ = n2 and ν = (n−2)2+ ε, with ε < 0, theabove strong ellipti
ity 
ondition is satis�ed and the 
orresponding solution

w = |x|a is unbounded in B for all dimensions n > 5 and su�
iently small ε.A very related problem is the regularity of p-harmoni
 fun
tions. It is wellknown that for p > 1, p 6= 2, a weak (in the distributional sense) p-harmoni
fun
tion is normally in the H�older 
lass C1,α [59℄, but need not to be H�older
ontinuous or even 
ontinuous in a 
losed domain with nonregular boundary, asit follows from examples 
onstru
ted by Krol′ and Maz′ya in [26℄. On the otherhand, if ess sup |Du(x)| > 0 holds lo
ally in a domain, then u(x) is in fa
t a realanalyti
 fun
tion in E [30℄. It is interesting whether the 
onverse nonvanishingproperty holds true. This question naturally leads to homogeneous p-harmoni
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tions (also 
alled quasiradial solutions in [4℄); see the paper of M. Akman,J. Lewis, A. Vogel [1℄ in the present volume for the modern status of theproblem and further dis
ussion. We only mention that in 
ertain dimensions
n > 4 one 
an expli
itly 
onstru
t rational homogenous p-harmoni
 fun
tionsfor some distinguished values p, 2 < p < n, based on isoparametri
 forms andgeneralizing the angle solutions 
onstru
ted by Krol′ and Maz′ya, see [55℄.Another prominent example of breaking regularity is the existen
e of glob-ally minimal 
ones and entire solutions of the minimal surfa
e equation indimensions n > 8; see [6℄. The higher-dimensional examples 
onstru
ted byBombieri, De Giorgio, and Giusti [6℄ make an essential use of the quadrati
isoparametri
 form

u2(x) := x21 + x22 + x23 + x24 − x25 − x26 − x27 − x28, (1)see also [50℄ and [49℄ for the general isoparametri
 
ase. The fun
tion u2(x)
oin
ides with the norm in the split o
tonion1 algebra [5℄. It is not 
lear whetherthis is merely a 
oin
iden
e or there is some natural explanation in the 
ontextof singular and entire solutions.On the other hand, Lawson and Osserman [29℄ 
onstru
ted nonparamet-ri
 minimal 
ones of high 
odimensions providing examples of Lips
hitz butnon-C1 solutions to the minimal surfa
e equations, thereby making sharp 
on-trast to the regularity theorem for minimal graphs of 
odimension one. TheLawson�Osserman examples based on Hopf foliations 
orresponding to the
lassi
al division algebras Ad: A2 = C, A4 = H, and A8 = O. More expli
itly,for d = 2, 4, 8 let
w(x) =

1

2

√
2d+ 1

d− 1

η (x)

|x| : R2d → R
d+1, (2)where

η(x) = (|z1|2 − |z2|2, 2z1z̄2), x = (z1, z2) ∈ A
2
d
∼= R

2d. (3)Then the map w(x) : R2d → R
d+1 provides a nontrivial Lips
hitz solution tothe Bernstein problem in 
odimension d+ 1.We �nally mention some further 
lasses of semilinear and quasilinear el-lipti
 PDEs with similar phenomena, for example, the re
ent entire solutionsof the Ginzburg�Landau system 
onstru
ted by A. Farina in [16℄ by usingisoparametri
 forms; see also Se
tion 3 in [33℄ for a re
ent survey of further
ounterexamples as well as regularity results.1The author is grateful to Seidon Alsaody for pointing out this.



4 V. G. TKACHEV1.2. Fully nonlinear ellipti
 type PDEs. In the general, fully nonlinear
ase, the regularity and existen
e issues be
ome more involved and requiretwo prin
ipal ingredients: (i) the Harna
k inequality for solutions of the 2ndorder nondivergen
e ellipti
 equations with measurable 
oe�
ients establishedin 1979 by N. Krylov and M. V. Safonov, see [27,28℄, and (ii) a suitable exten-sion of the 
on
ept of a generalized solution, the so-
alled vis
osity solution, animportant tool developed by Crandall�Lions, Evans, Jensen, and Ishii. We re-fer to [11℄ for exa
t de�nitions and self-
ontained exposition of the basi
 theoryof vis
osity solutions and brie�y note that this 
on
ept generalizes weak solu-tions for divergen
e type ellipti
 equations by utilizing the maximum prin
iple.Vis
osity solutions play a 
entral role in many problems from global geoemtryand analysis, and �t naturally into the 
ontexts of optimal 
ontrol, di�erentialand sto
hasti
 di�erential games, as well as mathemati
al �nan
e.An important model example with a far-ranging set of appli
ations in pureand applied mathemati
s is the Diri
hlet problem for the uniformly ellipti
equation of the form
F (D2w) = 0 in B1

w = φ on ∂B1
(4)with a uniformly ellipti
 operator F . The latter means that there exist 0<λ6Λsu
h that

λ‖N‖ 6 F (M +N)− F (M) 6 Λ‖N‖whenever M,N are symmetri
 matri
es with N nonnegative semide�nite.For many geometri
al appli
ations, an important parti
ular 
ase of (4) isthe Hessian equations, i.e., when F (X) depends only on the eigenvalues of the(symmetri
) matrix X. The Hessian equations in
lude the 
lassi
al examples ofLapla
e's equation, 
urvature Weingarten equation, Monge-Amp�ere equationand spe
ial Lagrange equation, and, more re
ently, the 
alibrated geometriesand Diri
hlet duality theory [19, 20℄. A

ording to the general theory [11℄, afully nonlinear ellipti
 equation (4) always has a unique 
ontinuous vis
ositysolution for any 
ontinuous data φ. The question whether a vis
osity solutionis 
lassi
al, i.e., twi
e di�erentiable, has turned out to be very 
hallenging. For
ertain 
ases the regularity is known:(i) If n = 2, then w is a 
lassi
al (C2,α) solution (Nirenberg [44℄)(ii) If n > 2 and Λ 6 1 + ǫ(n), then w is C2,α (Cordes [10℄)(iii) w ∈ C1,α(B1/2), α = α(Λ, n) (Trudinger [58℄, Ca�arelli [7℄)(iv) F 
onvex (
on
ave) ⇒ w ∈ C2,α(B1/2) (Krylov, Evans [15℄)(v) w is C2,α(B1 \ Σ), where the Hausdor� dimension dimH Σ is stri
tlysmaller than n− ǫ, ǫ = ǫ(Λ, n) (Armstrong�Silvestere�Smart, [3℄).



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 5Further regularity results in
luding the modulus of 
ontinuity of vis
ositysolutions 
an be found in [22, 51℄; see also [13℄ for the VMO-regularity andgradient estimates for vis
osity solutions to nonhomogeneous fully nonlinearellipti
 equations F (D2u) = f with f ∈ Lp.1.3. Truly vis
osity solutions. From the above, it follows that in the gen-eral 
ase and in dimensions n > 3 only C1,α-regular vis
osity 
an be expe
ted.Until very re
ently the very existen
e of non
lassi
al solutions for n > 3 wasnot known. A major breakthrough in this dire
tion was a
hieved in a series ofpapers of Nadirashvili and Vl�adu�t [37,38,41℄ by establishing �rst the existen
eof non
lassi
al and then also truly singular (H�older 
ontinuous) vis
osity solu-tion in any dimension n > 12. The method of 
onstru
tion makes an essentialuse of an a

umulation property of the spe
trum of the Hessian of a 
ertain
ubi
 form u12 in R
12. This fopm is also well known as a triality form and
omes from the Hamilton quaternions H, [5℄.Theorem 1.1 (see [37, 41℄). Let

u12(x) = Re(z1z2z3), where x = (z1, z2, z3) ∈ H
3 ∼= R

12 (5)and
w12,α(x) =

u12(x)

|x|α . (6)If 1 6 α < 2, then w12,α is a vis
osity solution in R
12 of a uniformly ellipti
Hessian equation (4) with a smooth F .In view of the appearan
e of the quaternions in (6), it is natural to expe
tthat the 
orresponding 
ubi
 form u24 based on the o
tonions also produ
essingular vis
osity solutions. The paper [40℄ established that this is a
tually the
ase. Furthermore, in [35℄ a non
lassi
al vis
osity solution w5 in R

5 based onthe Cartan isoparametri
 
ubi
 form u5 was 
onstru
ted and, shortly after,in [43℄ Nadirashvili and Vl�adu�t established that the 
orresponding w5,α is asingular vis
osity solutions in R
5. More pre
isely, one has the following fa
t.Theorem 1.2 (see [35℄). There a 
ubi
 form u5(x) su
h that w5,α(x) =

u5(x)
|x|αis a vis
osity solution in B1 ⊂ R

5. If 1 6 α < 2, then w5,α is a vis
ositysolution in R
12 of a uniformly ellipti
 Hessian equation (4) with a smooth F .Furthermore, w5 := w5,1 satis�es (4) with

F (D2w) = (∆w)5 + 2832(∆w)3 + 21235∆w + 215 detD2(w).This establishes the lowest possible dimension known so far where singularvis
osity solutions to uniformly ellipti
 equations may exist.



6 V. G. TKACHEVThe algebrai
 part of the above 
onstru
tion relies heavily on 
ertain a

u-mulation properties of the spe
trum of the 
ubi
 forms uk involved. It was no-ti
ed in [39℄ that to obtain a non
lassi
al vis
osity solution, the 
orresponding
ubi
 form un must be rather ex
eptional. Furthermore, numeri
al simulationsshow that a random (`generi
') 
ubi
 form does not produ
e a non
lassi
al so-lution to (4). This makes it reasonable to ask why u12, u24, and u5 are so ex
ep-tional and how to 
hara
terize the 
ubi
 forms produ
ing singular/non
lassi
alvis
osity solutions.We have already mentioned that u12 and u24 
ome from the triality 
on
eptand are intimately related to ex
eptional Lie groups and the 
lassi
al divisionalgebras in dimensions 4 and 8 respe
tively. From [39℄, it follows that the
orresponding triality 
ubi
 form u6 over the �eld of 
omplex numbers C alsoprodu
es a vis
osity solution but only for a degenerate ellipti
 equation.The 
ubi
 form u5 is also rather spe
ial and has many important relation-ships in analysis and geometry. In the present 
ontext, at least the followingproperties are essential:(a) u5 is the generi
 norm on (the tra
e free subspa
e of) rank 3 formallyreal Jordan algebra H3(R) of symmetri
 3× 3 matri
es, and(b) u5 is the simplest Cartan isoparametri
 
ubi
 form.There exists a natural 
orresponden
e between the 
on
epts in (a) and (b),see [52℄. Expli
itly, the 
ubi
 form u5 is given by the determinant representation
u5(x) =

∣∣∣∣∣∣∣

1√
3
x1 + x2 x3 x4

x2
−2√
3
x1 x5

x4 x5
1√
3
x1 − x2

∣∣∣∣∣∣∣
(7)Taking the above observations into a

ount, it is highly desirable to �nda 
on
eptual explanation of the existen
e of non
lassi
al solutions and relatethem to appropriate algebrai
 stru
tures. In this paper, we dis
uss some pos-sible approa
hes to these questions.The appearan
e of Jordan algebras in (7) and (a) makes it natural to askwhether these algebras are also relevant for the examples in Subse
tion 1.1. Aswe have already mentioned, the isoparametri
 form u2 in (1) reminis
es thenorm of split o
tonions. Moreover, the Hopf map (3) 
oin
ides with the multi-pli
ation in Cli�ord type Jordan algebras (the so-
alled spin-fa
tors), see [5℄.Remark 1.3. In all the above examples of nonregular solutions, in
luding the

p-harmoni
 homogenous examples, the regularity breaks at an isolated pointwhere (the blow-down of) a solution has a H�older type singularity. Remarkably,the asymptoti
 
one at the singular point is always a minimal 
one. It is alsointeresting to know whether the appearan
e of the minimality in this 
ontext



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 7is mere 
oin
iden
e or there is a general explanation of this phenomenon. Thisquestion also naturally arises in 
onne
tion with phase transitions and the DeGiorgi 
onje
ture, see [46℄.The rest of the paper is stru
tured as follows. In �2 we dis
uss the main ideasunderlying the 
onstru
tion of homogeneous non
lassi
al vis
osity solutionsof (4). There we also de�ne an algebrai
 formalism, whi
h 
onne
ts 
ubi
 formswith 
ertain 
ommutative nonasso
iative algebras. In this setting, the gradientof a 
ubi
 form determines the multipli
ative algebra stru
ture; in parti
ular,algebra idempotents 
orrespond to stationary points of the 
ubi
 form. A 
ubi
form is 
alled spe
ial if it generates a non
lassi
al solution. We reformulate thisde�nition in terms of the Peir
e spe
trum. We dis
uss the Peir
e de
ompositionand generi
 
ubi
 forms in Subse
tions 2.4 and 2.5. In Subse
tion 2.6 we applythe algebrai
 approa
h to spe
ial forms. In the last �3 we revisit Cartan'sisoparametri
 
ubi
s and determine their Peir
e spe
trum.�2. Ingredients and de�nitions2.1. Preliminaries. Re
all that a

ording to the regularity result [3℄, if w isa non
lassi
al solution to (4) in the unit ball B1, then its singular set must be
ompa
tly 
ontained in B1. It is natural to 
onsider the simplest single pointsingularity and look for 
andidates for non
lassi
al vis
osity solutions in theunit ball B1 ⊂ R
n in the 
lass of homogeneous solutions, i.e., the fun
tions wsatisfying

w(tx) = tkw(x), x ∈ R
n, t > 0.The ambient dimension must be n > 5. Indeed, for n = 2 from the Nirenbergresult (i) mentioned above it follows that any (not ne
essarily homogeneous)vis
osity solution is 
lassi
al, and also if 3 6 n 6 4, then [42℄ shows thata non
lassi
al vis
osity solution, if exists, is never homogeneous (the 
ase of

n = 3 follows from a theorem of A. D. Alexandro� in [2℄).Furthermore, it is natural to spe
ify w(x) and assume that it has the fol-lowing form:
w(x) =

u(x)

|x|α , (8)
u(x) being a 
ubi
 form2 in the variable x ∈ R

n and α > 1. Under the made as-sumptions, it follows from [35℄ that the 
lass of non
lassi
al vis
osity solutionswith α = 1 is nonempty for any dimension n > 5.2In fa
t, one 
an also 
onstru
t some 
ounterexamples w as in (8) by using isoparametri
homogeneous forms u of degree 3, 4, and 6, see Chapter 5 in [36℄. Interestingly, there are alsoquadrati
 isoparametri
 forms, but they are nonappropriate for 
onstru
ting non
lassi
alsolutions. In this paper we 
on�ne ourselves to the degree 3 
ase.



8 V. G. TKACHEVIn all known 
ases, the existen
e of a non
lassi
al vis
osity solution (8) fora 
ertain u(x) with α = 1 guarantees that (8) with 1 < α < 2 will also bea singular vis
osity solution to a 
ertain F in (4), see Chapter 4 in [36℄ (it isbelieved that this observation holds true in general, though no proof is known).In view of this, we shall only 
onsider non
lassi
al solutions.2.2. Non
lassi
al vis
osity solutions. We brie�y re
all the main ideas ofthe 
onstru
tion along the line of [35,39℄. For more information and the proofs,the reader is referred to Chapters 4 and 5 in [36℄. Let w be an arbitrary homo-geneous fun
tion of order 2 de�ned on R
n and smooth in R

n \ {0}. Then theHessian D2w(x) is homogeneous of order 0 at any point x ∈ R
n \ {0} and itindu
es the Hessian map

D2w : Rn \ {0} → Symn,where Symn denotes the spa
e of symmetri
 (n× n)-matri
es with real 
oe�-
ients. By the homogeneity assumption, we have
D2w(tx) = D2w(x) for any t > 0,hen
e the Hessian D2w is 
ompletely determined by its values on the unitsphere ∂B1. We denote by

Hw = D2w|∂B1the 
orresponding restri
tion map. By O(n) we denote the group of isometriesin R
n.As in [39℄, we say that a symmetri
 matrix A is M -hyperboli
 for some real

M > 1 if either all λi are equal to 0 or
1

M
6

−λ1

λn
6 M, (9)where λ1 6 · · · 6 λn denote the eigenvalues of A.A subset A ⊂ Symn is 
alled hyperboli
 if there exists a 
onstant M su
hthat for any two matri
es A,B ∈ A, the di�efen
e A−B is M -hyperboli
.The importan
e of the last 
on
epts is 
lear from the following result.Lemma 2.1 (Main Lemma in [37℄). Let a fun
tion w be de�ned by (8) with

α = 1. Suppose that the restri
tion map Hw : ∂B1 → Symn is a smoothembedding. Then(i) if Hw(∂B1) is hyperboli
, then w is a vis
osity solution of a uniformlyellipti
 equation (4) in R
n;(ii) if additionally the (larger) subset {UAU−1 : A ∈ Hw(∂B1), U ∈ O(n)}is hyperboli
, then w is a solution of a Hessian uniformly ellipti
 equa-tion (4) in R

n.



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 9Thus, the above hyperboli
ity 
ondition is 
ru
ial for 
onstru
ting vis
ositysolutions. Note also that all examples dis
ussed in Subse
tion 1.3 satisfy in fa
tthe stronger 
ondition (ii). This suggests the following de�nition.De�nition 2.2. A 
ubi
 form u(x) is 
alled spe
ial if w = u(x)/|x| satis�eshypotheses (ii) in Lemma 2.1.It is also interesting to 
hara
terize the 
ubi
 forms u that satisfy the weaker
ondition (i). For 
ontinuity reasons, if u satis�es (i), then all 
ubi
 forms`su�
iently 
lose' to u will also satisfy (i).Remark 2.3. An example of su
h a form is the determinant u9(x) = detX,where X ∈ R
3×3 ∼= R

9 (X is an arbitrary nonsymmetri
 matrix over R). Thenit is easy to see that u9 is the spe
ialization of the triality form u12 on theimaginary subspa
e (ImH)3, see (5). On the other hand, it is known, see Re-mark 4.1.5 in [36℄, that u9 satis�es the ellipti
ity 
riterion (i) and thus produ
esa non
lassi
al solution w = u/|x| of a uniformly ellipti
 fully nonlinear equa-tion in R
9. However, a more sophisti
ated analysis reveals that this fun
tionfails to satisfy the su�
ient 
onditions (ii) and thus may be not a solution ofa Hessian uniformly ellipti
 fully nonlinear equation. Remarkably, u9 is one ofthe ex
eptional Hsiang 
ubi
 forms emerging in 
lassi�
ation of 
ubi
 minimal
ones [36, Chapter 6℄, 
f. also with the remarks in �4 below.2.3. Algebras of 
ubi
 forms. The main obstru
tion for identifying whi
h
ubi
 forms u are spe
ial is an a priori hard problem to 
ontrol the spe
trumof the di�eren
e Hw(x) −Hw(y) for all possible pairs x, y ∈ ∂B1. This prob-lem be
omes more tra
table and 
on
eptually more transparent if one passesto a 
ertain natural nonasso
iative algebra atta
hed to the 
ubi
 form u. Be-low, we re
all some relevant 
on
epts and results following [53,54,56℄; see alsoSe
tion 6.3 in [36℄.By an algebra we always mean a (�nite dimensional) ve
tor spa
e V overthe real numbers R with a multipli
ation on V , i.e., a bilinear map (denotedby juxtaposition) (x, y) 7→ xy ∈ V. By an abuse of notation, we denote by Vboth the ve
tor spa
e and the 
orresponding algebra.In this paper, by an algebra we mean a 
ommutative algebra. A symmetri
bilinear form b : V × V → R on an algebra V is 
alled asso
iating if

b(xy, z) = b(x, yz), x, y, z ∈ V. (10)An algebra 
arrying an asso
iating bilinear form is 
alled metrised. The stan-dard example is the generi
 tra
e form on a Jordan algebra, see [32℄.The most striking 
onsequen
e of the existen
e of an asso
iating bilinearform is that the operator of left (=right) multipli
ation
Lx : y → xy = yx



10 V. G. TKACHEVis selfadjoint, i.e.,
〈Lxy, z 〉 = 〈 y, Lxyz 〉, x, y, z ∈ V. (11)Now we want to asso
iate an algebra with an arbitrary 
ubi
 form. Re
allthat a 
ubi
 form is a fun
tion u : V → R su
h that its full linearization

u(x, y, z) = u(x+ y+ z)− u(x+ y)− u(x+ z)− u(y + z) + u(x) + u(y) + u(z)is a trilinear form. The trilinear form u(x, y, z) is obviously symmetri
 and the
ubi
 form is re
overed by
6u(x) = u(x, x, x). (12)A positive de�nite symmetri
 bilinear form 〈x, y 〉 on V is 
alled an innerprodu
t. Given an inner produ
t and a 
ubi
 form u, its gradient ∇u(x) at xis uniquely determined by the duality

〈∇u(x), y 〉 = 1

2
u(x, x, y), y ∈ V. (13)From the above de�nitions, it follows, that thus de�ned, ∇u 
oin
ides with thestandard gradient of a fun
tion u.De�nition 2.4. Let u be a 
ubi
 form on an inner produ
t ve
tor spa
e

(V, 〈 , 〉). De�ne the multipli
ation (x, y) → xy as a unique element satisfying
〈xy, z 〉 = u(x, y, z) for all z ∈ V (14)The multipli
ation is 
ommutative but may be nonasso
iative. We 
all thusde�ned algebra on V the algebra of the 
ubi
 form u and denote it by V (u).It is easy to see that V (u) is a zero algebra (i.e., V (u)V (u) = 0) if and onlyif the 
ubi
 form u is identi
ally zero.An important 
onsequen
e of the above de�nition and the symmetry ofthe trilinear form u(x, y, z) is that the inner produ
t on the algebra V (u) isasso
iating, i.e., V (u) is a metrised 
ommutative algebra.Furthermore, it also follows from the de�nition that, given an inner prod-u
t ve
tor spa
e (V, 〈 , 〉), there is a 
anoni
al bije
tion between the ve
torspa
e C(V ) of all 
ubi
 forms on V and 
ommutative metrised algebra stru
-tures A(V ) on V , where the 
orresponden
e C(V ) → A(V ) is given by (14),and the 
onverse 
orresponden
e A(V ) → C(V ) is de�ned by

u(x) :=
1

6
〈x2, x 〉. (15)With the above 
on
epts at hand, we are able to identify the standard 
al-
ulus operations on V as appropriate algebrai
 
on
epts on V (u). First note
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ombined with (14) yields immediately the fa
t that the gradient of
u(x) is essentially the square of the element x in V (u):

∇u(x) =
1

2
xx =

1

2
x2, (16)and, similarly, the multipli
ation in V (u) is expli
itly re
overed by

(D2u(x))y = xy, (17)where D2u(x) is the Hessian map of u at x. This implies that the Hessian mapof u at x is none other else than the multipli
ation operator Lx:
D2u(x) = Lx. (18)Then from (10) it follows that Lx is a selfadjoint operator with respe
t to theinner produ
t 〈 , 〉.In summary, starting with a 
ubi
 form on an inner produ
t ve
tor spa
e,one 
an 
onstru
t an algebra stru
ture that translates the standard 
al
ulusinto appropriate algebrai
 
on
epts. Then the Peir
e de
omposition relative toan idempotent is a signi�
ant tool in identifying the underlying nonasso
iativealgebra stru
ture, see [32, 47℄. Therefore, it is important to know whether theset of idempotents in V (u) is empty or not. The next proposition answers thisquestion in the positive; its proof 
an be found in the author's papers [54,56℄.Proposition 2.5. Let V (u) be the algebra of a 
ubi
 form u 6≡ 0 on an innerprodu
t ve
tor spa
e V . Denote by E the (nonempty) set of stationary pointsof the variational problem

〈x, x2 〉 → max subje
t to the 
onstraint 〈x, x 〉 = 1. (19)Then for any x ∈ E, either x2 = 0 or c := x
〈 x2,x 〉 is an idempotent in V . Inparti
ular, the set of idempotents of V (u) is nonempty. Furthermore, if E0 ⊂ Edenotes the subset of lo
al maxima in (19), then the 
orresponding idempotent

c = x/〈x2, x 〉 satis�es the extremal property
spectrum(Lc|c⊥) ⊂ (−∞, 12 ], (20)where c⊥ = {x ∈ V : 〈x, c 〉 = 0}. In parti
ular, the eigenvalue 1 of Lc issimple (i.e., c is a primitive idempotent).2.4. Jordan algebras. Jordan algebras 
onstitute an important 
lass in the
ontext of 
ubi
 forms and having numerous appli
ations in mathemati
s andmathemati
al physi
s. Re
all that a 
ommutative algebra V is said to be Jordanif

[Lx, Lx2 ] = 0. (21)It is well known that (21) implies that any Jordan algebra is power-asso
iative,i.e., the powers xn do not depends on asso
iations, see [23℄.



12 V. G. TKACHEVIn the most interesting 
ase for appli
ations when V is formally real, thebilinear form b(x, y) := trLxy (the generi
 tra
e form) is positive de�nite andasso
iating, i.e., satis�es (10). In their famous work [24℄, Jordan, von Neumann,and Wigner proved that the only simple formally real Jordan algebras are theJordan algebras of n×n selfadjoint matri
es over Ad, d = 1, 2, 3, the ex
eptional
27-dimensional Albert algebra of 3×3 selfadjoint matri
es over o
tonions, andthe so-
alled spin-fa
tors, or Cli�ord type Jordan algebras.Re
all that the (Peir
e) spe
trum of an idempotent c in a 
ommutativealgebra is 
alled the spe
trum of the 
orresponding multipli
ation operator Lc.The algebra spe
trum is the union of all idempotent spe
tra.An important stru
ture property of any Jordan algebra V is that the spe
-trum of any idempotent is a subset of {0, 12 , 1}. In parti
ular, V admits theso-
alled Peir
e de
omposition:

V = V0(c)⊕ V 1

2

(c)⊕ V1(c), (22)where Vλ is the λ-subspa
e of Lc. Then the Vc(λ) are subalgebras of V for
λ ∈ {0, 1}.The eigenvalue 1

2 and the 
orresponding subspa
e is distinguished in manyways. For example, a Jordan algebra is simple if and only its 1
2 -eigenspa
e isnontrivial for any idempotent. Moreover, V 1

2

satis�es the Jordan fusion laws
Vc(λ)Vc(

1
2) ⊂ Vc(

1
2), λ ∈ {0, 1}; Vc(

1
2)Vc(

1
2) ⊂ Vc(0) ⊕ Vc(1). (23)As we shall see, 1

2 plays an essential role in 
onstru
ting non
lassi
al solutions.2.5. Generi
 
ubi
 forms. As we remarked in Subse
tion 1.3 above, somenumeri
al simulations support the believe that a randomly 
hosen 
ubi
 form isnot spe
ial. To give this observation a rigorous meaning, we need to formalizewhat we mean by a generi
 
ubi
 form. One natural way to do this is to
ombine the 
orresponden
e given in the pro
eeding se
tion with the 
on
eptof a generi
 algebra introdu
ed re
ently in [25℄.Re
all that an algebra over C is said to be generi
 if it has exa
tly 2nidempotents (
ounting x = 0). The idea dates ba
k to the 
lassi
al work ofSegre [48℄: given a �xed basis of an arbitrary nonasso
iative algebra V of di-mension n > 2 over 
omplex numbers C, one 
an identify the multipli
ationwith a degree 2 homogeneous map on V . In this setting, the idempotent de�n-ing relation x2 = x be
omes a system of quadrati
 polynomial equations on
C
n. It is well known that a generi
 (in the Zariski sense) polynomial system hasthe B�ezout number of solutions equal to the produ
t of the prin
ipal degreesof the system equations. In our 
ase, the B�ezout number is 2n.More pre
isely, let {ei}16i6n be an arbitrary �xed basis of a �nite dimen-sional ve
tor spa
e V . Then any algebra stru
ture on V is uniquely determined
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ation table M := (aijk)16i,j,k6n, where eiej =
∑n

k=1 aijkek. Inthis notation, the algebra produ
t f(x, y) := xy in V is given 
omponent-wiseby
fk(x, y) :=

n∑

k=1

aijkxiyj, k = 1, 2, . . . , n. (24)Also, the idempotent de�ning relation be
omes
f(x, x) = x. (25)Then the algebra V is generi
 if (25) has exa
tly 2n distin
t solutions over C.In parti
ular, this fa
t implies that ea
h solution is a nondegenerate point of(25). The last 
ondition is important be
ause it 
an be reformulated in termsof the spe
trum of the algebra V .Now it is natural to 
all a 
ubi
 form u on V generi
 if so is the 
orrespondingalgebra V (u).Note that the above de�nitions work equally well in both analyti
 and alge-brai
 settings. However, it is more preferable to work with the latter be
ausethe generi
ity 
on
ept is easily translated to the well-developed nonasso
iativealgebra theory, in
luding the Peir
e de
omposition.In [25℄, the following 
riterion was established.Proposition 2.6. A 
ommutative algebra V over C is generi
 if and only ifthe spe
trum of any idempotent in V does not 
ontain 1

2 .Be
ause of the essential role 1
2 plays in the present 
ontext and also for thereader 
onvenien
e, we give a sket
h of the proof.Proof. Note that f̃(x) := f(x, x) is an endomorphism of V homogeneous ofdegree 2. Sin
e V is 
ommutative, we have

f̃(x+ y)− f̃(x)− f̃(y) = f(x, y) + f(y, x) = 2f(x, y).In parti
ular, ∂f̃k
∂xj

(x) = 2fk(x, ej), whi
h yields
Df̃(x) = 2Lx,where Df̃(x) is the Ja
obi matrix of g at x. Rewriting system (25) as gk(x) :=

f̃k(x)− xk = 0, k = 1, 2, . . . , n, we see that
Dg(x) = 2Lx − I.Thus, Dg(x) is nondegenerate if and only if 2Lx − I is so, i.e., 1

2 is not in thespe
trum of Lx. In order to �nish the proof, it remains to note that system (25)has the maximal �nite number of solution if and only if ea
h solution is anondegenerate point of g, see for instan
e [12℄. �



14 V. G. TKACHEVWe have already seen in Se
tion 2.4 that any Jordan algebra has 1
2 in its spe
-trum and plays a distinguished role in the 
lassi�
ation of formally real algebrasby Jordan, von Neumann, and Wigner, see [24℄. In general, the ex
eptionality ofthe Peir
e eigenvalue λ = 1

2 in the spe
trum of many well-established nonas-so
iative algebra stru
tures (in
luding Jordan algebras, Bernstein algebras,and general geneti
 algebras) is a rather 
ommon phenomenon. We mentionits very re
ent appearan
e in the 
ontext of axial algebras (generalizing theMonster algebra of the largest sporadi
 �nite simple group), see [18℄. Hsiangalgebras emerging in the 
ontext of 
ubi
 minimal 
ones present another ex-ample of 
ommutative nonasso
iative algebras where the presen
e of 1
2 playsa distinguished role, see Chapter 6 in [36℄. In a wider 
ontext of algebras withidentities, the universality of 1

2 was dis
ussed re
ently in [57℄.Our next step is to explain why the Peir
e eigenvalue 1
2 is also distinguishedin the 
ontext of non
lassi
al solutions.2.6. The spe
tral properties of the Hessian of w. It was remarked inLemma 3.2 in [39℄ that the hyperboli
ity 
ondition (Lemma 2.1 above) for a
ubi
 form u would be ful�lled if there would exist δ > 0 su
h that for any�xed dire
tion d ∈ V the spe
trum λ1(d) 6 . . . 6 λn(d) of the quadrati
 form

∂du(x) satis�es
ρ(d) := max{λ1(d)

λ3(d)
,

λn(d)

λn−2(d)
} < 2− δ. (26)Unfortunately (see the remark after Lemma 3.2 in [39℄), the above 
onditionis too strong and fails for 
ertain d for any 
ubi
 form. Indeed, using (16), thequadrati
 form ∂du(x) may be rewritten as

∂du(x) =
1
2〈x

2, d 〉 = 1
2 〈x, xd 〉 = 1

2〈x,Ldx 〉,therefore its spe
trum 
oin
ides with the spe
trum of the s
aled multipli
ationoperator 1
2Ld. Now, 
hoosing d ∈ E0 in the notation of Proposition 2.5, wededu
e from (20) and the fa
t that d is an idempotent that λ1(d) = 1 and

λ2(d) 6
1
2 , hen
e ρ(d) > 2.Thus, the failure if the gap inequality (26) is dire
tly related to the Peir
espe
trum of 
ertain idempotents3 in the 
orresponding algebra V (u). Below wetry to 
larify its nature in more detail and relate it to generi
 
ubi
 forms.Let u 6≡ 0 be an arbitrary 
ubi
 form on an inner produ
t ve
tor spa
e V .Using (15), we rewrite (8) for α = 1 as

w(x) =
6u(x)

|x| =
〈x2, x 〉

|x| .3These idempotents have interesting extremal properties and 
an be related to Cli�ordtype Jordan algebras, see our re
ent paper [56℄
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tional derivative
〈∇w(x), y 〉 = ∂yw|x =

3〈x2, y 〉|x|2 − 〈x2, x 〉〈x, y 〉
|x|3 , (27)implying by duality the expression for the gradient

∇w(x) =
3x2|x|2 − 〈x2, x 〉x

|x|3 .Arguing similarly, we �nd for the Hessian
H(x) := D2w(x) =

6

|x|Lx −
〈x2, x 〉
|x|3 − 3

x⊗̂x2

|x|3 + 3
x⊗ x

|x|5 〈x2, x 〉, (28)where
(a⊗ b)(x) = a〈 b, x 〉, a⊗̂b = a⊗ b+ b⊗ a.Note that the Hessian is homogeneous degree 0 but it is an odd map. i.e.,

H(−x) = −H(x). Furthermore,
∆w(x) = trD2w(x) =

6

|x| trLx − (n+ 3)
〈x2, x 〉
|x|3 . (29)Re
all that u is spe
ial if there exists M > 1 su
h that H(x) − H(y) is

M -hyperboli
 for any pair x, y ∈ V . The following elementary observationimmediately follows if one 
hooses y = −x in (27) and refers to the oddnessof H(x).Lemma 2.7. If w is spe
ial, then the set {H(x)}|x|=1 is hyperboli
.The parti
ular 
ase when x = c is an idempotent of V (u) is very spe
ialbe
ause x2 and x 
oin
ide, implying 
onsiderable simpli�
ations in (28), su
hthat the spe
trum of H(c) 
an be 
al
ulated expli
itly.Lemma 2.8. If c is a nonzero idempotent of V (u), then
spectrum(H(c)) =

{
2

|c| ,
6λ1 − 1

|c| , . . . ,
6λn−1 − 1

|c|

} (30)where 1, λ1, . . . , λn−1 are the eigenvalues of Lc 
ounting the multipli
ities. Inparti
ular, the 
hara
teristi
 polynomial of H(c) is given by
χH(c)(t) =

6n(6|c|t− 2)

|c|n(|c|t− 5)
· χc

(
1 + |c|t

6

) (31)where χc(z) is the 
hara
teristi
 polynomial of Lc.



16 V. G. TKACHEVProof. Indeed, sin
e c2 = c, from (28) we obtain
H(c) =

1

|c|

(
6Lc − 1− 3

|c|2 c⊗ c

)
. (32)In parti
ular, H(c)c = 2

|c|c, i.e., c is an eigenve
tor of H(c) with eigenvalue 2
|c| .Sin
e H(c) is selfadjoint, the orthogonal 
omplement c⊥ is its invariant sub-spa
e. We have

H(c) =
1

|c| (6Lc − 1) on c⊥.This yields (30), and therefore (31). �Remark 2.9. As an immediate 
onsequen
e of (31), we obtain
χc(z) = (z − 1)

|c|n
6n

·
χH(c)

(
6z−1
|c|

)

z − 1
2

. (33)We point out a remarkable appearan
e of the eigenvalue 1
2 in the denominator.This implies by virtue of Proposition 2.6 that if u is a generi
 
ubi
 form, thenthe eigenvalue λ = 2

|c| must be a simple eigenvalue of the Hessian H(c).�3. Algebras of Cartan's isoparametri
 
ubi
sIn this se
tion we 
onsider the prin
ipal model example, whi
h 
lari�es somealgebrai
 ingredients of the 
onstru
tion of non
lassi
al solutions. We establishthe 
orresponding Peir
e de
omposition and derive the �niteness of the ei
onalalgebras in Proposition 3.5.3.1. Cartan�M�unzner equations. Presently, the only known example of anon
lassi
al solution in the lowest dimension n = 5 (see Theorem 1.2) is basedon the 
ubi
 form u5, whi
h naturally appears in the 
ontext of isoparametri
hypersurfa
es in the Eu
lidean spheres.A

ording to �E. Cartan, a hypersurfa
e of the unit sphere Sn−1 ⊂ R
n is saidto be isoparametri
 if it has 
onstant prin
ipal 
urvatures. Isoparametri
 hyper-surfa
es have been shown to be useful in various areas of mathemati
s, see [9℄for the modern a

ount of the isoparametri
 theory. Cartan himself 
lassi�edall isoparametri
 hypersurfa
es with g = 1, 2, 3 
onstant prin
ipal 
urvaturesand also established that all these are homogeneous and algebrai
. The 
ele-brated result of M�unzner [34℄ states that g ∈ {1, 2, 3, 4, 6}, all �ve possibilitiesare realized, and ea
h isopaprametri
 hypersurfa
e with g distin
t prin
ipal
urvatures is obtained as a level set of a homogeneous degree g polynomial onthe unit sphere.



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 17The 
ase of g = 3 is quite distinguished in many way. In [8℄ Cartan provedthat for any isoparametri
 hypersurfa
e M3d with g = 3 distin
t prin
ipal
urvatures, ea
h prin
ipal 
urvature must have the same multipli
ity, and thepossible multipli
ities are d = 1, 2, 4, 8 
orresponding the dimensions of 
lassi-
al division algebras Ad. More pre
isely, M3d is a tube of 
onstant radius overa standard Veronese embedding of a proje
tive plane into the standard sphereover the division algebra Ad. Equivalently, M3d is a lo
us of a 
ubi
 form u(x)in S3d+1 ⊂ R
3d+2 with u satisfying the Cartan�M�unzner system

|∇u(x)|2 = 9|x|4, (34)
∆u(x) = 0. (35)Cartan 
lassi�ed all 
ubi
 solutions of (34)�(35) and showed that the 
orre-sponding de�ning 
ubi
 polynomials are given expli
itly by

u = x31 +
3
2x1

(
|z1|2 + |z2|2 − 2|z3|2 − 2x22

)
+ 3

√
3

2
x2

(
|z2|2 − |z1|2

)

+ 3
√
3Re(z1z2)z3,

(36)where x = (x1, x2, z1, z2, z3) and zi ∈ R
d ∼= Ad and d ∈ {1, 2, 4, 8}. We refer to(36) as to a Cartan isoparametri
 
ubi
. Ea
h Cartan isoparametri
 
ubi
 alsosatis�es a determinantal representation like (7) above, where the determinantinvolved should be properly understood in an appropriate sense. More pre
isely,

u is the generi
 determinant in the Jordan algebra of (3×3)-Hermitian matri
eswith entries in the division algebra Ad.3.2. Algebras atta
hed to (34). Below, we apply the de�nitions given inSubse
tion 2.3 to Cartan isoparametri
 
ubi
s. A somewhat di�erent approa
hemploying the Freudenthal�Springer 
onstru
tion was suggested in [52℄.Our starting point is an arbitrary 
ubi
 homogeneous polynomial solution
u(x) of the Cartan�M�unzner equation (34) alone. By abusing terminology, we
all u an ei
onal 
ubi
. The harmoni
 ei
onal 
ubi
s are exa
tly the Cartanisoparametri
 
ubi
s. Using (16), we introdu
e the 
ommutative algebra stru
-ture V (u) on V = R

n equipped with the standard Eu
lidean inner produ
t.Then u(x) = 1
6〈x2, x 〉 and (34) be
omes

〈x2, x2 〉 = 36〈x, x 〉2.The exa
t value of the 
onstant fa
tor 36 is not essential and may be 
hosenarbitrarily (positive) by a suitable s
aling of the inner produ
t.Now we want to 
onsider an arbitrary algebra satisfying the above identity.This motivates the following de�nition.



18 V. G. TKACHEVDe�nition 3.1. A 
ommutative, maybe nonasso
iative, algebra with a posi-tive de�nite asso
iating form 〈 , 〉 satisfying
〈x2, x2 〉 = 〈x, x 〉2 (37)is 
alled an ei
onal algebra.If V is an arbitrary ei
onal algebra, then the 
ubi
 form u(x) = 1

6 〈x, x2 〉satis�es the (s
aled) ei
onal equation (34). This translates the study of (34)into a purely algebrai
 
ontext.Note also that the sense of (37) be
omes more 
lear if one introdu
es thenorm N(x) = 〈x, x 〉. Then (37) takes form of the 
omposition algebra identity
N(x2) = N(x)2. (38)Note, however, that (38) does not imply that N(xy) = N(x)N(y)Our goal is the Peir
e de
omposition of V . To this end we need the standardlinearization te
hnique, whi
h is an important tool in nonasso
iative algebra,see [32℄. More pre
isely, we linearize (37) at x in the dire
tion y to get

4〈xy, x2 〉 = 4|x|2〈x, y 〉.Sin
e the inner produ
t is asso
iating, we have
〈xy, x2 〉 = 〈 y, x2x 〉 = 〈 y, x3 〉.(Note that by virtue of the 
ommutativity of V the third power in V is wellde�ned: x3 = x2x = xx2.) Therefore, 〈x3 − 〈x, x 〉x, y 〉 = 0 for all y ∈ V,implying by the nondegenera
y of the inner produ
t that x3 − 〈x, x 〉x = 0 forall x. Conversely, if the last identity holds, one easily gets (37). This provesthe following statement.Proposition 3.2. An arbitrary 
ommutative algebra with a positive de�niteasso
iating form 〈 , 〉 is ei
onal if and only if

x3 = 〈x, x 〉x, x ∈ V. (39)Next, note that the harmoni
ity 
ondition (35) is equivalent (if we take (18)into a

ount) to the tra
e free 
ondition
trLx = 0, x ∈ V. (40)A further linearization of (39) in dire
tion y ∈ V yields

x2y + 2x(xy) = 〈x, x 〉y + 2〈x, y 〉x,and eliminating y, we get
Lx2 + 2L2

x = 〈x, x 〉 + 2x⊗ x. (41)
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onal algebras are `nearly Jor-dan'. Indeed, re
all that any Jordan algebra satis�es (21). On the other hand,from (39) and (41) we have
[Lx2 , L2

x] = 2[x⊗ x,L2
x] = 2(x⊗ x3 − x3 ⊗ x) = 0,i.e., Lx2 
ommutes with L2

x. In fa
t, from [52℄ it follows that any ei
onal algebrahas a natural stru
ture of the tra
e free subspa
e in a rank 3 Jordan algebra.3.3. The Peir
e de
omposition and fusion laws. From the de�nition ofan ei
onal algebra V , it follows that x2 6= 0 for any x 6= 0, i.e., V is a nonzeroalgebra. Therefore, Proposition 2.5 ensures that there are nonzero idempotentsin V . Denote by Idm(V ) the set of all nonzero idempotents. Note also that by(37) |c| = 1 for any c ∈ Idm(V ).The multipli
ation operator Lc is selfadjoint with respe
t to the inner prod-u
t 〈 , 〉, hen
e V de
omposes into orthogonal sum of Lc-invariant subspa
es.We determine the spe
trum of Lc. To this end, note that c2 = c, hen
e c is aneigenve
tor of Lc with eigenvalue 1, thus, Rc is an invariant subspa
e of Lc.Therefore, the orthogonal 
omplement c⊥ is also an invariant subspa
e of Lc.Applying (41), we obtain
2L2

c + Lc − 1 = 2c⊗ c = 0 on c⊥, (42)hen
e spectrum(Lc|c⊥) ⊂ {−1, 12}. Note that from the above in
lusion it followsthat the eigenvalue 1 has multipli
ity one, i.e., any idempotent in V is primitive.Remark 3.4. We point out that the presen
e of the eigenvalue 1
2 is 
ru
ialfor 
onstru
ting the non
lassi
al solutions and 
losely related to the 
onditionof being generi
, dis
ussed in Subse
tions 1.3 and 2.5 above, 
f. Lemma 3.2in [39℄.Let Vλ(c) be the λ-eigenspa
e of Lc. Then the Peir
e de
omposition of V is

V = Rc⊕ V−1(c)⊕ V 1

2

(c).In order to extra
t the multipli
ation table (the so-
alled fusion laws) be-tween the eigenspa
es Vλ(c), we linearize (41) further. This yields
Lyx + (LxLy + LyLx) = 〈x, y 〉+ x⊗̂y. (43)Applying (43) to an arbitrary element z ∈ V yields the full linearization

x(yz) + y(zx) + z(xy) = 〈x, y 〉z + 〈 y, z 〉x+ 〈 z, x 〉y. (44)Spe
ializing z = c ∈ Idm(V ) in (44) and setting x, y ∈ c⊥ yields
(cx)y + x(cy) + c(xy) = 〈x, y 〉c.



20 V. G. TKACHEVTaking the s
alar produ
t with z in the last identity and assuming that x ∈
Vλ1

(c), y ∈ Vλ1
(c), and z ∈ Vλ3

(c), where λi ∈ {1
2 ,−1}, we obtain

〈x1x2, x3 〉(λ1 + λ2 + λ3) = 0. (45)As a 
orollary, we have
Vλ1

(c)Vλ2
(c)⊥Vλ3

(c) whenever λ1 + λ2 + λ3 6= 0.For example, setting λ1 = λ2 = −1 immediately implies that V−1(c)V−1(c) isperpendi
ular to both V−1(c) and V 1

2

(c), hen
e
V−1(c)V−1(c) ⊂ Rc. (46)Similarly, for λ1 = −1 and λ2 =

1
2 one has V−1(c)V 1

2

(c) ⊂ Rc⊕ V 1

2

(c). On theother hand, sin
e eigenspa
es Vλ(c) are perpendi
ular for distin
t λ we have
〈V−1(c)V 1

2

(c), c 〉 = 〈V−1(c), V 1

2

(c)c 〉 = 〈V−1(c), V 1

2

(c) 〉 = 0,implying that V−1(c)V 1

2

(c) ⊂ V 1

2

(c). Arguing similarly for λ1 = λ2 = 1
2 , onearrives at the fusion (multipli
ation) laws shown in Table 1.

V−1 V 1

2

V−1 Rc V 1

2

V 1

2

V 1

2

Rc⊕ V−1Table 1. Fusion laws of an ei
onal algebraRe
all that a linear map A : X × Y → Y su
h that A(x, · ) : Y → Y isselfadjoint for all x ∈ X and A2(x, · ) = 〈x, x 〉 idY is 
alled a symmetri
Cli�ord system, 
f. [9,45℄. It is well known that in this 
ase dimY is even and
dimX 6 1 + ρ(12 dimY ), and the Hurwitz�Radon fun
tion ρ is de�ned by

ρ(m) = 8a+ 2b if m = 24a+b · odd, 0 6 b 6 3. (47)Proposition 3.5. If dimV > 2, then
dimV−1(c)− 1 6 ρ(12 dimV 1

2

). (48)If additionally V satis�es (40), then the possible dimensions of the Peir
e sub-spa
e V−1(c) 
oin
ide with those of 
lassi
al division algebras. In parti
ular,there are only �nitely many isomorphy 
lasses of harmoni
 ei
onal algebras indimensions dimV ∈ {5, 8, 14, 26}.



SPECTRAL PROPERTIES OF NONASSOCIATIVE ALGEBRAS 21Proof. First we show that V−1(c) is nontrivial. Indeed, assume by 
ontradi
-tion that V−1(c) = {0}. Then V = Rc ⊕ V 1

2

(c), hen
e dimV 1

2

(c) = n − 1 > 1.From Table 1, V 1

2

(c)V 1

2

(c) ⊂ Rc. Hen
e for any x ∈ V 1

2

(c) we have
x2 = 〈x2, c 〉c = 〈x, xc 〉c = 1

2 〈x, x 〉c.Therefore x3 = 1
4 〈x, x 〉x 6= 〈x, x 〉x, and a 
ontradi
tion with (39) follows.Thus dimV−1(c) > 1. Next, note that for any x ∈ V−1(c) Table 1 showsthat Lx is an endomorphism of V 1

2

(c). Sin
e
x2 = 〈x2, c 〉c = 〈x, xc 〉c = −〈x, x 〉c,by (46), from (41) we �nd

L2
x = 3

4〈x, x 〉 on V 1

2

(c). (49)Thus, 2√
3
Lx is a symmetri
 Cli�ord system. This imposes the dimensionalobstru
tion (48). If additionally V satis�es (40), then

0 = trLc = 1 +
1

2
dimV 1

2

(c) − dimV−1(c),thus dimV 1

2

(c) = 2m, where m = dimV−1(c)−1, implying by (48) the inequal-ity ρ(m) > m. It is well known and also easily follows from (47) that the lastinequality holds true only if m = 1, 2, 4, 8, whi
h implies that dimV = 3m+2.
��4. Con
luding remarks and open questionsMinimal 
ones 
onstitute an important sub
lass of singular minimal hyper-surfa
es in the Eu
lidean spa
e R

n for n > 4, plying a 
ru
ial role in thestudy of both the lo
al and global stru
tures of general (regular) minimal hy-persurfa
es. Many examples known so far of minimal hyper
ones are algebrai
varieties 
oming essentially from two 
lassi
al algebrai
 stru
tures: the Jordanand the Cli�ord algebras.An important 
lass is minimal 
ones de�ned by a degree three homogeneouspolynomials, i.e., 
ubi
 minimal 
ones. These were 
onsidered by W. Y. Hsiangin the late 1960s in [21℄. On the other hand, all known examples of 
ubi
 formssatisfying the hyperboli
ity 
riteria (i) or (ii) (in
luding the examples dis
ussedabove and the determinant form u9 in Remark 2.3) are ex
eptional Hsiang 
ubi
minimal 
ones (or radial eigen
ubi
s in the sense of Chapter 6 in [36℄). It isknown that there are only �nitely many (
ongruen
e 
lasses of) su
h 
ubi
sin some distinguished dimensions 5 6 n 6 72, see Table 1 on p. 158 in [36℄.From an analyti
al point of veiw, any ex
eptional Hsiang 
ubi
 form 
an be
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hara
terized as a 
ubi
 polynomial solution of the following Hessian tra
eequations:
trD2u(x) = 0,

tr(D2u(x))2 = C1|x|2,
tr(D2u(x))3 = C2u(x),

(50)Natural questions arise: Does any ex
eptional Hsiang 
ubi
 produ
e a non
las-si
al solution? Do there exist spe
ial 
ubi
s that are not Hsiang eigen
ubi
s?In general, it would be interesting to 
larify the relationships between minimal
ones and 
onstru
tion of nonregular solutions.Referen
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