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Abstract. In this short survey we give a background and explain some recent
developments in algebraic minimal cones and nonassociative algebras. A part of
this paper is recollections of my collaboration with my teacher, PhD supervisor
and a colleague, Vladimir Miklyukov on minimal surface theory that motivated the
present research.

1. Introduction

In this short note, I try explain how and why certain nonassociative algebra struc-
tures arise in the context of minimal cones. The starting point of this relatively re-
cent subject comes from the Bernstein property for minimal graphs. More precisely,
it comes from an attempt to understand the breakdown in higher dimensions n ≥ 8
of the celebrated S.N. Bernstien theorem from 1915 on minimal two-dimensional
graphs. Although the original question remains still unanswered, it is clear now that
the nonassociative aspect of certain classes of elliptic type PDEs including eiconal
equation, minimal surface equation and even more general classes (see [31], [8]) is
relevant and not a coincidence. Remarkably, very related classes of nonassociative
algebras appear very naturally in a very different, group theoretic context, see [11],
[40], [15] and the references thererin.

I do not set myself the goal to cover all the latest achievements in this area or
to give a complete overview. The subject is still under development and many basic
questions are still open. The interested reader is referred to the recent monograph
[31] for unexpected connections of nonassociative algebras to regularity theory of
fully nonlinear PDEs. See also the recent papers [52], [55], [56], [18], [58], [57] for
further results and basic concepts considered below.
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2. Bernstein’s problem

Let me first explain some relevant historical details. Miklyukov has been my su-
pervisor ever since I was a second year student, leading and coaching me all the way
through my PhD. I learned so much from him, both academically and professionally.
Miklyukov always had a very extensive range of interests covering several domains in
nonlinear and geometrical analysis. Somewhere in the very beginning, he once told
me that around 1975-1976, one of his colleagues suggested that he deal with minimal
surfaces and try to apply there the previously developed methods and results from
the theory of quasiconformal mappings. The idea turned out to be extremely fruit-
ful and already in 1977-80 he published a series of important papers on boundary
and asymptotic behaviour, Liouville type theorems for a large class of quasilinear
euqations [21], [22], [23], [24], [25]. In these papers, he masterly developed several
concepts and results from the classical complex analysis, potential theory and elliptic
type PDEs, and applied the new methods, in particular, to study of minimal surfaces
in the Euclidean space. In summary, his approach was based on a virtuous inter-
play of several key ingredients including the extremal length, variational capacity,
fundamental frequency, uniformization theory, Beltrami equation, Liuville, Fragmén-
Lindelöf, Denjoy-Carleman-Ahlfors and Wiman type theorems. One of the main goals
of the proposed by Miklyukov approach was the famous Bernstein theorem and its
generalizations.

Since an important role of this result playing in our further context, I briefly recall
some relevant definitions and concepts. A surface in R3 is called minimal if its mean
curvature vanishes everywhere. From an analytic point of view, this is equivalent
to saying that a minimal surface is a stationary point of the area functional. This
implies that locally any minimal surface satisfies a very nice quasilinear equation of
the second order. In 1903, Sergei Natanovich Bernstein, published a short note in
Comptes Rendus containing some crucial results on the analyticity solutions of sec-
ond order elliptic partial differential equations, hereby solving (in the C3-regularity
class) the 19th problem addressed by Hilbert at the First International Mathematical
Congress in 1900. Between 1903 and 1918, S.N. Bernstein published several impor-
tant memoirs on the regularity and a priori estimates for quasilinear elliptic PDEs
with further applications to surfaces with a prescribed mean curvature. One of the
most remarkable results obtained by Bernstein was his famous theorem of 1915 (first
published in Communications of the Kharkov Mathematical Society) asserting that
any entire, i.e. defined in the whole plane R2, solution u(x) of the minimal surface
equation

div
Du√

1 + |Du|2
= 0, x ∈ R2, (1)
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must be an affine function, i.e. u = ax+ by + c.

The Bernstein theorem is remarkable in many aspects. Unlike the classical Liou-
ville result on bounded harmonic functions, it claims that a solution must be ‘trivial’
(affine) without any additional assumptions on the growth of a solution. Some pos-
sible explanation of the latter phenomenon follows from the fact that the minimal
surface equation is much more symmetric than the Laplace equation. Indeed, equa-
tion (1) is invariant under the full orthogonal group O(3) (rotations of R3), while
the property of being a harmonic function is invariant under the action of a smaller
subgroup O(2) of rations of R2, i.e. a rotation of a graph of a harmonic function in
R3 is no longer harmonic. In particular, the large symmetry group of (1) makes it
possible to associate to any solution of (1) another a priori bounded solution. More
precisely, Bernstein remarks that v(x) = arctan ∂f

∂x1
is always a (bounded!) solution

to an elliptic linear equation. Then the claim follows by application of the Liouville
theorem proved by Bernstein four years earlier.

Unfortunately, this method does not give clues about possible generalizations of
the Bernstein result onto n-dimensional minimal hypersurfaces in Rn+1. The story
of the Bernstein theorem for n ≥ 2 and searching of counterexamples requires com-
pletely different approaches and it is a fascinating part of the mathematical history
including several brilliant names as W.H. Fleming, H. Federer, E. De Giorgi, F.J. Alm-
gren, M. Miranda, J. Simons, E. Bombieri, E. Giusti, R. Osserman, J.C.C. Nitsche,
L. Simon. We refer the interested reader to a recent surveys of Leon Simon [45] and
Mario Miranda [29] for the further reading and more details. The result summariz-
ing several papers states that the Bernstein property (i.e. the claim that an entire
solution to a certain second order elliptic type PDE is an affine function) holds true
for all dimensions 2 ≤ n ≤ 7 and in the higher dimensions n ≥ 8, there are nontrivial
solutions of (1) over the whole Rn.

Although Bernsteins problem has already been settled 50 years ago, it remains
an important cornerstone of analysis and geometry, a kind of incomprehensible and
unattainable beautiful Everest with immortal charm, attracting the constant atten-
tion of specialists. And although we have today many answers, the key question
remains unanswered: why does the Bernstein property collapse in higher dimensions?

In this respect, the two-dimensional case takes a very special place. It is intimately
related to the fact that the two-dimensional Euclidean space has a natural complexi-
fication:

R2 ∼= C1. (2)

The existence of the complex structure on R2 implies variety of different versions of
the proof and approaches to the Bernstein theorem in two dimensions. On the other
hand, the complex structure also implies the existence of the Weierstrass-Enneper
parameterization and, as a corollary, an exceptional variety of species in the two-
dimensional minimal surface zoo. More precisely, it has been proved by Weierstrass
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and Enneper (around 1863) that locally any two-dimensional minimal surface is given
by the real part of a certain holomorphic curve. In other words, it can be parametrized
by

x(z) = (Reφ1(z),Reφ2(z),Reφ3(z)), (3)

where the triple of meromorphic functions φi(z) on a Riemann surface satisfies

3∑
i=1

φ′2i (z) = 0.

Conversely, any such a triple generates a minimal surface. This representation makes
the similarity between harmonic (and meromorphic) functions in R2 and minimal
surfaces in R3 more rigorous. For example, setting φ3 = 0 yields φ2 =

√
−1φ1(z),

hence

x(z) = (Reφ1(z),− Imφ1(z), 0)

becomes essentially the Cauchy-Riemann representation expressing that any harmonic
function u(x1, x2) in a plane can be locally written as the real part of a holomorphic
function.

3. Nevanlinna theory on minimal surfaces

In the fall 1982, being a 2nd-year student, I started a project with Miklyukov
on properly immersed minimal surfaces in R3. Recall that the Bernstein theorem
requires that a minimal surface must be a graph over a whole plane. Miklyukov’s
idea was to relax the latter condition and replace it by an appropriate projection
property, in other words, to find a ‘quantitative’ Bernstein property. Miklyukov has
always had incredible analytical and geometrical intuition based, in particular, on
his previous research on the regularity of quasiconformal mappings and the classical
function theory.

As an appropriate analogue of the projection property, Miklyukov thought to de-
velop the concepts of the counting function and the defect relations in the classical
Nevanlinna theory of meromorphic functions to immersed minimal surfaces. Recall
that the Nevanlinna theory describes the asymptotic distribution of solutions of the
equation f(z) = a, f(z) being a meromorphic function, as the value a varies. Then
the counting function is just the logarithmic average number of solutions. A funda-
mental tool of the theory is the Nevanlinna characteristic which accumulates both
the counting function with the growth function (or the proximity function). Taking
into account the made above remark on the similarity between holomorphic functions
and minimal surfaces, the idea seemed very natural.

The counting function in the context of minimal surfaces is just the normalized
average over a circle of radius r > 0 of the multiplicity of the orthogonal projection
of a minimal surface onto a fixed plane in R3. Thus, for the graph over a plane,
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the counting function is just a constant equal to 1. Although the very close similar-
ity between meromophic functions and minimal surfaces, it was absolutely unclear
how to adopt the analytical arguments for functions (which have an algebra struc-
ture) to surfaces. A promising approach was to try mixup the harmonicity of the
coordinate functions on a minimal surface with some standard tools of the classical
function theory: the extremal length, variational capacity, the co-area formula1 and
the fundamental frequency.

The capacity and fundamental frequency are quite standard instruments in po-
tential analysis and PDEs, while the concept of the extremal length comes from
Teichmüller theory of quasiconformal mappings and it is not as standard in PDEs.
These tools has been recently employed by Miklyukov in his elegant approach [23] to
the Bernstein problem in two dimensions. Some preliminary results obtained by him
in this and a couple of others papers suggested in particular that it is very natural
to expect a ‘relaxed’ Bernstein property for minimal quasigraphs. The idea was to
connect the surface geometry to the counting function by the well-known identity be-
tween extremal length and the conformal capacity, since the latter could be effectively
estimated on surfaces.

The first part of this project has been finished and submitted in May 1984, and
published three years later in [26]2, we were able to prove two results for different
types of projections. Here is the review from MathSciNet:

This article concerns the absence of nontrivial noncompact parametric minimal
surfaces in the Euclidean 3-space satisfying some additional geometrical proper-
ties. A typical known result was the following. Let x : M → R3 be a C2 minimal
imbedding of a noncompact orientable 2-manifold. If x(M) lies between two par-
allel planes and if the induced metric on M is complete, then x(M) is necessarily
a plane ([L. P. de M. Jorge and F. V. Xavier, Ann. of Math. (2) 112 (1980), no.
1, 203206; MR0584079). Does the conclusion still hold provided x(M) only lies
in a half-space (a problem stated by Calabi)? In this connection, the authors
assume that x is proper and x(M) lies in a half-space, say in {x3 > 0}. Proper-
ness implies that x(M) is topologically complete (in R3), which is weaker than
metric completeness. They also assume that the average number of intersection
points with x(M) on a line parallel to the x3-axis passing through a generic
point in {x3 = 0} situated at distance t from the origin is o(log t). They deduce
the triviality of x, via a ”parabolicity” property of M (equipped with the metric
induced by x).

1Miklyukov used to refer to the coarea-formula as the Kronrod-Federer formula, according to
the original Russian edition of the book of Burago and Zalgaller [3].

2Submission and publication of this paper coincided with the most difficult period of Miklyukov,
between 1985 and 1989, who lost his position as Chair of Mathematical Analysis and Function Theory
(the chair itself has been abolished in 1985), it is a long different story. Miklyukov was returned to
the title of professor in 1988, and the chair was returned its name only in 1992. It took almost four
years to publish our paper [26], there were two negative reviews written by ‘colleagues’, but then
the situation changed mysteriously and we got a positive review. During that period, I finished the
last year of university, then served a year and a half in the army, and even entered my PhD program.

https://mathscinet.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=MR&pg7=ALLF&pg8=ET&r=1&review_format=html&s4=&s5=&s6=MR0912614&s7=&s8=All&sort=Newest&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq
https://mathscinet.ams.org/mathscinet/search/publdoc.html?r=1&pg1=MR&s1=584079&loc=fromrevtext
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Reviewed by Philippe Delanoë

4. The Blue Notebook and the dimension 8

Another important motivation for that project was that Miklyukov aimed to
achieve a more conceptual explanation of the Bernstein property and to find a way
to approach minimal submanifolds in higher dimensions. The project required me to
read extensively from various fields including integral geometry, elementary geometric
measure theory, value distribution theory of meromorphic functions, manifold theory
and Grasmannian geometry. At that time I met with Miklyukov’s ‘blue notebook’.

It was an old-fashioned thick A5 notebook, with embossed Tpect on the cover
and filled with translations of various articles from English and German. One of the
first was a translation of a paper of Federer on geometric measure theory. Miklyukov
showed me a translation made in a red ink of the famous Milnor’s On manifolds
homeomorphic to the 7-sphere [28]. The seven-page Milnor amazing proof was a vir-
tuous combination of the Morse theory, Thom’s cobordisms, and the quaternionions.
He constructs his famous exotic 7-dimensional spheres M7

k as S3-bundles over S4 in
a very explicit way using quaternionic multiplication. The Morse theory then applies
that the constructed M7

k must be homeomorphic to the standard sphere S7, while the
λ-invariant may be different for distinct values of k. The latter implies the existence
of different differentiable structures on S7.

I remembered this moment, because it was rather unusual situation. Miklyukov
told me that he believe that the breakdown of the Bernstein property in dimension
8 could have a connection with the existence of the exotic structures for higher di-
mensional spheres and the Bott periodicity. He sketched his motivation based on
both formal and intuitive links and subtle analogies between these two completely
different worlds3. Some promising bridge could be the N -averages of the fundamental
frequency defined and studied in [25]:

λα(D,N) = inf{ 1

N

N∑
i=1

λα(Di) : tNi=1Di ⊂ D}, (4)

where D is an open domain of a Riemannian manifold Mn. One can easy to show
that λα(D,N) is increasing in N . For Mn = Rn the structure of λα(D,N) is well
understood and an optimal lower estimate

λα(D,N) ≥ cn(N/|D|)1/n

holds. The most interesting nontrivial case of the Euclidean spheres Sn−1 ⊂ Rn is
more subtle. There are still some analogues of the above lower estimate but they

3Much latter I found an interesting collection of around 80 different sources, papers and links
on ‘Eight in algebra, topology and mathematical physics’ on Andrew Ranickis homepage [39].
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are not optimal with respect to N . The question is already very nontrivial for the
two-dimensional sphere.4

The essence of λα(D,N) comes from the following crucial observation made in [25]:
a sharp lower estimate for the average fundamental frequency of spheres implies sharp
versions of Liouville, Denjoy-Carleman-Ahlfors and Wiman type theorems for higher-
dimensional subsolutions of quasilinear ellitptic type equations on the corresponding
manifold. The minimal surface equation fits naturally in this class. The link between
the existence of exotic spheres is more subtle but Miklyukov believed that it could be
related to the extremal combinatorial structure for the variational problem (4).

A noteworthy thing was that the idea had a clear algebraic tone, a rather unusual
shade for Miklyukov who seemed primarily an analyst and a geometer. It was quite
obvious that this idea was absolutely important and close for him. But the problem
seemed much too difficult and was actually a pure rhetoric problem: we had no idea
how to get started.

5. Cubic cones enter the picture

Between 2003 and 2010, while a researcher at Royal Institute of Technology (Stock-
holm) I worked together Börn Gustafsson on a completely different project in complex
analysis: the Hele-Shaw problem, complex moments and meromorphic resultants, see
his nice review [9] about some of these developments. During Fall semester 2008, I
switched back to minimal surfaces and began my work on the Hsiang problem. Some
preliminary results were obtained during my train journeys between Stockholm and
Uppsala, where I temporarily taught at the Swedish National Graduate School in
Mathematics and Computing (FMB).

My interest to the Hsiang problem has been motivated by two principal questions:
a better understanding of the algebraic nature of the known examples of entire graphs
in dimensions ≥ 8 and generalizations of an example of a fourfold periodic minimal
hypersurfaces in R4 I discovered at that time, see [53]. This latter example was a
logical sequel of the three-dimensional double-periodic examples constructed earlier
together with Vladimir Sergienko [42], [43]. More precisely, the obtained fourfold
periodic example was an embedded minimal hypersurface with a D4-symmetry group
and isolated singularities of the Clifford cone type. Until recently, the only known
non-trivial (i.e. distinct from cones) examples of embedded minimal hypersurfaces
in Rn+1 with finitely many isolated singularities were constructed by Cafarelli-Hardt-
Simon [4], N. Smale [46], and Harvey-Lawson [13]. Thus, the above D4-invariant
minimal hypersurface was the first example of an embedded minimal hypersurface
with infinitely many isolated singular points. This naturally led to the following

4I just remark that another very context where λα(D,N naturally appear is to the nodal level
sets of the kth eigenfunction of the Laplacian operator on compact manifolds. However, a connection
between k and N is unclear for general n ≥ 2.
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question: given a lattice L in Rn and a fixed minimal cone K, is it possible to
construct an L-periodic embedded minimal hypersurface with isolated singularities
of the type K at the points of L?

One obvious obstacle to this task was a shortage of available examples of minimal
cones. It is well-known that in any dimension n ≥ 4 there exist exactly [n−2

2
] non-

congruent quadratic minimal cones, all classified in a landmark paper of Wu-yi Hsiang
[14] of 1967 published in the first issue of Journal of Differential Geometry. In the
same paper, Hsiang formulate several problems on general real algebraic minimal
cones and by using invariant theory constructs explicitly four new examples of cubic
minimal cones in dimensions n = 5, 8, 9 and 15. All the obtained (and known so far
irreducible) examples of cubic minimal cones satisfy the nonlinear 2nd order PDE

|Du|2∆u− 1
2Du ·D|Du|

2 = θ|x|2u, x ∈ Rn, (5)

where θ ∈ R is a structure constant. A cubic polynomial solution of (5) is said to be
a Hsiang eigencubic [50] (or radial eigencubic, REC for short, according [50]).

In general, an algebraic minimal cone of degree d is determined by a homogeneous
polynomial solution u of (5) with a certain homogeneous polynomial in x of degree
2d− 4 instead of the quadratic from θ|x|2 in the right hand side. The first nontrivial
is the case of degree d = 3 solutions of (5), but Hsiang remarks that ‘the algebraic
difficulties involved in such a problem are rather formidable’ and then asks to characte-
rize at least all cubic homogeneous polynomial solutions of (5) [14, p. 258, 265].

During 2008–2010, I obtained a particular solution of the Hsiang problem by
applying a rather straightforward approach and summarized in the preprint [51].
Among the results obtained there, I mention the following:

(i) Any Hsiang eigencubic u is harmonic, unless it is trivial (i.e. congruent to
the trivial one-variable cubic polynomial ax31 under an isometry of Rn).

(ii) There is an infinite family of Hsiang eigencubics (called Clifford type eigen-
cubics) explicitly parameterized by symmetric Clifford systems.

(iii) There are only finitely many non-Clifford type eigencubics (the so-called
exceptional eigencubics), and the the list of a priori possible dimensions was
established.

(iv) Any Hsiang eigencubic satisfies the cubic trace identity for its Hessian matrix:
the trace of the third power of the Hessian of u is proportional to u, i.e.

tr(D2u)3 = au,

where a ∈ R contains a certain intrinsic invariant information about u.
(v) An eigencubic u is exceptional if and only if it satisfies the second order

identity:

tr(D2u)2 = c|x|2.
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In fact, there are four eigencubics (coming from trialities) that are interme-
diate between Clifford type and exceptional, the so-called mutants, which
satisfy both the quadratic trace identity and Clifford type representation.

(vi) A new example of an exceptional eigencubic in dimension 21 was constructed
by using the octonion algebra. The corresponding Hsiang eigencubic is simply
the following real part:

u(x) = Re(w1w2w3),

where x = (w1, w2, w3) with wi being three independent imaginary octonions
in ImO ∼= R7.

Some remarks are in order here. First, the harmonicity of nontrivial Hsiang eigen-
cubics is a rather striking property which means that any eigencubic satisfies in
fact to a system of two second order PDEs. Unfortunately, the available proofs
of this property do not shed light on a conceptual understanding why this extra
PDE constraint does actually hold. It is unclear neither if an analogous phenomenon
holds for eigencubics of higher degrees. Next, the definition of an exceptional Hsiang
eigencubic is somewhat negative, thus nonconstructive, hence it was very desirable to
find any constructive way to distinguish exceptional eigencubics from eigencubics of
Clifford type. In this respect, the result (v) plays the fundamental role.

The finiteness result (iii) is very striking and one immediately recognizes here
a parallel between the above dichotomy (Clifford vs exceptional) and classical di-
chotomies ‘regular vs exceptional (or sporadic)’ in simple Lie algebras, finite simple
groups, ADE-classification of singularities etc. Even we know today that Hsiang
eigencubics have close connections with Clifford and Jordan algebras, and, thus, to
classification of simple Lie groups, this phenomenon is not completely clear and re-
quires a further study. I mention also an interesting interplay between (v) and the
Killing Einstein property studied very recently in important works of Daniel J.F. Fox
[8].

Finally note that both (iv) and (v) provide us with simple effective algorithmic
tools for identifying an eigencubic and its type (in particular, the constant c in (iv)
contains a lot of intrinsic information about u and its geometry).

The above results were partially published in [50] (the classification of the Clifford
type examples in (ii)) and in [49] (a preparatory key result for the proof of (iii)
generalizing a Cartan theorem has been established).

The proof of the finiteness result (iii) relies on the famous Hurwitz-Radon the-
orem which characterizes the possible dimensions of composition of quadratic forms
[44]. More precisely, the classical Euler four-square and Degen eight-square identities
generalize the well-known multiplicative relationships between sums of squares in two
variables

(x21 + x22)(y
2
1 + y22) = (x1y1 − x2y2)2 + (x1y2 + x2y1)

2.
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Then the Hurwitz-Radon theorem asserts that an identity of the kind

(x21 + . . .+ x2p)(y
2
1 + . . .+ y2q ) = b1(x, y)2 + . . .+ bp(x, y)2

is possible for some bilinear forms bi if and only if q = ρ(p), where the Hurwitz-Radon
function ρ is defined by

ρ(m) = 8a+ 2b, if m = 24a+b · odd, 0 ≤ b ≤ 3. (6)

This in particular implies the finiteness of exceptional eigencubics and also imposes
obstructions on their possible dimensions.

Remark 5.1. In November 2010, I learned from Prof. Zizhou Tang on the 1993
paper5 (in Chinese) [38] of Peng Chin-Kuei and Xiao Liang where they proved (ii)-
(iii) using a similar approach but under an additional assumption that an eigencubic
is harmonic, i.e. a priori requiring (i) as a condition. To my knowledge this is the
only work on the Hsiang problem which provides a particular classification similar to
the above.

6. Nonassociative algebras of cubic forms

Thus, the most difficult part of the Hsiang problem is to determine which of the
feasible dimensions are actually realizable. For anyone who tried to deal with this
problem, it became clear that at a certain stage any further progress faced numer-
ous analytical and algebraic obstacles, thus an alternative, more transparent and
conceptual, approach was required. To achieve a complete classification and better
understanding of exceptional eigencubics, the straightforward approach of [51] was
insufficient. It gives no good idea why the Clifford and Jordan algebra structures may
arise in the context of cubic minimal cones, or at least in the context of the Hsiang
equation (5).

On the other hand, some hints were already in the above results. First, an easy
calculation reveals that any cubic form satisfying the Cartan-Münzner system

|Du(x)|2 = 9|x|4, (7)

∆u(x) = 0 (8)

also satisfies the radial eigencubic equation (5). Recall that the latter system appears
naturally in the context of isoparametric6 hypersurfaces in the spheres. Cartan in 1938
established in [5] that there exists exactly four congruency classes of such solutions.

These Cartan isoparametric cubics play a dual role in the classification (i)–(vi).
First, they are simplest exceptional eigencubics corresponding to the Peirce parameter
n2 = 0. On the other hand, the restriction of any eigencubic with n2 6= 0 on a certain
subspace is always a Cartan isoparametric cubic. The latter property together with

5I would like to thank Prof. Yan Wenjiao for sending me a copy of this paper.
6A hypersurface is called isoparametric if it has constant principal curvatures [6]
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the classification result in [49] were key ingredients in the proof of the finiteness result
(iii) above.

Another remarkable observation is that any Cartan isoparametric cubic is the
generic norm in the trace-free subspace of an appropriate simple rank 3 formally real
Jordan algebra (see for example [47]). The simplest model of a Jordan algebra (and
actually one half of possible examples) is the algebra of all real n × n symmetric
matrices with the Jordan multiplication

A ◦B =
1

2
(AB +BA).

Then A2 = A ◦ A = A◦2. Thus defined algebra is commutative but nonassociative.
But one can easily verify that thus defined multiplication satisfies the Jordan identity

A2 ◦ (A ◦B) = A ◦ (A2 ◦B).

An important property of a Jordan algebra is its power associativity, i.e. any power
of a single element A is well-defined and does not depend on associations. It is not
difficult to see that any element A satisfies a polynomial identity (an analogue of
the Cayley-Hamilton polynomial) of degree ≤ n. The rank of A is just the smallest
possible degree of the annihilating polynomial. One can define the trace of A and the
generic norm of A which is just the determinant of A. For a general Jordan algebra,
the construction is in the same spirit but more involved. The reader is referred to
[41], [7] and [19] for a more detailed explanation of the concepts discussed here and
below.

Therefore one led to the following natural question: What conceptually the ana-
lytical structure of Cartan isoparametric cubics (emerging from certain PDEs) has to
do with a degree three Jordan algebra structure?

One possible answer is suggested in my paper [52], where a one-to-one cor-
respondence between cubic homogeneous polynomial solutions to a general eiconal
equation (generalizing (7)) and degree 3 semi-simple Jordan algebras was defined.
Let us briefly explain some underlying ideas of this correspondence.

First, one associate to any triple consisting of a vector space V , a cubic form u
and a nondegenerated bilinear form 〈; 〉 on V , a commutative nonassociative algebra
structure V (u) in such a way that the algebra multiplication is weakly associative.
The latter means that the identity

〈xy; z〉 = 〈x; yz〉 (9)

holds for any x, y, z ∈ V . More precisely, the multiplication (x, y) → xy is simply
defined as the unique element xy satisfying

〈xy; z〉 = u(x; y; z)
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for all z ∈ V , where u(x; y; z) is the complete linearization of u, i.e. the unique
symmetric linear form satisfying

u(x;x;x) = 6u(x).

Thus defined multiplication is obviously commutative and satisfies (9). An elementary
but crucial corollary of (9) is that the multiplication operator Lx is self-adjoint, thus,
it has a real spectrum and diagonalizable.

Recall that an idempotent of an algebra A is an element c with the property c2 = c.
The spectrum of Lc is called the spectrum of the idempotent c. To any idempotent
one associates the orthogonal decomposition (called the Peirce decomposition)

A =
k⊕
i=1

Ac(λi)

of A into eigensubspaces Ac(λi), i.e. Lc = λi on Ac(λi). If the bilinear form 〈; 〉
is weakly associative and positive definite, one can prove by a variational argument
(see [55]) that the algebra A necessarily contains nonzero idempotents. Indeed, any
idempotent in such an algebra is (proportional to) a stationary point of the cubic
form u(x) on the unit sphere 〈x;x〉 = 1 which is a compact set.

The weak-associativity (9) plays a prominent role in the Jordan algebra theory,
with the associating bilinear form being the generic trace form

τ(x, y) = trLxLy,

where
Lx : y → xy

is the (left) multiplication operator on an algebra. However, there is a crucial differ-
ence between the two constructions. In the Jordan algebra theory, the trace form τ
is determined by the multiplication structure and the Jordan identity

[Lx2 , Lx] = Lx2Lx − LxLx2 = 0

implies that the trace form is weak associative, see [19], [7]. On the contrary, the
product in the algebra V (u) of a cubic form u is recovered from u by virtue of the
inner product of V given by the bilinear form 〈; 〉 such that the latter form becomes
weak associative by its very definition. Therefore, the algebra V (u) does not satisfy
a priori any identity (like Jordan algebra identity).

A correspondence between the analytical and the algebraic sides of V (u) is ob-
tained as follows. It follows from ythe above definitions that the multiplication in
V (u) is completely determined by the (polarization of) the gradient or the Hessian
of u. More precisely,

xy = D2u(x)y.

Then the Euler homogeneity theorem implies

xx = x2 = D2u(x)x = (deg u)∇u(x) = 2∇u(x),
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i.e. the gradient of u at x is x2 up to a constant factor.

Thus, any PDE relation on u immediately gives rise to an algebra identity on
V (u). This is another important ingredient of our approach. For example, Applying
this construction to the Hsiang equation (7), and using the fact that the gradient
∇u(x) = x2/2 one obtains

〈x2;x2〉 = 36〈x;x〉2 (10)

With such an algebra structure in hand one is able to completely classify cubic
solutions a general eiconal equation (generalizing (7) for an arbitrary Riemannian
structure) and rely it to Jordan algebras. Then the Freudenthal-Springer-McCrimmon
[19] construction of an Jordan algebra from an admissible cubic form bridges these
different contexts. The most nontrivial part of the latter construction is to identify
and to establish that the a certain one-rank perturbation of a cubic solution of (7) is
actually admissible. The most cubic forms are not admissible, but if one is lucky and
such a form is found, the rest is just to follow a certain elementary algorithm [19,
p. 77].

7. Hsiang algebras

The above correspondence has proved very effective for the 1st order PDE, eiconal
equation, and thus, for all exceptional Hsiang algebras of Cartan type. This opened
a door for a purely algebraic approach to tackle the general Hsiang problem. To
extend the approach on an arbitrary Hsiang eigencubic, some further ingredients and
techniques were needed. The most important part comes also from Jordan algebra
theory and is known as the Peirce decomposition. It allows to identify a finer algebra
structure by virtue of multiplication rules between the so-called Peirce subspaces (the
eigensubspaces of the multiplication operator by an idempotent). This method goes
back to classification of associative algebras (hypercomplex number systems) in the
work of the greatest nineteenth-century American mathematician Benjamin Peirce
(1809-80) [37]. In 1930s, the method has been masterly applied by P. Jordan, J. von
Neumann and E. Wigner in their seminal work on formally real Jordan algebras [17]
and developed further in a series of landmark papers of Adrian Albert [1].

Applying the above construction to the Hsiang equation (5) yields similarly

〈x2;x2〉 trLx − 〈x2;x3〉 = 2
3θ〈x;x〉〈x2;x〉. (11)

A Hsiang algebra is by definition any commutative algebra A with a weakly asso-
ciative positively definite form 〈; 〉 and satisfying (11).

The correspondence between a Hsiang algebra and a solution of (5) is given by

u(x) =
1

6
〈x;x2〉.
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Thus, any Hsiang algebra produces a solution of (5), and conversely, any solution u
determines a Hsiang algebra A = V (u).

A Hsiang algebra is said to be trivial if its multiplication has rank one, i.e.
dimAA = 1. On the level of cubic forms this means that the cubic form u is es-
sentially one-dimensional: u(x) is Cx31 in some orthogonal coordinates.

We describe very shortly some basic ideas and results following [31, Chapter 6],
[58] (the full account can be found in the unpublished preprint [54]).

The first step is to show that for any nontrivial Hsiang algebra A there holds
trLx = 0, i.e. the cubic form u(x) is harmonic. The proof relies on the so-called
minimal (extremal) idempotents, see for example [56]. More precisely, one can prove
that any algebra carrying a positive definite weakly associative bilinear form always
has nonzero idempotents. Furthermore, for any idempotent c of the minimal possible
length, the nontrivial part of its spectrum (i.e. the spectrum on the orthogonal com-
plements to the one-dimensional eigensubspace spanned by c) is a subset of (−∞, 1

2
].

Combining this with the defining relation (11) one is able to show the trace free
property.

Now, recall that the classical Peirce approach works well for algebra identities
of degree at most three or for at most three different Peirce numbers. For example,
coming back to isoparametric Cartan cubic algebras, the Peirce spectrum contains
essentially two elements (distinct from the trivial eigenvalue 1) with simple fusion
rules. This makes it easy to get a complete classification (see § 3 in [57]). A similar
situation occurs for classical (formal real) Jordan algebras or axial algebras of Jordan
type [11], [12]. Axial algebras with η = 1

2
have a singular behaviour and require more

work. Note also that the Peirce value 1
2

appears and plays a crucial role in the classi-
fication of nonassociative algebras associated with Hsiang exceptional eigencubics. In
fact, this Peirce number is remarkable in many aspects and indicates that an algebra
must satisfy to a specific algebra identity, see [56], [18],[56].

For identities of degree higher than three, like (11), the situation is completely
different. Some examples of such algebras are structurable algebras [2], baric algebras
of degree [36], and Majorana algebras of the Monster type [15]. In the latter case,
the algebras have four distinct Peirce numbers whose fusion rules have a natural Z2-
grading. The full classification of all subalgebras is an important project with many
potential applications to finite simple group theory, see [16].

But, for the Hsiang algebras the situation is more complicated because their Peirce
structure is not graded. Still, it has some very nice properties. First, all idempotents
in a Hsiang algebra has the same length, and, what is more important, the same
Peirce spectrum. The latter property is rather extraordinary, because there are no
other examples of this kind except Hsiang algebras known. The Peirce triple

(n1, n2, n3) = (dimVc(−1), dimVc(−
1

2
), dimVc(

1

2
))
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essentially determine the structure of a Hsiang algebra.

Furthermore, given an idempotent c ∈ V , there are two Peirce subspaces which
are subalgebras of the ambient algebra. It turns out that one can deform the original
multiplication in these subalgebras such that some hidden algebra structures become
visible: a Clifford algebra structure on Vc(1) ⊕ Vc(−1) (constructed ad hoc) and a
formally real Jordan algebra structure Λc on Vc(1) ⊕ Vc(−1

2
) (obtained by using the

Freudenthal-Springer-McCrimmon construction). Manipulating with this structures
in hands, one can establish the basic classification including (i)–(vi) by pure algebraic
means.

To absorb exceptional algebras, one establishes the following result: the Jordan
algebra structure Λc on Vc(1)⊕ Vc(−1

2
) is that it is simple if and only if the ambient

Hsiang algebra is exceptional. The simple formally real Jordan algebras are well-
known since the celebrated classification of P. Jordan, J. von Neumann and E. Wigner
Jordan algebras [17]. Since one also has an additional obstruction coming form the
existence of Clifford algebra structure on Vc(1) ⊕ Vc(−1), one is able to deduce the
finiteness of admissible Peirce triples for exceptional algebras. Those are displayed in
Table 1 below.

dimV 5 8 14 26 9 12 15 21 15 18 21 24 30 42 27 30 33 36 51 54 57 60 72

n1 2 3 5 9 0 1 2 4 0 1 2 3 5 9 0 1 2 3 0 1 2 3 7

n2 0 0 0 0 5 5 5 5 8 8 8 8 8 8 14 14 14 14 26 26 26 26 26

n3 2 4 8 16 3 5 7 11 6 8 10 12 16 24 12 14 16 18 24 26 28 30 38

Table 1. The a priori admissible dimensions dimV and the Peirce
triples (n1, n2, n3) = (dimVc(−1), dimVc(−1

2
), dimVc(

1
2
)) of exceptional

algebras

Thus, the proposed program also yield some further results on Hsiang eigencubics,
but an ultimate classification required a deeper insight into the structure of excep-
tional eigencubics. The most difficult part of the program was (and is) to eliminate
‘false’ exceptional Hsiang algebras from the list predicted by (iii) and displayed in
Table 1. To this aim, I developed in 2014 a next important ingredient, the so-called
tetrad decomposition. This technique seems to me especially important for some fur-
ther applications even beyond the Hsiang problem. In short, the idea is as follows.
We already seen above that the Peirce subspace Vc(1)⊕Vc(−1

2
) can be deformed into

a Jordan algebra Λc. The algebra multiplication on Λc is different from (but isotopic
to) the original multiplication on V ; more precisely it is a rank one deformation of the
latter. The Jordan structure on Λc makes visible some hidden structures in V . For
example, the idempotent c is the unit in Λc and any nontrivial (distinct from zero and
unit) idempotent in Λc is an absolute nilpotent (square zero elements) in V , and vice
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versa. On the Jordan algebra level it is well-known that for any primitive idempotent
(i.e. one which cannot be written as a sum of non-zero idempotents) in Λc gives
rise to a Jordan frame. The latter is just a partition of the Jordan algebra unit into
orthogonal primitive idempotents (played an important tool in the spectral theory of
Jordan algebras by P. Jordan, J. von Neumann and E. Wigner). This establishes a
natural connection these two structures.

By using the tetrad decomposition, one can show that some Peirce dimensions in
the above table are not realizable. This eliminates the Perice triples (n1, n2, n3) with
values (2, 5, 7), (2, 8, 10), (2, 14, 16), (3, 14, 18), (0, 26, 24), (2, 26, 28), (3, 26, 30) and
(7, 26, 38). All triples with n2 = 0, n1 = 0 and n2 6= 26, n1 = 1 and (n1, n2, n3) =
(4, 5, 11) are realizable, see the description below:

• If n2 = 0 then the corresponding Hsiang algebras are the contractions of the
algebra of the cubic form u = 1

6
〈z; z2〉 on the trace free subspace of the Jordan

algebra H3(Kd) of 3× 3 Hermitian matrices over a real division algebra Kd

of dimension d = 1, 2, 4, 8.

• If n1 = 0 then n2 ∈ {5, 8, 14} and the corresponding Hsiang algebras are the
algebras of cubic forms 1

12
〈z2; 3z̄ − z〉, where z → z̄ is the natural involution

on V = H3(Kd), d = 2, 4, 8.

• If n1 = 1 then n2 ∈ {5, 8, 14, 26} and the corresponding Hsiang algebras
are the algebras of cubic forms u(z) = Re〈z; z2〉 on the complexification
H3(Kd)⊗ C, d = 1, 2, 4, 8.

• If (n1, n2) = (4, 5) then V is the algebra of cubic form u = 1
6
〈z; z2〉 on

the contraction of the Albert algebra on the purely imaginary subspace:
H3(K8)	H3(K1).

The three remained triples with n2 = 8 are still an open problem.

8. Conclusion

When I returned from military service in 1988, Miklyukov was completely pas-
sionate about the string theory and its connections to zero mean curvature surfaces
in Lorenz spaces which has been his principal and very fruitful direction during the
1990s. Together with his students (primarily the twin brothers Vladimir Klyachin and
Alexei Klyachin) he published a series of very deep existence and regularity results
on maximal surfaces.

We together came back to our project on harmonic functions on Riemannian
manifolds and external structure of minimal surfaces later, in the mid of 1990s. We
were able to relax the entire graph condition in the Bernstein result for slowly growing
multiplicities by using the fundamental frequency technique. This became our third
and the last join paper [27].
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The fundamental frequency technique is very powerful and not yet fully used
method with many potential applications. For example, in 2005 I developed some of
our ideas in [26] and [27] to apply them to the Meeks problem on disjoint minimal
graphs. The main result of [48] states that there may be at most 3 minimal graphs
supported on disjoint domains of R2 (Meeks and Rosenberg conjectured in [20] that
the optimal number must be 2, which remains an open problem). Both the two-
and higher-dimensional cases have natural connections to the Bernstein property. A
better understanding of this point in the 2D and higher-dimensions is an ongoing
project with Luciano Mari, SNS, Pisa.

The ultimate classification of nonassocaitive algebras of cubic minimal cones is
still an incomplete project but a complete picture seems clear. A interesting and
deep direction here is a better understanding of general metrisable algebras and their
Peirce structure in different differential geometric and group theoretic contexts [18],
[8], [10], [16].

Coming back to the central question about a possible connection between the
existence of Milnor’s spheres and the breakdown of the Bernstein property, we have
to recognize that we still don’t understand the essence of the matter. On the other
hand, the algebraic structures appeared in the study of minimal cones have a very
close relation to the algebraic part of the Milnor construction. Perhaps, the answer
could be found from a better understanding of the unusual (Hölder continuous) vis-
cosity solutions constructed very recently by Nikolai Nadirashvili and Serge Vlăduţ
[32], [33], [34], [35], and also in [30], [31] by using certain nonassociative algebra
structures. Remarkably, the zero varieties of these solutions are minimal cones but
no conceptional explanation for this fact is known so far.
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[7] J. Faraut and A. Korányi. Analysis on symmetric cones. Oxford Math. Monographs. 1994.
Oxford Sci. Publ.



18 VLADIMIR G. TKACHEV

[8] Daniel J.F. Fox. The commutative nonassociative algebra of metric curvature tensors. 2019.
submitted, arXiv preprint arXiv:1901.04012.

[9] Björn Gustafsson. Exponential transforms, resultants and moments. In Harmonic and complex
analysis and its applications, Trends Math., pages 287–323. Birkhäuser/Springer, Cham, 2014.
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