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O n  t h e  B o r e  R a d i u s  for M i n i m a l  S u r f a c e s  

V. G. T k a c h e v  UDC 514.7 

ABSTRACT. A least upper bound for the inner radius R of an opening in a complete minimal hypersurfaee 
contained in a parallel layer is given. Namely, if A is the width of this layer, then R _< A/(2cp), where c v is 
an absolute constant depending only on the dimension p of the minimal hypersurface. 

Recently Hoffman and Meeks [1] atmounced a theorem "on half-space" according to which the only 
possible minimal surface properly immersed in R 3 and contained in a certain half-space R~. is the plane. 
However, it is well known that for any greater dimension, i.e., in RV+l, for p > 3, there exist nontrivial 
properly immersed hypersurfaces contained in the layer between two parallel hyperplanes (examples can 
be found in [1, 2]). In [3--6], it was shown that for p > 3 this property holds for any minimal surface of 
arbitrary codimension all of whose sections by a sheaf of parallel hyperplanes are compact sets. Further- 
more, in [3, 5, 6] the width A of the layer was estimated in terms of the mirdmal radius r of the balls 
circumscribed about these sections: 

A <_ 2 % r ,  (1) 
where  

fl +~ dt 
% -- t V ~ -  1 

(2) 

In a sense, the theorem below can be regarded as a reverse estimate. 

T h e o r e m .  Let ,M be a p-dimensional properly immersed connected minimal hypersunCace lying in a 
parallel hyperlayer of width A.  Suppose that an open bali of radius R can go through the projection of 
.M on the boundary hyperplanes of the layer. Then 

A 
R <_ 2cv, (3) 

where % is the constant defined by (2). 

R e m a r k .  The constant in inequality (3) is unimprovable, as the examples of minimal surfaces of 
revolution used in the proof below will show. 

This estimate can be interpreted as a restriction on holes in surfaces of zero average curvature that 
are "too wide." However, it is not dimcult to construct examples of minimal surfaces enclosed in a layer 
whose projections on its boundary are unbounded. 

P roo f .  Denote by z : M -* R v+l the isometric immersion of a p-dimensional manifold M that realizes 
the given surface f14. Since the class of surfaces that we consider includes self-intersecting surfaces, we 
shall always distinguish a point m E M on the manifold from its image z(m) E ~,4 on the surface. 

Suppose that inequality (3) is not valid, that is, 

k4 _ .2R% _ > 1 .  
A 

Then, taking into account the fact that the minimality condition and inequality (3) are invarimat under 
dilations and translations in the space R v+l , we can assume without loss of generality that ~ lies in the 
hyperlayer IZp+ll < A/2 ,  where 

2cp 
A = < 2cp, (4) 
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and that the projection of .A4 on the hyperplane xp+l = 0 lets through a ball of radius R -= k 2 ~> 1 
centered at the coordinate origin. Denote this ball by B(R)  and consider the special auxiliary minimal 
hypersurface of revolution C + given by the equation [3, 2] 

�9 , + ,  = + + zp+~ > 0, (5) 

whose boundary in the hyperplane zp+l = 0 is the sphere 0B(1). Here and subsequently, 

j[ t dr 
~r,(t) = ~ -  1 

It will be convenient to use the following natural terminology. Suppose we have two surfaces Ad and 
lr immersed in R p+I . We shall say that N" lies strictly above (above) the surface .It4 if any two points 

--" ( Z l ,  . . .  , ~gp, Z p + l )  e . /~  a l i a  n - -  ( Z l ,  . . .  , z p ,  ~ p + l )  E . /~  

with the same first p coordinates satisfy the inequality Yp+l > zp+l (the nonstrict inequality yp+1 > 
zp+l), respectively. 

First, we show that  C + lies strictly above A4. To this end, we assume the converse, i.e., that A4 and 
the interior of C + have a common point. Consider an auxiliary family of surfaces C+(~) obtained from 
C + under translations by e _> 0 along the (p + 1)st coordinate. Notice that C+(e) is a minimal surface 
again and that it is disjoint from .A4 for ~ > A/2 .  

Let 
e0 = sup{e _> 0 : .A4 f3 C+(e) # ~},  where C+(0) _= C + ; 

e0 is well defined by virtue of the above remark. If e0 > 0, then we can choose a sequence et~ T ~0 ; denote 
by mt  the common point of the surfaces A4 and C+(zk). Notice that 

~/z~(mk)+... + z~(m,)= ~p(zp+l(m,)- ~k)< ~p ( ~ ) ,  

where @p(t) is the function inverse to Cp(p). It follows from assumption (4) that 

�9 ,(a/2) < ~,(c,)= +oo, 

so all the points rnk lie in the bounded cylinder 

:reR p: [zp+ll<~', 

Since A4 is given by its immersion, the sequence {ink} has a limit point m0 E M.  Clearly, 

z(m0) c M n c+(~o); 

so, by the definition of ~0, the surface C+(e0) lies above 3,4. 
Notice that when e0 = 0 or s0 > 0, the common point x(m0) of the surfaces ~ and C+(e0) belongs 

to the interior of C+(eo). However, the above reasoning shows that z(m0) is a point of contact of 3,4 and 
C+(~0). 

The surface C+(e0) is defined nonparametricMly, as a graph over the perforated hyperplane R v \ B(1). 
So the common tangent space 

Tmo.Ad -- TmoC+($0) 

of both surfaces makes a nonzero angle with the xp+l-axis. It follows that the point m0 E M has a 
neighborhood (9 such that the corresponding part of the surface A4 is also a graph over the hyperplane 
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zp+~ = 0, and in this neighborhood the surface C+(~0) lies above A4 (except for the point m0). Recall 
that the equation of minimal surfaces in explicit form is uniformly elliptic near any point m0 with a 
nonzero angle a(mo) between the tangent plane and the vector %+1. Therefore, we can apply the 
strong maximum principle [7, Lemma 3.4, p. 41 of the Russian translation] to the (p + 1)st coordinate 
functions of the surfaces C+(r and A4 in the neighborhood of m0 to conclude that in this neighborhood 
A4 = C+(r Hence, the set M0 of the points m0 for which the last identity is true must be open in 
M .  Indeed, if rnl is a boundary point for O and an interior point for C+(r at the same time, than the 
angle a(rnl) is nonzero and we can repeat the above argument to find the desired neighborhood. On the 
other hand, M0 must be a closed set as well, because the equality condition extends to boundary points 
by the continuity of the immersion. Since the surfaces are connected, we conclude that C+(~0) E A4. But 
this is impossible, because, by our assumption, .M lets through a ball of a radius R strictly greater than 
o n e .  

In a similar way, we can prove that .M lies everywhere strictly higher than the surface C-  specified by 
the equation 

, , + ,  = + . . .  + 

Combining these results, we obtain a complete minimal surface of revolution C = C- O C + such that 
A4 13 C = ~ .  In particular, we have 

I=,+,(r,',)l < r + " "  + =,~). (6) 

Consider another family C(t) of surfaces obtained from C under the dilation by t > 1: 

c(o ~ , , + ,  = t. * , 0 - '  x/=, + "  + 

In view of (6), the number 
to = s u p { t  __. 1 : c(t)  n ~ = o }  < +co 

is well defined. Since C(t) lies in a layer of a width strictly greater than A for t > 1, the method described 
above shows that C(t0) is tangent to A4 at a certain point m0, while the inequality 

to. op(to ~ ~ +. . .  + =~,) _> I=p+,(~)l 

holds everywhere on .A4. 
The surfaces .A4 and C(t0) have a common tangent space at m0 that makes the angle a(m0) with the 

vector %+1. Consider two cases. 

Cane 1. Suppose that  this angle is not equal to zero. Then we are in the situation considered above, 
so C(to) - A4. But the width of the layer for C(to) is strictly greater than A,  and we arrive at a 
contradiction. 

CaJe g. Now suppose that  c~(m0) = 0. From the definition of C(t0), it follows that the corresponding 
common point 

z(mo) E M NC(to) 

lies on the waist of the catenoid C(t0), that is, in the hyperplane Zp+l = 0. 

Taking into account the condition [2], consider the minimal surface A4 obtained from .A4 under the 
translation along the vector %+1 such that it still remains in the layer 

of width less than 2%. Then,  repeating the argument from the beginning, we shall obtain a similar surface 
C(tl) .  Now from the fact that  the catenoids C(t0) and C(tl) are homothetic, we can derive that tl < to, 
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i.e., the waist radius of the new catenoid C(t~) is strictly less than that of C(t0). Therefore, the common 
point r~ of the surfaces .M and r ) cannot lie on the waist of r and so the nondegeneracy condition 
c~(ff~) # 0 holds. Therefore, the surfaces .M and C(tl ) meet the assumptions of Case 1 as before. The 
resulting contradiction completes the proof of the theorem. IZl 

I thank V. M. Milyukov for useful discussions of this work. 
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