
A S H A R P  L O W E R  B O U N D  F O R  T H E  F I R S T  E I G E N V A L U E  

ON A M I N I M A L  S U R F A C E  

V . G .  T k a c h e v  

It is well known that  minimal surfaces in Euclidean spaces inherit many properties of planes. Under 
certain conditions on the surface topology or the geometric structure of its boundary, one can assert 
the validity of the classical isoperimetric inequality (see [1, 2]). In [3] E.Giusti proved "the mean value 
theorem" for subharmonic functions on minimal graphs. Other examples concerning geometric inequalities 
and their applications to surfaces of prescribed mean curvature can be found in [4, 5]. 

The aim of the present note is to study the properties of the first eigenvalue of a given open subset 
on a minimal submanifold in R N. Following [6], we call this characteristic the principal frequency of the 
set. 

Let M be a surface in R N, given by a C2-smooth isometric immersion z(m) of a p-dimensional 
manifold M .  We shall denote by V, A, and H the covariant derivative, the Laplace-Beltrami operator on 
.M, and the mean curvature vector of the immersion x, respectively. For a given open subset 79 C M and 
a point a C ]~N we introduce the following characteristic of growth of the mean curvature of the surface 
M ,  by setting 

ka(79) = inf (x(m)-a,H(m)}, 
mE9 

where the angle brackets denote the standard scalar product in R N. If, in addition, the set ~D has a 
non-empty piecewise smooth boundary 079, then its principal frequency )dD is defined as 

= inf f v  IV l dM ' ( 1 )  

where the infimum is taken over all Lipschitz continuous functions ~ vanishing on 079. As a simple corollary 
of the definition, we note that  the principal frequency is a non-increasing set function. That  is, if 791 C 7?2 
are subsets of M with the above-mentioned properties, then/~(79x) _> ),(792). This property allows one to 
extend the class of h-measurable subsets in M by defining the principal frequency of an arbitrary open 
subset 79 with non-empty boundary 

/~(V) = inf{/~(791) : ~ )1C ~D, 0 V  e O1}. 

It is well known that  if 079 is sufficiently smooth, then ~(79) is the smallest positive ~ satisfying 

A f  = - A f  

for some function f ( m )  which is C2-smooth in 79 and vanishes on 079. 
We denote by Ba(R) a ball in R N of radius R centered at a. Then, for an arbitrary 79 C M, there 

is only one way to define the smallest ball (with respect to inclusion) Ba(R) 3 x(M), which we say is 
circumscribed around 79 (here R = c~ is also possible). By p(79) we denote the radius of this ball. Then, 
since the immersion is isometric, we can conclude that  

p(79) < d(79), (2) 

where d(79) denotes the radius of the smallest geodesic ball containing 79. To make the statements less 
cumbersome, we shall say that  79 is an open subset of the surface M if there exists an open 791 C M such 
that 79 = X(791). 

We now formulate the main result of the paper. 
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T h e o r e m  1. Let A/[ be a p-dimensional surface in R N, and let 79 C A// be an arbitrary open set such 
that p(79) < c~ and ka(79) >__ 1 - p, where a is the center of the ball circumscribed to 79. Then  

p2(79-- , (3) 

where ~ = p q- [ka(7))] and #(~) s tands for the principal frequency of  the unit ~-dimensional Euclidean 
bail. 

Remark. We note  tha t ,  due to relation (2), our inequality is stronger than  the already known results 
(of. [4, 5]) based on the use of geodesic distance. 

We recall tha t  the surface Ad is called minimM if its mean  curvature vector vanishes identically. As 
an impor tan t  applicat ion of the above theorem we get then  

C o r o l l a r y  1. Let .Ad be a p-dimensional submanifold in R N. Then for any open subset 79 C 34, 

.(p) 
 (79) > - -  (4 )  - 

Moreover, the equMity is attained only in the case of a p-dimensional plane in R N passing through the 
center of the ball circumscribed around 79. 

Well known is the classical problem of discovering conditions for realization of a given metr ic  on a 
surface which is immersed  into R N and has a number  of prescribed properties.  The  following assertion 
gives an obs t ruct ion  of a sort to solution of this problem in terms of the growth rate of the  principal 
frequencies of geodesic balls. It is worth noting that  here the role of the obst ruct ion is played by internal  
invariants of the metric.  

C o r o l l a r y  2. Let 79 be a domain in R p endowed with a metr ic  ds 2 that is complete in the domain. Let 
z0 E 79 be a fixed point, and let 79(R) be a geodesic ball of  radius R centered at zo. Then, if  

lira A(79(R))R 2 < #(p), R~q-ec 

the pair  (7?, ds 2) cannot be realized as a min ima / subman i fo ld  in R g for N >_ p. 

The proof of corollary 2 follows directly f rom (2) and (4). 

E.Calabi in [7] made  a conjecture according to which no internally complete  minimal  surface in R3, 
other than  the plane, can be contained in a half-space or a ball. In [8] Xavier and Jorge const ructed  a 
counterexample to this conjecture in the case of a half-space, and in [9] they  showed tha t  if a complete  
minimal  surface has a bounded  Gauss curvature then  it cannot  be a bounded  subset of R g .  

C o r o l l a r y  3. Let Ad be an internally complete surface with H = 0 in R N which is contained in some 
Euclidean ball of radius R. Then the first eigenvedue of the manifold M is non-zero and 

>_ R---- T 

The results of Cheng and Yau [10] imply in this case, in particular,  tha t  the  growth rate  of the  areas 
of the geodesic balls on such a surface must  be must  be higher than  polynomial .  

Remark 2. We note  tha t  the bound  (4) presupposes no topological or geometric assumpt ions  on the  surface 
in addi t ion to minimal i ty  of the immersion. Due to the above-mentioned monotonic i ty  proper ty  of the 
first eigenvalue, (4) shows that  the part  of a minimal  surface contained in a given Euclidean ball cannot  
be "too abundant . "  It seems interesting to compare this observation with the well-known "monotomci ty  
formula" for min imal  surfaces (see, e.g., [5, p. 63]) tha t  gives an a priori lower bound  for the  area of such 
a surface passing th rough  the origin. 

The  proof  of Theorem 1 is based on a result of Cheng and Yau [10] which we formulate  in Section 2 
and on some special propert ies of the solutions of the Bessel equation. 
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1. A u x i l i a r y  a s s e r t i o n s .  The main assertion of this section is 

T h e o r e m  2. Let y >_ 1 be an arbitrary integer, )~ > 0, and let Y(x)  be a solution of the equation 

xY"(x )  + (~ - 1)Y'(x) + AxY(x) = 0 (5) 

on the segment [0, R], with boundary conditions 

Y(O) = 1, Y'(O) = O, (6) 

such that 
Y(x)  > 0 Vx e [0, R). (7) 

Then the following inequality holds everywhere on (0, R): 

x Y " ( x ) -  Y'(x) > 0 (8) 

First we prove the following statements concerning the properties of the solutions of the problem (5)-(7). 

L e m m a  1. If  Y (x )  is a solution of (5)-(7), then the function 

Yl(x) = -1-Y ' (x )  
z 

also is a solution of (5) for U 1 = lJ "~- 2 and A1 = A. .Moreover, 

k 
lim Yl(x) = - > 0. 

x----*+O /7 

Proof. We note that  (5) implies 

0 = Y"(0) + (u - 1) lira 1-y'(x) + ),Y(O) = A + ~Y"(O), 
x--++O X 

i.e., Y"(0)  = - A / u .  Therefrom one can find 

lira Y l ( x ) =  lira ( -z l - -y ' (x) )  
z-++O z--~+O 

= Y"(o) = - .  
b/ 

We now check that Yl(X) is a solution of (5) on the interval (0, R). In fact, we can see directly that 

and so 

Y~ = -~ (Y '  - Y"z) ,  lim Y~(x) = O, 
z ~ + O  

r~' = i (2xY" - 2Y' - x2Y"'), -Z 

x Y ] t + ( u + I ) Y ~ + A x Y I = - Y " '  u - l Y " + Y r (  x 2 

_ d__dx ( Y " + V - I Y ' + A Y )  

Now the necessary relation follows from (5), and Lemma 1 is proved. 

In accordance with the above lemma, one can consider the new solution Y1 to be extended to the 
whole of [0, R]. 
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L e m m a  2. Every solution of (5)-(7) is a strictly monotone function on [0, R]. 

7rx 
Proof. In the case ~, = 1 we have Y(x)  = cos 2 c  for some c _> R, and the assertion of L e m m a  2 is evident. 

Let v _> 2. We first show that  Y(x)  satisfies the min imum principle on the segment  [0, R). If this 
were not  so, there would exist ~ E [0, R) which is a point of local min imum of Y(x).  This  implies tha t  

Y'(~) = 0 and Y"(( )  >_ O. 

From the proof  of the previous l emma it follows tha t  Y"(0) = - -~ < 0, i.e., [ > 0. Taking (5) into account,  
/2 

we get 
Y " ( 0  + AY(~) = 0, 

which, together  with the non-negativi ty of Y"(~), gives Y(~) _< 0. This contradicts  a ssumpt ion  (7). 
Using once more the  non-negativi ty of the second derivative of the solution at the origin and the 

boundary  condit ion (6), we get tha t  Y(x)  is strictly decreasing in some neighborhood of the  origin and so, 
due to the m i n i m u m  principle, it is at any rate a non-increasing function. We now prove tha t  Y~(x) 7~ 0 
on (0, R), or equivalently Y'(x)  < 0 everywhere on (0, R). 

To this end we introduce an auxiliary funct ion YI(X) = - Y ' ( x ) / x ,  which by L e m m a  1 is a solution of 
(5) for P l  : y + 2. Due to what  we have established above, Y'(x) <__ 0 for x E [0, R] and so Yl(x) >_ 0 and 
r (o) - 

- -  / 2 .  

Suppose that  YI(~) = 0 at some point  ~ E [0, R). Then  ~ > 0 and by virtue of the theo rem of existence 
and uniqueness for the solutions of the second-order equation 

r ; ' ( z ) -  "+ 1y , (z )_  xrl(z), Vx e (0,R], 
x 

either Ylt(~) r 0, or Yl(x) is identically zero. Since the latter is impossible, we conclude tha t  the  funct ion 
Y1 (x) changes sign in the neighborhood of ~. This contradicts the non-negat ivi ty  of Y1 (x), hence Y1 (x) > 0 
everywhere on [0, R) i . e . ,  Y ( x ) i s  strictly decreasing. 

Proof of Theorem 2. We set v(x) = Y"x  - Y'  or 

v(x) = x3D2[Y], 

where D is a first order differential operator  of the form 

1 ~ x ( f  ( D[f] = - -  x)). 
x 

By virtue of Lemma  1, the function ]"2 = D2 [Y] is a solution of (5) for ~2 = v + 4. Moreover, because of 
Lemmas 1 and 2, the functions Yn(x) = Dn[Y] are strictly positive for n >_ 1, which can be easily deduced 
by induct ion from (6) and (7). Thus  

. ( x )  = x3r2(x)  > o 

everywhere on the half-interval (0, R], q.e.d. 

2. P r o o f  o f  T h e o r e m  1. It will be convenient to carry out the proof of Theorem 1 in a more  general 
situation, suitable for other  applications. Let V C IR N be a fixed n-dimensional  subspace, let {vi}i~=l be 
some or thonormal  basis of V, and let f2(m) = ~~.i~=1 (x(m), vi} 2. It is clear tha t  the  value of f (m)  is 
independent  of the choice of the basis. 

L e m m a  3. The following relations hold: 

1 T 
V f ( m ) -  , , - - , v  (9) 

j im)  
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and 

Af(m)  - G(V, T) - 1 (H(m) , , )  Iv ' l  2 
f (m)  + f (m)  + fa(m----~, (10) 

n 7l 
where V ----- E i = I  vi<vi,x(m)>, or(V, T) = E l - 1  IC 12 and the symbols A_ and T denote the projections of a 
given vector on the tangent and the normal space of M ,  respectively. 

Proof. Let E be a tangent vector to M ,  and let V be a canonical covariant derivative in R g. Then 

V E f ( m )  - 

?z 

1 E<vi ,  x(m))VE<x(m),vi > 
f (m)  i=1 

1 ~<v,,V~4~)><x(~), vi> 
f (m)  i=] 

f (m) E(v[ 'E><vi 'x(m)> - (E'vT} 
i=1 f (m)  

and by definition of the gradient we get (9). 
We note further that for any e E ]~N we have the following relation between the Laplace-Beltrami 

operator and the mean curvature vector (see [11, p. 309]): 

A<x(~), ~)=(H(,~),~), 

and so 

Af2(m) = E [(z(m),v i )A(z(m),v i )  + Iv<xCm),vi)l 2] 
i = l  

n n 

= Z<x(m), E: I T? 
i=1 i=1 

= <v(m),H(m)) + or(V, T). (ii) 

On the other hand, 

ivTi 2 
A f 2 ( m )  = f(m)Af(m) + I V f l  2 = f(m)Af(m) + f2(m------ ~ 

and, by virtue of (11), we establish (10). 

L e m m a  4. Let A4 be a p-dimensional surface in R N with mean curvature vector H. 
n-dimensional subspace of N N, and let cV(  R) be a generalized cylinder of the form 

Let V be an 

c v ( R )  = {x e RN : IxY-al < R}, 

where a C V and x v is the projection of the vector x on V. Let k = ka(M n cva (R)), and suppose that 

v = n + p + [ k ] - N > _  1 (12) 

holds. Then 

K.) (13) ~(MnCT(R)) > R---e-. 
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Proof. We shall assume, wi thout  loss of generality, tha t  a = 0. We note first tha t  

n n 

~(v, T) = ~ Iv[? = ~ -  ~ Iv?? _> ~ -  ( N -  p), 
i=I i=l 

whence, taking into account the definition of k and using (10), we get 

n + p + k - 1  Iv• 2 ~ , -1  Iv'l  2 
Af  >- f(m) + fa(m----) >- f(m--- 7 + f3(m-----)" (14) 

We now fix a solution Y(t) of the problem (5)-(7) which corresponds to the pa ramete r  value u = n + p + 
[k] - N, with A0 chosen so tha t  the condition Y(R) = 0 is fulfilled. Namely, due to homogenei ty  of (5), it 
is easy to check tha t  A0 = #(p)/R 2. Using the negativity of the derivative Y'(t) and relat ion (14) we get 
for the composi t ion ~ = Yof(m) 

Ac2(m ) = Y ' ( f )A f  + [Vf[2Y"(t) 

Y'( f)  ( u -  1) + (Y ' ( f )  Y"(f(m))  Iv• + Y"(f)  < 
- f ( m )  \ f ( m )  _ f2 (m)  

Iv• ( Y ' ( ~  - fY"(f)) .  (15) = -AoY(f) + f-g-(-~, ,~, 

In [10] Cheng and Yau pointed out that  if ~(m) is twice differentiable and D C M, then 

x(~) > inf . (16) 

Taking the set x-~(JY[ nCY~(R)) as 2? and combining (15) and (16), we have 

Iv• (g'(r~- fY"(f)) .  (17) ~ ( ~  n c~(R)) > ),o + f ~ - ~ ,  , _  

Inequality (13) now follows from Theorem 2 and the definition of )~0. 

The proof of Theorem i immedia te ly  follows from the above lemma if we put  V = IR N, and so CV(R) = 
B~(R). 

We note tha t  (4) becomes an equality only if we have Ix• = 0 everywhere on M N B~(R). 
However, this means  tha t  the radius vector x(m) of the immersion is tangent  to M at every point ,  i.e., 
that  the surface Nt is a cone centered at a. Taking into account the regularity of the  immersion,  we 
conclude tha t  such a surface coincides with a p-dimensional plane passing th rough  a. 
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