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M I N I M A L  T U B E S  OF F I N I T E  I N T E G R A L  C U R V A T U R E  t) 
V. G. T k a c h ~ v  UDC 517.53 

I n t r o d u c t i o n .  Let z = (x l , . .  �9 , xn, Xn+l) be a point in the Euclidean space IR '*+1 and let M be some 
oriented noncompact  p-dimensional Riemannian manifold, 2 _< p _< n. 

DEFINITION 1. A surface . ~  = (M, u) given by a C2-immersion u : _]tl ~ R n+l is called a tube 
with existence interval r ( .M) C Oxn+l if 

(i) for every r E T(.M) the sections ~r  = u( .M) (3 IIr by the hyperplanes Hr = {x E IR~ +I : 
xn+l = T} are nonempty  compact sets; 

(ii) for arbitrary r ~, r"  E r( .M) the portion of .M between two different hyperplanes II T, and I-IT, 
is a compact  set. 

The length of the interval r( .M) is referred to as the existence time of the tube. 

DEFINITION 2. A surface .&d is said to be minimal  if the mean curvature of .M vanishes every- 
where. 

Observe that  the definition of tube imposes no topological constraints on the surface. On the other 
hand, studying the classical Plateau problem for contours with two components lying in parallel planes 
leads natural ly to the class of tubular surfaces. Minimal two-dimensional tubes were first considered 
in Nitsche's article [1]. Nitsche also proved that  the existence time of a tube  can be bounded above 
using the sizes of boundary components. On use made of various versions of the geometric maxiinum 
principle, in [2] this inequality was improved and translated to the multidimensional case (see also 
[3,4]). 

It is well known that  in the multidimensional case ( d i m M  > 3) every minimal  tube o f  arbitrary 
codimension has finite existence t ime ]r(.s [2,5,6]. In this case the existence t ime of a tube is 
bounded above using the minimal girth radius of the surface, the diameter of the minimal  section ~r.  

In this respect, the two-dimensional case is specific. Namely, as it is seen from the examples of 
the s tandard catenoid and the one-dimensional family of Riemann surfaces of [7] (the so-called "skew 
catenoids ' ) ,  the existence time [r(cV[)[ of minimal two-dimensional tubes may be infinite as well as 
finite (inextensible). Moreover, in the latter case a Riemann surface may have an arbitrary prescribed 
finite value ]r(A/[)], provided that the minimal girth radius is fixed. This circumstance dictates the 
necessity of introducing extra characteristics in whose terms we could est imate the existence time. In 
the present article, we discuss the following question: under what conditions can we guarantee  that 
of  the existence t ime of  a tube is finite? 

In this regard, the author has announced a new approach [8] which applies to doubly connected 
tubes with single-valued Gaussian map and which is based on the methods of the conformal modulus 
of families of curves on a surface. In the present article, we extend this approach to minimal  tubes 
of arbitrary topological structure with finite total curvature. The last requirement is necessary. We 
show this by examples at the end of the article. The flux vector of a minimal  tube plays the role of 
an extra characteristic. It is an invariant of the tube under the semigroup of motions preserving the 
t ime axis. The corresponding definition is as follows: 

Let e T _-- eT(m) denote the orthogonal projection of a vector e E R n+l onto the tangent space of 
a surface M at a point m and let r E r ( M )  be a regular value of the coordinate function un+x(m) 
(i.e., v en+ 1 ~ 0). Then Zr is a finite union of compact (p - 1)-dimensional submanifolds without 

T T boundary and u = en+l/Ien+a] is a continuous field of unit normals to ET with respect to .M which 
are oriented in the direction en+l. 
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DEFINITION 3. The vector J(A~) 6 R "+I with coordinates 

r = / < e l ;  
E, 

l _ < k < _ n + l ,  

is called the fluz vector of the minimal tube .~4. 
Observe that, by harmonicity of the coordinate functions [9], the vector J(A4) is independent 

of the choice of r 6 r(A4) and, owing to the orientation of v, the (n + 1)th coordinate of J(.~f) is 
strictly positive. Denote by a(.~4) the angle between J(A4) and the axis Ox,+l .  As follows from 
the definition, the length of the flux vector and the angle a(./t4) are invariant under the semigroup of 
motions of R n+l preserving the direction of the time axis. 

It is also worth making a physical interpretation of the flux vector. Namely, the minimal tubes 
are Euclidean analogs of closed relativistic strings in Minkowski space [10]. In such approach, the 
geometric invariants of tubes represent certain physical characteristics of the corresponding elementary 
particles. For instance, the length of r(.,~4) corresponds to the existence time of a string and the flux 
vector J(.~4), to its momentum [11]. 

The main result of the present article is the following theorem: 

T h e o r e m  1. Suppose that 54 is a minimal two-dimensional tube in R s of an arbitrary topological 
type and with flux vector J(.h4). Then if the absolute integral Gaussian curvature G(54) is finite and 

> o then the e=stence time o .M is finite and 

G( )II J(54)11 cos  (54) 
Ir( )l _< 16 2(54) (1) 

This assertion implies that the existence time of a minimal tube with Gaussian map of finite 
multiplicity (in particular, single-valued) is finite, since such a surface satisfies the inequality G(A4) _< 
47rs, where s is the multiplicity of the map. Namely, the following generalization of the corresponding 
result of [8] holds: 

Coro l l a ry  1. Suppose that .It4, dim54 = 2, is a minimal tube in R 3 of an arbitrary topological 
type. I.f the Gaussian map is at most s-valent and a(.Ad) > 0 then the existence time [~'(Ad)l o[.A4 is 
finite and 

b-(54)l _<  sllJ(.M)ll cos (.M) 
4ot2 (.&~) (2) 

REMARK 1. The traditional characteristic, the integral Gaussian curvature, is more flexible than 
multiplicity in this sense. Indeed, the finiteness of the integral Gaussian curvature does not imply 
finiteness for the multiplicity of the Gaussian map a priori. On the other hand, the examples of tubes 
with an arbitrary angle a(54) and an infinite existence time given in the last part of the present 
article demonstrate the necessity of constraints on the Gaussian map. 

In the case of tubes with an infinite existence time and a nonzero slope of the flux vector with 
respect to the time axis, (1) also yields a uniform linear lower estimate for the integral Ganssian 
curvature of an arbitrary portion of the tube which lies in a parallel layer in terms of the width of the 
layer. 

REMARK 2. It is worthy to observe that, unlike most articles concerning minimal surfaces of finite 
integral curvature, we do not presume intrinsic completeness of the surface. Moreover, as follows from 
the results of [12], a two-dimeusional tube with finite existence time and finite integral curvature 
cannot be a complete surface (with respect to the intrinsic metric). 

1. A Weie r s t rass - type  represen ta t ion  for doub ly  connec ted  tubes .  In the current section, 
we suppose that A4 is a two-dimensional doubly connected minimal tube in R s given as an immersion 
of some ring. Then the results by Osserman [13] and Schiffman [14] imply existence of a global system 
of isothermal coordinates on M. Moreover, .s may be assumed to be conformally equivalent to the 
ring DR = {z : 1/R < [z[ < R} for a suitable R > 1. 
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Let g(() be a holomorphic function in the ring DR, let Ct = {z E C : lzl  = t}, and let 

1 [ g(C)dC 
ao(g) = 2~ri j C 

C1 

be the central coefficient of the Laurent expansion of g(r 

DEFINITION 4. We say that g(C) is admissible for DR if it is nonvanishing and 

ao(g) = -ao(l/g(z)). 

The following Weierstrass-type representation holds: 
L e m m a  1. Under the above assumptions, the surface .M admits the paxameterization 

Z 

u(z) = Re / F(()  de', 

z0 

where J3 (~-g2(~);i(~ +g2(~)). ~) 
F =(F1;F2;Fs)= -~ g(z)z g(z)z ' 

and g(z) is some holomorphic function admissible for DR and such that 

1 1 
ao(g) = --~s(J1 + iJ2), ao(1/g) = -~s(Jl - iJ2), 

(3) 

(4) 

(5) 

and 

Re / F(C)di 
C1 

= 0 .  (7) 

Moreover, g(z) is the composition of the Gaussian map of jr4 followed by the stereographic projection 
of the unit sphere, with respect to the north pole, to the tangent plane at the south pole. 

First observe that, with the above notations, 

f 
J(.~4) = Im [ F(()d( .  

I !  

Izl=l 

(8) 

Indeed, consider the conjugate functions 

vk(z) = Im / Fk{r 

z0 
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F(z) = ((i - g2(z))f(z);i(1 + g2(z))f(z);2f(z)g(z)) (6) 

with Jk the components of the flux vector of .M. 
PROOF. In line with [13], we write down the classical Weierstrass-Enneper parameterization 

of .hi. Namely, there are holomorphic functions f ( z )  and g(z) in DR such that (4) is valid for the 
holomorphic vector-function 



In general, vk(z) is a many-valued harmonic function. On the other hand, the gradient Vvk is well 
defined. Using the properties of the Hodge .-operator, we obtain 

= f (Vuk; v) = f (*Vuk; 
Er ~-,v 

=/(Vvk;*v)ds= f dvk = Im / Fk(()d( ,  

E, E, l=l--1 

and thereby (8) is proven. 
By (4), the coordinate function ua(z) is harmonic in DR. Using the definition of tube, we obtain 

lira UB(Z) = rx, lim ua(z) = r2, (9)  
z--*l/R z--*R 

where r(Ad) = (rl; r2) is the interval of the projection of .A4 to the Oza-axis. 
Consider the auxiliary harmonic function 

T 2 ~ T 1 

h(z) = n + 2-1~g R log(Rlzl) .  

It is easy to see that h(z) as well satisfies (9) and, thus, hi(z) = ua(z) - h(z) is a harmonic function 
in the ring which meets the boundary condition 

lim hi(z) = 0. 
z'*ODR 

Applying the maximum principle, we obtain hi(z) -- 0 everywhere in DR; hence, 

7"2 - r_._____~l 
ua(z) --Vl + 21ogR log(R[z[). .(i0) 

In particular, (10) implies that the differential dus(z) vanishes nowhere in DR. Consequently, the 
normal n(z) to .M is parallel to e3 at no point. Recalling the geometric interpretation of g(z), we 
infer that g(z) :  DR --* C \ {0; cr }. 

Comparing (10) and (6), we conclude that 

r2 - rl 1 (11) 

To exclude log R from the last equality, we insert (11) in (6). Using (8), we obtain 

log R - ~r(72 - n )  
J3 

Finally, substituting the so-obtained relation in (11), we arrive at (4). 
To prove (5), we write down the condition (8) by using the above relation between f(r  and g((). 

Thus, 
/ 1 -92 ( ( )d (  = 27rJl__~ i / l +g2(()d( = 27rJ2 

2g(() ( , ) ' 3 '  2g(() ( J3 ' 
Cx C1 

whence, after a simplification, we obtain the sought identity. The lemma is proven. 
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2. A n  e s t i m a t e  for  t h e  e x i s t e n c e  t i m e  for  d o u b l y  c o n n e c t e d  t u b e s .  

DEFINITION 5. Suppose that F is some family of locally rectifiable curves 7 C D on the complex 
plane and ~(z)  > 0 is a nonnegative Borel function such that 

/ ~(z) Idzl >_ i 
"I 

for all 7 E F. The infimum 

mod F = in/ / ~p2(z) dzd~. 

D 

over all such ~(z) is called the conformal modulus of F. 
Let F(R) be the family of concentric circles Ct, t E (l /R; R), with center the origin and radius t, 

which are included in the ring DR. It is weU known (see, for instance, [15, p. 19]) that 

mod r(R) - logR (12) 
7r 

Below, we also need the following classical formulas for some intrinsic characteristics of a minimal 
surface pararneterized by (6). Namely, the line element of A4 and the Gaussian curvature are as 
follows (see [131): 

d s  - A(z) ldzl  = I l l (1 + g2)ldzl, 

.21g'l 2 

K = - (lfl(1. T rgl2)2 ) (13) 

Using the fact that  the coordinates are isothermal and Lemma 1, we obtain the following expression 
for the absolute integral Gaussian curvature G(AA): 

G(.M) = - / /  K(z)A2(z) 

DR 

/ 4lg'12 
dzd5 = (1 + [g[2) 2 dzdS. 

DR 

L e m m a  2. The estimate (1) is valid for every doubly connected minimal tube .M with finite 
absolute Gaussian curvature G(.M). 

PROOF. Let g(~') be the function of Lemma 1 corresponding to .h4 and let ao(g) = ae i~ be the 
central Laurent coefficient of g in polar form for some positive real a. Then from (5) we obtain 
ao(1/g) = - a e  -i~ Consequently, the modified function gl(()  = e-iSg(~ ") satisfies the following 
equalities for every t G ( l /R ;  R): 

2~r 2~t 

0 0 

= --a. (14) 

Put  
Ig~(r 

~'(r - i + Ig1(r 2 
Ig'(r 

1 + lg(r 2' 

O" 
f 

inf I~(r Idr 
1/R<t<R J 

Ct 

(15) 
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By Definition 5, we have the following estimate for the value of the conformal modulus mod F(R): 

mod r(R) < ~2(z) dzd2. 

DR 

Recalling (12) and (13), whence we obtain 

log R < ~ G ( ~ )  (16) 
- 4a2 

Now, we estimate a from below. To this end, consider the auxiliary stereographic mapping 

( 2 R e ,  2 I m ( , ( , 2 - - 1 )  C1 $2 
h(r  iCi2+1;1r162 : "* \ {p}  

of the complex plane onto the unit sphere S 2 without the north pole P = (0; 0; 1). The differential of 
the stereographlc mapping at a point w is calculated by the formula 

21dwl 
Id=hl- [w12 + 1" 

Thereby for every t E ( l /R;  R) we have 

/ ~~ IdCI = I Ig[(C)l / Idwl 1 +lgz(r162 1 +lwl 2 
ct c~ gz(ct) 

i / Idhl>~g(hog~(Ct)), 
= 2  

hogdCt) 

where g(E) is the length of a continuum E E S 2 in the spherical metric. 
Combining (15) and (17), we obtain 

(17) 

1 
inf g(hogl(Ct)) .  (18) 

Taking real parts in (14) and applying the mean value theorem, we conclude that for every 
t E ( l /R;  R) there are ~1 and ~2 such that 

1 
Regl( te  i~) = a, Regl(tei~2) = -a .  (19) 

Then it follows from (19) that 71 = gl(Ct) has a nonempty intersection with the straight line L1 = 
{z E C :  Rez = a} and the circle L2 = {z e C :  Re(~) = - a} .  Recalling that 7t is a closed curve and 
using the equality h o gl(Ct) = h(7t), from (18) we derive 

1 
a >_ -~. 2 dist(h(Lx);h(L2)) = dist(h(L1);h(L2)), (20) 

where dist stands for the geodesic distance between the corresponding subsets of the unit sphere. 
Consider an arbitrary point h(z) = (xl, x2, x3) E h(L1). Using the definition of the stereographic 

projection and the fact that Rez = a on L1, we obtain 

2 R e z  Iz] 2 - 1 
11 + a z s  - 1 + ]z] --------~ + a ~  = a. 
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This means that h(L1) is a circle on S 2 lying in the plane zl  +ax3 - -  a .  Similarly, we verify that h(L2) 
is the circle, in the plane xl + axs = - a ,  which is centrally symmetric to h(L1). Direct calculation of 
the distance between these circles with respect to the metric of the unit sphere yields 

dist(h(L1); h(L2)) = 2tan-la .  

Involving (16) and (20), we now obtain 

logR _< 16(tan_a)2 a. (21) 

Suppose that a(fl4) is the angle between the flux vector J(A4) and the Ozs-axis. T h e n  

+ 

tan a(A4) = J3 = a .  (22) 

Using (21), we arrive at the sought inequality. The lemma is proven completely. 

3. P r o o f  of T h e o r e m  1. Let A4 C R s be a two-dimensional immersed minimal tube of 
an arbitrary topological type with the existence interval r(A4) = (rl; 1"2). Denote by E the set of 
all critical points of the coordinate function us(C') of the immersion u : M ~ R a. Observe that, by 
harmonicity of us((), E comprises only isolated points; in particular, E is at most countable. Fix 

> 0. Then, by Definition 1, the set {hi = u3(~i) : ~i E E )  of the critical values in the interval 
(rl + ~; r2 - ~) is at most finite. This set may be assumed to be nonempty for a sufficiently small 
e > 0: otherwise the surface would be an immersed ring and the claim of the theorem would ensue from 
Lemma 2. Moreover, without loss of generality we may assume that hi, 1 < i < N,  are enumerated 
in increasing order. 

Fix an arbitrary index i : 1 < i < N -  1. Then the portion of A4 in the space layer hi <_ za <_ hi+l 
splits into finitely many connected minimal tubes D1, . . .  , D~ each having the topological type of 
a flag. Indeed, by the classical Morse lemma, the absence of critical points of the height function us 
on every component D i implies that D i is homeomorphic to an (immersed) cylinder. 

Denote by J(D = J(Di)  the flux vector that corresponds to the component Dj regarded as 
an individual tube and denote by oe i the angle between j ( i )  and the basis vector ea. Then, for every 
j ,  1 < j ~ k, from Lemma 2 we obtain 

hi+l - hi <_ G(Di)Js (Di)  < G ( D ) J s ( D i )  
- ' 

where D - UDj. Moreover, by the definition of flux vector, we have 

j (D + j(2) + . . .  + j(k) = J(fl4). (23) 

Recalling that the third coordinate 

<_ J J) = Js(M) 
i=1 

of the flux vector is nonnegative, we obtain 

hi+l - hi <_ G(D)J3(.M) 
16a~ 

(24) 
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On the other hand, there is an index v such that a~ >_ a(A4). Indeed, consider the convex polyhe- 
dron P that is the convex hull of the origin O 6 R 3 and the ends of the vectors J(D. Using (23), we 
infer that the vector ];J(A4) lies in P. Then the convexity of P implies that there is a vector j(v) such 
that the angle av is not less than the angle between e3 and ~J(A4), the latter coincident with a(.h4) 
by definition. Thereby, applying (24) to v, we obtain 

G(D)J3(~4) 
hi+l - hi <_ 16a2(.M) 

Summing the so-obtained inequalities over all i, we arrive at the estimate 

G(.M')J3(.M) 
[r( .M)[-  2e _< 16a2(.h4 ) , 

where .h4 t is the part of A4 in the layer rl +e  < x3 < r2 - e .  Recalling that ~ is arbitrary and that the 
absolute integral Gaussian curvature, considered as a set function, increases, we arrive at the sought 
inequality. The theorem is proven completely. 

4. Tubes  w i t h  inf ini te  exis tence  t ime.  In this section, we give examples which show that 
there are minimal tubes whose existence interval is R and the slope of the flux vector is arbitrary. 

L e m m a  3. Let r  be a holomorphic function in DR such that 

r  = -r (25) 

Then, for every/nteger N, the function 

g(z)  = ~ r  exp(r  

is admissible for DR. 

PROOF. Put w = -1 / z .  Then 

g ( z )  - z e x p ( - r  = - - - e x p r  

= _w2N+I exp r  -- --w -2N + 1 exp r  -- --g(~) 

and, consequently, for the central Laurent coefficients we have 

a0( t / g(z)  ) = a 0 ( - g ( ~ ) )  = - a 0 ( g ( ~ )  ) = - . 0 ( g ( z ) ) ,  

as required. 
As an application, we consider the simplest function satisfying (25): 

where A _> 0 is some positive real. By Lemma 3, the function 
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is admissible for the punctured complex plane Doo = C \ {0}. Taking the Laurent expansion of this 
function, we find the following expression for the central Laurent coefficient of g;~(z): 

a0(g;~) = ~ k!(k-  1)!" 
k=l  

Let A4x be the minimal doubly connected tube given by (4) with the function g~(z). Then A4x 
is conformally equivalent to C \ {0} and, applying (20) and (22), we derive 

oo ~ 2 k - I  

tancx(M),) = la0(gA)l-- 1)!" 
k=l 

Varying A E (0; +co), we thus obtain doubly connected minimal tubes .At[), with infinite existence 
interval and an arbitrary slope of the flux vector with respect to the Ox3-axis. 
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