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S O M E  E S T I M A T E S  O F  T H E  M E A N  C U R V A T U R E  O F  N O N P A R A M E T R I C  

S U R F A C E S  G I V E N  O V E R  D O M A I N S  I N  R "  

V. G. Tkachev UDC 517.95 

Questions about the behavior o f  the mean curvature of  surfaces given in the form of  graph Xn+ 1 = f(x) over 

an arbitrary domain ~ in ~ n a r e  considered. It is proved, for  example, that i f  mean curvature H i s  a 

continuously monotonically increasing function o f  coordinates x n÷ i in ~n÷ ~ , then the following assertions are 

fulfilled: a) i f  f~ = E n, then H = O, that is, the graph is a minimal surface; b) i f  Of~ ~ ~, then 

sup IHq(x))l .dist(x; 80) _< 1 
~eo (*) 

is true. Different special cases o f  ~ are considered, for  which exact values o f  the constant on the right-hand 

side o f  (*) are obtained. 

1. In this paper we discuss properties of the mean curvature of the class of nonparametrized surfaces introduced 

below, which includes, for example, surfaces of constant mean curvature and surfaces satisfying the capillarity equation. 

In what follows we consider only oriented surfaces given as graphs over a fixed domain f~ C R n. The direction of the 

normal vector to the surface is chosen to be consistent with the positive direction of the (n + 1) st coordinate in ambient 

space R n+l. We denote by x 1, x 2 . . . . .  Xn+ 1 a standard collection of coordinate functions in (n + 1)-dimensional Euclidean 

space R n+l and agree to regard R n a s  a hyperplane in R n+I defined by Xn+ 1 = 0. Everywhere below, unless otherwise 

specified, by H - H ( t )  we mean a continuous decreasing function. Let us define a surface ~ a s  the graph of a C2-solutionflx)  

= f(x  1 . . . . .  Xn) of 

t=18~i 16xl / l 

(1) 

in f ] .  It is well known that H(f(x)) determines the mean curvature of 3 at the point x ~ f~. 

Let ~ denote the closure of f2 in R n and let P, Q be nonempty subsets in f~, P n Q = ~. 

For a fixed ~x > 1 we introduce the cc -capacitance of capacitor (P, Q; f~) (see [1]) letting 

capa(P, Q; n ) = i n f j l v ~ t a d x , r  d ~ - - d ~ , . . . d x , ,  (2) 

n 

where the greatest lower bound is taken over all finite functions ~(x):f~ ~ [0; 1] that are locally Lipschitz in ~ ,  continuous 

in ~ ,  and are equal to zero on Q and one on P ,  respectively. We say [2, p,59], that a compact set Phas  zero capacitance 

if there exists a closed set Q and Q n P = q~ such that complement Rn\Q is a bounded set and caPn(P, Q; R n) = 0 is 

fulfilled. The closed set P C R n has capacitance zero if its every compact subset is like that. 

The following estimate for the integral mean curvature of the introduced class of surfaces is true. 

T H E O R E M  1. Suppose that P is  a compact subset of ~ and f(x)is  a solution of (1) in f~. Then for any ~ _> 2 
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[.~] cc 

~]H(f(x)) l~dxs cap~(P, OQ; fl). 

P 
(3) 

C O R O L L A R Y  1. Let f ( x )be  a solution of (1) determined everywhere in R "except,  possibly, a closed set P o f  zero 

capacitance. Then the mean curvature H(f(x)) - 0 everywhere in Rn\p. In particular, if 

a) 2 <__ n _< 7, then f (x)  is a linear function, 

b) H(t)is strictly monotonic, then flx) = const for any n .  

In the two-dimensional case, when H( t ) i s  sign constant, H'( t)  _> 0, and P i s  empty, Assertion a) was proved by 

Cheng and Yau in [3] using a method based on estimating the rate of  the increase of  the volume of  a geodesic ball on 

Riemannian manifolds. 
We preface the proof  of  Theorem 1 with an auxiliary assertion. 

L E M M A  1. Let H(t):R -* R be a continuous monotonic function. Then for any e there exists a function He(t) E 

C~(R), He'(t) >_ 0 such that 

(1) IHe(t) [:!H(t) j ; 

(,i) Iblc(t)-H(t) I~c, Vt~/~. 
(4) 

Proof .  It is not hard to note that the general case is easily reduced to H(t) specified in [0, + ~ ] ,  H(0) = 0 and/4(0 

> 0 for t > 0. We can assume that H(t) is not bounded as t --, + 0o (otherwise our line of argument changes insignificant- 

ly). Consider a sequence of points c~k @ R given by 

~k = max (t } ; o~o=0. 
H(t)~ctc 

2 

Clearly, c~ k strictly increases and all the ~ :  are finite. Let 

C 
o.(t) =I exp (l-t'a) ; 0<t-~l; 

[0, t=O. 

It is easy to see that a(t) E C ~ [0; 1]. The desired function He(t) assumes the form 

Hc(t ) = H(etl)+~( t-al 

Let us return to the proof  of  Theorem 1. Let ~ > 0 and suppose that He(t) is the corresponding approximation of H( t )  satis- 

fying (4). Let us fix the function p = ~(x) admissible in (2) for calculating the capacitance of (P, 0f~; f~). From (1) it follows 

that 

n fx~ H~.l~ 
0 (~{x(X)Hclt:t .~)(f(z)) . . . .  n~0C~(-~) ( f ( x ) ) H ( f ( x ) ) +  

i = 1  

]~/fl 2 
+ (~-i) I;/c (f (xl) l~'e%o a (r)/4 c (£) 

[ l+tVfl ~ 
• n ~jrtfx:t 

+~-'(x).~ ~'i~ (t'(x~) ~ 

holds, where He(Cg(t) denotes He(t)[He(t)[c~-i and 'Pxi = (3¢/0xi). Taking into account (i) from (4) and the monotonicity of 

He(t), we arrive at 
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~=IHc(f) I % e ~ a ' t l t / e ( ' t ' ) l [  ~' ~ t t t  n L ~ t  (r) 

" J 

Integrating this expression and applying Stokes' theorem, we have 

f l  : t l  

Bearing in mind that ~p(x) = 0 for x ~ P, with the aid of Cauchy's inequality we arrive at 

P fl 

Using (ii) from (4) and passing to the limit as e --, O, we find that 

f IHCf(x) ) l~Xdx " IV4o(x) l=dx. 
P 

The proof is now concluded by passing to the greatest lower bound over all the q~ (x) admissible in (2). 

The proof of Corollary 1 is based on the well-known property of n-parabolicity of Euclidean space R n and, namely, 

that any compactum ~p(x) has zero n-capacitance with respect to infinity in R n 

Let us fix a bounded open set Q E ~n such that ~) ~ P = q~. Let B = B(0; R) be a ball with center at the origin 

and radius Rchosen so that B = ~) U P is fulfilled. Let us consider arbitrarily functions el(X) and ~2(x) that are admissible 

when o~ = n in (2) for capacitors (Q, OB; •n\B) and (P, Qt30B; ~n\(BO Q)), respectively. This implies that ~pl(x)(1-~p2(x)) 

is admissible for (Q, OB to P; Rn\(B C~ P)). By the definition of capacitance, 

~a.pn (~, oBOp;~n\(bl3P ) 1"~ f 17~, (1-~%)-~lv~zjnclx~ 
B(O;R) 

~2 n-1 f I7~o~I na~:÷2n-1 f Iv~°~ lnax" 
alo;R) ~(o;R) \.~ 

since V~o 2 ------- 0 on Q .  Passing now to the greatest lower bounds over ~l(X) and ~2(X), we obtain 

21-ncaPn ~Q, oBUp ; ~n\ ( [gUP ) ) ~ 
(5) 

"-caPn (Q, aB; ~n\b) ÷caPn (p, QUoB;~n\ (~.~1) . 

Since QfqP = q~, according to the well-known (see, for example, [2, p. 61]) property of sets of zero capacitance, the 

last term in (5) vanishes. 

To estimate the capacitance of (~), OB; g{n\B) we use standard arguments. We fix r = max Ixl, R > r and consider 
xEQ 

qo(x)equal to one and zero on B(0; R) and Rn\B(0; R), respectively, and having the form ~(x) = (In(R/Ix I )(In(R/r) -~ inside 

the ball fiber B(0; R)\B(0; R). Clearly, qo(x)is admissible for (Q, OB; g{nkB) and the desired estimate has the form 

ca~,n(~, eB~n\§)~. 1 - ! - -  [ ax _ '~n 

where 6o n is the (n-1)-dimensional Lebesgue measure of the unit sphere 0B(0; 1). 
Now, bearing in mind (3) for o~ = n, we obtain 

E l - - 1  t 
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~0rl 
I iH(f(x) ) i ndx_~ 

f R) n-1  

° t,o;j 

for an arbitrarily sufficiently large R. Consequently, letting R --, oo, we obtain [H(f(x))[ - 0 on Q.  Since Qis taken 

arbitrarily from ]~n\p, we have H~x))  - 0 for x E Rn\P. Assertion b) follows immediately from the strict monotonicity of 

H(t). In the case where H(O is not necessarily strictly monotonic m a neighborhood of its zero, we obtain that f ix)  specifies 

the graph of a minimal surface over Rn\P. The validity of Assertion a) then follows from the well-known results of Bombieri 

et al. [4] and Simons [51. 

2. The assertions presented below state that a natural characteristic of the behavior of the mean curvature of the 

solutions of (1) is the distance to the boundary of the domain of existence. 

THEOREM 2. Let f(x)be a solution of (1) in [2 E R n. Then 

supIH ( f (x) ) ldist (x ; an) ~l. (6) 
x~fl 

Equality is attained in the case (6) where f ix)  describes the graph of a maximal hemisphere over B(0; R). 

COROLLARY 2. Let f ix)be a solution of (1) in ball B(0; R) of radius Rwith center at zero. Then tH(fl0))t _< 

1/R. 
For surfaces of constant mean curvature and mean curvature bounded away from zero this assertion was obtained by 

Bernstein [6] and Finn [7], respectively. 

In [8] Finn investigated in detail the properties of surfaces describing the phenomenon of capillarity that are a special 

case in (1) when the right-hand side is the linear function H = at + b, where aand bare constant and a > 0. The assertion 

formulated below offers a somewhat different estimate for the behavior of such solutions than the one given in [8]. 

COROLLARY 3. Let H(t):I~ ~ ~ be a strictly increasing function and suppose that f ix) is  a solution of (1) with 

right-hand side H(t)in [2 C R n. Then 

~f (x) ~-tt -I ~- i 
d i s t ( x , S f l l j  ( d l s t ( x , a n  ' H-leH(t}=t" 

It is also of interest to establish the exact value of the functional on the right-hand side of (6) for an arbitrary and, 

especially, noncompact Q .  Below we give a partial solution of this problem for a special form of Q .  

And, specifically, we consider two classes of domains in N n. For an arbitrary integer p ,  where 1 <_ p _< n, we 

denote by R n a cylindrical fiber which, to within motion and homothety of N n, has the form of the coordinate product IIn, o 
= ~/n-o X Dp(a), where 7 n-o is an (n -  p)-dimensional plane and Dp(a) is a p -dimensional disk of radius a > 0. We 

denote by D(a; b) = Dn(b)~n(a) a ball fiber of width (b-a)  with internal radius a > 0. 
The following is true: 

T H E O R E M  3. Suppose that Q coincides with some domain r~t,p: Then for any solution f i x )o f  (1) 

supIH(f(x))~dist(x;O~)s~, 
xEn (7) 

is fulfilled in f~ =IIn, P and equality is attained when, for example, fix)describes a hypersurface of constant mean curvature: 
p 

fix) = [ 1 - ~  xi2] 1/2. 
i=1 

When f~ is the ball fiber D(a; b), 

supls(f(z))Idist(z;an)s~, n-~- 
xE~ ~ n-i (8) 
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R e m a r k .  When n = 2, there exist surfaces of constant mean curvature over D(a; b) for which the value of the func- 

tional on the left-hand side of (8) is equal to 1/2. When n _> 3, the value 1/2 is attained asymptotically for a family of 

surfaces of  constant mean curvature over D(a; b) as a --, 0. That is, the estimate given in (8) is, in a well-known sense, exact 
as n --, co. 

P roof  of  T h e o r e m  2. Let z E 9 and suppose that B(z; R) is a ball of  maximum radius inscribed in ~ with center at 

z .  If  H ~ 0 [trivial case for (6)], then by virtue of  Corollary 1, ~ < + oo. Let us denote by Sx(r) an n-dimensional sphere 

in ~n+l  with center at (Zl;...; zn; X) and radius r, r < ~.  We consider an arbitrary solution f ( x ) o f  (1) in ~ w i t h  mean 

curvature H(f(x)) and let F b e  the graph of this solution. Clearly, for sufficiently large numbers X > ](z) the intersection F 

Sk(r) is empty. Let us find the greatest lower bound 3`o of such values of 3,. Since B(z, r) lies compactly in B(Z, R), the 

sphere S~o(r ) is tangent to surface F a t  some point (x0; f(xo) ), where ]x 0 - z [  < r; moreover,  the normal vectors of  the sphere 

and F have opposite signs at the point of  tangency. Comparing the principal curvatures of  both surfaces and taking into 

account that Sxo(r ) lie nowhere below F ,  we obtain H(f(x)) _< H s =- 1/r. Now, using the monotonicity property of  H(t)and 
the fact that the point (z; f(z)) of F d o e s  not lie higher than (x0; fix)), that is, flXo) > flz), we find H(f(z)) <_ H(f(xo)) <_ 1/r. 
Passing to the limit in this inequality as r --, R, we then obtain H(f(z))dist(z; dg) <_ 1. 

Inequality in the other direction for values of X < f(z) is proved analogously, which implies the validity of (6). 

The proof  of  Theorem 3 is based on the extended comparison principle of  mean curvatures for tangent, not necessari- 

ly compact, surfaces. Let us first consider the case of  a domain of the form Q = nn, p, where 1 _< p _< n -  1 [the case p = 

n is omitted since for it IIn, n is a ball and (7) becomes (6)]. Using the equivariant properties of  the mean curvature of a 

hypersurface in R n÷l under homothetic and motion transformations, we can assume that 7rn, p has a form of a cylindrical fiber 

I /n ,p~  = ( x t t , . .  ; rn l e /~n :  ~ x ] < l  . 

tffil 

Let us arbitrarily consider z E Fin, p and assume that R = dist(z, OH). We denote by v and w the projections of vector x E 

r ) 
R n+l onto the mutually orthogonal subspaces Rn*a:V=~xERn*l:ztr-O, l~i"p 

respectively. Next we consider the 3`-parametric torus family 

and ~rffifx~.~n'~:xt=o, o+l~i~n+l)  

~'X {M)--{r= (v; v)~Rn.~ : I i,-i 2+ t i v -Xen . t  1-W~=ra), 

where r and M a r e  fixed numbers such that 0 < r < R < M < + ,o. From the representation of torus ~ ( M )  we see that 

its projection along coordinate vector en+ 1 is a compact, strictly interior subset of fiber IIn, p. 
Let f i x ) b e  an arbitrary solution of (1) in IIn, p and suppose that 3`oiS the greatest lower bound of 3  ̀for which ~ ( M )  

lies strictly above F .  As above, we verify that ~o < + c~ and ~xo(M) is tangent to F a t  some (:Co; fix)), where x o E R n lies 

strictly inside the projection of ~,o(M) along en+ 1. Comparing the mean curvature of F a t  the point of tangency to mean 

curvature Ho~of 3-1,o(M), we arrive at H(f(xo) ) < H~xo). 
Suppose that xohas expansion x o = w o + v 0. Calculating the mean curvature of  the torus directly, we find 

• i 
lip + . .  , i  n-p 

n J " l "  * n ,,+,- " 

Next f lx  o) > f(z), since (z; f(z)) lies below any point of  the torus, including also (Xo; f(xo) ). Consequently, 

. - p  r ] / / ( f  t~ :} > ~H ( f  (xo) >~_I + 
' r ' n  ~ + r j  

and after letting M--,  + co, r /R ,  we obtain 

p i p '1 
u ( t ' { z ) ) s -  - = - 

n R rl dist(z;dfl) 
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It is easy to verify thatf l (x)  = - f ix)  is also a solution of (1) with right-hand side Hi(t) = - H l ( - t )  and Hl'(t) >_0. Conse- 

quently, 

p t -.(f(z) )~- 
n dlst (zld~) 

and the proof  of  the first case is complete. 
To prove (8) when 9 = D(a, b), 0 < a < b, we arbitrarily consider a z C D(a, b) and an f (x) tha t  is a solution of 

(1) in f~. We consider the lower part of the horizontal torus 

~ ( " ' , o '  - ' { x , ~ e n * t : x ~ , ~ + ( ~  - x~ =p2 . 

[ [1 t 

which is a figure of  rotation in R n+l for a circle arc given by g(t) = - (02 - (R - t )2 / / 2 .  The mean curvature of  the torus is 

n 

computed from the general formula for axially symmetric surfaces in which we let x = (x 1 . . . . .  xn; Xn+l), f= J E x ~ ,  
4/=1 

n t - R ( n - 1 )  

no t  

It is easy to estimate the mean curvature on the domain, R - p  < t < R + p. 

R+np 
H~ (x) "~H~r, max-rip (R+9} 

Let Po = dist(z, 0[~)-e ,  R o = tzl ,  where e > 0 is sufficiently small. Note that ¢(P0, R) is projected along 

en+ 1 strictly inside D(a, b) and, using the method described above, we obtain 

or, taking into account that dist(z; 0f~) _< }Z[, 

Ro+nPo 
H(f(z))~ 

nPo ( Ro +Po ) 

Izl+nPo dist(z;afl) 
H(f(z))dlmt~z~efl)s-- 

nlzj+nPo dist(z-o~)-c 

Letting ~ --, O, we find PO --" dist(z; 09), that is, 

fZl+ndist(z;O~) l+n 
H(f(z))dlst(z;ofl)~,, 

n(Izl+dist(z;Sfl)) 2n 

Inequality f rom below is proved analogously for fI(x) = -fix). 
3. Example .  Let H(t) = c ( 1 - t  n) - I /n  where c > 0. Then H'(t) >_ O. Let us consider a surface of rotation in 

F 

given by the graph of  the function xn+ 1 = g(tx 1), 1 x 1 = L ~  x~, with mean curvature equal to H( tx l ) .  Rn+l The function 
q = q(p) must satisfy ~i=1 

i ,"I Ig ' (P)Pn-I  1 

npn-~ ap  L ~ m '  ¢p)j 
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Solving this equation for g(p) and letting g'(p) = 0, we get 

or 

1 Cn 23-- I 
g~ (;~)pn-,, = I nctn-1 (i'~n)-~a~= --- (I-(i-p n)-~-) 

~ l+g, 2(p) 0 n-i 

n - 1  

g" (p) cn 1- (1-O n ) - n "  

• n-i n-i 
J l+g 'a (p )  P 

c n  

- -  ~ ( o ) .  n-1 

We verify directly that 

forO _<p 

1 

n-i l-(l-pn) n 
~'(p)- >o 

n ! 
P (l_pn)n 

< 1. Consequently, on the interval of existence, g(o) is convex and increases monotonically for 0 _< P < o0, 

where PoiS determined from lim g'(t) = + co or ~,(po)(cn/n- 1) = 1. Taking for the domain the unit ball, that is, P0 = 1, 
t~Po-O 

we find (cn/n-1) or c = (n-1/n).  Finally, the enumerated properties of g( t )and  qg(t)imply that H(p) = Hl(g(p)), where 

Hl'(t) >_ O, i.e., xn+ 1 = g([x[)  is a solution of (1) in a unit ball with center at zero for which 

n - I  '~ 
lim H1g(l~rl)=lim ~ (l_pn)-D = +,~. 

Ixl-~l p~l n 

Here it is important to note that solution g(p) itself is necessarily bounded. 

4. The possibility noted above that the behavior of the mean curvature, when approaching any point of  the boundary 

of the domain of existence, is singular becomes impossible for isolated singularities. Namely, the following holds: 

T H E O R E M  4. Suppose that Q is a domain in ~ n a n d  q E ~ is a fixed point. Let f i x ) b e  a solution of (1) in fl\{q}. 

Then H(f(x)) is a function bounded in a neighborhood of q and 

1 
11m sup i n ( ~ ( x ) ) l , ,  dist(q;an)' (9) x~q 

Proof. Without loss of generality, we can assume that q -- 0 Let R = dist(0; 0Q) and let ~i = B(0; R)\{0} be a 

subdomain in ~ We first construct a special hypersurface of constant curvature over domain D(a; b), where 0 < a < b < 

R and D(a; b) = B(0; b)\B(0; a) We consider a solution of 

/ ' l - - 1  j 

d ip g ~p) 
=h 

with h = h(a; b) = const > 0 chosen below and with boundary conditions 

l i ra  g' (p)=-=,  l i ra g' (p)=+~, (10) 
p~a+O p~b-O 

The graph of g = g(p) is the surface of rotation g(a; b) with mean curvature (a; b) specified over h(a; b). Here the 

boundary conditions imply that everywhere along cgD(a; b) the space tangent to g(a; b) passes orthogonally to the space {Xn+ 1 

= 0}. F o r a  < p < b 

g' (P) + t-n 
- = h p  c p  , 

! l+g,a(p)" 
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where the constant c = c(a; b) is determined from the boundary conditions. Using (i0), we find 

whence we obtain 

Here the minimum of g(a; b) is on sphere S(9o) of radius Po, where g'(oo) = 0 or 

Let us fix aand bso that 0 < a < b < R and consider surface g(a; b) determined by a, b in (1t). Let gx(a; b) 

denote g(a; b) shifted by ~, E R along the direction of en+ t. Let f ix)be an arbitrary solution of (1) in f~Iand suppose that 

)~oiS the greatest lower bound of X > fix0) (for a fixed x o E f~l)) for which gx(a; b) ties strictly above surface Fdefined by 

f ix) .  Since the global minimum of gx0(a; b) is on S(Oo), for P0 = o0( a; b), repeating the arguments of Sec. 2, we obtain 

It is easy to note that the right-hand side is a decreasing function as a --, 0. Here 

and therefore in the entire punctured ball B(0; o0(a; b))\{0} 

Passing to the limit as bSR, we obtain the desired relation. The theorem is proved. 

5. In this section we waive the requirement that H(t) increase monotonically. Then the problem of classifying integral 

(that is, defined in the entire R n) solutions of an equation with H(t)as the right-band side becomes meardngful even in 

dimension n = 2. Let us give examples illustrating how large the indicated class of solutions is: 

a) any function of the formflx) = f ix I . . . . .  xn) = ~(alx I . . . . .  anxn), where q~(t) is a twice-differentiabte function of 
one variable and a/are constants; 

p 

b) any function of the form v(x) = ~ ( ~  (x-ai)2), where ~'(0) = 0; a i = const and p is an integer such that 2 _< 
i=1 

p<_n;  



c) for large values of n _> 7, for example, n>__7, there exist examples of minimal (that is, H = 0) graphs different 

from a) and b). Let us present the progress in this problem for the two-dimensional case. Let OSCflx) be the oscillation of 

fix) in the set M E R n, that is, OSCf(x)= supflx)- inf flx). xeM 
x E M  xEM xEM 

THEOR EM 5. Suppose that fix) = flXl; x2)-  C 3 is a solution of (1) in the plane N2 with H(t)as the right-hand side. 

Assume that H(t)does not change sign and that 

(I) 17f(x) l-O; OSCargv£(x)<+~. 
~R 2 

Then f ix)is  a function of one variable, that is, there exist constants Pl;/92 and function ~b(t) E C2(~ 2) such thatflXl; x2) - 

~(plXl + p2x2) is fulfilled. 
Proof. For our purposes we extend the concept of 2-capacitance for Riemannian manifold (F; dS 2) with metric dS 2 

2 
= ~_, gijdxidxj, where g(/ = gij(x) are components of the metric tensor and x = (x I ; x2) E ~ 2  For example, for the graph 

ij=l 

of functionf = f(xl;  x2) of class CI(I~ 2) viewed as a surface in R 3  components gO,(x) have the form 

g t j ( x ) = 6 1 j + f x ~ f x j  , (12) 

where 6ijis the Kronecker delta. For two closed nonintersecting sets P, Q C ~2, we let [9] 

2 
0~ 0~p 

~2 t ,  j = l  

(13) 

where g = det II gij II, II giJll is the matrix inverse to II goll' and the greatest lower bound is taken over all the Lipschitz func- 

tions with compact support such that ~ - 1 on P and ~ = 0 on Q. We say that (F; dS 2) has parabolic type if for any 

compactum P C N2 there exists a sequence D k C R 2 of open sets with compact closures such that P C D k C Dk+ 1, ~ Ok 
= ~2 k=l 

ill. caPF(P;~2\D~)=O. 
~-~ 

The following property of graphs in ]~3with mean curvature of the same sign is well known [3], [10]. 

LEMMA. Suppose that F = {(x 1, x 2, x 3) E R3:x3 = fix1, x2)} is the graph of fix1; x2) with mean curvature 

H(x)that does not change sign in R2. Then (F:dS 2 )  has parabolic type as a manifold with a metric of form (12) induced 

from ~2.  

Let us consider any integral solution of (1) satisfying the hypotheses of the theorem. Let 

2 
7f  

il= : R2-~2; <.liB>= ~ AiB 1. 

~ l+lVt'l ~ i=a 

Then after differentiating (1) with respect to x i, i = 1, 2 and performing elementary transformations, we obtain 

Next, 

- OA OA OA 8A 

* 0.1- 2 J 

(14) 
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~g vf~rl - aA 

~:rf g 

whence we obtain that the bracketed expression in (14) vanishes. In addition, 

OA ~h 1 

v t  _ g-z vt<v ';vo> 

where 0 (x )=  arctg [ fx l l  

(14) k f x z j  

and (15) we find 

is a function of class C2(N 3) determined for all x E ~2 [by virtue of (i)]. In our notation, from 

a g-1 g t J  Oe ~--'0i 

j=t 
(16) 

From the last relation we see that (16) is an elliptic equation of divergent type that is linear with respect to 0(x)and is related 

to the Laplace-Beltrami equation. Here, by virtue of (i), 0 = O(x) is a bounded solution of (16). Let us show that O(x I, x 2) 

-= const. To this end we apply arguments developed in [9]. We arbitrarily fix a constant c = O(q), where q E R 2, and 

denote by 0 c the connectivity component of a set on which O(x) > c. Assume that O0 c is not empty and consider the 

function w(x) = O ( x ) - c  on 0 c and equal to zero for x E R2\Oc . Let us arbitrarily fix a compactum P E 0 c and consider 

the exhaustion of 1t~ 2 by open sets D k D P for which 

lira rapE(P;~Z\Dk)=O. 

The existence of such an exhaustion follows from the hypothesis of Theorem 5 and the above mentioned lemma, For any 

Lipschitz function qo (x) admissible in (13) for calculating the capacitance of (P; N2~gk), we have, by virtue of (1.6), 

- Z 
i , j = I  

8 8w 

~a t = I  w J=t j 

2 
• O w  r - z  av av+a~vg-l. ~. fff j  

dx~dx2= 

dxtdz~, 
ax f ax i  

(t7) 

Next note that 

for any positive definite matrix 

(17), we obtain 

2 

j=~ 

il gu ti 

giA "J " Z i Z 
i ,  j=~ i ,  j--, 

and numbers hi, /xj, 1 <__ i, j _<_ 2. Applying the corresponding Cauchy inequality to 

2 
av 3v g-I 

dxldzas 
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2 

~4 f va ~ gij o~ o~ g-l dxldx~" 
~ i , j = l  oxi exj 

Recalling that w ( x ) i s  bounded, for example, ]w(x) I < M,  and ~(x) = 1 is fulfilled on P ,  we find from the last inequality 

2 

f 01¢ O~, g-I 
Z qlj OXl Oxj dxldx2~ 

0 c i,j=l 

which, after passing to the greatest lower bound over all qo (x), yields 

2 
Ow 8w g-I 

p ~,J=l oxi oxj 

By virtue of the property of {Dk}, the right-hand side of this inequality can be made arbitrarily small, that is, 

2 • Ov Ov I V f b ~  - = 0  

g l J  axt ax j  = 
i , j = I  J l+lVf] z 

(18) 

for x E P, and since P C 0 c is chosen arbitrarily, (18) is fulfilled for all x E 0 c. From (i) and the positive definiteness of 

2 

E giJ~i~j' w e  obtain 
i,j=l 

IVO (~¢) L~0, xeOc, 

and, therefore, 0 -- const on 0 c. This means that there exist constants Ol, P2 not simultaneously equal to zero for which 

pffx 1 -O~ex2 -- 0 is fulfilled everywhere in 0 c. Solving this differential equation, we obtain the desired assertion. 
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