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Abstract. For a vertex w of a graph G the ball of radius 2 centered
at w is the subgraph of G induced by the set Ma(w) of all vertices whose
distance from w does not exceed 2. We prove the following theorem: Let
G be a connected graph where every ball of radius 2 is 2-connected and
d(u) + d(v) > |Ma(w)| — 1 for every induced path uwv. Then either G is
hamiltonian or Kpp11 € G C K, V K,y for some p > 2 where V denotes
join.

As a corollary we obtain the following local analogue of a theorem of
Nash-Williams: A connected r-regular graph G is hamiltonian if every ball
of radius 2 is 2-connected and r > 3(|Maz(w)| — 1) for each vertex w of G.
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1. Introduction

In [3-5] the author and N.K. Khachatryan developed some local criteria
for the existence of Hamilton cycles in a connected graph, which are ana-
logues of the global criteria due to Dirac [11], Ore [16] and others. The
idea was to show that the global concept of hamiltonicity can, under rather
general conditions, be captured by local phenomena, using the structure of
balls of small radii. In this paper we present a new result on this topic.

We use [10] for terminology and notation not defined here and consider
finite simple graphs only. Let V(G) and E(G) denote, respectively, the

“Please reference this paper as: Armen S. Asratian, New Local Conditions for a Graph
to be Hamiltonian, Graphs and Combinatorics, 22 (2006) 153-160
TSupported by the Swedish Research Council (VR)



vertex set and edge set of a graph G, and let d(u,v) denote the distance
between vertices u and v in . For each vertex w of G and a positive integer
r, we denote by N (u) and M, (u) the sets of all v € V(G) with d(u,v) = 1 and
d(u,v) < r, respectively. For a vertex u of a graph G the ball G, (u) of radius
r centered at u is the subgraph of G induced by the set M, (u). The square
of a graph G is the graph obtained from G by joining every pair of vertices
at distance 2 in G. A graph G is claw-free if G has no induced subgraph
isomorphic to K; 3. A graph G is called I-tough if for every nonempty set
S C V(G), the graph G — S has at most |S| components. Clearly, every
hamiltonian graph is 1-tough.

A classical result on hamiltonian graphs is the following theorem.

Theorem A (Ore [16]). Let G be a graph on at least 3 vertices such
that d(u) + d(v) > |V(G)| for each pair of nonadjacent vertices w,v. Then
G is hamiltonian.

Later, several authors (see, for example [12,14]) have found that the
condition in Theorem A can be relaxed if we allow a class of exceptions. Set

K={G: Kpp+1 € G C K,V Kp; for some p > 2} (V denotes join).
Theorem B (Jung [12], Nara [14]). Let G be a 2-connected graph such

that d(u) + d(v) > |V(G)| — 1 for each pair of nonadjacent vertices u,v.
Then either G is hamiltonian or G € K.

The next result shows that for regular graphs the condition of Theorem
B is sufficient for hamiltonicity without any exceptions.

Theorem C (Nash-Williams [15]). A 2-connected regular graph G is
hamiltonian if d(u) > 1(|V(G)| — 1) for each vertex u.

The author and Khachatryan [5] improved Theorem A to a result of local
nature. We proved that a connected graph G with |[V(G)| > 3 is hamiltonian
if d(u) + d(v) = |N(u) U N(v) U N(w)| for each path vwv with uv ¢ E(G).
This result was extended in the following way:

Theorem D (Asratian et al. [7]). Let G be a connected graph with
|[V(G)| = 3 where

(1.1) d(u) + d(v) = |N(u) U N(w) U N(v)| — 1, for each path wwv with
wv ¢ E(G), and

(1.2) d(u,v) =2 = |[N(u) N N(v)| = 2.

Then either GG is hamiltonian or G € K.



Note that all claw-free graphs satisfy condition (1.1).

If w € N(u)N N(v) then N(u) U N(w) U N(v) C Ma(w). Therefore
Theorem D implies the following corollaries:

Corollary D1. Let G be a connected graph with |[V(G)| > 3 where
d(u) +d(v) = |Ma(w)| — 1 for each path vwv with uv € E(G). If G satisfies
condition (1.2) then either G is hamiltonian or G € K.

Corollary D2 [4]. A connected graph G with |V (G)| > 3 is hamiltonian
if d(u) + d(v) > |M2(w)| for each path uwv with uv ¢ E(G).

A. Saito [17] showed that for a 2-connected graph G of diameter 2 con-
dition (1.2) in Theorem D can be omitted. This gives the following gener-
alization of Theorem B:

Theorem E (Saito [17]). Let G be a 2-connected graph of diameter
2 where d(u) + d(v) > |N(u) U N(w) U N(v)| — 1 for each path wwv with
uwv ¢ E(G). Then either G is hamiltonian or G € K.

Some other localization results related to Theorems A, B and D can be
found in [1-9,13].

Remark 1. Every graph G satisfying the conditions of any one of the
above theorems has the following property: all balls of radius 2 in G are
2-connected. This is evident if G satisfies the conditions of any one of the
Theorems A, B, C and E because then G3(u) = G for each vertex u and
G is 2-connected. If G satisfies the condition (1.2) of Theorem D then it
is not difficult to see that this implies that all balls of radius 2 in G are
2-connected.

2. Results

Our main result is the following theorem:

Theorem 1. Let G be a connected graph with |V(G)| = 3 where

(2.1) d(u)+d(v) > |Ma(w)|—1 for every path uwv with uv ¢ E(G), and
(2.2) all balls of radius 2 in G are 2-connected.

Then either G is a hamiltonian graph or G € K.

It follows from Remark 1 that Theorem 1 is a joint generalization of
Theorems A, B and C as well as Corollaries D1 and D2. Since the set K
contains no regular graphs, Theorem 1 implies the following corollary:



Corollary 2. Let G be a connected regular graph on at least 3 vertices
where every ball of radius 2 is 2-connected and d(u) > 3(|Ma(u)| — 1), for
each vertex u. Then G is a hamiltonian graph.

Corollary 2 is a generalization of Theorem C because for each graph G
satisfying Theorem C we have Ga(u) = G for each vertex u. The next result
follows from Corollary 2:

Corollary 3. Let G be a connected regular graph on at least 3 vertices
where d(u) > 2| Ma(u)|, for each vertex u. Then G is a hamiltonian graph.

A similar condition for hamiltonicity of an arbitrary graph by using balls
of radius 3 was obtained in [5]: A connected graph G on at least 3 vertices
is hamiltonian if d(u) > £|Ms(u)| for each vertex u of G. Note that this
result also follows from Theorem 1.

Now we discuss the sharpness and usefulness of Theorem 1.

Every graph G satisfying the conditions for any one of the Theorems
A, B, and C is dense (|E(G)| > constant - |V (G)|?) and has diameter 2.
In contrast with this, for every integer n > 2 there are sparse graphs of
diameter n which satisfy the conditions of Theorem 1. For example, the
graph G = szn which is the square of a path P, of length 2n satisfies the
conditions of Theorem 1 and has 4n — 3 edges and diameter n.

Similarly for every n > 2, the square of a cycle of length 4n is a 4-regular
graph of diameter n which satisfies the conditions of Corollary 2 and has 8n
edges.

Remark 2. The class of graphs satisfying the conditions of Theorem 1
contains some claw-free graphs (for example, P3,) as well as graphs which
are not claw-free (for example, K, , for n > 3). The graph P3,, n > 3 does
not satisfy Theorem E and condition (1.2) of Theorem D. Thus Theorem
1 is incomparable to Theorems D and E in the sense that neither theorem
implies the other. Furthermore Theorem 1 is incomparable to any theorem
which gives a sufficient condition for a claw-free graph to be hamiltonian.



Remark 3. Theorem 1 cannot be relaxed by replacing the condition
(2.1) by the condition (1.1). Consider, for example, the graph G below.

Since G is claw-free, G satisfies condition (1.1). Furthermore every ball
of radius 2 in G is 2-connected, that is, G satisfies condition (2.2).  However
it is not difficult to verify that G is not hamiltonian.

Remark 4. Condition (2.2) for a graph G implies that G is 2-connected.
Theorem 1 cannot be relaxed by replacing the condition (2.2) by the condi-
tion G is 2-connected. Consider, for example, the graph G constructed by
N.K. Khachatryan where V(G) = {u3,u2, ..., Un, 01,2, ..., Un, Z,y, 2}, n > 6

and E(G) = {ujuj,viv;: 1 <i<n—-3,i<j<n}u
{un—zﬂi,vn—zw,unqy,vnfly,unz,an}-
Clearly, the graph G is 2-connected and satisfies condition (2.1). How-
ever (7 is not hamiltonian.

3. Proofs

Let C be a cycle of G. We denote by 6 the cycle C' with a given
orientation, and by T the cycle C with the reverse orientation. We use u™*
to denote the successor of u on and u~ to denote its predecessor. If
u,v € V(C), then uCv denotes the consecutive vertices of C' from u to v in
the direction specified by C'. The same vertices, in reverse order, are given
by vCu. Ifu = v then 'uz‘)v and vgu consists of one vertex u.

It was proved in [7] that if a 2-connected graph G satisfies condition (1.1),
then either G € K or G is 1-tough. Since N(u) U N(v) U N(w) C Ma(w),
this implies the following property:



Lemma 1. Let G be a 2-connected graph where d(u)+d(v) > |Ma(w)|—
1 for every path uwv with uv ¢ E(G). Then either G € K or G is 1-tough .

Remark 5. Let uwv be a path in G with uv ¢ E(G). Since d(u)+d(v) =
|N(u) N N(v)| + |N(u) UN(v)|, the condition d(u) + d(v) > |[Ma(w)| — 1 is
equivalent to the condition [N (u) N N(v)| > |Ma(w) — (N(u) UN(v))| - 1.

Lemma 2. Let G be a non-hamiltonian connected graph where d(z) +
d(y) = |Ma(w)| — 1 for each path zwy with zy ¢ E(G). Furthermore, let
be a longest cycle of G, and v, w be vertices such that v € V(G) — V(a),
w € N(v) N V(?}) and

N@) NN(wt)=N@NNw™) ={w}

Then w™ is adjacent to every vertex in Ma(w) — (M (v) U {wt}) and
w™ is adjacent to every vertex in Ms(w) — (M;(v) U{w™}). In particular,
wtw™ € E(G).

Proof. We have v,wt € M(v), vw™ ¢ E(G) and d(v) + d(w™) >
|Ms(w)| — 1. By Remark 5 this is equivalent to

IN(v) N N(w™)| = |Ma(w) — (N(v) UN(w))| - 1.

Then N(v)NN(w™) = {w} implies Ma(w) — (N(v)UN(w™)) = {v,wt}.

This means that w* is adjacent to every vertex in Ma(w) — (M;(v) U
{w?*}). In particular, we get wrw™ € E(G).

In a similar way we can show that w™ is adjacent to every vertex in
Ma(w) — (My () U {w}).

Proof of Theorem 1. Let G be a graph satisfying the conditions in
the theorem. Suppose that G is not hamiltonian. Choose a longest cycle C
in G and specify an orientation of C.

Claim 1. There is a vertex in V(G) — V(C) which has at least two
neighbors on C.

Proof. Suppose that the claim is false, and consider a vertex v € V(G) —
V(C) with a neighbor on C. Let N{v) N V(C) = {w}. Since the ball
G2(w) is 2-connected, there is a path P in Ga(w) — {w} with origin w*
and terminus v. Clearly, P has an internal vertex which lies on é since
. otherwise deleting from C the edges ww™ and adding P we could obtain a
cycle that is longer than C. Let z be a vertex on V(P) N V(C) such that
all other vertices on the path 2Pv do not belong to C. Clearly, z # w*



and z # w™™ because otherwise there is a cycle which is longer than C. By
Lemma 2, w™w', 272" € E(G) and also w™z € E(G) since z € My(w) —
(Mj(v) U {w™}). But then the cycle w2 BowC 22t Cw~ is longer than
C, a contradiction.

Claim 2. There is a vertex u € V(G) — V(C) and a vertex w € N(u) N
V(C) such that either |[N(u) N N(wt)| > 2 or |N(u) N N(w™)| > 2.
Proof. By contradiction. Suppose that

N(u)NN(w") = N(u) N N(w™) = {w}, (1)
for each pair u,w where u € V(G) — V(C) and w € N(u) NV (C).

Choose a vertex v in V(G) — V(C) such that [N(v) N V(C)| > 2 (see
Claim 1). Set W = N(v) N V(C) and k = |W|. Let wi,...,wx be the
vertices of W, occuring on E} in the order of their indicies. By (1), we have

N@)NN@wf) = No)NN@w) = {wi},  (i=1,...,k). (2)

By the condition of Theorem 1, the ball Ga(v) is a 2-connected graph.
Consider in Ga(v) — w a shortest path P = wgu;...uy where ug = wf and
u; € {wo,...,wr}. By (2),u; € N(v). Then d(v,u;) = 2 and there is a vertex
v1 € N(v) which is adjacent to u;. We will show that v; = w,. Clearly, v; €
N(v)nV(C) = {wx, ...,wp } because otherwise there is a cycle C’ which is
longer than C. (For example, C' = wlvvlulwi"ﬁwl ifu; € V(C)and C' =
wlvvlulwf'ﬁufufﬁwl if u; € V(C).) Suppose that v; € {wo, ..., wy}, say
vy = wy. Clearly, w € Ma(ws) — (My(v) U {wF}). Therefore, by (2) and
Lemma 2, w] is adjacent to wj . But then the cycle wyvws Cwiwy Cw is
longer than C, a contradiction. Therefore, vy € {wa,...,w} and v, = w,
that is,

ww € E(G), U1w¢¢E(G), E=2,: i K ) (3)

Since u; is adjacent to the consecutive vertices w; and w;" on Z'), and C
is a longest cycle of G,

u; € V(C). (4)

We will show now that



vus ¢ E(G). (5)

Suppose to the contrary that vug € E(G). Then (3) and wy ¢ V(P)
imply that up € N(v) — V(C). We have wyus € E(G),u; € V(C) and
ug € N(v) — V(C). Therefore, by (1), ujui € E(G). But then the cycle
wlvuzulwf' ul_ui" wi is longer than C.

Thus vus ¢ E(G). Clearly, ug € Ms(w;) because wiuy, ujus € E(G).
Then by (5) and Lemma 2, necessarily wius € E(G). But this contradicts
the assumption that ugu;...u; is a shortest path with origin 'wf and terminus
in {ws,...,wg}.

The proof of Claim 2 is completed.

We continue to prove the theorem. By Claim 2, there is a vertex v €
V(G)—V(C) and a vertex w; € V(C) such that either |[N(v) N N(wj )| > 2
or |[N(v) N N(wj )| = 2. Without loss of generality we assume that |N(v) N
N(wy)| = 2. The choice of C implies that N(v) N N(w]) C V(C). Set
W = N(v) N V(C) and k = |W|. Let wi,...,w, be the vertices of W,
occurring on T in the order of their indices, k > 2.

Set Wt = {w],...,w;}. We will count the number of edges between
W+ and W which we denote by e(W™*,W). The choice of C implies that
Wt U {v} is an independent set, and N(w;") N N(v) N (V(G) — V(C)) = 0,
for 1 < i < k. Moreover, for each i,1 < i < k, d(v,w;) = 2 and w; €
N(v) N N(w]"), so by the hypothesis of the theorem and by Remark 5,

IN(v) N N (w;)| 2 |Ma(w;) = (N(v) UN(w)| - 1. (6)

Obviously, N(w;) NWT C N(w;) — (N(v) U N(w]) U {v}).

Thus,

[N (wg) "W+ < [N(wg) = (Nw) UN(w)| = 1 < [Ma(w;) — (N(v) U
N(w)| - L.

This and (6) imply that |N(w;) NW| < |[N(v) N N(w;")|.

Hence,

e(WH, W) = T8, IN(wi) "\WH| < 5 [N(v) N N(wf)| = e(WH,W).

It follows, for each 4,1 < ¢ < k, that

N(w;) = (N(w) UN(w) U {v}) = Nw;)) nW+ C W, (7)

Noting that & > 2 and the fact that |[N(w]) N N(v)| > 2, we now
prove by contradiction that w} = w;, L for each i = 1,....,k. (We consider

Wi = W).)



Assume without loss of generality that w] # w;, whence wy; ¢ W+.
Observe that w; € N(w), otherwise from (7), w; € WT. Since C is a
longest cycle, wy wi ¢ E(G). Hence wyi # w; . Repetition of this argument
shows that wi # wi,, and wlw; € E(G) for all i € {1,...,k}. By
assumption, N(wj )N N(v) contains a vertex = # w;. Since C is a longest

cycle, z € V(C), say that z = w;. But then the cycle wyvw;wi Cw; w; Cw;
is longer than C. This contradiction proves that w} = wj, for each
i=1,..k.

Since C is a longest cycle, there exists no path joining two vertices of
W+ U {v} with all internal vertices in V(G) \ V(C). Hence the number of
components in G — W is greater than |[W|, that is, G is not 1-tough. Then
Lemma 1 implies that G € K. This completes the proof of Theorem 1.

Proof of Corollary 3. Let uwv be a path in G with uv ¢ E(G). Since
G is regular, we have that d(u) + d(v) = 2d(w) > |My(w)|. The condition
d(u) + d(v) > |Ma(w)| and Remark 5 imply that |N(u) N N(v)| > 2 since
u,v € Ma(w)—(N(u)UN(v)). Thus G satisfies the condition (1.2). Then, by
Remark 1, all balls of radius 2 in G are 2-connected. Therefore, by Corollary
2, G is hamiltonian.
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