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Abstract. We consider a theoretical model which extends the basic ”class-teacher
model” of timetabling and which corresponds to some situations which ocecur fre-
quently in the basic training programmes of universities and schools:

We are given m teachers T1, ..., T}, and n classes Ch,...,Cp. The set of classes
is partitioned into p disjoint subsets G, ..., G in such a way that in addition to
the lectures given by one teacher to one class, there are some lectures given by one
teacher to the students of all classes in group G, 1 <1 < p. Such lectures will be
called group-lectures. The number aj; of one hour group-lectures which teacher T;
must deliver to group G} and the number bs; of one hour class-teaching which /i
must give to class C; are given. Is there a timetable of t hours (or length t), so
that each class C; and each group G, receives all their lectures, but no student is
scheduled to be taught by more than one teacher in each hour, and no teacher must
teach to more than one group or class in each hour? We show that this problem is
NP-complete and find some sufficient conditions for the existence of a timetable of
length ¢. We also describe an algorithm for constructing a timetable corresponding
to the requirement matrices A = (q;;) and B = (bi;) and show that under a natural
assumption on A and B this algorithm finds a timetable within % of the optimum

length.
Keywords: timetabling, university timetable, edge coloring, chromatic index
1. Introduction

Timetabling problems have very often been formulated in mathematical terrs
(see for instance, [12,16,19,21,23,25]). However these problems strongly depend on
the types of schools, universities and educational systems and they can be very
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different. Therefore, there is no universal timetabling model which could be applied
everywhere. A huge variety of timetabling models has been described in the OR
literature [3-6,8,10,12,15-17,20-26]. The most popular model is the so-called class-
teacher model which is defined as follows:

Class-teacher model. There are m teachers T,..., T}, and n classes (1, ..., ).
A class consists of a set of students who follow exactly the same program. We are
given an m x n requirement matrix B = (b;;) where b;; is the number of lectures
involving class C; and teacher T;. We shall assume that all lectures have the same

duration (say one period or one hour) and the set {1,2, ...,t} of all periods is given.

In the simplest case, without including all constraints which are usually present
in real situations, the timetabling problem associated to this model is formulated
as follows:

Problem 1. Assign each lecture to some period in {1,2, ...t} in such a way that

no teacher (resp. no class) is involved in more than one lecture at a time.

Such a timetable when it exists is called a timetable of length ¢ corresponding
to the matrix B. It is known (see the next section) that a timetable of length ¢
corresponding to B exists if and only if

m n
L= max(tn?x;bij,m?x;bij}. (1.1)
Moreover if ¢ satisfies this inequalitiy, a timetable can be constructed in polynomial
time.

Class-teacher models with some additional requirements where the timetabling
problem can still be solved polynomially are described in [22,24]. But in general,
the various real-life restrictions are such that the corresponding timetabling problem
becomes NP-complete (see [13] for concepts related to complexity). For example,

the NP-completeness of the following problem was proved in [9].

Problem 2. There are n classes C1, ..., C,, and m teachers T}, ..., Ti,. The number
of lectures which teacher T; must give to class C;, is b;;. We are also given for
each teacher Tj a set L(T}) C {1,...,t} of periods during which T} is available for
teaching, and for each class C; a set L(C;) C {1,...,t} of periods during which Cj is
available for teaching. The problem is to determine whether there exists a timetable

of length ¢, so that each class receives all its teaching corresponding to the matrix
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B = (b;;), the availabilities of the teachers and classes are not violated and no class

or teacher is involved in more than one lecture at a time?

All lectures given by one teacher to one class will be called individual lectures
in the remainder of the paper.

In this paper we shall consider the following theoretical model which extends
the class-teacher model and which corresponds to some situations which occur fre-

quently in the basic training programmes of universities and schools:

A generalized class-teacher model: We are given m teachers T Tyeey Iy and n
classes C, ..., Cy,. The set of classes is partitioned into p disjoint subsets G, ..., G,
in such a way that in addition to the individual lectures given by one teacher to one
class, there are some lectures given by one teacher to the students of all classes in
group Gy, 1 <1 < p. (Such lectures will be called group-lectures). The number aj;
of group-lectures which teacher T; must deliver to group G; and the number bi; of
individual lectures which T; must give to class C; are given. We shall assume that
all lectures have the same duration (say one period) and the set {1,2, .., t} of all

periods is given.

Clearly if all elements of A are 0 or if all groups contain exactly one class, then

we have the class-teacher model.

In the simplest case, without including some constraints which are usually
present in real situations, the timetabling problem associated to the generalized

class-teacher model can be formulated as follows:

Problem 3. Is there a timetable of ¢ periods (or of length t), where each class
C; and each group G receive all their lectures, but no student is scheduled to be
taught by more than one teacher in each period, and no teacher must teach to more

than one group or class at a time?

Such a timetable when it exists will be called a university timetable of length t
corresponding to the matrices A = (a;;) and B = (b;;). We denote by tmin(A, B)
the minimum ¢ for which there exists a university timetable of length ¢ corresponding
to A and B.

The generalized class-teacher model describes the situation which occurs in

many universities and schools where a collection of programmes are offered to the
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students; these programmes contain a few topics which are common to all pro-
grammes. It is in general the case (in a science faculty or an engineering institution)
of basic courses in mathematics, physics, chemistry, biology, etc. For these lectures
students of different programmes (corresponding to the classes in the above formu-
lation) are grouped to attend group-lectures in these topics. Such a problem arise
for instance at Lulead University of Technology in Sweden and Ecole Polytechnique
Fédérale de Liausanne in Switzerland; at the EPFL for instance twelve programmes
are offered (12 classes). Groups of three or four classes are formed for these courses
of basic science which now correspond to group-lectures. The groups are also the
same for all courses of mathematics, physics, etc. Besides these group-lectures there
are in each programme individual lectures which-correspond to courses given to one
class (students of one programme).

A similar system was used and is still applied in many universities of the former

republics of the Soviet Union.

The generalized class-teacher model was for the first time investigated by As-
ratian [1]. Some sufficient conditions for existence of university timetable were
obtained in the case when the set of {Ty, ..., T}, } consists of two different types of
teachers: professors and lecturers. The professors must lecture to groups G, ..., Gp
only and the lecturers can teach to classes C1,...,Cy only. Such model is called
the professor-lecturer model. In particular, it was proved in [1] that a timetable of
length ¢ corresponding to the matrices A and B exists if each teacher has at most i
lectures, the number of all lectures of each class does not exceed ¢ and the number
of group-lectures in each class does not exceed £.

The following results are obtained in the present paper:

1. We prove that the problem of deciding whether ty:n(A, B ) < t, for a given
t is NP-complete.

2. We give a sharp upper bound for ¢, (A, B) and find some sufficient condi-
tions for the existence of a timetable of length ¢.

3. We suggest a polynomial algorithm for constructing a timetable correspond-
ing to the requirement matrices A and B and show that under a natural assumption
on A and B this algorithm finds a timetable within % of the optimum length.

4. In section 4 we consider more extensively the priofessor—lecturer model.
2. Timetables and edge colorings of graphs

Here we consider some interconnections between timetables and proper edge
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colorings of bipartite graphs. We use [7] for terminology and notation of graph
theory not defined here. Let V(G) and E(G) denote, respectively, the vertex set
and the edge set of a graph G. The degree of a vertex z € V(@) is denoted by dg(z).
An edge coloring of a graph G with colors a, . .., o is an assignment of colors to the
edges of (7, one color from {ay, ..., } to each edge. Such a coloring is called proper
if no pair of adjacent edges receives the same color. More formally, an edge coloring
of G with colors from the set {a1,...,a:} is a mapping f: E(G) — {a1,..., s}
If f(e) = ay, then we say that the edge e is colored ay. The minimum ¢ for which
there exists a proper edge coloring of G with ¢ colors is called the chromatic index of
G and denoted by x'(G). According to the well-known Kénig's Coloring Theorem
(18], ¥'(G) = A(G) for any bipartite graph G' where A(G) denotes the maximum
degree of G. This result provides the answer to Problem 1. But first we need a
formal definition of timetables.

We have n classes C'y, ..., Cy, m teachers Ty, ..., T, and an n x m requirement
matrix B = (b;;). A timetable of length ¢, corresponding to the matrix B is an nx ¢
array S = (s;5,) satisfying the following three conditions:

(i) each entry of S is either one of the members of the set {T},...,T,,} or is

empty:

(i) the symbol T}; occurs precisely b;; times in the i*h row of 8, for j = 1,...,m;

(1ii) in each column of S all symbols are different.

Now consider a bipartite graph H = H(B), with bipartition (V7,V3) where
Vi={Cy...Cp} and Vo = {T} ..., T, }, where vertices C; and T} are joined by b;;
edges. Then there is a one-to—one correspondence between proper edge colorings
of H with colors 1,2, ..., ¢ and timetables of length ¢, which respect the requirement
matrix B. This correspondence is that the column numbers 1,2, ..., of a timetable
S = (sin) form the color set and s;, = T; if and only if one of the edges with ends
C; and T; is colored with color h. Hence Kénig's Coloring Theorem implies the
following result: A timetable of length ¢ corresponding to B exists if and only if the
inequality (1.1) holds.

A Vi-sequential coloring of H = H(B) is a proper edge coloring where the
edges incident with each vertex C; € V) are colored precisely with the colors
1,2,...,du(C;). A timetable induced by this coloring is called a sequential timetable
corresponding to the matrix B. In fact, this is a timetable in which all the classes
have lessons without interruptions, and all begin at the same time. The problem

of deciding whether a bipartite graph has a V}-sequential coloring, is NP-complete
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[3]. However, in many situations which arise in practice, sequential timetables ex-
ist. Probably the main reason is (see [1]) that a usual property of requirement,
matrices B in practice is that the number of lectures for each class is not less
than the number of lectures taught by each teacher teaching that class, that is, if
Sie1 by = 3T by, for each pair 7, s with by £ 0. It was proved in [1] that this
condition is sufficient for existence of a sequential timetable. In terms of graphs it
can be formulated as follows. .

Proposition 2.1 [1] The graph H = H(B) has a V;-sequential coloring if dy (C)) >
du(T,) for each pair of adjacent vertices C, and T. s, that is, for each pair of vertices
C; and T, with b, £ 0.

It is clear that in terms of edge colorings of the graph H = H(B) Problem 2
can be formulated as follows. For each vertex v € V(H), let L(v) C {1,..,t} bea
set of colors assigned to v. Can H be given a proper edge coloring in which each
edge incident with a vertex v € V(H) receives a color from the set L(v)?

If I(T;) = {1,...,t} for j = 1,..,m and |L(C})| > Yo b forr=1,..n,
then L is called a V4 -scheme. A coloring of G corresponding to a Vi—scheme L is
called an L-coloring of G. The next result gives a connection between L-colorings
and V)-sequential colorings.

Theorem 2.2 [14]. If a bipartite graph H with bipartition (V1,Va2) has a V-
sequential coloring then it has an L-coloring for any Vi—scheme L.

Proposition 2.1 and Theorem 2.2 imply the following result which we will use
later.

Theorem 2.3 [2]. Let L be a Vi-scheme. The graph H = H(B) has an L-coloring
if [L(C})| 2 du(T,) for every pair of vertices C, and T, with b, # 0.

More about interconnection between timetables and edge colorings of bipartite

graphs can be found in [2,17,23,25].

3. A general model

We begin by a formal definition of a university timetable corresponding to the
matrices A and B.

A university timetable of length ¢ corresponding to the matrices A and B is an
n Xt array S = (s;,) satisfying the following conditions:

(i) each entry of S is either one of the members of the set [

empty;
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(%) if C; € G) then the symbol T; occurs precisely aij + b;; times in the ith

rowof 8, for j=1,...,m;

(iii) any two symbols s, and s;,5 in the h** column of S,1 < h < t are

different if classes C, and C;, are contained in different groups.

(iv) if classes C;, and C;, are contained in the same group and s; 5 = T; then

Sish = T if and only if s;, = T} for any class C; of this group.

In other words, conditions (iii} and (iv) mean that in the A** hour,1 < h < ¢,
each lecturer can have either a group-lecture or an individual lecture. For instance
Fig.1 shows a university timetable S of length 4 corresponding to the matrices A
and B with three teachers 71,75, T3, four classes Ci,Cy, Cy,Cy and two groups
Gy = {C1,C} and Gy = {C3, Cy}.

1 2 3 4
1 0 1
& ER AT
am(P 1), pofo 1) g & |nlnfEE
1 0 1 1 0
00 1 Co [Tl Th
Cs .| 1| T2
Fig.1

Now we will show that Problem 3 is NP-complete. It is known that the fol-
lowing restriction of Problem 2 is NP-complete. (We change notations for technical

reasons).

The Restricted Problem 2. There are n’ classes Ci,...,Cy and m’ teachers
Ti,...,Ty. The number of lectures which teacher T; must give to class Cj, is
bi;- Also for each teacher T; a set L(T;) C {1,2,3} of periods during which Tj is
available for teaching, is given such that |L(T})| = 3°7_, b}; > 2foreach j = 1,...,m.
Furthermore, at each period each class is available for teaching. Is there a timetable
of length 3, such that each class receives all its lectures corresponding to the matrix
B’ = (b;;), the availabilities of the teachers are not violated and no class or teacher

is involved in more than one lecture at a time?

Theorem 3.1. The problem of determining, whether there is a university timetable
of length £, corresponding to the matrices A and B, is NP-complete even in the case
=3 and p <4.
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Proof. To prove the theorem it is sufficient to reduce polynomially the Restricted
Problem 2 to Problem 3.

Since ¢ = 3, L(T}) could be one of the sets {1,2}, {1,3}, {2,3},{1,2, 3} for each
J=1,..,m. Let Ry denote the set of teachers T; with L(T;) = {a,b} and 74,
denote the cardinality of Ry, 1 < a < b < 3. Now we will describe a model of a
university timetabling problem for t = 3.

First we define classes. Let n=mn'+r o +71 3+ r2,3. The set of n classes will
consist of classes C', ..., Oy used in the Restricted Problem 2 and r o+ 3+72 3 new
classes which we define in the following way: For each teacher T; with |L(T})| = 2,
1 < j £ m', we introduce a new class consisting of one new student @; who is
not in U?;lci and who has not been considered yet. We will say that this class
{Q;} corresponds to T;. Thus, we obtain n=n’ + ry 2 + 71 3 + 2 3 disjoint classes
O 5005 Cpry Crpmt vy O

Put p = 4. We form four disjoint groups G4, Gz, G3, G4 as follows:

G ={C4,...,Cu},

G2 consists of 7 3 new classes corresponding to the teachers in R 9,

Gz consists of r1 3 new classes corresponding to the teachers in R, 3, and

(74 consists of ra 3 new classes corresponding to the teachers in Ry 3.

Some of the groups Ga, G2, G4 may be empty but for convenience and without
loss of generality we consider the case when G; # () for i = 1,2, 3, 4.

Put . = m/ 4+ 2. The set of teachers will consist of the teachers Ty, ..., Ty
who are mentioned in the Restricted Problem 2 and two new teachers, Ty, and
Tinr42-

Now we have to define requirement matrices A and B. We define an n x (m’+2)
matrix B = (b;;) in the following way: b = b; for 1 <i<n/,1<j<m/, by =0
for1<i<n',m +1<j<m+2; now we define bijfor1+n' <i<nl1<j<
m’ +2: b;; = 1 if and only if the new class (; corresponds to the teacher T; and
otherwise b;; = 0. Futhermore, we define a 4 x (m/ +2) matrix A = (a;;) as follows:
a2mit1 = 2,a3,m'+1 = 1,03 m'42 = 1,04 mry2 = 2 and all other elements of A are
0.

Suppose that there exists a university timetable S; of length 3 corresponding to
the matrices A and B. It consists, in fact, of four timetables for groups G, Gy, G3
and Gy, respectively. It is clear that the timetable for G» contains a column K>
consisting of elements of the set R o, the timetable for G3 contains a column K3
consisting of elements of the set Ry 4, and the timetable for G4 contains a column

K4 consisting of elements of the set Rs 3. The definition of the matrix A implies
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that Ky, K3, K4 are parts of mutually different columns of 84. Therefore, possibly
after permutation of columns of S;, we will transform S; to the form in Fig.2.
Then the timetable for G, which is denoted by S in Fig.2, will be a solution of the
Restricted Problem 2.

Gy S

S Gz | Tasr Tm+1 K,

I

Gs | Tme2| K3 | Tmta

Gy | K Ttz | Tnya

Fig.2

Conversely, if S is a solution of the Restricted Problem 2, then we can construct
a university timetable S; corresponding to the matrices A and B in the same way,

as shown in Fig.2.

Now we reformulate Problem 3 in terms of graphs. We associate with a pair of
matrices A and B a bipartite graph H = H (A, B) with bipartition (X,Y) where

X ={C1,..1CnG11.s Go}, ¥ = {T1, .00, Tor)

and the set E(H) is defined as follows: the vertex T} is joined by ai; edges with
the vertex (G; and by b;; edges with the vertex C;. Let H{A) be the subgraph
of H(A, B) induced by the set {G1,...,Gp,Ti,...,Trn} and H(B) be the subgraph
induced by the set {C,...,Cp,T1, ..., T;n}. Clearly, H(A, B) = H(A)U H(B).
Proposition 3.2. A university timetable of length ¢ corresponding to the matrices
A and B exists if and only if the graph H(A, B) has a proper t-coloring such that
all the edges incident with vertices G; and C; have different colors for each pair G|
and C; with C; € G.

Proof. The proof follows easily from the following interpretation: An edge joining
vertices T; and ) is colored h if and only if teacher T; gives a group-lecture to the
group G at period h; an edge joining vertices T; and C; is colored h if and only if
the teacher T; gives a individual lecture to the class C; at period h.
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Now we will give upper and lower bounds for ¢,,;,, (A4, B). But first we introduce

some parameters. The number

P n
w(TJ) = Z&(j + Zbij
I=1 i=1

is the working time of the tacher T}, and the number

™m ™m
Jj=1 i=1

where C; € (7, is the working time of the class (.

We will also use the following notations:

W = max(max w(T}), max w(C;)),
Fi i

c(A) = maxZa;j,
=1
P

¢(B) = max } by,
4 i=1
m

r(A) = mlax;a;j]

Theorem 3.3.

W < tnin(A, B) < max(r(A),c(A)) + max(c(B), r(B)).

Proof. The lower bound is obvious. To prove the upper bound consider the sub-
graphs H(A) and H(B) defined above. Clearly, A(H(A)) = max(r(4),c(A)) and
A(H(B)) = max(c(B), r(B)). First, we properly color edges of the graph H(A) with
A(H(A)) colors 1,2,...,A(H(A)), and then we properly color the edges of H(B)
with A(H(B)) colors A(H(A)) + 1,..., A(H(A)) + A(H(B)). We obtain a proper

coloring of the graph H(A, B) satisfying the condition of Proposition 3.2.

Corollary 3.4. If max(c(A),c(B)) < min(r(A),r(B)) then t;, (A4, B) < r(A4) +

r(B).
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Theorem 3.5. There is a university timetable of length t,
t< max(r(A),T(B),lg}agxmw(Tj))) + max(c(A),e(B), [W/2]), (3.1)
corresponding to A and B which can be constructed in polynomial time.

Proof. First we describe an algorithm which constructs a proper coloring of the
edges of the graph H(A, B) satisfying the condition of Proposition 3.2.
Step 1. Choose two integers, k and s, satisfying s + k + 1 > W in the following

way:
a) If ¢(A) +¢(B) +1 > W then put k = ¢(A) and s = ¢(B).
b) Otherwise (if ¢(A) + ¢(B) +1 < W) set s =k = |[W/2].
Step 2. Let

X*= {Cz[dH(C,) > S} U {Gz,dH(Gt) = k}
and the set I’ of all edges in H having one end in the set X*. Construct a proper col-
oring of the edges in F" with colors 1,2, .., tp where iy = max(r(A), r(B), maxw(T})).
J

Claim 1. We have ty > max(s,k).

Proof of the claim. In case a) we have
to = max(r(A),r(B), max(c(A),c(B)) = max(c(A4), ¢(B)) = max(s, k).

In case b) since ¢(A) + e(B) + 1 < W we must have a class (; and a group G,
containing C; such that W = ZT;] ai; + Z;ﬂ:i bij, so

™m m
r(4) + r(B) = max > a;+ mz_abez-j >W

=1 j=1

and hence {g > max(r(A), r(B)) > |W/2].

Step 3. Let | = min(s, k) and let Ey be the set of edges which are colored with the
first to — (> 0) colors. (If tg = ! then Ey = (). We keep the coloring of edges in
Ey and we consider that the remaining edges in the graph H — Ej are not colored
(here H — Fj is the graph of all remaining edges in H when Ey has been removed).
We construct a proper coloring of the edges of H(A) — Ey with A(H(A) — Eg) new
colors and a proper coloring of the edges of H(B) — Ey with A(H(B) — Eg) new
colors. This gives a proper coloring of H = H(A, B) with

to — 1+ A(H(A) — Eo) + A(H(B) — Ey)
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colors.

Claim 2. The coloring constructed in steps 1 to 3 corresponds to a timetable (i.e.
satisfies the condition of Proposition 3.2).

Proof of the claim. We only have to show that for each class C; and each group G;
containing C;, the edges incident with vertices ; and C; have all different colors.
Clearly it is true for all such edges in H — Ey from the construction. Let us now
consider a group G and a class C; in G). By definition

m ™m
W = ZGU + Zbij =du(C;) +du(Gh).
j=1 j=1
From the choice of s,k we have s+ k+1> W > dy(G)) +dy(C;). So at most one
of the inequalities dg (C;) > s and dy(G;) > k can hold; therefore C; € X* only
if Gy ¢ X*, and G; € X* only if C; ¢ X*. This implies that the edges in F (and
hence in Ey) incident with Gy and the edges in F' (and hence in Ey) incident with

C; cannot have a color in common.

We observe that the algorithm is polynomial since there are polynomial algo-
rithms to construct proper colorings in bipartite graphs (see, for example, [11]).
Claim 3. The number ¢ of colors used satisfies

t < tg + max(c(A),e(B), |[W/2]).

Proof of the claim. In case a) we have s + k > ¢(A) + ¢(B) + 1 > W so that
max(c(A),¢(B)) > [W/2|. Thus we have to show that ¢ < ¢ty + max(c(A),c¢(B)).
In H(A) — I vertices G, have degrees at most | if G; € X* and at most k by
definition of X* if G; ¢ X*, so vertices G) have degree at most c(A) because
! = min(s, k) = min{e(A), ¢(B)).

Similarly one verifies that in H(B) — Ey all vertices have degree at most ¢(B).

Hence the number of colors used satisfies
t<to— 1+ A(H(A) - Ep) + A(H(B) — Ep)

<ty — min(c(A), e(B)) + ¢(A4) + ¢(B) = to + max(c(A), ¢(B)).

Let us now examine case b) where | = s = k = |[W/2] and ¢(4) + ¢(B) < W. If
max(c(A),c(B)) < |W/2] we have to show that t <ty + |[W/2]. Since

t=to— 1+ A(H(A) — E) + A(H(B) — Eo)
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we have

t<to— [W/2] + |W/2] + |[W/2] < to+ |W/2].

Suppose now that max(e(A),c(B)) > |W/2]. We have to show that ¢ < tg +
max(c(A),c(B)). Since ¢(A) + ¢(B) < W, we have min(c(A),¢(B)) < |W/2]. One
of (H(A) — Ey), (H(B) — Ep) has maximum degree at most |W/2|. Therefore

t=to— 1+ A(H(A) - Eo) + A(H(B) - Fy)

<t — [W/2] + [W/2] 4+ max(e(A), c( B)).

To end the proof of Theorem 3.5 we observe that we have constructed with the
algorithm a proper edge coloring (according to Claim 2) which defines a university
timetable (see the proof of Proposition 3.2). From Claim 3, the number ¢ of periods
satisfies (3.1). The proof of Theorem 3.5 is complete.

The above proof gives in fact a polynomial algorithm for constructing a uni-
versity timetable which has a number of periods satisfying (3.1).

Corollary 3.6.

W < tin(A, B) < max(r(A4),r(B), sz_Dc w(T;)) + max(c(4),c(B), [%{J)

Remark 3.7. It is not difficult to see that in the case when

max(r(A), r(B), maxw(Ty) <
max(c(A),e(B)) < w

— 2

both algorithms described in the proofs of Theorem 3.3 and Theorem 3.5 give uni-

versity timetables of minimum length corresponding to the matrices A and B.
Now we deduce some corollaries from Theorem 3.5 and Corollary 3.6.

Corollary 3.8. If max(c(A),c(B)) < %] and

max(r(A), T(B)a ma‘xw(Tj)) < L
7

w
TJ

for some A, 0 < A < 2, then there is a university timetable corresponding to A and

B within 242 of the optimum length which can be constructed in polynomial time.
2)
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Proof. Let { denote the length of a timetable constructed by the algorithm described
in the proof of Theorem 3.5. Then

and, therefore, t < %tmm(fl,B).

By taking, for example, A = % we obtain the following result.

Corollary 3.9. If max(c(A),c(B)) < [W/2] and
m&X(T(A):""(B)st‘r_lxw(Tj)) < [gwj

then there is a university timetable corresponding to A and B within % of the

optimum length which can be constructed in polynomial time.

Corollary 3.10. Let A and B be the requirement matrices and ¢ be a positive
integer such that

a) every lecturer has at most %t group-lectures and at most %t individual
lectures,

b) the working time of every class and every lecturer does not exceed %t.

Then there is a university timetable of length t corresponding to the matrices
A and B.

Proof. Clearly, W < 2t,c(A) < 3t,¢(B) < 4t,7(4) < 2t and r(B) < 2t. Then the

result follows from Theorem 3.5.

Let us compare the upper bounds in Theorem 3.3 and Corollary 3.6. We show
that in some cases the bound in Theorem 3.3 is better and in other cases the bound

of Corollary 3.6 is better. Let, for example,
max(c(A),e(B)) < min(r(A4),r(B)) < |W/2].

Then the bound of Theorem 3.3, 7(A) +r(B), is better than the bound of Corollary
3.6, max(r(A),r(B)) + [W/2]. But if max(c(A),c(B)) < min(r(A),r(B)), both
r(A) and 7(B) are approximately | 2W |, max(c(A4),¢(B)) < |W/2) and

max(r(4),r(B), maxw(Ty) < |3W),
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then the bound in Theorem 3.3 is about L%WJ and the bound in Corollary 3.5 is
at most | £W |, that is, better.

4. Professor—lecturer model

In this section we consider a special case of Problem 3 where some type of
teachers has only group-lectures and the other has only individual lectures. We
call the first type of teachers professors and the second type of teachers lecturers.
Our model in this special case is called the professor-lecturer model. Clearly, every
column in A corresponding to a lecturer consists of 0's only, and every column in
B corresponding to a professor also consists of 0:s only. This model was considered
for the first time in [1].

Note that Problem 3 remains NP-complete even in this case because in the
proof of Theorem 3.1 we have constructed, in fact, a professor-lecturer model.

Now we give a sharp bound of ¢,,;,(A, B) in the case of the professor-lecturer
model. Let for each T,,1 < s <m, and each G,1 <1 < p,

m n
w{GiaTa) - Zalj T Zbis
J=1 i=1

and W1 (A, B) = maxw(Gy, T,), where the maximum is taken over all pairs [, s with
Zi:C,EG; bis # 0.

Furthermore, let V1 = {C),...,Cp}, X; = {G1,...,G}}, and let Vo denote the
set of lecturers and X the set of professors. Then the graph H(B) has bipartition
(V1, V2) and the subgraph H(A) has bipartition (X, X3).

Theorem 4.1 In the case of the professor-lecturer model

W < tmin(A, B) < max(W, W;(4, B)).

Proof We will prove the upper bound. Let Wy = max(W, W1 (A, B)). Clearly, we can
properly color edges of the subgraph H(A) with colors 1,2,...,W,;. Now consider
the subgraph H = H(B). To each vertex C, € V; we assign the subset L(C,) C
{1,2,..., Wy} of colors which are not used for coloring the edges incident with the
vertex (7 where G) is the group which contains the class C,. Then, |L(C,)| =
Wo—3IL) @y, if Cr € Gy. Clearly, |L(Cy)| = 2 iey brj for each r = 1,...,n because
Wy = W = maxw(C;). Furthermore, |L(C,)| > ZL] b;s for each pair C, and T,
with b, # 0. I(FOtherwise

Wi(A,B) =3 a; <> b
J=1 i=1
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which contradicts the definition of Wi(A, B)). This means that the graph H =
H(B) satisfies the condition of Theorem 2.3. Therefore there exists an L-coloring
of H, that is, a proper edge coloring of H in which each edge incident with a vertex
C receives a color from the set L(C,). Together with the proper edge coloring
of H(A) this L-coloring gives a proper Wy-coloring of H(A, B) which satisfies the
condition of Proposition 3.2. Therefore there exists a university timetable of length
Wy which corresponds to the matrices A and B.

Now we will compare the upper bound in Theorem 4.1 and the upper bound
for the general case in Corollary 3.6.

If max(W,W;(A, B)) = W then, by Theorem 4.1, t,in(A, B) = W. Thus, in
this case the bound in Theorem 4.1 is the best.

Now let max(W, W, (A, B)) = W1(A, B). We have

Wi(4,B) < m?x;ais + m;abeéj =7r(A) +¢(B)

= max(?‘(A},r(B),m?xw(i’})) + max(c(4),e(B), [W/2]).

Thus, in this case also the bound in Theorem 4.1 is not larger than the bound in
Corollary 3.6.

Remark 4.2. The following example shows that the upper bound in Theorem 4.1 is
sharp. Moreover, in this case the upper bound in Theorem 4.1 is less than the upper
bound in Corollary 3.6. Let p=1,n = m and the elements of A and B are defined
as follows: ay,, =0and ay; =1fori=1,..,m—1,and b;, =1fori=1,...,m and
all other elements of B are 0. Clearly, W = m,c(A) = 1 = r(B), ¢(B) = m and
r{A) = m—1. Then the upper bound in Corollary 3.6 is 2m and the upper bound in
Theorem 4.1 is 2m—1. On the other hand, consider a timetable of length t,,;,(A, B)
corresponding to the matrices A and B. Clearly, m — 1 columns are occupied by
group-lectures. Thus, we have only tyin(A4, B) — m + 1 columns for scheduling m
individual lectures of the teacher T,, . This implies that m < ty, (A, B) — m + 1.
Therefore, ty,in(A, B) = 2m — 1 and the upper bound in Theorem 4.1 is sharp.

The next two corollaries follow easily from Theorem 4.1.
Corollary 4.3. Consider the professor-lecturer model and let ¢ and k be positive
integers, k < ¢, such that

a) the working time of each class and each professor does not exceed {,

b) each group has at most k group-lectures, and
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c) the working time of each lecturer does not exceed t — k.
Then there exists a university timetable of length ¢ corresponding to the ma-
trices A and B.

Corollary 4.4 [1]. Consider the professor-lecturer model and let ¢ be a positive
integer such that

a) the working time of each class does not exceed ¢,

b} the working time of each professor and each lecturer does not exceed 5],

c¢) each group has at most | £] group-lectures.

Then there exists a university timetable of length ¢ corresponding to the ma-
trices A and B.

Theorem 4.5. Consider the professor-lecturer model and let ¢ be a positive integer
such that working time of each class and each professor does not exceed ¢. If there
exists a sequential timetable corresponding to the matrix B then there exists a

university timetable of length ¢ corresponding to the matrices A and B.

Proof. First we properly color the edges of the graph H(A) with colors 1,2, ..., 1.
Now to each vertex C,. € V of the graph H(B) we assign a set of colors L(C,) C
{1,2,...,t} which are not used for coloring of the edges incident with the vertex
Gi where G is the group which contains the class C,. Clearly, |L(C,)| = t —
2:1:1 a; > E;”:l b,; because the working time of C, is at most ¢. The existence of
a sequential timetable corresponding to the matrix B is equivalent to the existence
of Vi-sequential coloring of the graph H(B). Then, by Theorem 2.2, there exists an
L~coloring of H(B). Together with the proper edge coloring of H(A) this L-coloring
gives a proper edge coloring of H (A, B) which satisfies the conditions of Proposition
3.2. Therefore there exists a university timetable of length ¢, corresponding to the

matrices A and B.

The next result follows from Theorem 4.5 and Proposition 2.1.
Corollary 4.6. Consider the professor-lecturer model and let t be a positive integer
such that the working time of each class and each professor does not exceed ¢. If for
each class C; the number of individual lectures in C; is not less than the working
time of any lecturer teaching this class, then there exists a university timetable of
length ¢ corresponding to the matrices A and B.
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A university timetable corresponding to the matrices 4 and B is called se-
quential if all classes have lessons without interruptions and all begin at the same
time.

Proposition 4.7. Consider the professor-lecturer model. If there exists a sequential
timetable corresponding to the matrix 4, and a sequential timetable corresponding
to the matrix B, then there exists a sequential university timetable corresponding
to the matrices A and B.

Proof. Consider the graph H(A) with bipartition (X1, X2) where X; = {G}, ..., G,}
and X5 is the set of professors. First construct an X-sequential coloring of the
graph H(A). Now for each vertex C; € V; in H(B) we define the set of colors

L(C) = {14 ay, -, w(C)}.
J=1

Clearly, H(B) has a Vi-sequential coloring. Then, by Theorem 2.2, there exists
an L—coloring of H(B). Together with the X;-sequential coloring of H(A) this L-
coloring defines a sequentional university timetable corresponding to the matrices
A and B.

Theorem 4.8. Consider the professor-lecturer model where the working time of
each professor does not exceed the working time of each class, and the number
of individual lectures for each class C; is not less than the working time of each
lecturer teaching that class. Then there exists a sequential university timetable

corresponding to the matrices A4 and B.

Proof. First, consider the graph H(A) with bipartition (X, X2). To each G; € X
we assign a set of colors L'(G)) = {1,2,...,wy}, where w; = min;.¢,cq, w(C;). For
each [ = 1,...,p the number |L'(G})| is not less than the working time of each
professor teaching Gy, that is, |L'(Gi)| > dpa)(T;) for every pair Gy, T} with aj; #
0. This condition for H(A) is similar to the condition for H(B) in Theorem 2.3.
Therefore we can state,in a similar way as for H(B), that there exists an L'~coloring
of H(A).

Now to each vertex C; € V| we assign the subset L(C;) € {1,2,...,w(C;)} of
colors which are not used for coloring the edges incident with the vertex G; where G;
is the group which contains the class Cj. We have |L(C;)| = Y7L, bi; and |L(Cy)]
is not less than the working time of each lecturer teaching C;. This means that
the graph H(B) satisfies the condition of Theorem 2.3. Therefore there exists an
L-coloring of H(B). Together with the L’-coloring of H(A) this L-coloring of H(B)

defines a sequential university timetable corresponding to the matrices A and B.
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5. Conclusion

We have examined a generalized class-teacher mode] which is able to handle
situations where there are several disjoint groups of classes which have to take
some group-lectures. This model present some interest in itself since the presence
of groups is a characteristic of some specific timetabling problems. In addition
to the results presented here, further research will be needed to deal with practical
problems where many additional types of requirements are to be taken into account.
Our purpose was simply to give a formulation of the group constraints and to

examine some basic properties of this model.
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