Some Results on an Edge Coloring Problem of Folkman and Fulkerson*

A.S. Asratian

Department of Mathematics, Luleå University of Technology S-971 87 Luleå, Sweden

Abstract. In 1968, Folkman and Fulkerson posed the following problem: Let G be a graph and let (n_1, \ldots, n_t) be a sequence of positive integers. Does there exist a proper edge coloring of G with colors $1, 2, \ldots, t$ such that precisely n_i edges receive color i, for each $i = 1, \ldots, t$? If such a coloring exists then the sequence (n_1, \ldots, n_t) is called color-feasible for G.

Some sufficient conditions for a sequence to be color-feasible for a bipartite graph where found by Folkman and Fulkerson, and de Werra.

In this paper we give a generalization of their results for bipartite graphs. Furthermore, we find a set of color-feasible sequences for an arbitrary simple graph. In particular, we describe the set of all sequences which are color-feasible for a connected simple graph G with $\Delta(G) \geq 3$, where every pair of vertices of degree at least 3 are non-adjacent.

Keywords: Graphs; Edge colorings; Color-feasible sequences

1. Introduction

We use Bondy and Murty [7] for terminology and notation not defined here. Let V(G) and E(G) denote, respectively, the vertex set and edge set of a graph G. For each vertex u of G let $N_G(u)$ denote the set of vertices adjacent to u and $d_G(u)$ denote the degree of u. The maximum vertex degree of G is denoted by $\Delta(G)$. An edge t-coloring or simply t-coloring of G is a mapping $f: E(G) \longrightarrow \{1, ..., t\}$. If $e \in E(G)$ and f(e) = k then we say that the edge e is colored k. A t-coloring of G is called proper if no pair of adjacent edges receives the same color. The minimum number t for which there exists a proper t-coloring of G is called the chromatic index of G and is denoted by $\chi'(G)$. A graph is simple if it has no loops and no two of its edges join the same pair of vertices.

In 1968, Folkman and Fulkerson [10] posed and investigated the following problem:

^{*}Please reference this paper as: A.S. Asratian, Some results on an edge coloring problem of Folkman and Fulkerson, Discrete Math., 223 (2000) 13-25

Problem 1. Let G be a graph with q edges, and let (n_1, \ldots, n_t) be a sequence of non-increasing positive integers, $\sum_{i=1}^t n_i = q$. Does there exist a proper t-coloring of G in which precisely n_i edges receive color i, for each $i = 1, \ldots, t$?

If such a coloring exists then the sequence (n_1, \ldots, n_t) is called color-feasible for G.

If G is a bipartite graph with bipartition (V_1, V_2) where $V_1 = \{x_1, ..., x_n\}$ and $V_2 = \{y_1, ..., y_m\}$, then G can be represented by an integral $n \times m$ matrix $B = (b_{ij})$ where b_{ij} is the number of edges in G with endvertices x_i and $y_j, 1 \le i \le n, 1 \le j \le m$. Then Problem 1 has the following two reformulations:

Problem 1a. When can a matrix B with nonnegative integer entries be written as a sum

$$B = P_1 + P_2 + \dots + P_t$$

where each P_i is a permutation matrix of size n_i , that is, P_i has at most one 1 in each row and column and contains n_i 1's?

Problem 1b. In a school, there are n classes $C_1, ..., C_n$ and m teachers $T_1, ..., T_m$. Given that the number of one hour lectures which teacher T_j must give to class C_i , is b_{ij} . Also the number n_h of classrooms available at period h is given, for h = 1, ..., t. The problem is to determine whether there exists a timetable of t periods, so that each class receives all its teaching corresponding to the matrix $B = (b_{ij})$, precisely n_h classrooms are used in each hour h and no class or teacher is involved in more than one lecture at a time?

A general way for investigation of Problem 1 was suggested by Folkman and Fulkerson.

Let D_q denote the set of non-increasing sequences of positive integers which sum to q. For two sequences $P=(p_1,\ldots,p_m)$ and $N=(n_1,\ldots,n_t)$ from D_q , the sequence P is said to majorise N, written $P \succeq N$, if $m \le t$ and $\sum_{i=1}^r p_i \ge \sum_{i=1}^r n_i$, for each $r=1,\ldots,m-1$. Clearly the majorisation relation can be viewed as a partial order on the set D_q .

Theorem 1.1([10]). If a sequence $P \in D_q$ is color-feasible for G then every sequence $N \in D_q$ for which $P \succ N$ is also color-feasible for G.

The proof of Theorem 1.1 in [10] provides a polynomial algorithm for constructing a coloring corresponding to N if a coloring corresponding to P is given.

The sequences in the set D_q can be classified in the following way [18]. With each non-increasing sequence $N=(n_1,\ldots,n_t)$ we associate a new sequence $s(N)=(s(0),s(1),\ldots,s(l))$, where s(0)=0 and $s(i+1)=\max\{j:1+n_j\geq n_{s(i)+1}\}$, for $i=0,1,\ldots,l-1$. For example, if N=(9,8,8,7,4,3) then s(N)=(0,3,4,6). In fact the integer l in the definition of s(N) is the minimum number of disjoint subsequences, in each of which any two members differ by at most 1. If the sequence s(N) consists of l positive members then we call N an l-step sequence.

The next result follows from Theorem 1.1.

Corollary 1.2 ([10,18]). A 1-step sequence $N \in D_q$ of length t is color-feasible for a graph G with q edges if and only if $\chi'(G) \leq t$.

Since $\chi'(G) = \Delta(G)$ for a bipartite graph G, we obtain the following result. Corollary 1.3 A 1-step sequence $N \in D_q$ of lenth t is color-feasible for a bipartite graph G with q edges if and only if $\Delta(G) \leq t$.

It is known that the problem of deciding whether $\chi'(G) \leq t$ is NP-complete even in the case when G is a simple t-regular graph [13,14]. Therefore, Corollary 1.2 implies that Problem 1 is NP-complete in general case.

However, given a little more notation, we can formulate a simple necessary condition for the color-feasibility of a sequence N.

Let k be a positive integer. An edge subset $F \subseteq E(G)$ is called a k-matching of G if each vertex of G is incident with at most k edges of F. A k-matching of maximum cardinality is called a maximum k-matching of G. We shall denote by $q_k(G)$ the number of edges in a maximum k-matching of G. Note that the number $q_k(G)$ can be found in polynomial time [5].

Let $D_q(G)$ denote the set of all sequences $(n_1, ..., n_t)$ in D_q which satisfy the following condition:

$$t \ge \Delta(G), \quad |E(G)| = \sum_{i=1}^{t} n_i$$
 and
$$q_k(G) \ge \sum_{i=1}^{k} n_i, \quad \text{for } k = 1, \dots, \Delta(G) - 1.$$

Clearly, this condition can be checked in polynomial time.

Property 1.4. If a sequence $N \in D_q$ is color-feasible for G, then $N \in D_q(G)$.

In some cases this necessary condition, $N \in D_q(G)$, is also sufficient for color-feasibility of N for G.

Theorem 1.5. ([18]) Let G be a bipartite graph with q edges. Then a 2-step sequence $N \in D_q$ is color-feasible for a bipartite graph G if and only if $N \in D_q(G)$.

Corollary 1.6. ([10]) Let G be a bipartite graph and $N=(n_1,\ldots,n_t)$ be a sequence in D_q with $n_1=\cdots=n_k>n_{k+1}=\cdots=n_t$. Then N is color-feasible for G if and only if $N\in D_q(G)$.

Some other properties of the set of color-feasible sequences for a bipartite graph G can be found in [1,2,8,10,15,18,19,20].

Corollary 1.3 and Theorem 1.5 imply that Problem 1 is solved polynomially if G is a bipartite graph and N is a 1- or 2-step sequence. However, even for a bipartite graph G Problem 1 is NP-complete if N is a 3-step sequence. (Indeed, Problem 1 is NP-complete even if G is bipartite, $\Delta(G) = 3$ and $N = (n_1, n_2, n_3)$ (see [4,12])).

Let G be a graph with $\Delta = \Delta(G)$ and, for each integer k, let G_k denote the subgraph induced by the set of vertices of degree at least k. Fournier [11] proved that if G is a simple graph and the subgraph G_{Δ} has no edges then $\chi'(G) = \Delta(G)$. Berge and Fournier [6] observed that the same proof actually gives the following broader result, which was stated earlier by Lovasz and Plummer ([16], 7.4.3).

Proposition 1.7 If G is a simple graph where the subgraph G_{Δ} is acyclic, then $\chi'(G) = \Delta(G)$.

In this paper we use similar ideas for investigation of Problem 1. Let $\Delta_1(G)$ denote the minimum integer k such that the subgraph G_{k+1} is acyclic. In particular, if the subgraph G_{Δ} contains a cycle, then $\Delta_1(G) = \Delta(G)$. Furthermore, let $\Delta_2(G)$ denote the minimum integer k such that the subgraph G_{k+1} contains no edges. It is clear that $\Delta_1(G) \leq \Delta_2(G) \leq \Delta(G)$. In this terminology Proposition 1.7 can be reformulated in the following way: if $\Delta_1(G) < \Delta(G)$ then $\chi'(G) = \Delta(G)$.

We say that the number $\Delta_i(G), i \in \{1, 2\}$, is a threshold for a sequence $N \in D_q$ with s(N) = (s(0), s(1), ..., s(l)) if $s(1) > \Delta_i(G)$.

The following results are obtained in this paper.

- 1. We give a sufficient condition for an l-step sequence $N \in D_q$ with $l \geq 2$ to be color-feasible for a bipartite graph. This result implies Theorem 1.5.
 - 2. We investigate Problem 1 for an arbitrary simple graph G:
- a) We prove that all sequences with threshold $\Delta_2(G)$ in the set $D_q(G)$ are color-feasible for G. We also prove that if G is connected and $\Delta_2(G) = 2 < \Delta(G)$, that is, every pair of vertices of degree at least 3 are non-adjacent, then all sequences in $D_q(G)$ are color-feasible for G.
- b) We show that all 1- and 2-step sequences with threshold $\Delta_1(G)$ in the set $D_q(G)$ are color-feasible for G.

Note that we described in [3] a polynomial algorithm to solve the following problem: are all 3-step sequences with threshold $\Delta_1(G)$ in the set $D_q(G)$ color-feasible for G? By using this algorithm we can, in particular, determine for an arbitrary tree G: are all 3-step sequences in $D_q(G)$ color-feasible for G? For a tree with bounded degrees there exists a polynomial algorithm to determine all color-feasible sequences (see [21]).

2. Color-feasibility for bipartite graphs

Let G be a graph with |E(G)| = q and $\Delta(G) = \Delta$, and let $H(G) = (h_1, ..., h_{\Delta})$ be a sequence where $h_1 = q_1(G)$ and $h_i = q_{i+1}(G) - q_i(G)$, for $i = 1, ..., \Delta - 1$. If H(G) is non-increasing, that is, $H(G) \in D_q(G)$ then the condition $N \in D_q(G)$ is equivalent to the condition $H(G) \succeq N$.

Remark 2.1. It follows from Theorem 1.1 that if H(G) is color-feasible for G then $D_q(G)$ is the set of all color-feasible sequences for G.

It is known [18] that if G is a bipartite graph then $H(G) \in D_q$. The following criterion for feasibility of H(G) was found by de Werra [18]: Let G be a bipartite graph with $\Delta(G) = \Delta$ and let $s(H(G)) = (s(0), s(1), ..., s(l)), l \geq 2$. Then H(G) is color-feasible for G if and only if there exist edge subsets $F_1, F_2, ..., F_l$ such that $F_1 \subset F_2 \subset ... \subset F_l$ and F_j is a maximum s(j)-matching of G, for each j = 1, ..., l.

An immediate corollary (not stated in an explicit form in [18]) is a criterion (Proposition 2.2) for an arbitrary sequence N to be color-feasible for a bipartite graph G. The interest of the proof given in the present paper is that it is constructive: if G and N satisfy this criterion then a corresponding coloring is constructed in polynomial time.

Proposition 2.2. Let G be a bipartite graph, and let $N = (n_1, ..., n_t)$ be a non-increasing sequence with $s(N) = (s(0), s(1), ..., s(l)), l \geq 2$. Then N is color-feasible for G if and only if there exist edge subsets $F_1, F_2, ..., F_l$ such that $F_1 \subset F_2 \subset ... \subset F_l$ and F_j is an s(j)-matching with $\sum_{i=1}^{s(j)} n_i$ edges, for each i = 1, ..., l.

Proof. Suppose that G has a proper t-coloring corresponding to N. Then the set F_j consisting of edges colored 1, 2, ..., s(j) is an s(j)-matching of G, j = 1, ..., l, and $F_1 \subset F_2 \subset ... \subset F_l$.

Conversely, suppose that there exist edge subsets $F_1, ..., F_l$ satisfying the condition of Proposition 2.2. We will prove that the edges in F_j can be properly colored with colors 1, ..., s(j) such that precisely n_i edges are colored i, for i = 1, ..., s(j).

For j=1 it follows from Corollary 1.3 because $(n_1, ..., n_{s(1)})$ is a 1-step sequence, $|F_1| = \sum_{i=1}^{s(1)} n_i$ and F_1 is an s(1)-matching. Suppose that the required coloring is already constructed for F_j , $1 \le j < l$. We will color edges from $F_{j+1} \setminus F_j$ with colors from the set $C = \{1, 2, ..., s(j+1)\}$.

Let e be an edge which has so far not been colored, and u and v be the ends of e. If there is a color $\alpha \in C$ for which there is no edge colored α adjacent to e, then use color α to color e. Otherwise, since F_{j+1} is an s(j+1)-matching, and we have s(j+1) colors, there are a color $t_v \in C$ which is not used to color an edge incident with u, and a color $t_u \in C$, $t_u \neq t_v$, which is not used to color an edge incident with v. Consider a path P of maximum length with initial vertex u whose edges are alternatively colored t_u and t_v . Clearly, P cannot pass through v, otherwise $E(P) \cup \{e\}$ forms an odd cycle in G, which contradicts G being bipartite. Thus if we interchange the two colors t_u and t_v along P, the color t_u will no longer be used on an edge adjacent to either vertex, and we can color e with t_u .

Suppose that the proper coloring of the edges of F_{j+1} produced by this procedure is such that n_i' edges are colored i, for each $i=1,\ldots,s(j+1)$. We may assume (possibly after permuting the colors) that $n_1' \geq n_2' \geq \cdots \geq n_{s(j+1)}'$. It is not difficult to see that the above procedure of coloring certainly guarantees that $n_i' \geq n_i$, for each $i=1,\ldots,s(j)$. Let k(j+1) denote the maximal i with $n_i' > 0$. Then $s(j) < k(j+1) \leq s(j+1)$ and $(n_1',\ldots,n_{k(j+1)}') \succeq (n_1,\ldots,n_{s(j+1)})$ because $n_{1+s(j)} - n_{s(j+1)} \leq 1$.

If $(n'_1, \ldots, n'_{k(j+1)}) \neq (n_1, \ldots, n_{s(j+1)})$ then, by using the algorithm suggested in [10], we can polynomially transform the coloring of F_{j+1} corresponding to the sequence $(n'_1, \ldots, n'_{k(j+1)})$ to a proper s(j+1)-coloring of the edges of F_{j+1} corresponding to the sequence $(n_1, n_2, \ldots, n_{s(j+1)})$.

The next auxiliary lemma is a corollary of a result of Berge (see [5]).

Lemma 2.3. Let s be a positive integer and F a subset of the set of edges in a graph G. Then F is a maximum s-matching of G if and only if there is no path P such that edges of P are alternatively in F and $E(G) \setminus F$, both the first and the last edge of P is in $E(G) \setminus F$ and the number of edges of F incident with the origin of P as well as the number of edges incident with the terminus of P is less than s.

Theorem 2.4. Let N be a sequence in D_q with $s(N) = (s(0), s(1), \ldots, s(l)), l \ge 2$. Then N is feasible for a bipartite graph G with q edges if every pair of vertices of degree more than s(2) are non-adjacent in G and $H(G) \succeq N$. Proof. Let X_1 be a maximum s(1)-matching of G. We shall construct edge subsets X_2, \ldots, X_l in the following way: suppose that X_1, \ldots, X_{i-1} have already been constructed $(2 \le i \le l)$. If $s(i) \ge \Delta(G)$, put $X_i = E(G)$. Otherwise, at each vertex u with $d_G(u) > s(i)$ delete precisely $d_G(u) - s(i)$ edges from $E(G) \setminus X_{i-1}$. The remaining edges of $E(G) \setminus X_{i-1}$ together with X_{i-1} form the next edge subset X_i .

By our construction, the following property holds for each edge $uv \in E(G) \setminus X_i$: if u is incident with less than s(i) edges of X_i then $d_G(u) \leq s(i), d_G(v) > s(i)$ and v is incident with exactly s(i) edges of X_i ,

if u is incident with exactly s(i) edges of X_i then $d_G(u) > s(i)$ and, therefore, $d_G(v) \le s(i)$ since every pair of vertices of degree more than s(2) are non-adjacent in G. It means that v is incident with less than s(i) edges of X_i .

It is not difficult to check now that every alternating path $P = a_0 a_1 \dots a_{2r+1}$ relative to X_i (i.e., whose edges are alternatively in X_i and in $E(G) \setminus X_i$) with end edges in $E(G) \setminus X_i$ has the following property: if a_0 is incident with less than s(i) edges of X_i then each of the vertices $a_1, a_3, \dots, a_{2r+1}$ is incident with exactly s(i) edges of X_i , and each of the vertices a_2, a_4, \dots, a_{2r} is incident with less than s(i) edges of X_i . We begin with the vertex a_1 .

This property and Lemma 2.3 imply that X_i is a maximum s(i)-matching of G. Clearly $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_l$. From X_1 choose a subset of edges F_1 of size $\sum_{i=1}^{s(1)} n_i$, and from X_j choose a subset F_j of size $\sum_{i=1}^{s(j)} n_i$ containing F_{j-1} , for each $j=2,\ldots,l$. This is possible since $H(G) \succeq N$. Now the theorem follows from Proposition 2.2.

Corollary 2.5([18]). Let G be a bipartite graph with q edges. A sequence $N = (n_1, ..., n_t) \in D_q$ with s(N) = (s(0), s(1), s(2)) is color-feasible for G if and only if $H(G) \succeq N$.

Proof. Clearly, s(2) = t. If $H(G) \succeq N$ then $t \geq \Delta(G)$, and the conditions of Theorem 2.4 are trivially satisfied. Therefore N is color-feasible for G.

Theorem 2.6. Let G be a bipartite graph with bipartition (V_1, V_2) where $d_G(x) \ge d_G(y)$ for each edge (x, y) with $x \in V_1$ and $y \in V_2$. Then $D_q(G)$ is the set of all color-feasible sequences for G. Furthermore, the sequence $H(G) = (h_1, h_2, ..., h_{\Delta})$ satisfies the condition: $h_i = |\{x \in V_1/d_G(x) \ge i\}|$ for each $i = 1, ..., \Delta$.

Proof. We will show that the edges of G can be properly colored with colors $1, 2, ..., \Delta(G)$ such that edges incident to each vertex $x \in V_1$ are colored with colors

 $1, 2, ..., d_G(x)$. This implies that H(G) satisfies the above condition and is color-feasible for G. Then, by Remark 2.1, $D_q(G)$ is the set of all color-feasible sequences for G.

Let $V_1 = \{x_1, x_2, \dots, x_n\}$ with $d_G(x_1) \ge d_G(x_2) \ge \dots \ge d_G(x_n)$. Suppose that the edges incident with each vertex x_i , $i = 1, \dots, k$, k < n, are already colored with the colors $1, 2, \dots, d_G(x_i)$, and the edges incident with the vertices x_{k+1}, \dots, x_n are not colored yet. Let $e_1, e_2, \dots, e_{d(x_{k+1})}$ be the edges incident with x_{k+1} . Then for each $j = 1, \dots, d(x_{k+1})$ in turn we do the following:

Consider the vertex y_j which is the end in V_2 of the edge e_j . Since $d_G(x_{k+1}) \ge d(y_j)$ there is a color l such that $1 \le l \le d_G(x_{k+1})$ and there are no edges incident with y_j colored l. If l = j, then color e_j with color j.

Otherwise, consider a path P of maximum length with origin at y_j whose edges are alternatively colored j and l. Clearly, by construction, this path must end in V_2 . Thus we may interchange the two colors along this path, to make color j available at y_j , and color e_j with color j.

The above conditions use the structure of a graph G. Now we will give some other type of conditions for color-feasibility of a sequence of length 3.

Definition. Let $N = (n_1, n_2, n_3)$ be a non-increasing sequence. We define the weight of N, denoted w(N), by $w(N) = 3n_1 + 2n_2 + n_3$.

Theorem 2.7. Let G be a bipartite graph with $\Delta(G) = 3$, |E(G)| = q and $H(G) = (h_1, h_2, h_3)$. Then every sequence $N = (n_1, n_2, n_3) \in D_q$, satisfying $H(G) \succeq N$ and

$$w(N) \le w(H(G)) - \lfloor \frac{h_1 - h_2}{2} \rfloor - \lfloor \frac{h_2 - h_3}{2} \rfloor + 1,$$

is color-feasible for G.

Proof. The proposition is evident if H(G) is color-feasible. Suppose that H(G) is not color-feasible for G. It follows from Corollary 1.3 and Theorem 1.5 that H(G) is a 3-step sequence. Therefore, $h_1 - h_2 \ge 2$ and $h_2 - h_3 \ge 2$. Define three sequences:

$$\begin{split} N_0 &= (h_1 - \lfloor \frac{h_1 - h_2}{2} \rfloor, h_2 + \lfloor \frac{h_1 - h_2}{2} \rfloor, h_3), \\ N_1 &= (h_1, h_2 - \lfloor \frac{h_2 - h_3}{2} \rfloor, h_3 + \lfloor \frac{h_2 - h_3}{2} \rfloor), \\ N_2 &= (h_1 - \lfloor \frac{h_1 - h_2}{2} \rfloor, h_2 + \lfloor \frac{h_1 - h_2}{2} \rfloor - \lfloor \frac{h_2 - h_3}{2} \rfloor, h_3 + \lfloor \frac{h_2 - h_3}{2} \rfloor). \end{split}$$

Clearly, N_0 and N_1 are 2-step sequences and $H(G) \succ N_0, H(G) \succ N_1$. Then, by Theorem 1.5, N_0 and N_1 are color-feasible for G. Furthermore, it is clear that $w(N_2) = (3h_1 + 2h_2 + h_3) - \lfloor \frac{h_1 - h_2}{2} \rfloor - \lfloor \frac{h_2 - h_3}{2} \rfloor = w(H(G)) - \lfloor \frac{h_1 - h_2}{2} \rfloor - \lfloor \frac{h_2 - h_3}{2} \rfloor$.

Let $N=(n_1,n_2,n_3)$ be a sequence in D_q satisfying $H(G)\succeq N$ and $w(N)\le w(N_2)+1$. We will show that either $N_0\succeq N$ or $N_1\succeq N$. Suppose that this is not true. It means that $n_1=h_1-\lfloor\frac{h_1-h_2}{2}\rfloor+b_1$, where $0< b_1\le \lfloor\frac{h_1-h_2}{2}\rfloor$, and $n_1+n_2=h_1+h_2-\lfloor\frac{h_2-h_3}{2}\rfloor+b_2$, where $0< b_2\le \lfloor\frac{h_2-h_3}{2}\rfloor$. This implies that

$$n_2 = h_2 + \lfloor \frac{h_1 - h_2}{2} \rfloor - \lfloor \frac{h_2 - h_3}{2} \rfloor + b_2 - b_1, n_3 = h_3 + \lfloor \frac{h_2 - h_3}{2} \rfloor - b_2.$$

But then $w(N) = 3n_1 + 2n_2 + n_3 = w(N_2) + 3b_1 + 2(b_2 - b_1) - b_2 = w(N_2) + b_2 + b_1 > w(N_2) + 1$, which contradicts the condition $w(N) \le w(N_2) + 1$. Therefore, either $N_0 \succeq N$ or $N_1 \succeq N$. Then, by Theorem 1.1, N is color-feasible for G.

The bound in Theorem 2.7 is sharp in the sense that for every $r \geq 1$ there exists a bipartite graph G with q = 3r + 6 edges and maximum degree 3 such that every sequence $N = (n_1, n_2, n_3) \in D_q$, satisfying $H(G) \succeq N$ and

$$w(N) \ge w(H(G)) - \lfloor \frac{h_1 - h_2}{2} \rfloor - \lfloor \frac{h_2 - h_3}{2} \rfloor + 2,$$

is not color-feasible for G.

Fig. 1

Consider, for example, the graph G in Fig.1. Clearly, H(G) = (r+4, r+2, r). Furthermore, H(G) is not color-feasible for G, because G has the unique maximum matching $M_1 = \{e_1, e_2, ..., e_{r+4}\}$ and the graph $G - M_1$ has no matching of cardinality r+2. Finally, by Theorem 2.7, every sequence of weight at least w(H(G)) - 1 is color-feasible for G.

3. Color-feasibility for arbitrary simple graphs

Let G be a simple graph with $\Delta(G) = m$ where the subgraph induced by the set of vertices of degree m is acyclic. Assume that a subset $E_0 \subset E(G)$ is properly colored with colors 1, 2, ..., m such that exactly n_i edges are colored i, for i = 1, ..., m. For each vertex y let C(y) denote the set of colors of the edges incident with y and

- $\overline{C(y)} = \{1, 2, ..., m\} \setminus C(y)$. A generalization of Vizing's theorem [17] was obtained in [6]. We use similar considerations for investigation of Problem 1.
- **Definition**([6]). Let $e = (x_0, y_0)$ be an uncolored edge of G and α_1 be a color such that $\alpha_1 \notin C(y_0)$ and $\alpha_1 \in C(x_0)$. We define a sequence $S(x_0, \alpha_1)$ of distinct edges e_0, e_1, e_2, \ldots all incident with x_0 , together with a function f that associates to each edge e_i of the sequence a color $\alpha_{i+1} = f(e_i)$, according to the following iterative procedure.
 - (I) Put $e_0 = e, f(e_0) = \alpha_1$.
- (II) Suppose that the edges $e_0 = (x_0, y_0), ..., e_{i-1} = (x_0, y_{i-1})$ are already included in $S(x_0, \alpha_1)$ and $f(e_0) = \alpha_1, ..., f(e_{i-1}) = \alpha_i$ are already defined, $i \ge 1$.
- a) If $\alpha_i \in C(x_0)$ and $\alpha_i \neq f(e_j)$ for all j < i-1, consider the edge $e_i = (x_0, y_i)$ incident with x_0 that is colored with α_i ; let $\alpha_{i+1} = f(e_i)$ be a color satisfying the condition $\alpha_{i+1} \notin C(y_i)$.
- b) If either $\overline{C(y_{i-1})} = \emptyset$, or $\alpha_i \notin C(x_0)$, or $\alpha_i = f(e_j)$ for an index j < i 1, then we stop, and the sequence $S(x_0, \alpha_1)$ is achieved, $S(x_0, \alpha_1) = (e_0, e_1, ..., e_{i-1})$.
- **Proposition 3.1.** Let G be a simple graph with $\Delta(G) = m$ where the subgraph induced by the set of vertices of degree m is acyclic. Assume that a subset $E_0 \subset E(G)$ is colored with colors 1, 2, ..., m such that precisely n_i edges are colored i, for i = 1, ..., m. Then for an uncolored edge e the set $E_0 \cup \{e\}$ can be colored with colors 1, ..., m such that at least n_i edges are colored i, for each i = 1, ..., m.
- *Proof.* Without loss of generality we suppose that the only uncolored edge is e, that is, $E(G) = E_0 \cup \{e\}$. Let $e = (b_0, b_1)$. Consider the following algorithm. First we label vertices b_0 and b_1 .
- Step $r(r \ge 0)$. Suppose that the vertices $b_0, b_1, ..., b_{r+1}$ have been already labelled and (b_r, b_{r+1}) is the only uncolored edge of G. Choose a color $\alpha_1 \notin C(b_r)$. If $\alpha_1 \notin C(b_{r+1})$ then color the edge (b_r, b_{r+1}) with α_1 . If $\alpha_1 \in C(b_{r+1})$ then construct a sequence $S(b_{r+1}, \alpha_1)$. Let (b_{r+1}, b_{r+2}) be the last edge in $S(b_{r+1}, \alpha_1)$.
- a) If $\overline{C(b_{r+2})} \neq \emptyset$ then, by using the same considerations as in [6], the edges in $E_0 \cup \{e\}$ can be properly colored with colors 1, ..., m. It is not difficult to check that the method of coloring described in [6] guarantees that at least n_i edges are colored i, for i = 1, ..., m.
- b) Suppose that $\overline{C(b_{r+2})} = \emptyset$ and $S(b_{r+1}, \alpha_1) = (e_0, e_1, ..., e_t)$ where $e_0 = (b_r, b_{r+1}), e_t = (b_{r+1}, b_{r+2}), e_j$ is colored α_j and $f(e_j) = \alpha_{j+1}, j = 1, ..., t$. For each

j = 1, ..., t remove the color α_j from e_j and assign it instead to e_{j-1} . Now the only uncolored edge is (b_{r+1}, b_{r+2}) . Label the vertex b_{r+2} and go to Step (r+1).

It is not difficult to see that if the required coloring is not constructed on Step r then $\overline{C(b_{r+2})} = \emptyset$, that is, the new labelled vertex b_{r+2} has degree $\Delta(G)$. Since the subgraph of G induced by the vertices of degree $\Delta(G)$ is acyclic, the vertices b_2, b_3, \ldots constructed by the algorithm, are different. Therefore, on some step of the algorithm the required coloring of $E_0 \cup \{e\}$ will be constructed.

Proposition 3.2. Let G be a simple graph with q edges, and let $N=(n_1,...,n_t)$ be a sequence in the set D_q with s(N)=(s(0),s(1),...,s(l)) such that $l\geq 2$ and $s(2)>\Delta_1(G)$. Then N is color-feasible for G if and only if there exist subsets $F_1,...,F_l$ such that $F_1\subset F_2\subset ...\subset F_l$, the set F_j is an s(j)-matching with $\sum_{i=1}^{s(j)}n_i$ edges, for j=1,...,l, and edges of F_1 can be properly colored with s(1) colors.

Proof. The necessity is evident: if G has a proper t-coloring corresponding to N then the set of edges F_i consisting of edges colored 1, 2, ..., s(i) is a s(i)-matching for each i = 1, ..., l, and $F_1 \subset F_2 \subset ... \subset F_l$.

Conversely, suppose that there exist subsets $F_1, ..., F_l$ satisfying the condition of the proposition. We will prove that the edges in F_j can be properly colored with colors 1, ..., s(j) such that precisely n_i edges are colored i, for i = 1, ..., s(j). By the assumption, the edges in F_1 can properly colored with colors 1, ..., s(1). Therefore, by Corollary 1.2, there is a proper s(1)-coloring of F_1 corresponding to the sequence $(n_1, ..., n_{s(1)})$.

Suppose that the required coloring is already constructed for F_j , $1 \le j < l$. Let H_{j+1} denote the subgraph induced by the set F_{j+1} . Since $s(j+1) > \Delta_1(G)$, the subgraph of H_{j+1} induced by the set of vertices of degree s(j+1) in H_{j+1} , is acyclic. Then, by Proposition 3.1, the edges in F_{j+1} can be colored with colors 1, 2, ..., s(j+1) such that at least n_i edges in F_{j+1} are colored i, for each i = 1, 2, ..., s(j).

Suppose that precisely n_i' edges are colored i, for $i=1,\ldots,s(j+1)$. We may assume (possibly after permuting the colors) that $n_1' \geq n_2' \geq \cdots \geq n_{s(j+1)}'$ and $n_i' \geq n_i$, for each $i=1,\ldots,s(j)$. Let k(j+1) denote the maximal i with $n_i'>0$. Then $s(j) < k(j+1) \leq s(j+1)$ and $(n_1',\ldots,n_{k(j+1)}') \succeq (n_1,\ldots,n_{s(j+1)}')$ because $n_{1+s(j)}-n_{s(j+1)} \leq 1$.

If $(n'_1, \ldots, n'_{k(j+1)}) \neq (n_1, \ldots, n_{s(j+1)})$ then, by using the algorithm, suggested in [10] we can polynomially transform the coloring of F_{j+1} corresponding to the

sequence $(n'_1, ..., n'_{k(j+1)})$, to a proper s(j+1)-coloring of the edges of F_{j+1} corresponding to the sequence $(n_1, n_2, ..., n_{s(j+1)})$.

Note that the proof of Proposition 3.2 provides a polynomial algorithm for constructing a coloring corresponding to the sequence N, if the required sets $F_1, ..., F_l$ are given.

Proposition 3.3. Let G be a simple graph. Then all 1- and 2-step sequences with threshold $\Delta_1(G)$ in the set $D_q(G)$ are color-feasible for G.

Proof. Proposition 1.7 and Corollary 1.2 imply that all 1-step sequences with threshold $\Delta_1(G)$ in $D_q(G)$ are color-feasible for G. Now consider a 2-step sequence $N=(n_1,...,n_t)$ in $D_q(G)$ with s(N)=(s(0),s(1),s(2)) and $s(1)>\Delta_1(G)$. Construct a maximum s(1)-matching F of G. Clearly, $\sum_{i=1}^{s(1)} n_i \leq |F|$ since $N \in D_q(G)$. Choose in F a subset F_1 of $\sum_{i=1}^{s(1)} n_i$ edges. Let H denote the subgraph induced by F_1 . Since $s(1)>\Delta_1(G)$, the subgraph of H induced by vertices of degree s(1) is acyclic. By Proposition 1.7, edges of F_1 can be properly colored by s(1) colors. Put $F_2 = E(G)$. Then F_1 and F_2 satisfy the condition of Proposition 3.2. Therefore, N is color-feasible for G.

Theorem 3.4. Let G be a simple graph. Then all sequences with threshold $\Delta_2(G)$ in the set $D_q(G)$ are color-feasible for G.

Proof. Let $N = (n_1, ..., n_t) \in D_q(G)$, s(N) = (s(0), s(1), ..., s(l)) and $s(1) > \Delta_2(G)$. Then $s(1) > \Delta_1(G)$ since $\Delta_2(G) \ge \Delta_1(G)$. If $l \le 2$ then, by Proposition 3.3, N is color-feasible for G. Now suppose that $l \ge 3$.

Let X_1 be a maximum s(1)-matching of G. We shall construct edge subsets X_2, \ldots, X_l in the following way: suppose that X_1, \ldots, X_{i-1} are already constructed $(i \leq l)$. If $s(i) \geq \Delta(G)$, put $X_i = E(G)$. Otherwise, at each vertex u with $d_G(u) > s(i)$ delete precisely $d_G(u) - s(i)$ edges from $E(G) \setminus X_{i-1}$. The remaining edges of $E(G) \setminus X_{i-1}$ together with X_{i-1} form the next edge subset X_i . It is not difficult to check that every alternating path $P = a_0 a_1 \ldots a_{2r+1}$ relative to X_i with end edges in $E(G) \setminus X_i$ has the property that if a_0 is incident with less than s(i) edges of X_i then each of the vertices $a_1, a_3, \ldots, a_{2r+1}$ is incident with exactly s(i) edges of X_i , and each of the vertices $a_2, a_4, \ldots a_{2r}$ is incident with less than s(i) edges of X_i . This property and Lemma 2.3 imply that X_i is a maximum s(i)-matching of G. Clearly $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_l$. From X_1 choose a subset of edges F_1 of size $\sum_{i=1}^{s(1)} n_i$, and from X_j choose a subset F_j of size $\sum_{i=1}^{s(j)} n_i$ containing F_{j-1} , for each

 $j=2,\ldots,l$. This is possible since $N\in D_q(G)$. By Proposition 1.7, edges of F_1 are colorable with s(1) colors because $s(1)>\Delta_1(G)$. Now the theorem follows from Proposition 3.2.

Remark 3.5. It is known [8] that almost all simple graphs have only one vertex of maximum degree. Therefore, $\Delta_2(G) < \Delta(G)$ for almost all simple graphs.

Let G be a simple graph with |E(G)| = q and $\Delta(G) = \Delta$, and let $H(G) = (h_1, ..., h_{\Delta})$ be a sequence which was defined in Section 2. It is known that $H(G) \in D_q$ if G is bipartite and it may not be true if G is non-bipartite [18]. The next result describes a class of graphs where $H(G) \in D_q$ and, moreover, H(G) is color-feasible for G.

Theorem 3.6. Let G be a connected simple graph with q edges where $\Delta(G) \geq 3$ and $\Delta_2(G) = 2$, that is, every pair of vertices of degree at least 3 are non-adjacent. Then H(G) is color-feasible for G and $D_q(G)$ is the set of all color-feasible sequences for G.

Proof. Let $H(G) = (h_1, ..., h_{\Delta})$ where $\Delta = \Delta(G)$. We will show that H(G) is color-feasible for G. Let F_1 be a maximum matching of G. We will sequentially construct edge subsets $F_2, ..., F_{\Delta}$.

At each vertex x with $d_G(x) > 2$ delete precisely $d_G(x) - 2$ edges from $E(G) \setminus F_1$. The remaining set of edges we denote by F_2 . It is clear that F_2 is a maximum 2-matching of G.

Suppose that the set F_2 induces a non-bipartite graph. Consider in this graph a cycle C of odd length. Since G is connected and $\Delta \geq 3$, there is an edge (x,y) in C and a vertex $z \notin C$ such that $d_G(x) \geq 3$, $d_G(y) = 2$ and $(x,z) \in E(G)$. Clearly, $d_G(z) \leq 2$. Now we delete the edge (x,y) from F_2 and introduce (x,z), that is, $F_2 := (F_2 \setminus \{(x,y)\}) \cup \{(x,z)\}$.

Then the number of odd cycles in the subgraph induced by F_2 decreases by 1. We repeat this procedure until F_2 induces a bipartite graph.

Suppose that we have already constructed subsets $F_1, ..., F_{i-1}$ where $2 < i \le \Delta(G)$ and $F_1 \subset ... \subset F_{i-1}$. At each vertex x with $d_G(x) > i$ delete precisely $d_G(x) - i$ edges from $E(G) \setminus F_{i-1}$. The remaining set of edges we denote by F_i . It is not difficult to check that every alternating path $P = a_0 a_1 ... a_{2r+1}$ relative to F_i with end edges in $E(G) \setminus F_i$ has the property that if a_0 is incident with less than i edges of F_i then each of the vertices $a_1, a_3, ..., a_{2r+1}$ is incident with exactly i

edges of F_i , and each of the vertices $a_2, a_4, \dots a_{2r}$ is incident with less than i edges of F_i . This property and Lemma 2.3 imply that F_i is a maximum i-matching of G.

By repeating this process we obtain the sets $F_1, ..., F_{\Delta}$ such that F_i is a maximum *i*-matching of G, for $i = 1, ..., \Delta$, and $F_1 \subset F_2 \subset ... \subset F_{\Delta}$.

Let H_i be the subgraph induced by the set F_i , $i = 1, ..., \Delta$. Since H_2 is a bipartite graph with $\Delta(H_2) = 2$ and F_1 is a maximum matching, $q_1(G) \geq q_2(G) - q_1(G)$, that is , $h_1 \geq h_2$. Moreover, it is not difficult to see that the edges of H_2 can be colored with colors 1 and 2 such that h_1 edges colored 1 and h_2 edges colored 2.

Suppose that we have already properly colored edges in F_i with $i \geq 2$ colors 1,...,i such that precisely h_j edges colored j, for j=1,...,i. If $i < \Delta$ then, by Proposition 3.1, edges in F_{i+1} can properly colored with i+1 colors such that at least h_j edges are colored j, for j=1,2,...,i. The condition $\sum_{r=1}^{j} h_r = q_j(G)$ implies that under this coloring precisely h_j edges receive color j, for each j=1,2,...,i+1.

By repeating this process we obtain a proper Δ -coloring corresponding to the sequence H(G). Therefore, by Remark 2.1, $D_q(G)$ is the set of all color-feasible sequences for G.

References

- A.S. Asratian, The construction of an edge coloring of a special form in a bipartite graph, and its applications in problems of scheduling theory, Moscow Univ. Bull., Ser. Comput. Math. and Cybernetics, 1 (1978) 59-65
- 2. A.S. Asratian, Some sufficient conditions for the color-feasibility of a sequence of integers in a bipartite multigraph, *Combinatorial-algebraic methods* in applied mathematics, 25-34, Gorkov. Gos.Univ.,Gor'kii,1981 (in Russian)
- A.S. Asratian, Investigation on an edge coloring problem of Folkman and Fulkerson, Research Report 12, Dep. of Math., Luleå University, 1998, 28 pp.
- A.S.Asratian, R.R.Kamalian, Interval edge coloring of multigraphs, Applied Math., no.5, Yerevan University, 1987, 25-34 (in Russian)
- 5. C. Berge, Graphs and Hypergraphs, Dunod, Paris, 1970
- C. Berge, J.C. Fournier, A short proof for a generalization of Vizing's theorem,
 J. Graph Theory, 15 (1991) 333-336

- 7. J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*. Macmillan, London and Elsevier, New York (1976).
- 8. A.L.Dulmage, N.S. Mendelsohn, Some graphical properties of matrices with non-negative entries, *Aequations Mathematicae*, 2 (1969) 150-162
- 9. P. Erdös, R.J. Wilson, On the chromatic index of almost all graphs, *J. Comb. Theory, Series B* **23** (1977) 255-257
- J. Folkman and D.R. Fulkerson, Edge colorings in bipartite graphs, in Combinatorial Mathematics and its Applications, Ed. R.C. Bose and T.A. Dowling, Univ. North Carolina Press, Chapel Hill (1969) 561-577
- 11. J.C. Fournier, Un theoreme general de coloration, *Problemes combinatoires en Theorie des Graphes*. Edition du CNRS (1978) 153-155
- 12. H.Gabow, T.Nishizeki, O. Kariv, D. Leven, and O. Terrada, Algorithms for edge-colorings of graphs, submitted
- 13. I. Holyer, The NP-completeness of edge-coloring, $SIAM\ J.\ Comput.$ 10 (1981) 718-720
- 14. D. Leven and Z. Galil, NP-completeness of finding the chromatic index of regular graphs, J. Algorithms 4 (1983), 35-44
- 15. Z. Lonc, Feasible edge-colorings and degree sequences of bipartite multigraphs, *Demonst. Math.*, **25** (1992) 955-963
- 16. L. Lovasz, M.D. Plummer, Matching Theory, North-Holland, Amsterdam (1986)
- 17. V.G. Vizing, The chromatic index of a multigraph, Kibernetika 3 (1965) 29-39
- D. de Werra, Investigation on an edge coloring problem, Discrete Math.
 1 (1971) 167-179
- 19. D. de Werra, On some combinatorial problems arising in scheduling, $CORS\ J$. 8 (1970) 165-175
- 20. D. de Werra, J. Blazewicz, Some preemptive open shop scheduling problems

with a renewable or a nonrenewable resource, Discrete Appl. Math. $35\ (1992)\ 205\text{-}219$

21. D. de Werra, A. Hertz, D. Kobler, N.V.R. Mahadev, Feasible edge colorings of trees with cardinality constraints, Preprint, ORWP 97/14, Oct. 1997, 17 pp.