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Abstract. In 1968, Folkman and Fulkerson posed the following problem: Let G be
a graph and let (ni,...,n;) be a sequence of positive integers. Does there exist a
proper edge coloring of G with colors 1,2, ..., ¢ such that precisely n; edges receive
color ¢, for each ¢ = 1,...,¢7 If such a coloring exists then the sequence (ny,...,n;)
is called color-feasible for G.

Some sufficient conditions for a sequence to be color-feasible for a bipartite
graph where found by Folkman and Fulkerson, and de Werra.

In this paper we give a generalization of their results for bipartite graphs.
Furthermore, we find a set of color-feasible sequences for an arbitrary simple graph.
In particular, we describe the set of all sequences which are color-feasible for a
connected simple graph G with A(G) > 3, where every pair of vertices of degree at

least 3 are non-adjacent.
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1. Introduction

We use Bondy and Murty [7] for terminology and notation not defined here.
Let V(G) and E(G) denote, respectively, the vertex set and edge set of a graph G.
For each vertex u of G let Ng(u) denote the set of vertices adjacent to u and dg (u)
denote the degree of u. The maximum vertex-degree of G is denoted by A(G). An
edge t-coloring or simply ¢-coloring of G is a mapping f : E(G) — {1,...,t}. If
e € E(G) and f(e) = k then we say that the edge e is colored k. A t-coloring of G
is called proper if no pair of adjacent edges receives the same color. The minimum
number ¢ for which there exists a proper t-coloring of G is called the chromatic
index of G and is denoted by Xx'(G). A graph is simple if it has no loops and no
two of its edges join the same pair of vertices.

In 1968, Folkman and Fulkerson [10] posed and investigated the following prob-

lem:
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Problem 1. Let G be a graph with ¢ edges, and let (n1,...,n,) be a sequence of
. . ajis . t . -
non-increasing positive integers, > ., n; = ¢. Does there exist a proper t-coloring

of G in which precisely n; edges receive color i, for each i = 1,...,¢?
If such a coloring exists then the sequence (ni,...,n;) is called color-feasible
for G.

If G is a bipartite graph with bipartition (Vi, V,) where Vi = {x,...,z,} and
Vo = {91, ..., Um}, then G can be represented by an integral n x m matrix B = (D55)
where b;; is the number of edges in G with endvertices z; and Uil €1 8n,1 <
J < m. Then Problem 1 has the following two reformulations:
Problem 1a. When can a matrix B with nonnegative integer entries be written
as a sum
B=P +PFP+..+ P,

where each P; is a permutation matrix of size n;, that is, P, has at most one 1 in

each row and column and contains n; 1’s?

Problem 1b. In a school, there are n classes C1, ..., C,, and m teachers Ty, ..., T},.
Given that the number of one hour lectures which teacher T; must give to class Cj, is
bij. Also the number ny, of classrooms available at period h is given, for h = 1, ..., t.
The problem is to determine whether there exists a timetable of ¢ periods, so that
each class receives all its teaching corresponding to the matrix B = (bi;), precisely
nyp, classrooms are used in each hour h and no class or teacher is involved in more

than one lecture at a time?

A general way for investigation of Problem 1 was suggested by Folkman and
Fulkerson.

Let D, denote the set of non-increasing sequences of positive integers which
sum to ¢. For two sequences P = (p1,...,pm) and N = (n4,...,n;) from D, the
sequence P is said to majorise NV, written P = N,if m <tand }_|_, p; > Y.\, n;,
for each r = 1,...,m — 1. Clearly the majorisation relation can be viewed as a

partial order on the set D,.

Theorem 1.1([10]). If asequence P € D, is color-feasible for G then every sequence
N € D, for which P > N is also color-feasible for G.

The proof of Theorem 1.1 in [10] provides a polynomial algorithm for construct-

ing a coloring corresponding to N if a coloring corresponding to P is given.
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The sequences in the set D, can be classified in the following way [18]. With
each non-increasing sequence N = (n1,...,n¢) we associate a new sequence s(N) =
(s(0),s(1),...,s(1)), where s(0) = 0 and s(i + 1) = max{j : 1 +n; > M(i)-+1 1
for i = 0,1,...,1 — 1. For example, if N = (9,8,8,7,4,3) then s(N) = (0,3,4,6).
In fact the integer I in the definition of s(INV) is the minimum number of disjoint
subsequences, in each of which any two members differ by at most 1. If the sequence
s(N) consists of [ positive members then we call N an [-step sequence.

The next result follows from Theorem 1.1.

Corollary 1.2 ([10,18]). A I-step sequence N € D, of length ¢ is color-feasible for
a graph G with ¢ edges if and only if x/(G) < t.

Since x'(G) = A(G) for a bipartite graph G, we obtain the following result.
Corollary 1.3 A l-step sequence N € D, of lenth ¢ is color-feasible for a bipartite
graph G with ¢ edges if and only if A(G) < ¢.

It is known that the problem of deciding whether x'(G) < t is NP-complete
even in the case when G is a simple t-regular graph [13,14]. Therefore, Corollary
1.2 implies that Problem 1 is NP-complete in general case.

However, given a little more notation, we can formulate a simple necessary
condition for the color-feasibility of a sequence N.

Let k be a positive integer. An edge subset F' C E(G) is called a k-matching
of G if each vertex of G is incident with at most k edges of F. A k-matching of
maximum cardinality is called a maximum k-matching of G. We shall denote by
qx(G) the number of edges in a maximum k-matching of G. Note that the number
qx(G) can be found in polynomial time [5].

Let Dy(G) denote the set of all sequences (nq,...,n¢) in D, which satisfy the

following condition:

t
t>AG), |EG) =) n
and 5 =l
(G) =Y ny, fork=1,...,A(G)—1.

i=1
Clearly, this condition can be checked in polynomial time.
Property 1.4. If a sequence N € D, is color-feasible for G, then N € D (G).
In some cases this necessary condition, N € D,(G), is also sufficient for color-
feasibility of N for G.
Theorem 1.5. ([18]) Let G be a bipartite graph with ¢ edges. Then a 2-step
sequence N € D, is color-feasible for a bipartite graph G if and only if N € Dy (G).
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Corollary 1.6. ([10] ) Let G be a bipartite graph and N = (ny,...,n;) be a
sequence in Dy with ny =---=np > ngyy = --- =n;. Then N is color-feasible for
G if and only if N € Dy(G).

Some other properties of the set of color-feasible sequences for a bipartite graph
G can be found in [1,2,8,10,15,18,19,20].

Corollary 1.3 and Theorem 1.5 imply that Problem 1 is solved polynomially
if G is a bipartite graph and N is a 1- or 2-step sequence. However, even for a
bipartite graph G Problem 1 is NP-complete if N is a 3-step sequence. (Indeed,
Problem 1 is NP-complete even if G is bipartite, A(G) = 3 and N = (n;,na,n3)
(see [4,12])).

Let G be a graph with A = A(G) and, for each integer k, let G denote the
subgraph induced by the set of vertices of degree at least k. Fournier [11] proved
that if G is a simple graph and the subgraph G has no edges then y/(G) = A(Q).
Berge and Fournier [6] observed that the same proof actually gives the following
broader result, which was stated earlier by Lovasz and Plummer ([16], 7.4.3).
Proposition 1.7 If G is a simple graph where the subgraph Ga is acyclic, then
¥(G) = AG).

In this paper we use similar ideas for investigation of Problem 1. Let A;(G)
denote the minimum integer k such that the subgraph Gy, is acyclic. In particular,
if the subgraph G contains a cycle, then A (G) = A(G). Furthermore, let Ay(G)
denote the minimum integer k& such that the subgraph Gy, contains no edges. It
is clear that A;(G) < Az(G) < A(G). In this terminology Proposition 1.7 can be
reformulated in the following way: if A;(G) < A(G) then x'(G) = A(G).

We say that the number A;(G), 4 € {1,2}, is a threshold for a sequence N € D,
with s(IV) = (s(0), s(1), ..., s(1)) if s(1) > A;(G).

The following results are obtained in this paper.

1.We give a sufficient condition for an l-step sequence N € D, with ! > 2 to be
color-feasible for a bipartite graph. This result implies Theorem 1.5.

2. We investigate Problem 1 for an arbitrary simple graph G:

a) We prove that all sequences with threshold As(G) in the set D,(G) are
color-feasible for G. We also prove that if G is connected and A2(G) = 2 < A(G),
that is, every pair of vertices of degree at least 3 are non-adjacent, then all sequences
in Dy(G) are color-feasible for G.

b) We show that all 1- and 2-step sequences with threshold A;(G) in the set
Dy(G) are color-feasible for G.
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Note that we described in [3] a polynomial algorithm to solve the following
problem: are all 3-step sequences with threshold A;(G) in the set Dy(G) color-
feasible for G? By using this algorithm we can, in particular, determine for an
arbitrary tree G: are all 3-step sequences in D,(G) color-feasible for G? For a
tree with bounded degrees there exists a polynomial algorithm to determine all

color-feasible sequences (see [21]).
2. Color-feasibility for bipartite graphs

Let G be a graph with |E(G)| = g and A(G) = A, and let H(G) = (hy, ..., ha)
be a sequence where h; = ¢;(G) and h; = ¢;+1(G) — ;(G), fori = 1,...A— 1. If
H(G) is non-increasing, that is, H(G) € D,(G) then the condition N € D,(G) is
equivalent to the condition H(G) = N.

Remark 2.1. Tt follows from Theorem 1.1 that if H(G) is color-feasible for G then
D,4(G) is the set of all color-feasible sequences for G.

It is known [18] that if G is a bipartite graph then H(G) € D,. The following
criterion for feasibility of H(G) was found by de Werra [18]: Let G be a bipartite
graph with A(G) = A and let s(H(G)) = (s(0),s(1),...,s(1)),] > 2. Then H(G)
is color-feasible for G if and only if there exist edge subsets F}, Fj, ..., F7 such that
Fy CF; C... C Fj and F} is a maximum s(j)-matching of G, for each j = 1,..., 1.

An immediate corollary (not stated in an explicit form in [18]) is a criterion

(Proposition 2.2) for an arbitrary sequence N to be color-feasible for a bipartite
graph G. The interest of the proof given in the present paper is that it is construc-
tive: if G and N satisfy this criterion then a corresponding coloring is constructed
in polynomial time.
Proposition 2.2. Let G be a bipartite graph, and let N = (ny,...,ny) be a
non-increasing sequence with s(N) = (s(0),s(1),...,s(l)), I > 2. Then N is color-
feasible for G if and only if there exist edge subsets F, Fs. ..., F} such that F C
F, C ... C F; and Fj is an s(j)-matching with Zji-"l) n; edges, for each i =1,...,[.

Proof. Suppose that G has a proper t—coloring corresponding to N. Then the set
F}; consisting of edges colored 1,2, ..., s(j) is an s(j)-matching of G, j = 1,...,1, and
R CFC..CH.

Conversely, suppose that there exist edge subsets Fi, ..., F} satisfying the condi-
tion of Proposition 2.2. We will prove that the edges in F; can be properly colored
with colors 1,..., s(j) such that precisely n; edges are colored 4, for i = 1,...,s(5).
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For j = 1 it follows from Corollary 1.3 because (n1,...,ng(1)) is a l-step se-

ffl) n; and Fy is an s(1)-matching. Suppose that the required

quence, |Fi| = Y
coloring is already constructed for Fj, 1 < j < I. We will color edges from FEARRY
with colors from the set C' = {1,2,...,s(j + 1)}.

Let e be an edge which has so far not been colored, and u and v be the ends of
e. If there is a color a € C for which there is no edge colored o adjacent to e, then
use color a to color e. Otherwise, since Fj41 is an s(j + 1)-matching, and we have
s(j + 1) colors, there are a color ¢, € C which is not used to color an edge incident
with u, and a color ¢, € C, t, # t,, which is not used to color an edge incident
with v. Consider a path P of maximum length with initial vertex u whose edges
are alternatively colored ¢, and t,. Clearly, P cannot pass through v, otherwise
E(P) U {e} forms an odd cycle in G, which contradicts G being bipartite. Thus if
we interchange the two colors ¢, and ¢, along P, the color t,, will no longer be used
on an edge adjacent to either vertex, and we can color e with #,,.

Suppose that the proper coloring of the edges of F;4; produced by this pro-
cedure is such that n edges are colored i, for each i = 1,...,5(j + 1). We may
assume (possibly after permuting the colors) that ny > nf > ... > n’s(j +1)- It is
not difficult to see that the above procedure of coloring certainly guarantees that
ni > n, for each i = 1,...,5(j). Let k(j + 1) denote the maximal i with n; > 0.
Then s(j) < k(j +1) < s(j +1) and (n},... yMipny) = (1, Ng(j41)) because
Migs(j) ~ Ms(i+n) < 1.

If (005 . ,n}c(jﬂ)) # (n1,.-.,Mg(i41)) then, by using the algorithm suggested
in [10], we can polynomially transform the coloring of Fj41 corresponding to the
sequence (nf, ..., n;c(j+1)) to a proper s(j + 1)-coloring of the edges of Fj;; corre-

sponding to the sequence (n1,n2,...,nj41)). =

The next auxiliary lemma is a corollary of a result of Berge (see [5]).
Lemma 2.3. Let s be a positive integer and F a subset of the set of edges in a
graph G. Then F is a maximum s-matching of G if and only if there is no path P
such that edges of P are alternatively in F and E(G) \ F, both the first and the
last edge of P is in E(G)\ F and the number of edges of F' incident with the origin
of P as well as the number of edges incident with the terminus of P is less than s.

Theorem 2.4. Let N be a sequence in D, with s(V) = (s(0),s(1),...,s(l)), [ > 2.
Then N is feasible for a bipartite graph G with g edges if every pair of vertices of
degree more than s(2) are non-adjacent in G and H(G) > N.
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Proof. Let X1 be a maximum s(1)-matching of G. We shall construct edge sub-
sets Xz,..., X in the following way: suppose that X;, ..., X;_; have already been
constructed (2 < i < 1). If s(i) > A(G), put X; = E(G). Otherwise, at each
vertex u with dg(u) > s(i) delete precisely dg(u) — s(i) edges from F(G)\X;_;.
The remaining edges of E(G)\X;_; together with X; ; form the next edge subset
X

By our construction, the following property holds for each edge uv € E(G)\ X;:

if u is incident with less than s(i) edges of X; then dg(u) < s(i), dg(v) > s(i)
and v is incident with exactly s(i) edges of X;,

if u is incident with exactly s(i) edges of X; then dg(u) > s(i) and, therefore,
di(v) < s(i) since every pair of vertices of degree more than s(2) are non-adjacent
in G. It means that v is incident with less than s(i) edges of X;.

It is not difficult to check now that every alternating path P = aga; .. QBretl
relative to X; (i.e., whose edges are alternatively in X; and in E(G)\ X;) with end
edges in F(G)\X; has the following property: if ag is incident with less than s(1)
edges of X; then each of the vertices a1,as,..., a4 is incident with exactly s(i)
edges of X;, and each of the vertices as, ay, ..., as, is incident with less than s(7)
edges of X;. We begin with the vertex a;.

This property and Lemma 2.3 imply that X; is a maximum s(i)-matching of
G. Clearly X; C X5 C -+- C X;. From X; choose a subset of edges F) of size
Z,fill) ni, and from X; choose a subset F; of size Zﬁ(:jl} n; containing F;_q, for each
J = 2,...,1. This is possible since H(G) = N. Now the theorem follows from
Proposition 2.2. =

Corollary 2.5([18]). Let G be a bipartite graph with ¢ edges. A sequence N =
(n1,...,ne) € Dy with s(N) = (s(0), s(1), s(2)) is color-feasible for G if and only if
H(G) = N.

Proof. Clearly, s(2) = t. If H(G) = N then t > A(G), and the conditions of
Theorem 2.4 are trivially satisfied. Therefore N is color-feasible for G. m

Theorem 2.6. Let G be a bipartite graph with bipartition (V1, V2) where dg(z) >
dg(y) for each edge (z,y) with z € V; and y € Vo. Then D,(G) is the set of all
color-feasible sequences for G. Furthermore, the sequence H(G) = (hy, ha, ..., ha)
satisfies the condition: h; = |[{z € V} /dg(z) > i}| for each i =1, ..., A.

Proof. We will show that the edges of G can be properly colored with colors
1,2,...,A(G) such that edges incident to each vertex x € V; are colored with colors
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1,2,...,dc(z). This implies that H(G) satisfies the above condition and is color-
feasible for G. Then, by Remark 2.1, D,(G) is the set of all color-feasible sequences
for G.

Let V1 = {x1,22,...,2,} with dg(z1) > dg(z) > -+ > dc(zy). Suppose that
the edges incident with each vertex z;, i = 1,...,k, k < n, are already colored with
the colors 1,2,...,dg(z;), and the edges incident with the vertices Tkl ..., Ly are
not colored yet. Let e1,ez,...,eqq,,,) be the edges incident with zj,;. Then for
each j =1,...,d(xr41) in turn we do the following:

Consider the vertex y; which is the end in V3 of the edge ej. Since dg(xp41) >
d(y;) there is a color [ such that 1 <[ < dg(xk41) and there are no edges incident
with y; colored . If [ = 7, then color e; with color j.

Otherwise, consider a path P of maximum length with origin at y; whose edges
are alternatively colored j and I. Clearly, by construction, this path must end in V.
Thus we may interchange the two colors along this path, to make color j available

at y;, and color e; with color j. =

The above conditions use the structure of a graph G. Now we will give some
other type of conditions for color-feasibility of a sequence of length 3.
Definition. Let N = (n;,n2,n3) be a non-increasing sequence. We define the
weight of N, denoted w(N), by w(N) = 3n; + 2ns + ns.
Theorem 2.7. Let G be a bipartite graph with A(G) = 3, |E(G)| = g and H(G) =
(h1, ha, h3). Then every sequence N = (n, ng,n3) € D, satisfying H(G) = N and

= Bis hy — hs
2J_L2

w(N) < w(H(G)) - |1 J+1,

is color-feasible for G.

Proof. The proposition is evident if H(G) is color-feasible. Suppose that H(G) is
not color-feasible for GG. It follows from Corollary 1.3 and Theorem 1.5 that H(G) is
a 3-step sequence. Therefore, hy — hy > 2 and hs — hy > 2. Define three sequences:

No = (hy — [f—l%hzj,ha I L'—”'EEJ,ha),

Ny = (hy, by — | 2252 | by 4 | Baghs ),

Np = (i ~ |15 | by + Bagha] — | Bagha |, by 4 |Bagha )

Clearly, Ny and N; are 2-step sequences and H(G) = Ny,H(G) = Ni. Then,
by Theorem 1.5, Ny and N, are color-feasible for G. Furthermore, it is clear that
W(No) = (3hy + 2hy + hs) — 1512 | — | Baghs | — w(H(G)) — |Bagha ] — |hasha |
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Let N = (ni1,n2,n3) be a sequence in D, satisfying H(G) > N and w(N) <
w(Nz) + 1. We will show that either Ny = N or N = N. Suppose that this is
not true. It means that n; = h; — [il—g—fflj + b1, where 0 < b; < [ﬁLg—hij, and
i+ ng = hy+ ho — 22588 | 4 by, where 0 < by < 22553 |, This implies that

— ha h

—h ho —h
5 J—[223J+bz—b1,n3:h.3+L2 -

2

h
ﬂ2=h2+[1 ] = be.

But then w(N) =3n1+2ns+n3 = HJ(N2)+3b1 +2(bg—b3)—b2 = w(N2)+b2 +b; >
w(N2) + 1, which contradicts the condition w(N) < w(N,) + 1. Therefore, either
Nog = N or N; = N. Then, by Theorem 1.1, N is color-feasible for G. m

The bound in Theorem 2.7 is sharp in the sense that for every v > 1 there
exists a bipartite graph G with ¢ = 37 4+ 6 edges and maximum degree 3 such that
every sequence N = (ny,ng,n3) € Dy, satisfying H(G) = N and

w(N) 2 w(H(@) - (P52 - 2Ty Ly
is not color-feasible for G.
F es
€5 €s o OEC
es €4
Fig. 1

Consider, for example, the graph G in Fig.l. Clearly, H (G) = (r+4,7+
2,7). Furthermore, H(G) is not color-feasible for G, because G has the unique
maximum matching M; = {e;, ez, ..., ¢,44} and the graph G — M, has no matching
of cardinality r + 2. Finally, by Theorem 2.7, every sequence of weight at least
w(H(G)) — 1 is color-feasible for G.

3. Color-feasibility for arbitrary simple graphs

Let G be a simple graph with A(G) = m where the subgraph induced by the
set of vertices of degree m is acyclic. Assume that a subset E, C E(G) is properly
colored with colors 1, 2, ..., m such that exactly n; edges are colored i, foré =1, ..., m.
For each vertex y let C(y) denote the set of colors of the edges incident with y and



10

Cly) ={1,2,...,m} \ C(y). A generalization of Vizing’s theorem [17] was obtained

n [6]. We use similar considerations for investigation of Problem 1.

—

Definition([6]). Let e = (zg, o) be an uncolored edge of G and a; be a color such
that a1 ¢ C(yo) and a; € C(xo). We define a sequence S(z¢, ;) of distinct edges
€0, €1, €2, ... all incident with zy, together with a function f that associates to each

edge e; of the sequence a color ;41 = f(e;), according to the following iterative

procedure.
(I) Put eg = e, f(eo) = au.
(IT) Suppose that the edges eg = (zo,yp),....,es-1 = (@0, y5—1) are already

included in S{zo, 1) and f(eq) = a1, ..., flei—1) = a; are already defined, i > 1.
a) If a; € C(z¢) and a; # f(e;) for all j < i—1, consider the edge e; = (x0,%:)
incident with zy that is colored with a;; let a1 = f(e;) be a color satisfying the
condition oy ¢ C(y;).
b) If either C'(y;_;) = 0, or a; ¢ C(=zq), or a; = f(e;) for an index j < i — 1,

then we stop, and the sequence S(xo, o)) is achieved, S(zq, 1) = (eg, €1, ..., €i-1).

Proposition 3.1. Let G be a simple graph with A(G) = m where the subgraph
induced by the set of vertices of degree m is acyclic. Assume that a subset Ey C
E(G) is colored with colors 1,2, ...,m such that precisely n; edges are colored i, for
i = 1,...,m. Then for an uncolored edge e the set Ey U {e} can be colored with

colors 1,...,m such that at least n; edges are colored i, for each i = 1, ..., m.

Proof. Without loss of generality we suppose that the only uncolored edge is e, that
is, E(G) = Eyp U {e}. Let e = (bg,by). Consider the following algorithm. First we
label vertices by and b .

Step r(r > 0). Suppose that the vertices by, b1, ..., by41 have been already labelled
and (br,by41) is the only uncolored edge of G. Choose a color a; ¢ Cb). If
a1 & C(br41) then color the edge (b, by41) with a;. If a; € C(by4;) then construct
a sequence S(by41,a1). Let (byy1,b,42) be the last edge in S(by41,01).

a) If C(b,+2) # 0 then, by using the same considerations as in [6], the edges
in Ey U {e} can be properly colored with colors 1,...,m. It is not difficult to check
that the method of coloring described in [6] guarantees that at least n; edges are
colored 7, for i =1,...,m.

b) Suppose that C(b..q) = 0 and S(bry1, 1) = (en,€1,...,e;) where g =
(b, brs1)s €0 = (brt1,br42), €; is colored o and f(e;) = aj41, § = 1,...,t. For each
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J =1,...,t remove the color c; from e; and assign it instead to €j—1. Now the only
uncolored edge is (br41,br12). Label the vertex b,2 and go to Step (r + 1):

It is not difficult to see that if the required coloring is not constructed on Step
r then C(b,12) = 0, that is, the new labelled vertex by 42 has degree A(G). Since
the subgraph of G induced by the vertices of degree A(G) is acyclic, the vertices
bz, b3, ... constructed by the algorithm, are different. Therefore, on some step of the

algorithm the required coloring of Ey U {e} will be constructed. m

Proposition 3.2. Let G be a simple graph with ¢ edges, and let N = (N1, .oy mg)
be a sequence in the set D, with s(N) = (s(0), s(1),..., s(I)) such that { > 2 and
3(2) > A1(G). Then N is color-feasible for G if and only if there exist subsets
Fy,...,Fysuch that Fy C F5 C ... C Fj, the set F} is an s(j)-matching with Zf(“’l) n;

edges, for j = 1,...,1, and edges of F; can be properly colored with s(1) colors.

Proof. The necessity is evident: if G has a proper t-coloring corresponding to N
then the set of edges F; consisting of edges colored 1,2, ..., (i) is a s(i)-matching
foreachi=1,..,l,and I}, CF, C ... C F}.

Conversely, suppose that there exist subsets Fy, ..., F] satisfying the condition
of the proposition. We will prove that the edges in F; can be properly colored
with colors 1, ..., s(j) such that precisely n; edges are colored i, for i = 1,.. ., s(7).
By the assumption, the edges in F; can properly colored with colors 1o, 8(1).
Therefore, by Corollary 1.2, there is a proper s(1)-coloring of Fy corresponding to
the sequence (ny, ...,n4q)).

Suppose that the required coloring is already constructed for F;,1<j3<l. Let
Hjy denote the subgraph induced by the set Fjii. Since s(j +1) > A;(G), the
subgraph of H; induced by the set of vertices of degree s(j+1) in H j+1, is acyclic.
Then, by Proposition 3.1, the edges in Fj4+1 can be colored with colors 1,2, ..., s(j+1)
such that at least n; edges in Fj;; are colored i, for each i = 1,2, ..., s(7).

Suppose that precisely n] edges are colored i, for i = 1,...,5(j +1). We may
assume (possibly after permuting the colors) that n} > nf > --. > n,

n; > n;, for each i = 1,...,5(j). Let k(j + 1) denote the maximal i with iy > 0.
Then s(j) < k(j+1) < s(j + 1) and (n,... yMkieny) = (M1, .oy Mg(i41)) because

(j+1) and

M+s(i) — Ms(i+1) < 1.
I¥ (055 : ,n}c(ﬂl}) # (n1,...,ng;+1)) then, by using the algorithm, suggested
in [10] we can polynomially transform the coloring of F; 1 corresponding to the
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sequence (nj, ..., n;c(jﬂ)), to a proper s(j + 1)-coloring of the edges of F;,; corre-

sponding to the sequence (n1,n2,...,n4;+1)). ®

Note that the proof of Proposition 3.2 provides a polynomial algorithm for con-
structing a coloring corresponding to the sequence N, if the required sets Fy, ..., F
are given.

Proposition 3.3. Let G be a simple graph. Then all 1- and 2-step sequences with
threshold A, (G) in the set D,(G) are color-feasible for G.

Proof.  Proposition 1.7 and Corollary 1.2 imply that all 1-step sequences with
threshold A (G) in Dy(G) are color-feasible for G. Now consider a 2-step sequence
N = (n1,...,nt) in Dy(G) with s(N) = (s(0),5(1),5(2)) and s(1) > A(G). Con-
struct a maximum s(1)-matching F of G. Clearly, Z;‘Sl) n; < |F| since N € Dy(G).
Choose in F' a subset F of Zf(zll) n; edges. Let H denote the subgraph induced by
Fy. Since s(1) > A1(G), the subgraph of H induced by vertices of degree s(1) is
acyclic. By Proposition 1.7, edges of Fy can be properly colored by s(1) colors. Put
Fy = E(G). Then F and F, satisfy the condition of Proposition 3.2. Therefore, N

is color-feasible for G. =

Theorem 3.4. Let G be a simple graph. Then all sequences with threshold Ay (G)
in the set D,(G) are color-feasible for G.

Proof. Let N = (n1,...,mt) € Dg(G), s(N) = (s(0), s(1), ..., 5(1)) and s(1) > Ax(G).
Then s(1) > A(G) since Ax(G) > A;(G). If I < 2 then, by Proposition 3.3, N is
color-feasible for G. Now suppose that [ > 3.

Let X; be a maximum s(1)-matching of G. We shall construct edge subsets
X2, ..., X in the following way: suppose that X,..., X; | are already constructed
(i <1). If s(i) 2 A(G), put X; = E(G). Otherwise, at each vertex u with
de(u) > s(i) delete precisely dg(u) — s(i) edges from E(G)\X;_,. The remaining
edges of E(G)\X;_, together with X;_; form the next edge subset X;. It is not
difficult to check that every alternating path P = aga; ... ag,,; relative to X; with
end edges in E(G)\X; has the property that if ao is incident with less than s(i) edges
of X; then each of the vertices a;,as, ..., az-41 is incident with exactly s(i) edges
of X;, and each of the vertices ag,ay,...as, is incident with less than s(i) edges
of X;. This property and Lemma 2.3 imply that X; is a maximum s(7)-matching
of G. Clearly X; € X3 C --- C X;. From X; choose a subset of edges F; of size

Zfill) ni, and from X; choose a subset Fj of size ngl) n; containing F;_;, for each
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J=2,...,l. This is possible since N € D,(G). By Proposition 1.7, edges of F; are
colorable with s(1) colors because s(1) > A;(G). Now the theorem follows from

Proposition 3.2. =

Remark 3.5. It is known [8] that almost all simple graphs have only one vertex of
maximum degree. Therefore, A;(G) < A(G) for almost all simple graphs.

Let G be a simple graph with [E(G)| = ¢ and A(G) = A, and let H(G) =

(h1,...,ha) be a sequence which was defined in Section 2. It is known that H(G) €
D, if G is bipartite and it may not be true if G is non-bipartite [18]. The next result
describes a class of graphs where H(G) € D, and, moreover, H(G) is color-feasible
for G.
Theorem 3.6. Let G be a connected simple graph with ¢ edges where A(G) > 3
and Az(G) = 2, that is, every pair of vertices of degree at least 3 are non-adjacent.
Then H(G) is color-feasible for G and Dy (G) is the set of all color-feasible sequences
for G.

Proof. Let H(G) = (h1,...,ha) where A = A(G). We will show that H(G) is
color-feasible for G. Let F; be a maximum matching of G. We will sequentially
construct edge subsets Fy, ..., Fa.

At each vertex 2 with dg(z) > 2 delete precisely de(x)—2 edges from E(G)\ F}.
The remaining set of edges we denote by Fy. It is clear that F), is a maximum 2-
matching of G.

Suppose that the set F, induces a non-bipartite graph. Consider in this graph
a cycle C of odd length. Since G is connected and A > 3, there is an edge (z,y) in
C and a vertex z ¢ C such that dg(z) > 3,de(y) = 2 and (z, z) € E(G). Clearly,
dg(z) < 2. Now we delete the edge (z,y) from F, and introduce (z,z), that is,
Fy = (B \ {(z,1)}) U{(=,2)}.

Then the number of odd cycles in the subgraph induced by F, decreases by 1.
We repeat this procedure until F;, induces a bipartite graph.

Suppose that we have already constructed subsets Fi,..., F;_; where 2 < i <
A(G) and Fi C ... C F;_1. At each vertex  with dg(z) > 7 delete precisely
da(z) — @ edges from E(G) \ F;_;. The remaining set of edges we denote by F;. It
is not difficult to check that every alternating path P = aga; ... azr41 relative to
F; with end edges in E(G)\F; has the property that if ag is incident with less than
i edges of F; then each of the vertices ay,as,...,as,41 is incident with exactly i
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edges of F;, and each of the vertices as, a4, ... as, is incident with less than i edges
of F;. This property and Lemma 2.3 imply that F; is a maximum i-matching of G.

By repeating this process we obtain the sets [, ..., Fa such that F; is a maxi-
mum i-matching of G, fori =1,...,A, and F; C F5 C ... C Fa.

Let H; be the subgraph induced by the set Fj,i = 1,...,A. Since H- is a
bipartite graph with A(Hz) = 2 and F} is a maximum matching, ¢,(G) > ¢(G) —
q1(G), that is , hy > ho. Moreover, it is not difficult to see that the edges of Hy can
be colored with colors 1 and 2 such that h; edges colored 1 and hy edges colored 2.

Suppose that we have already properly colored edges in F; with i > 2 colors
L, ..., such that precisely h; edges colored j, for j = 1,....i. If i < A then, by
Proposition 3.1, edges in F;; can properly colored with 41 colors such that at least
h; edges are colored j, for j = 1,2,...,i. The condition Zi:l hr = q;(G) implies
that under this coloring precisely h; edges receive color j, for each j = 1,2, ...,i+ 1.

By repeating this process we obtain a proper A-coloring corresponding to the
sequence H(G). Therefore, by Remark 2.1, D,(G) is the set of all color-feasible

sequences for G. m
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