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Abstract

The aim of this work is to present new contributions to the theory of peaked solitons.
The thesis consists of two papers, which are named “New solutions with peakon creation
in the Camassa–Holm and Novikov equations” and “Peakon-antipeakon solutions of the
Novikov equation” respectively.

In Paper I, a new kind of peakon-like solution to the Novikov equation is discovered,
by transforming the one-peakon solution via a Lie symmetry transformation. This new
kind of solution is unbounded as x →+∞ and/or x →−∞, and has a peak, though only
for some interval of time. Thus, the solutions exhibit creation and/or destruction of
peaks. We make sure that the peakon-like function is still a solution in the weak sense
for those times where the function is non-differentiable. We find that similar solutions,
with peaks living only for some interval in time, are valid weak solutions to the Camassa–
Holm equation, though it appears that these can not be obtained via a symmetry trans-
formation.

In Paper II we investigate multipeakon solutions of the Novikov equation, in partic-
ular interactions between peakons with positive amplitude and antipeakons with neg-
ative amplitude. The solutions are given by explicit formulas, which makes it possible
to analyze them in great detail. As in the Camassa–Holm case, the slope of the wave
develops a singularity when a peakon collides with an antipeakon, while the wave it-
self remains continuous and can be continued past the collision to provide a global
weak solution. However, the Novikov equation differs in several interesting ways from
other peakon equations, especially regarding asymptotics for large times. For exam-
ple, peakons and antipeakons both travel to the right, making it possible for several
peakons and antipeakons to travel together with the same speed and collide infinitely
many times. Such clusters may exhibit very intricate periodic or quasi-periodic interac-
tions. It is also possible for peakons to have the same asymptotic velocity but separate
at a logarithmic rate; this phenomenon is associated with coinciding eigenvalues in the
spectral problem coming from the Lax pair, and requires nontrivial modifications to the
previously known solution formulas which assume that all eigenvalues are simple.
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Populärvetenskaplig sammanfattning

Inom vågteori studeras så kallade solitoner, vilka kan beskrivas som vågpaket som rör
sig med konstant form och hastighet. Typiska egenskaper är att utbredningen i rummet
är begränsad, samt att två solitoner som kolliderar kan passera genom varandra utan att
ändra form.

Fenomenet beskrevs redan 1834 av John Scott Russell, som ridande längs en kanal
följde en ”rundad, slät, väldefinierad upphöjning av vatten, vilken fortsatte sin bana
längs kanalen synbarligen utan att ändra form eller förlora fart”. Dåvarande våglära
kunde inte förklara uppkomsten av sådana vågor, men moderna hydrodynamiska teorier
innehåller ett antal modeller där solitoner är ett naturligt koncept.

I denna avhandling studeras vågekvationer som tillåter en särskild typ av spetsiga
solitoner, så kallade peakoner (från engelskans ”peaked soliton”). Avhandlingen utgörs
av två artiklar som på olika sätt utvidgar förståelsen av detta fenomen.

I Artikel 1 beskrivs en ny typ av peakon-liknande våg där den spetsiga vågtoppen
endast existerar under ett visst tidsintervall. Denna typ av våg kan visas förekomma i
flera moderna vågekvationer, såsom Camassa–Holm-ekvationen och Novikovs ekvation.

I Artikel 2 studeras, i fallet med Novikovs ekvation, samspelet mellan peakoner och
så kallade antipeakoner, vilket är vågor med spetsig vågdal istället för vågtopp. Artikeln
beskriver vad som händer då peakoner kolliderar med antipeakoner, både i allmänhet
och i några specialfall.
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Introduction

This thesis presents several new contributions to the theory of peaked soliton solutions,
so called peakons, in a number of different partial differential equations. The results
are presented in two separate articles. Paper I is named “New solutions with peakon
creation in the Camassa–Holm and Novikov equations”, and is published in Journal of
Nonlinear Mathematical Physics, 2015, 22(1). Paper II is coauthored with Hans Lund-
mark, and is named “Peakon–antipeakon solutions of the Novikov equation”.

We begin the study of soliton equations by looking at the the KdV equation, which
is the archetypical example of such equations. This gives us a chance to comment on
some of the terminology used in the thesis. Then the relevant equations are introduced
together with the concept of peakons, which are solutions to these equations in a certain
weak sense.

Background

Before we get into the equations used in the papers, let us study the Korteweg–deVries
(KdV) equation

ut +uxxx +6uux = 0, (1)

where u = u(x, t ) is a function of space and time, and subscripts denote partial deriva-
tives. This equation was introduced in the 19th century as a mathematical model for
shallow water waves, and provides a nice example of features that we will see later in
other equations, such as soliton solutions, integrability and inverse scattering. The con-
stant in front of the term uux has no particular relevance, as it can be changed to any
other constant by a scaling transformation

u = k

6
v,

so that v solves the equation
vt + vxxx +kv vx = 0

if and only if u solves equation (1). In the literature, a number of different choices of k
are used, though we will stick to k = 6, following Strauss’s book [25].

Solitons

By soliton solutions, we mean localized traveling wave solutions, that interact with each
other in a certain stable fashion. To find soliton solutions to the KdV equation, one
makes the travelling wave ansatz

u(x, t ) = f (x − ct ).

and replaces the partial derivatives ux = f ′, ut = −c f ′ into equation (1) to get the ordi-
nary differential equation

−c f ′+ f ′′′+6 f f ′ = 0.
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This equation is easily integrated to

−c f + f ′′+3 f 2 =C , C ∈R.

Multiplying by 2 f ′ and integrating again gives

−c f 2 + ( f ′)2 +2 f 3 =C f +D, C ,D ∈R.

We require that f (x) and its derivatives tend to zero as x →±∞, since we are searching
for localized waves. We thus put C = D = 0, and solve the ODE

( f ′)2 = c f 2 −2 f 3.

Besides the trivial solution f (x) = 0, solutions are found by separating the equation into∫
d f

f
√

c −2 f
=

∫
d x,

which gives
1p
c

ln

∣∣∣∣∣
√

c −2 f −p
c√

c −2 f +p
c

∣∣∣∣∣= x −x0.

Solving for f , we find that the travelling wave shape of the KdV equation is

f (x − ct ) = c

2

(
1−

(
1+e

p
c(x−x0−ct )

1−e
p

c(x−x0−ct )

)2)

which we write as

f (x − ct ) = c

2
cosh−2

(p
c

2
(x −x0 − ct )

)
.

Note that this is a whole family of solutions, parametrized by the constants c and x0.
For each choice of parameters one gets a soliton of fixed shape, where x0 is the center
of the wave profile at t = 0, the amplitude is c

2 and the speed is equal to c. We thus see
that taller solitons move faster than shorter ones. See Figure 1 for an example of a KdV
soliton.

Now, consider a setup with a linear combination of two such KdV solitons, separated
by a large distance at time t = 0, and let their amplitudes be chosen such that the left
one is taller. Note that the KdV equation can be interpreted as an evolution equation

ut =−uxxx −6uux .

Thus, given the initial wave profile u(x,0), there should exist a well defined wave func-
tion u(x, t ), at least up to some time t > 0. Initially, the separation of the solitons and
their exponential decay means that they will not interact much. In fact, if one writes the
linear combination as u = v +w , it follows that the product

uux = v vx + v wx +w vx +w wx
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x
x0 + ct

c
2

Figure 1: KdV soliton.

is initially approximately equal to v vx + w wx , since either v or wx has to be close to
zero for any given x, and the same holds for vx and w . Thus, we expect the solitons to
first move along relatively unperturbed, according to their respective speeds. But what
happens when the left (faster) soliton catches up with the right one?

Running numerical simulations with such setups, Kruskal and Zabusky [17] found
that, after a complicated nonlinear interaction, the solitons emerge unscathed, so that
there is a faster wave to the right of a slower one as t →+∞, with initial velocities and
shapes preserved. In fact, one can show that this kind of behaviour translates to any
linear combination of solitons, so that the number of solitons is preserved after inter-
actions, with faster solitons ending up to the right of slower ones. It is this property of
stability under interactions that characterizes localized traveling waves as solitons.

Integrability

The KdV equation turns out to be somewhat special among PDEs. The fact that one can
find explicit solutions is not at all obvious just from looking at the equation – a small
change in the order of derivatives in one of the terms might destroy the possibility of
finding soliton solutions. This indicates that there is some property of the KdV equa-
tion which makes it particularly easy to work with, and this property is what we will call
integrability.

In what follows we will simply think of a PDE as integrable if it has an infinite number
of constants of motions and we can find explicit solutions to it. Note though, that there
are a number of different ways of defining integrability, depending on the context. See
[27] for various takes on the term.

We now want to study the constants of motion for the KdV equation. The first few
can be found by trying to write the equation in the form

∂

∂t
P (u)+ ∂

∂x
Q(u) = 0.
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In fact, if one is able to find such a relation, then (provided the integrals converge)

∂

∂t

∫ ∞

−∞
P (u)d x =− ∂

∂x

∫ ∞

−∞
Q(u)d x = 0.

It is easy to see that the KdV equation (1) can be written in this form, with P (u) = u,
Q(u) = uxx +3u2, which means that ∫ ∞

−∞
u d x

is a constant of motion. Furthermore, multiplying the KdV equation by 2u gives

2uut +2uuxxx +12u2ux = 0

which is equivalent to

∂

∂t

(
u2)+ ∂

∂x

(
2uuxx −u2

x +4u3)= 0,

so there is another constant of motion∫ ∞

−∞
u2 d x.

The next expression, ∫ ∞

−∞

(
u2

x

2
−u3

)
d x,

is a bit more tricky to find, although one can easily check that its time derivative is equal
to zero. The physical interpretations of these three constants are conservation of mass,
momentum and energy, respectively.

The fact that KdV has infinitely many constants of motion is due to Miura, Gardner
and Kruskal [23]. Define recursively a sequence Pi (u) via{

P1 = u,

Pi =− ∂
∂x Pi−1 +

∑i−1
k=1 Pk Pi−k , i ≥ 2.

(2)

Studying this sequence, one can show that

∂

∂t

∫ ∞

−∞
Pi (u)d x = 0, i ≥ 1,

which gives an infinite number of constants of motion. Note that the even-numbered
ones are trivial, in the sense that

P2 j =
∂

∂x
Q j ,

for some functions Q j (u) that tend to zero as x →±∞. Thus the even-numbered expres-
sions only give the trivial constant of motion, equal to zero. The odd-numbered Pi will
also contain some (but not all) terms that are integrated to zero. Removing those super-
fluous terms in P1, P3 and P5 will lead to the three constants of motion found above.
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Inverse scattering and Lax pairs

In their study of the KdV equation [10], Gardner, Greene, Kruskal and Miura found a
method for transforming a PDE to the region of spectral (or scattering) data, where time
evolution is trivial, which actually gives a method for solving the equation given initial
conditions

u(x,0) =Φ0(x).

Lax [18] reformulated the problem as a condition of compatibility for two linear PDEs.
Consider the system {

LΦ=λΦ,

Φt = BΦ,

where L and B are some given differential operators, and λ is a fixed parameter. For this
system to have solutions Φ, it is necessary that the time derivative of the first equation
is consistent with the second equation. By that, we mean that the derivative

∂

∂t
(LΦ) = LtΦ+LΦt =λΦt

is consistent with the second equation, which is the case only if

LtΦ+LBΦ= BLΦ.

This equation can be conveniently written as an operator equation

Lt = [B ,L] (3)

using the usual commutator notation. What Lax did was to find a pair of operators L
and B , depending on a function u, such that the consistency condition (3) is equivalent
to the KdV equation. In fact, with

L =−∂2
x −u,

B =−4∂3
x −3u∂x −3∂xu,

one gets that Lt is just −ut , while [B ,L]Φ is equal to

(−4∂3
x −3u∂x −3∂xu)(−Φxx −u)− (−∂2

x −u)(−4Φxxx −3uxΦ−6uΦx),

which after cancellation yields the expression

6uuxΦ+uxxxΦ.

Thus, the Lax equation with this choice for the operators B and L is equivalent to the
KdV equation, as desired.

Let us now look at the problem from the other direction. Given any function u that
solves the KdV equation, try to solve the eigenvalue problem

LΦ=λΦ,
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where one requiresΦ(x) to be a nonzero function such that∫
|Φ|d x <∞.

With the operator L =−∂2
x −u taken from Lax’s pair, this equation is known as the time-

independent Schrödinger equation of quantum mechanics, and gives rise to a discrete
spectrum of eigenvalues (see [25])

λN ≤λN−1 ≤ ·· · ≤λ1 < 0,

with corresponding eigenfunctionsΦn(x, t ). The limiting behaviour of these eigenfunc-
tions as x →∞ is

Φn(x, t ) ∼ cn(t )e−
p

−λn x ,

where the time dependence (which can be found via the second equation of the Lax
system) is simply given by

cn(t ) = cn(0)e4(−λn )
3
2 t .

We can now describe (in somewhat vague terms) the steps that constitute the inverse
scattering method for computing solutions to the KdV equation.

First, given u(x,0) = Φ0(x), compute the scattering data at time 0. This data con-
sists of the time independent spectrum (λn)N

n=1, together with the parameters (cn(0))N
n=1.

Since the time dependence is known, one immediately finds the scattering data (λn ,cn)
at an arbitrary time t > 0. The third step, which is the hardest one, is known as the in-
verse scattering problem, where one must find u(x, t ) given scattering data at arbitrary
time t . (It turns out that one more scattering variable is needed to uniquely reconstruct
the function u, but the details are beyond the scope of this presentation.)

In general, the same kind of methods can be applied to any PDE which has an asso-
ciated Lax pair. The difficult part is to find the inverse mapping from the spectral region
back to the original function, and sometimes also finding enough spectral data to guar-
antee uniqueness.

Inverse scattering techniques are of particular importance in Paper II, where we con-
sider solution formulas obtained through inverse scattering for the Novikov equation
in [13].

Peakon equations

In Paper I and II, three more recently discovered partial differential equations are stud-
ied, all somewhat similar to the KdV equation in that they are integrable and admit soli-
ton solutions. One important difference though, is that the soliton solutions to these
equations turn out to have non-smooth peaks, which gives rise to the term ‘peakons’. In
this section we give a short historical overview describing the partial differential equa-
tions of interest to us, and what is known about peakon solutions to these equations.

8



x
x(t )

m(t )

Figure 2: Peakon profile.

The Camassa–Holm b-family

The first object of interest is the following family of third order quadratically nonlinear
PDEs,

ut −uxxt =−(b +1)uux +buxuxx +uuxxx , (x, t ) ∈R2, (4)

where b is a fixed parameter. Choosing b = 2 gives the dispersionless version of the
much studied Camassa–Holm (CH) equation [4] which was first developed in 1993 as a
new model of shallow water waves. If one instead chooses b = 3 in (4), it turns into the
Degasperis–Procesi (DP) equation [9] from 1999.

Both equations are of interest in wave theory as they accomodate wave breaking, i.e.,
the slope of the wave profile may tend to infinity in finite time. It is interesting to note
that the equations in the family are integrable only for b = 2 and b = 3, according to a
number of integrability tests [9, 22, 14, 16].

Let us first study some properties of the Camassa–Holm equation, which appears
as one of the main equations in Paper I. The original form of the equation includes a
dispersion term,

ut −uxxt +κux =−3uux +2uxuxx +uuxxx ,

with the constant κ related to the critical shallow water wave speed. Like for the KdV
equation, soliton solutions can be shown to exist in this equation, but it is difficult to
find explicit solution formulas. Camassa and Holm showed, that in the limit as κ→ 0,
the solitons tend to to a very simple limiting shape, given by the function e−|x|. Note
though, that this shape is no longer smooth, as there is a peak where the left and right
derivatives do not coincide. Camassa and Holm thus coined the term ‘peakons’, short
for peaked solitons.

To study time dependent peakon solutions, consider the expression

u(x, t ) = m(t )e−|x−x(t )| =
{

m(t )e−x+x(t ), x ≥ x(t ),

m(t )ex−x(t ), x ≤ x(t ).
(5)

See Figure 2 for a picture of the wave profile. If m(t ) < 0, the wave instead has a trough
(downward pointing peak), and we call this an antipeakon.

One reason for the interest in peakon solutions is that they behave nicely under tak-
ing linear combinations, like we saw for the KdV solitons. Let us use the term multi-

9



x

u(x)

x1(t ) x2(t )

x3(t )

x4(t )

Figure 3: Multipeakon.

peakon to describe sums of peakons

u(x, t ) =
n∑

k=1
mk (t )e−|x−xk (t )|. (6)

Sometimes one assumes mk > 0, which is the so called pure peakon case, whereas all
mk < 0 corresponds to the pure antipeakon case. The remaining case, where not all mk

have the same sign, we call the mixed (peakon/antipeakon) case. See Figure 3 for an
example of a multipeakon wave profile for a given time t .

Note that multipeakons cannot be solutions to the partial differential equations (4)
in a strong sense, since they are non-differentiable. The problem lies in multiplying ux

with uxx , since uxx contains Dirac deltas exactly at the jump discontinuities of ux . To
get around this, one rewrites the b-family as(

1−∂2
x

)
ut +

(
b +1−∂2

x

)
∂x

(
1

2
u2

)
+∂x

(
3−b

2
u2

x

)
= 0. (7)

A function u(x, t ) is said to be a weak solution if u(·, t ) ∈ W 1,2
loc (R) for each fixed t , which

means that u(·, t )2 and ux(·, t )2 are locally integrable functions, if ut (·, t ) defined as the
limit of a difference quotient exists as a distribution, and if (7) is satisfied for all t in the
distributional sense.

With the n-peakon ansatz (6), our PDEs are easily seen to be satisfied on the intervals
where the multipeakon is differentiable, since each exponential function is a solution.
Studying what goes on at the locations of each peak, one finds that the PDEs simplify
into a system of 2n ODEs in the variables (xk ,mk ), which denote the position and height
respectively of peakon k. For the b-family, this system is{

ẋk =∑n
i=1 mi e−|xk−xi |,

ṁk = (b −1)mk
∑n

i=1 mi sgn(xk −xi )e−|xk−xi |,
(8)

where we use the convention that sgn 0 = 0.
For n = 1, the system reduces to {

ẋ1 = m1,

ṁ1 = 0,
(9)

10



which means that the peakon u(x, t ) = m1e−|x−m1t | clearly is a travelling wave solution,
maintaining its shape and height, travelling with constant speed equal to its height. Note
that in this case, antipeakons move to the left while peakons move to the right.

For n > 1, the interaction between peakons makes the ODE systems considerably
more complicated. The system (8) was solved in the pure peakon sector using inverse
scattering techniques for Camassa–Holm in [1], and the mixed case was solved in [2].

It turns out that in the pure peakon sector, there are no collisions amongst peakons,
i.e., the coordinates x1(t ) < x2(t ) < ·· · < xn(t ) remain separated for all times. This is
not necessarily true in the mixed case, where collisions may occur, causing some mk to
tend to infinity. Thus one has to be careful with the meaning of continuing a solution
beyond a collision. In [12] it was shown how to obtain global multipeakon solutions of
the Camassa–Holm equation, by introducing a new system of ODEs which is well-posed
even at collisions. See also [3] for how to resolve singularities for more general kinds of
solutions of the Camassa–Holm equation.

Finally, a word on the Degasperis–Procesi equation. Most of what we wrote about the
Camassa–Holm equation carries through to the DP case. It is worth noting though that
the situation is slightly different when it comes to weak solutions. Functions in W 1,p

loc (R)
are continuous by the Sobolev embedding theorem, but if one puts b = 3 in (7), the term
u2

x disappears, so one only has to require that u(·, t ) ∈ L2
loc(R). Thus the Degasperis–

Procesi equation admits solutions that are not continuous, see for example [19, 5, 6],
while CH does not.

The DP peakon ODEs where solved in [20] in the pure peakon case, again with in-
verse scattering, and [26] dealt with the mixed peakon-antipeakon case.

The Novikov equation

Most prevalent in the thesis is the Novikov equation [24, 15]

ut −uxxt =−4u2ux +3uuxuxx +u2uxxx , (10)

which appears in both papers. This equation has a similar structure to CH and DP, but
instead has cubic nonlinearities in the right hand side.

We mention here also the Geng–Xue (GX) system [11]{
uxxt −ut = (ux −uxxx)uv +3(u −uxx)vux ,

vxxt − vt = (vx − vxxx)uv +3(v − vxx)uvx ,
(11)

which is studied briefly in the Appendix of Paper I. This system can be thought of as a
two-component generalization of the Novikov equation, as the system reduces to two
copies of (10) when replacing u = v .

To define weak solutions of the Novikov equation we write (10) as

(
1−∂2

x

)
ut +

(
4−∂2

x

)
∂x

(
1

3
u3

)
+∂x

(
3

2
uu2

x

)
+ 1

2
u3

x = 0. (12)
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We require that u(·, t ) ∈W 1,3
loc (R) for all t , so that u3 and u3

x are locally integrable. It then

follows from Hölder’s inequality with conjugate indices 3 and 3
2 that the term uu2

x is lo-
cally integrable as well. We also require that the time derivative ut exists as a distribution
defined as the limit of a difference quotient for almost every t . Then it makes sense to
call u a weak solution to the Novikov equation if the left hand side of (12) gives zero when
acting on a test function, for all t where ut exists.

The Novikov equation is of interest in this thesis, since it admits peakon solutions
too. By using the multipeakon ansatz as before, a similar system to (8) can be con-
structed for peakon dynamics in the Novikov equation,{

ẋk = (∑n
i=1 mi e−|xk−xi |)2

,

ṁk = mk
(∑n

i=1 mi e−|xk−xi |)(∑n
i=1 mi sgn(xk −xi )e−|xk−xi |) .

(13)

Note that here, a single peakon travels with constant speed equal to the square of its
height, which is different from the previous equations, in that both peakons and an-
tipeakons move to the right in the Novikov equation. Pure multipeakon solutions to
Novikov and GX were studied in [13] and [21] respectively, while the peakon-antipeakon
interactions are the topic of Paper II.
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New solutions with peakon creation in
the Camassa–Holm and Novikov equations

M. KARDELL

ABSTRACT. In this article we study a new kind of unbounded solutions

to the Novikov equation, found via a Lie symmetry analysis. These solutions

exhibit peakon creation, i.e., these solutions are smooth up until a certain

finite time, at which a peak is created. We show that the functions are still

weak solutions for those times where the peak lives. We also find similar un-

bounded solutions with peakon creation in the related Camassa–Holm equa-

tion, by making an ansatz inspired by the Novikov solutions. Finally, we see

that the same ansatz for the Degasperis–Procesi equation yields unbounded

solutions where a peakon is present for all times.

1 Introduction

In 1993, Camassa and Holm [3] discovered an integrable partial differential equation
within the context of shallow water theory, an equation which has since been studied
quite extensively. One reason for the interest in this equation is that it allows (weak) ex-
plicit solutions in the form of so called multipeakons. More recent equations with simi-
lar properties include the Degasperis–Procesi [7] and the Novikov [13] equations. See [6]
for a discussion of the role of the Camassa–Holm and Degasperis–Procesi equations in
hydrodynamics.

The results of this article originated from a Lie symmetry analysis of the Novikov
equation. This framework gives a complete list of transformations such that each solu-
tion of the equation is mapped to another solution. In the resulting list of transforma-
tions, there are two nontrivial transformations which we use to produce new solutions
to the Novikov equation.

In fact, applying the new transformations found in this article to the Novikov one-
peakon solution gives an unbounded solution displaying quite interesting behaviour.
(Though the peakon is a weak solution, it is piecewise smooth, so the transformation
makes sense locally away from the peak.) We find that this new solution depends smooth-
ly on x for some interval in time, and has peakon creation (or destruction, depending
on the transformation) at some finite time t . We also show that these functions are still
weak solutions for those times for which the peak lives.

By making an ansatz inspired by the Novikov solutions with peakon creation, we also
find such solutions to the Camassa–Holm equation. It is interesting to note that, ap-
parently, these solutions cannot be found using Camassa–Holm symmetries. Another
thing to note is that the same ansatz does not give peakon creation in the closely re-
lated Degasperis–Procesi equation, instead we find a kind of unbounded peakon solu-
tion where the peak lives for all times.
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c2t
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Figure 4: One-peakon solution

2 Novikov Solutions with Peakon Creation

The Novikov equation, given by

ut −uxxt =−4u2ux +3uuxuxx +u2uxxx , (2.1)

admits multi-peakon solutions

u(x, t ) =
n∑

i=1
mi (t )e−|x−xi (t )| (2.2)

in a weak sense. The word peakon is short for ‘peaked soliton’, where peaked means that
there is some point where the left and right derivatives do not coincide. The peakons
interact in quite a complicated way; see [9] for explicit time dependence of the functions
{xi (t ),mi (t )} and a weak formulation of the problem.

Consider the one-peakon solution u(x, t ) = ce−|x−c2t|. This is a peakon traveling to
the right, with constant speed equal to the square of the height of the peakon (which
differs from Camassa–Holm and Degasperis–Procesi peakons, where the speed is just
equal to the height). For fixed t , the peakon looks as in Figure 4. Peakons are important
due to the fact that the travelling waves of greatest height of the governing equations
for water waves (incompressible homogeneous Euler equations with a free boundary)
present a peak at their crest, cf. [4, 5].

In the Appendix, Theorem A.3, we compute the Lie symmetries of the Novikov equa-
tion. These correspond to transformations that take known (strong) solutions of the
equation to other solutions. We repeat here the result for convenience.

Theorem 2.1. If u = f (x, t ) solves the Novikov equation (2.1), then so do

u1 = f (x −ε, t ),

u2 = f (x, t −ε),

u3 = eε/2 f (x, teε),

u4 =
√

1+2εe2x f

(
−1

2
ln

(
e−2x +2ε

)
, t

)
,

u5 =
√

1+2εe−2x f

(
1

2
ln

(
e2x +2ε

)
, t

)
.
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In this section we study the functions that one gets by transforming the one-peakon
solution. Note though, that the one-peakon is not a smooth solution, so we can not say
a priori whether this approach gives valid weak solutions of the Novikov equation, this
has to be checked. Applying the first three transformations gives us translations and
scaling of a peakon, hence no essentially new solutions come up. The fourth and fifth
tranformations are more interesting. They give the functions

u4(x, t ) = c
√

1+2εe2xe−
∣∣ 1

2 ln(e−2x+2ε)+c2t
∣∣
, (2.3a)

u5(x, t ) = c
√

1+2εe−2xe−
∣∣ 1

2 ln(e2x+2ε)−c2t
∣∣
. (2.3b)

Note that these solutions do not tend to zero as |x| →∞. Let us first study the function
u5(x, t ).

Theorem 2.2. The transformed Novikov peakon u5(x, t ) = c
p

1+2εe−2xe−
∣∣ 1

2 ln(e2x+2ε)−c2t
∣∣

is a smooth solution to the Novikov equation up until t0 = 1
2c2 ln(2ε), when a peak is cre-

ated at x =−∞. After time t0, the function is still a weak solution.

Proof. Let us examine the expression inside the modulus signs in u5. This expression is
increasing in x, and has the only root x = 1

2 ln(e2c2t −2ε). Thus, there can exist a value of
x for which the expression changes sign, but only when t > t0 := 1

2c2 ln(2ε). Before time
t0, the function u5 is smooth, and is thus a solution of the Novikov equation in the usual
sense. At the time t0 a peak is created at x =−∞, so that for each time t > t0 there exists a
point where the left and right derivatives are unequal. After the creation, the peak moves
in rapidly from the left.

More concretely, for t ≤ t0, the expression (2.3b) simplifies significantly, since

u5(x, t ) = c
√

1+2εe−2xe− 1
2 ln(e2x+2ε)+c2t = c

p
1+2εe−2x

p
e2x +2ε

ec2t = ce−x+c2t .

For t > t0, one can simplify in a similar manner, depending on whether one is to the left
or to the right of the peak at B(t ) := 1

2 ln(e2c2t −2ε), yielding

u5(x, t ) =
{

ce−x+c2t , x ≥ B(t )

c(ex +2εe−x)e−c2t . x ≤ B(t )
(2.4)

To check that a function is still a weak solution after time t0, in the sense of [9], one needs
to show that

〈(1−∂2
x

)
ut +

(
4−∂2

x

)
∂x

(
1

3
u3

)
+∂x

(
3

2
uu2

x

)
+ 1

2
u3

x ,ϕ〉 = 0, ∀ϕ(x) ∈C∞
0 ,

where 〈·, ·〉 means action on test functions in the usual sense. Using the definition of
distributional derivatives, one gets

〈ut ,
(
1−∂2

x

)
ϕ〉+〈1

3
u3,∂x

(
∂2

x −4
)
ϕ〉+〈3

2
uu2

x ,−∂xϕ〉+〈1

2
u3

x ,ϕ〉 = 0. (2.5)

19



Let u+ and u− be the expressions of (2.4) to the right and left of the peak, respectively.
Note that u5(x, t ) is continuous at all points, with ux and ut piecewise continuous func-
tions, so the lefthand side in (2.5) equals∫ ∞

B
u+

t

(
ϕ−ϕxx

)
d x +

∫ B

−∞
u−

t

(
ϕ−ϕxx

)
d x +

∫ ∞

B

1

3

(
u+)3 (

ϕxxx −4ϕx
)

d x+

+
∫ B

−∞

1

3
(u−)3 (

ϕxxx −4ϕx
)

d x +
∫ ∞

B

3

2
u+ (

u+
x

)2 (−ϕx)d x +
∫ B

−∞

3

2
u− (

u−
x

)2 (−ϕx)d x+

+
∫ ∞

B

1

2

(
u+

x

)3
ϕd x +

∫ B

−∞

1

2

(
u−

x

)3
ϕd x.

Using integration by parts to move the derivatives back to u, we get two kinds of terms.
First we again get integrals, which combine to zero since u is a strong solution of the
Novikov equation on each interval. The boundary values at infinity are all zero, since we
integrate against a test function with compact support, but we also get boundary values
at B :

U1(B)ϕ(B)+U2(B)ϕx(B)+U3(B)ϕxx(B), (2.6)

where we use the shorthand notation f (B) = f (B(t ), t ), and

U1(B) :=(
u−

t

)
x (B)− (

u+
t

)
x (B)+ 1

3

(
(u−)3)

xx (B)− 1

3

((
u+)3

)
xx

(B)

+ 3

2
u+(B)(u+

x (B))2 − 3

2
u−(B)(u−

x (B))2 + 4

3
(u+)3(B)− 4

3
(u−)3(B),

U2(B) :=u+
t (B)−u−

t (B)+ 1

3

((
u+)3

)
x

(B)− 1

3

(
(u−)3)

x (B),

U3(B) :=1

3

(
(u−)3) (B)− 1

3

((
u+)3

)
(B).

The continuity of u5 gives u+(B) = u−(B) which means that U3(B) is zero. It is not obvi-
ous, but easy to check with computer, that U1(B) and U2(B) are also zero. For example,(

ut +
1

3

(
u3)

x

)
(B) = −2εc3ec2t(

e2c2t −2ε
) 3

2

(2.7)

for both u+ and u−, showing that U2(B) = 0.

Note that as the peak moves in from the left, it is not actually a local maximum from
the start (so it might be more accurate to call it a corner), as we can see from Figure 5.
As time increases the corner really turns into a peak, indicated in Figure 6. The peak
becomes increasingly separated from the large wave to the left, and one can see from
the expression for B(t ) that, asymptotically, the peak moves to the right with constant
speed c2t like a one-peakon solution, unaffected by the wavefront. Figure 7 shows how
the peak moves in space-time.

20



x

u(x, t )

Figure 5: Wave profile of u5, shortly after the time of creation

x

u(x, t )

x

u(x, t )

Figure 6: Wave profile of u5, snapshots at two different later times

x

t

x = B(t )

t0

Figure 7: Movement of the peak in space-time
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Let us also briefly consider the function u4(x, t ). By modifying the argument above,
one gets that this function also has a peak, but before a certain (finite) time, at which the
position of the peak goes to +∞. One can also check that u4 is a weak solution until the
peak is destroyed, after which it is a regular solution to the Novikov equation.

Finally, let us mention what happens if one combines the transformations above.
Applying transformation 5 with parameter ε, followed by transformation 4 with param-
eter δ, gives the following function:

ũ = c
√

1+2δe2x
√

1+2ε(e−2x +2δ)e
−

∣∣∣ 1
2 ln

(
1

e−2x+2δ
+2ε

)
−c2t

∣∣∣.
It turns out that this function has a peak that is both created and destroyed in finite time.
The precise interval for which the peak lives is

t ∈
(

1

2c2
ln(2ε),

1

2c2
ln

(
2ε+ 1

2δ

))
.

Outside this interval, ũ is a smooth function of x, and thus a regular solution as before.
To find a function for which the peak lives between given times t1 and t2, chooseε=

1
2 e2c2t1 ,

δ= 1

2
(
e2c2t2−e2c2t1

) , t1 < t2.

3 Peakon Creation in Related Equations

Finding unbounded solutions with peakon creation in the Novikov equation inspires us
to look for solutions with similar behaviour in the related Camassa–Holm and Degasperis–
Procesi equations.

3.1 Camassa–Holm solutions with peakon creation

The Camassa–Holm equation (CH), from [3], is given by

ut −uxxt +3uux = 2uxuxx +uuxxx . (3.1)

It is known from [2] that the CH symmetry group only consists of translations and scal-
ings. This means that we cannot find solutions with peakon creation just by transform-
ing the one-peakon solution. Still, it turns out that there are solutions with peakon cre-
ation, that one can find via an ansatz inspired by the Novikov solutions found in the
previous section.

Theorem 3.1. The function u(x, t ) defined by

u(x, t ) =
{

u+ = a(t )e−x , x ≥ B(t ),

u− = c(t )(ex +e−x), x ≤ B(t ),
for t > t0,
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and u(x, t ) = a(t )e−x for t ≤ t0, is a solution to the Camassa–Holm equation, with

a(t ) =U cosh[U (t − t0)],

B(t ) = ln(sinh[U (t − t0)]),

c(t ) = U

cosh[U (t − t0)]
.

Proof. We look for weak solutions of the kind

u(x, t ) =
{

u+ = a(t )e−x , x ≥ B(t ),

u− = c(t )(ex +e−x), x ≤ B(t ),
(3.2)

where a(t ) and c(t ) are positive continuous functions, chosen in such a way that u is
continuous at the peak B(t ) for all times. From the weak formulation of the Camassa–
Holm equation found in [9], one has that u must satisfy

〈(1−∂2
x

)
ut +

(
3−∂2

x

)
∂x

(
1

2
u2

)
+∂x

(
1

2
u2

x

)
,ϕ〉 = 0 (3.3)

for all test functionsϕ(x) ∈C∞
0 . Note that the function u(x, t ) is a strong solution of (3.1)

on each interval. Thus integration by parts, as in the previous section, gives that

U1(B)ϕ(B)+U2(B)ϕx(B)+U3(B)ϕxx(B) = 0

must be satisfied, where

U1(B) := (
u−

t

)
x (B)− (

u+
t

)
x (B)+ 1

2

(
(u−)2)

xx (B)− 1

2

((
u+)2

)
xx

(B)+

+ 1

2

(
u+

x (B)
)2 − 1

2

(
u−

x (B)
)2 + 3

2

((
u+)2

)
(B)− 3

2

(
(u−)2) (B), (3.4a)

U2(B) := u+
t (B)−u−

t (B)+ 1

2

((
u+)2

)
x

(B)− 1

2

(
(u−)2)

x (B), (3.4b)

U3(B) := 1

2

(
(u−)2) (B)− 1

2

((
u+)2

)
(B). (3.4c)

The condition (3.4c) = 0 is met because of continuity. Using continuity, we can also
express a(t ) in terms of B and c, since

c
(
e−B +eB )= ae−B =⇒ a = c

(
1+e2B ) =⇒ d a

d t
= dc

d t

(
1+e2B )+2

dB

d t
ce2B .

Eliminating a and its time derivative in the conditions (3.4a) = (3.4b) = 0 gives the sys-
tem

d

d t

(
ceB )= c2, (3.5a)

dB

d t
= c

(
eB +e−B )

. (3.5b)
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These conditions are simplified by a change of variables,{
G(t ) = c(t )eB(t ),

K (t ) = 1
c2(t )

,
=⇒

{
dG
d t = c2 = 1

K ,
dK
d t = −2

c3
dc
d t = 2KG ,

where the last line follows from the observation that

dc

d t
= d

d t

(
G

eB

)
= c2

eB
− Gc

(
eB +e−B

)
eB

e2B
=−c2eB =−cG .

One can now get a separable differential equation and find a constant of motion:

dK

dG
=

dK
d t
dG
d t

= 2K 2G =⇒
∫

dK

K 2
=

∫
2G dG =⇒ − 1

K
=G2 +constant.

Apart from the trivial solution a(t ) = c(t ) = 0, G and 1
K are positive, so the constant has

to be negative. Let the constant be named −U 2 for convenience. Then

dG

d t
= 1

K
=U 2 −G2 =⇒

∫
dG

U 2 −G2
=

∫
d t

=⇒ 1

2U

∫ (
1

U +G
+ 1

U −G

)
dU =

∫
d t =⇒ 1

2U
ln

(
U +G

U −G

)
= t − t0

=⇒ G =U
e2U (t−t0) −1

e2U (t−t0) +1
=U tanh[U (t − t0)].

From this one gets K as

K = 1

U 2 −G2
= 1

U 2
· 1

1− tanh2[U (t − t0)]
= cosh2[U (t − t0)]

U 2
,

which gives expressions for c(t ), B(t ), and consequently a(t ):

c(t ) = 1p
K

= U

cosh[U (t − t0)]
,

B(t ) = ln
(
G
p

K
)
= ln(sinh[U (t − t0)]),

a(t ) = c(t )
(
1+e2B(t ))= U

cosh[U (t − t0)]

(
1+ sinh2[U (t − t0)]

)=U cosh[U (t − t0)].

We note that our new solution behaves similarly to the Novikov solution with peakon
creation in Theorem 2.2. Up to time t0, the expression for B(t ) is undefined, so the
function is a strong solution to the Camassa–Holm equation. At t0 a peak is created
at x = −∞, which then moves rapidly in from the left. Note that the exact time depen-
dencies are not the same as for the Novikov peakon-creation solution, even though the
qualitative behaviour is the same.
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3.2 Degasperis–Procesi solutions with peakon creation?

The Degasperis–Procesi (DP) equation [7] is given by

ut −uxxt +4uux = 3uxuxx +uuxxx . (3.6)

Like Camassa–Holm, it only has scaling and translation symmetries [15], so we try to
find peakon-creation solutions using the same method as in the last section.

Theorem 3.2. For every t ∈R, the function

u(x, t ) =
{

u+ = a(t )e−x , x ≥ B(t ),

u− = c(t )(ex +e−x), x ≤ B(t ),

where

a(t ) =
√

C1

C0

1+C0C1e2U t

eU t + e−U t

UC0

 ,

B(t ) = ln
√

C0C1 +U t ,

c(t ) =
√

C1

C0

1

eU t + e−U t

UC0

,

is a solution to the Degasperis–Procesi equation.

Proof. We look for weak solutions

u(x, t ) =
{

a(t )e−x , x ≥ B(t ),

c(t ) (ex +e−x) , x ≤ B(t ),

where a(t ) and c(t ) are positive continuous functions, such that u is continuous at the
peak B(t ) for all times. We stick to the weak formulation given in [9], i.e., u(x, t ) must
satisfy

〈(1−∂2
x

)
ut +

(
4−∂2

x

)
∂x

(
1

2
u2

)
,ϕ〉 = 0.

As before, ut is piecewise continuous, so via integration by parts we find three condi-
tions on u+ and u− at the peak, one of which is satisfied because of continuity. Elimi-
nating a(t ), we end up with a system similar to (3.5), but not the same:

d

d t

(
ceB )= 2c2,

dB

d t
= c

(
eB +e−B )

.
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With G(t ) = c(t )eB(t ), K (t ) = eB(t )

c(t ) , we get

dG

d t
= 2G

K
,

dK

d t
= 2GK .

Using the same method as before, we find a relation between K and G :

dK

dG
=

dK
d t
dG
d t

= K 2 =⇒
∫

dK

K 2
=

∫
dG =⇒ − 1

K
=G +constant.

Let the constant be named −U . Since G and 1
K are nonnegative, U = 0 only gives the

trivial solution a(t ) = c(t ) = 0. Assume U 6= 0. Then

dK

d t
= 2GK = 2K

(
U − 1

K

)
=⇒ dK

d t
−2KU =−2,

which has the general solution

K =C0e2U t + 1

U
.

This gives G(t ) via
dG

d t
= 2G

K
= 2G

C0e2U t + 1
U

=⇒ G = C1

e−2U t

UC0
+1

,

so we get

eB(t ) =
p

GK =
√

C1

√√√√C0e2U t + 1
U

e−2U t

UC0
+1

=
√

C0C1e2U t =
√

C0C1eU t

=⇒ B(t ) = ln
√

C0C1 +U t ,

and

c(t ) =
√

G

K
=

√√√√ C1(
e−2U t

UC0
+1

)(
C0e2U t + 1

U

) =
√√√√ C1

C0e2U t
(
1+ e−2U t

UC0

)2 =
√

C1

C0

1

eU t + e−U t

UC0

.

This gives

a(t ) = c(t )
(
1+e2B(t ))=√

C1

C0

1+C0C1e2U t

eU t + e−U t

UC0

 .

Note that B(t ) here is defined for all times, so there is no peakon creation in this
solution. We have found an unbounded piece-wise defined solution though. It is pos-
sible that a more general ansatz yields a solution with peakon creation in the DP case.
It would also be interesting to investigate if one can find a solution with creation of so-
called shockpeakons [11].
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A Lie Symmetries

In this appendix we use the framework of symmetry groups, due to Lie, to construct
transformations taking solutions of the Novikov equation (2.1) to other solutions. Simi-
lar results have been presented for the related Camassa–Holm equation in [2] and more
recently for the Degasperis–Procesi equation in [15]. Note that computation of symme-
try groups is quite cumbersome, so to find them explicitly, the Jets package in Maple is
used. For more information on the Jets algorithm and how to use the package, see [12]
and [1] respectively.

A.1 Definitions

Herein we will mainly use the notation employed in Olver’s book [14], which also con-
tains all details and proofs omitted in this section.

Let X = {x̄ = (
x1, . . . , xp

)
} and U = {ū = (

u1, . . . ,uq
)
} be the spaces of independent and

dependent variables, respectively, involved in a system of differential equations. The n-
th prolongation of a scalar function u is defined as a tuple, denoted u(n), containing u
and all its derivatives up to order n, where derivatives are arranged by order and then
lexicographically. For example, with independent variables x1 = x, x2 = t one gets u(2) =
(u,ux ,ut ,uxx ,uxt ,ut t ). Furthermore, we define for vector-valued functions

ū(n) = (
(u1)(n), . . . , (uq )(n)) ,

and set U (n) = {ū(n) | ū ∈U }.
An n-th order system of differential equations can then be given as

∆r
(
x̄, ū(n))= 0, r = 1, . . . , l , (A.1)

where the system has maximal rank if the Jacobian J∆
(
x̄, ū(n)

)
has rank l for all points(

x̄, ū(n)
)

that are solutions to the system.
If G is a local group of transformations on M ⊂ X ×U and g ∈ G , one defines the

prolonged action g (n) on a point
(
x̄, ū(n)

) ∈ M (n) ⊂ X ×U (n) as transforming x̄ and ū,
and then re-evaluating derivatives. What we are looking for are symmetry groups, i.e.,
local groups of transformations on M such that their prolongations take solutions of the
system (A.1) to other solutions.

To a one-parameter group G there corresponds an infinitesimal generator v, which
is a vector field defined on M , with the property that orbits of the group action are max-
imal integral curves of v. Similarly, to an m-parameter group there corresponds a set
of m infinitesimal generators v1, . . . ,vm , which has the property that it is closed under
taking Lie bracket, and that each infinitesimal generator corresponds to a generator of
the group G .

We define the prolongation of an infinitesimal generator v of a group G to be the
vector field v(n), defined on M (n), which is the infinitesimal generator of the group G (n) :=
{g (n)|g ∈G}. We want to give a formula for computing v(n).
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Let J be a multi-index of the form

J = ( j1, . . . , jk ), 1 ≤ jk ≤ p, 1 ≤ k ≤ n,

where p is the number of independent variables. Then one can introduce a compact
notation for derivatives as

uα
j = ∂uα

∂x j
and uα

J = ∂k uα

∂x j1 · · ·∂x jk

,

and we shall also use the notation

D jϕ(x̄, ū) = ∂ϕ

∂x j
+

q∑
α=1

uα
j
∂ϕ

∂uα

for total derivatives, and D J = D j1 D j2 · · ·D jk for multi-indices J .
The following theorem (Theorem 2.36 in [14]) gives the general formula for v(n):

Theorem A.1. Let

v =
p∑

i=1
ξi (x̄, ū)

∂

∂xi
+

q∑
α=1

ϕα(x̄, ū)
∂

∂uα
(A.2)

be a vector field on M ⊂ X ×U . Then

v(n) = v+
q∑

α=1

∑
J
ϕJ
α

(
x̄, ū(n)) ∂

∂uα
J

, (A.3)

where the second sum is over all multi-indices J , and ϕJ
α is given by

ϕJ
α

(
x̄, ū(n))= D J

(
ϕα−

p∑
i=1

ξi ∂uα

∂xi

)
+

p∑
i=1

ξi
∂uα

J

∂xi
. (A.4)

The next theorem (Theorem 2.31 in [14]) is the main tool for finding symmetry groups:

Theorem A.2. Suppose
∆r

(
x̄, ū(n))= 0, r = 1, . . . , l ,

is a system of differential equations of maximal rank defined over M ⊂ X ×U . If G is a
local group of transformations acting on M, with infinitesimal generator v, and

v(n) (∆r
(
x̄, ū(n)))= 0, r = 1, . . . , l , whenever ∆

(
x̄, ū(n))= 0,

then G is a symmetry group of the system.

Thus, the method for finding symmetry groups is to make the ansatz (A.2) for v, pro-
long it using expressions (A.3) and (A.4), apply it as a differential operator to the system
(A.1), and find the conditions for which this expression is zero. Then v is an infinitesi-
mal generator of the symmetry group, so finding G is just a matter of exponentiating the
vector field.
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A.2 Using Jets

The computations required to determine v become increasingly more involved as the
number of variables or the number of equations in the system grows. A semi-automatic
process, called Jets, is used here to solve this problem. Jets is implemented in Maple,
and it is well suited for dealing with large symbolic expressions appearing in the ansatz
for v(n). More concretely, what happens is the following:

Let v be defined as in (A.2). As a computational trick, define

Qα
(
x̄, ū(1))=ϕα(x̄, ū)−

p∑
i=1

ξi (x̄, ū)uα
i , α= 1, . . . , q.

We call Q = (Q1, . . . ,Qq ) the characteristic of v. Note that one can recover v from Q
through the relations {

ξi (x̄, ū) =− ∂
∂uαi

Qα,

ϕα(x̄, ū) =Qα
(
x̄, ū(1)

)+∑p
i=1ξ

i (x̄, ū)uα
i .

(A.5)

Jets is built to produce Q, so that we can recover v and exponentiate it to find the sym-
metry group.

The Novikov equation, as stated before, is

uxxt −ut = 4u2ux −3uuxuxx −u2uxxx .

We note that this is just a single third-order partial differential equation, with two inde-
pendent and one dependent variable. This means that one can drop the α’s and the bar
on ū in the equations above. Also, let x1 = x, x2 = t , so that the ansatz for v becomes

v = ξx(x, t ,u)
∂

∂x
+ξt (x, t ,u)

∂

∂t
+ϕ(x, t ,u)

∂

∂u
,

and its third prolongation

v(3) = v+ϕx ∂

∂ux
+ϕt ∂

∂ut
+ϕxx ∂

∂uxx
+ϕxt ∂

∂uxt
+ϕt t ∂

∂ut t
+

+ϕxxx ∂

∂uxxx
+ϕxxt ∂

∂uxxt
+ϕxt t ∂

∂uxt t
+ϕt t t ∂

∂ut t t
.

If one wanted to do the work manually one would now compute the coefficients ϕx ,
etc., using Theorem A.1, apply v(3) to the Novikov equation, and find conditions on the
ξ’s and ϕ. Instead, let’s go with Jets, and study the characteristic

Q(x, t ,u,ux ,ut ) =ϕ(x, t ,u)−ξx(x, t ,u)ux −ξt (x, t ,u)ut .

With the following setup, Jets will generate all conditions for Q being the character-
istic of the Novikov equation:
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> read("Jets.s");

> coordinates([x,t], [u], 3);

> equation ('u_xxt' = u_t + 4*u^2*u_x - 3*u*u_x*u_xx - u^2*u_xxx);

> S := symmetries(u = Q);

> dependence(Q(x, t, u, u_t, u_x));

> unknowns(Q);

> run(S);

> dependence();

> S1 := clear(pds);

We find that Q depends on all variables in general, and must satisfy the following
conditions:

∂2

∂t 2
Q = ∂2

∂u2
x

Q = ∂2

∂u2
t

Q = 0, (A.6a)

∂2

∂t∂x
Q = ∂2

∂ux∂t
Q = ∂2

∂ut∂x
Q = ∂2

∂ut∂ux
Q = 0, (A.6b)[

∂2

∂ut∂t
− 1

ut

∂

∂t

]
Q = 0, (A.6c)[

∂

∂u
+ 1

u

(
ux

∂

∂ux
+ut

∂

∂ut
−1

)]
Q = 0, (A.6d)[

∂2

∂ux∂x
+ 2

u

(
1−ux

∂

∂ux
−ut

∂

∂ut

)
− 1

ut

∂

∂t

]
Q = 0, (A.6e)[

∂2

∂x2
+ 2ux

u

∂

∂x
+ 2(u2 −u2

x)

uut

∂

∂t
+ 4(u2 −u2

x)

u2

(
ux

∂

∂ux
+ut

∂

∂ut
−1

)]
Q = 0. (A.6f)

It follows from (A.6a) and (A.6b) that the characteristic Q is a polynomial of first degree
in both ux and t , with no mixed terms, so one can split it into three parts, denoted Q0,
Q1 and Q2, that only depend on u, x and ut , so that Q = Q0ux +Q1t +Q2. This simplifies
the dependence of Q, so we run Jets again:

> Q := Q0*u_x + Q1*t + Q2;

> dependence(Q0(u, x, u_t), Q1(u, x, u_t), Q2(u, x, u_t));

> unknowns(Q0, Q1, Q2);

> run(S1);

> dependence();

> S2 := clear(pds);

This time, Jets is able to reduce the dependencies, so that Q0 now only depends on
x, while Q1 only depends on ut . However, Q2 still depends on u, x, and ut . The list of
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conditions is now more manageable:(
∂3

∂x3
−4

∂

∂x

)
Q0 = 0, (A.7a)(

∂

∂ut
− 1

ut

)
Q1 = 0, (A.7b)

u

2

∂2

∂x2
Q0 +

∂

∂x
Q2 = 0, (A.7c)

1

2

∂

∂x
Q0 −

1

2ut
Q1 +

∂

∂u
Q2 = 0, (A.7d)

− u

2ut

∂

∂x
Q0 +

u

2u2
t

Q1 +
(
∂

∂ut
− 1

ut

)
Q2 = 0. (A.7e)

Now, conditions (A.7a) and (A.7b) imply that

Q0 =Q00e2x +Q01e−2x +Q02,

Q1 =Q10ut ,

where Q00 up to Q10 are constants. Inserting these expressions into conditions (A.7c)
through (A.7e) and solving for Q2 gives

Q2 =−uQ00e2x +uQ01e−2x + u

2
Q10 +utQ20,

where Q20 is also constant.
We conclude that the most general characteristic for the Novikov equation is

Q = (−ue2x +uxe2x)
Q00 +

(
ue−2x +uxe−2x)

Q01 +uxQ02 +
(

1

2
u + tut

)
Q10 +utQ20. (A.8)

Note that it has five degrees of freedom, which correspond to five different generators for
the symmetry group. From the characteristic, we recover five infinitesimal generators,
using (A.5).

v1 =− ∂

∂x
,

v2 =− ∂

∂t
,

v3 =− ∂

∂t
+ u

2

∂

∂u
,

v4 =−e2x ∂

∂x
−e2xu

∂

∂u
,

v5 =−e−2x ∂

∂x
+e−2xu

∂

∂u
.

Exponentiating the vector fields, we find the symmetry group of the Novikov equation.
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Theorem A.3. If u = f (x, t ) solves the Novikov equation (2.1), then so do

u1 = f (x −ε, t ),

u2 = f (x, t −ε),

u3 = eε/2 f (x, teε),

u4 =
√

1+2εe2x f

(
−1

2
ln

(
e−2x +2ε

)
, t

)
,

u5 =
√

1+2εe−2x f

(
1

2
ln

(
e2x +2ε

)
, t

)
.

It is easy to check the first three by inspecting the equation; the last two are best
checked by computer.

Finally, while computing the Lie symmetries of the Novikov equation, we also did
the same for its two-component generalization due to Geng–Xue [8]. While not directly
relevant to this article, this might be a good place to mention the results. The Geng–Xue
system is given by {

uxxt −ut = (ux −uxxx)uv +3(u −uxx)vux ,

vxxt − vt = (vx − vxxx)uv +3(v − vxx)uvx .

Proceeding with the help of Jets as before, we find the following symmetries.

Theorem A.4. If {
u = f (x, t ),

v = g (x, t ),

solves the Geng–Xue system (A.2), then so do{
u1 =

p
1+2εe2x f

(−1
2 ln

(
e−2x +2ε

)
, t

)
,

v1 =
p

1+2εe2x g
(−1

2 ln
(
e−2x +2ε

)
, t

)
,{

u2 =
p

1+2εe−2x f
(1

2 ln
(
e2x +2ε

)
, t

)
,

v2 =
p

1+2εe−2x g
(1

2 ln
(
e2x +2ε

)
, t

)
,{

u3 = f (x −ε, t ),

v3 = g (x −ε, t ),

{
u4 = f (x, t −ε),

v4 = g (x, t −ε),{
u5 = f (x, teε),

v5 = eεg (x, teε),

{
u6 = eε f (x, t ),

v6 = e−εg (x, t ).
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Peakon–antipeakon solutions
of the Novikov equation

M. KARDELL, H. LUNDMARK

ABSTRACT. Certain nonlinear partial differential equations admit multi-

soliton solutions in the form of a superposition of peaked waves, so-called

peakons. The Camassa–Holm and Degasperis–Procesi equations are two well-

known examples, and a more recent one is the Novikov equation, which has

cubic nonlinear terms instead of quadratic. In this article we investigate mul-

tipeakon solutions of the Novikov equation, in particular interactions between

peakons with positive amplitude and antipeakons with negative amplitude.

The solutions are given by explicit formulas, which makes it possible to ana-

lyze them in great detail. As in the Camassa–Holm case, the slope of the wave

develops a singularity when a peakon collides with an antipeakon, while the

wave itself remains continuous and can be continued past the collision to pro-

vide a global weak solution. However, the Novikov equation differs in several

interesting ways from other peakon equations, especially regarding asymp-

totics for large times. For example, peakons and antipeakons both travel to

the right, making it possible for several peakons and antipeakons to travel

together with the same speed and collide infinitely many times. Such clus-

ters may exhibit very intricate periodic or quasi-periodic interactions. It is

also possible for peakons to have the same asymptotic velocity but separate at

a logarithmic rate; this phenomenon is associated with coinciding eigenval-

ues in the spectral problem coming from the Lax pair, and requires nontrivial

modifications to the previously known solution formulas which assume that

all eigenvalues are simple. To facilitate the reader’s understanding of these

multipeakon phenomena, we have included a particularly detailed descrip-

tion of the case with just one peakon and one antipeakon, and also made an

effort to provide plenty of graphics for illustration.

1 Introduction

The Novikov equation

ut −uxxt = (3uxuxx −4uux +uuxxx)u, (1.1)

is an integrable nonlinear partial differential equation for u = u(x, t ), a function of the
space and time coordinates. It was found by Vladimir Novikov [27, 19] in a search for
integrable equations similar in form to the Camassa–Holm equation [5],

ut −uxxt = 2uxuxx −3uux +uuxxx , (1.2)
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x

u

ξ(t )

m(t )

Figure 1: The shape of a single peakon u(x, t ) = m(t )e−|x−ξ(t )| at a fixed value of t .

but with cubic nonlinearities instead of quadratic. The Camassa–Holm equation arises
as a model for waves in shallow water, but we are not aware of any physical applications
of Novikov’s equation.

One of several remarkable features contributing to the fame of the Camassa–Holm
equation is that it admits a particular class of weak solutions known as peakons (short
for peaked solitons), which can be computed explicitly [1, 2]. Recall that solitons are lo-
calized wave pulses which can interact in a particle-like manner, and peaked here means
that at some points the left and right derivatives of u with respect to x are unequal (but
finite).

Likewise, Novikov’s equation admits peakon solutions, and these are the subject of
our study here. Before going into details, let us mention some closely related PDEs also
having peakon solutions, such as the Degasperis–Procesi equation [10, 24, 25]

ut −uxxt = 3uxuxx −4uux +uuxxx (1.3)

and the Geng–Xue equation [11, 26]

ut −uxxt = (3uxuxx −4u2ux +u2uxxx) v,

vt − vxxt = (3vx vxx −4v2vx + v2vxxx)u,
(1.4)

an integrable two-component generalization of Novikov’s equation.
In all these cases, the general expression for a single peakon is

u(x, t ) = m(t )e−|x−ξ(t )| =
{

m(t )e−x+ξ(t ), x ≥ ξ(t ),

m(t )ex−ξ(t ), x ≤ ξ(t ),
(1.5)

where the functions ξ(t ) and m(t ) are suitably chosen in order to obtain a solution to the
PDE in question. Thus, the shape of a peakon at any fixed time t is given by the function
e−|x|, multiplied by an amplitude factor m(t ), and translated so that it is centered at x =
ξ(t ); see Figure 1. To distinguish the particular case m(t ) < 0 we use the term antipeakon.

For the Camassa–Holm and Degasperis–Procesi equations, the single-peakon solu-
tion is a travelling wave: the amplitude m(t ) = c is a (nonzero) constant, and the position
is ξ(t ) = ξ0 + ct , so that the wave moves with constant velocity c. In particular, a peakon
with c > 0 moves to the right, but an antipeakon with c < 0 moves to the left.

Novikov’s equation is different, because of its cubic nonlinearities; again the single-
peakon solution is a travelling wave with constant amplitude m(t ) = c, but the position
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Figure 2: A multipeakon wave profile u(x, t ) =∑n
k=1 mk (t )e−|x−xk (t )| with n = 3, for some

fixed value of t . This picture shows the mixed peakon–antipeakon case: m1 and m3

are positive, while m2 is negative. The dashed curves show the contributions from the
individual terms, and the solid curve is the graph of x 7→ u(x, t ). For Camassa–Holm and
Degasperis–Procesi peakons, the instantaneous velocity ẋk (t ) of each peakon is given
by the amplitude u(xk (t ), t ) of the wave at the corresponding position, but for Novikov
peakons, the velocity is the square of the amplitude: ẋk (t ) = u(xk (t ), t )2.

is ξ(t ) = ξ0 + c2t . Thus, the velocity is c2 > 0, so antipeakons and peakons both move to
the right.

In what follows, we will study multipeakons, i.e., linear combinations of peakons
and/or antipeakons; see Figure 2. A function of the form

u(x, t ) =
n∑

k=1
mk (t )e−|x−xk (t )| (1.6)

is a solution of Novikov’s equation (in the precise sense given by Definition 2.1 below) if
and only if the positions xk (t ) and the amplitudes mk (t ) satisfy the following system of
2n ordinary differential equations:

ẋk =
( n∑

i=1
mi e−|xk−xi |

)2

,

ṁk = mk

( n∑
i=1

mi e−|xk−xi |
)( n∑

j=1
m j sgn(xk −x j )e−|xk−x j |

)
,

(1.7)

for k = 1, . . . ,n. Here dots denote time derivatives, and sgn(0) = 0. In shorthand notation,
this system can be written as

ẋk = u(xk )2,

ṁk =−mk u(xk )
〈

ux(xk )
〉

,
(1.8)

where u(xk ) denotes u(xk (t ), t ) evaluated using (1.6), and〈
ux(xk )

〉= 1

2

(
ux(x−

k )+ux(x+
k )

)
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x

t
u(x, t )

Figure 3: A three-peakon solution u(x, t ) = ∑3
k=1 mk (t )e−|x−xk (t )| of the Novikov equa-

tion, plotted from the exact solution formulas in Theorem 2.7, which express the func-
tions (mk (t ))2 and e2xk (t ) as rational expressions in the exponentials e t/λ1 , e t/λ2 and e t/λ3 .
In this example, the parameters λk have the values λ1 = 1/5, λ2 = 1/2, λ3 = 4. The solu-
tion formulas also contain three other parameters bk (0), here with the values b1(0) = 103,
b2(0) = 2, b3(0) = 1. The figure uses a parallel projection with the same scale on all
axes, and the domain shown is −16 ≤ x ≤ 16 and −5 ≤ t ≤ 5, with the wave profile
u(x, t ) sampled at equidistant times t = n/3, n ∈ Z. The positions of the peakons sat-
isfy x1(t ) < x2(t ) < x3(t ) for all t , which is seen more clearly in Figure 4. For large |t | the
peakons are well separated and behave nearly like single-peakon solutions (travelling
waves with constant velocity, equal to the square of the amplitude). For t ¿ 0 the am-
plitudes are ordered with the tallest/fastest peakon to the left, m1(t ) > m2(t ) > m3(t ),
while for t À 0, after the interactions have taken place, it is the other way around,
m1(t ) < m2(t ) < m3(t ); see Figure 5.

is the average of the left and right x derivatives of u(x, t ) at x = xk (t ).
Hone, Lundmark and Szmigielski [18] solved the peakon ODEs (1.7) explicitly, for ar-

bitrary n, with initial values in the pure peakon sector, i.e., points (x1, . . . , xn ,m1, . . . ,mn) ∈
R2n such that x1 < x2 < ·· · < xn and all mi > 0. Given such initial data at time t = 0, the
solutions were found to exist for all t ∈ R, both forwards and backwards in time, and
to remain in the pure peakon sector [18, Theorem 4.5]. In particular this means that the
strict ordering x1 < x2 < ·· · < xn is automatically preserved by the evolution, so collisions
xi = xi+1 never occur. As t →±∞ the peakons scatter, i.e., xi+1 − xi →∞ for all i , and
their amplitudes and velocities tend to constant values. In other words, as the peakons
separate, each one of them is increasingly less influenced by the others, and therefore
behaves asymptotically as a single-peakon solution, moving with constant amplitude
and velocity. See Section 2.3 for a more detailed description, and Figures 3, 4 and 5 for
illustrations.

Note that the pure antipeakon case where all mi < 0 is essentially the same as the
pure peakon case, since the system is invariant under the transformation

(x1, x2, . . . , xn ,m1,m2, . . . ,mn) 7→ (x1, x2, . . . , xn ,−m1,−m2, . . . ,−mn).

In this article, we will consider the mixed peakon–antipeakon case, where it turns
out that the solutions can exhibit a much more intricate behaviour. Collisions will oc-
cur, where xk = xk+1 for some k, and at these instants the amplitudes mk and mk+1 blow
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Figure 4: Spacetime plot showing the locations xk (t ) of the peakons in the (x, t )-plane for
the pure 3-peakon solution in Figure 3, with λ1 = 1/5, λ2 = 1/2 and λ3 = 4. As t →±∞,
the curves x = xk (t ) approach certain straight lines of the form x = t/λi +const., as ex-
plained in Theorem 2.9 and Remark 2.11. In other words, the peakons are asymptotically
travelling with the constant velocities 1/λ1 = 5, 1/λ2 = 2 and 1/λ3 = 1/4.
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m = m2(t )

m = m3(t )

t
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Figure 5: Graphs of the amplitudes mk (t ) for the pure 3-peakon solution in Figure 3, with
λ1 = 1/5, λ2 = 1/2 and λ3 = 4. We see that mk (t ) → 1/

√
λk as t →−∞, in agreement with

Theorem 2.9. The same limits (
p

5,
p

2 and 1/2) are approached as t →+∞ as well, but in
the opposite order; the tallest/fastest peakon has become the lowest/slowest, etc. Note
that the asymptotic velocities 1/λk seen in Figure 4 are the squares of the asymptotic
amplitudes 1/

√
λk .
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up. However, the function u(x, t ) remains well-behaved and can be continued past the
collision, to provide a global solution. These collisions are similar to the ones occur-
ing in Camassa–Holm peakon–antipeakon solutions (see Section 2.2), but the global be-
haviour of Novikov peakon–antipeakon solutions can be very much different: instead of
all peakons scattering, each with its own velocity, there may be clusters of peakons trav-
elling together with the same (average) velocity and colliding repeatedly in a periodic or
quasi-periodic fashion. There are also borderline cases between scattering and cluster-
ing, where peakons separate at a logarithmic rate although their velocities tend to the
same value. (The solution formulas for these borderline cases are particularly involved;
the other cases are simply described by the extending the range of allowed parameter
values in the formulas already known for pure peakon solutions.)

As an example of these phenomena, Figure 6 shows the positions xk (t ) for a peakon–
antipeakon solution with n = 5. The solution is computed from the exact solution for-
mulas described in Section 6, with parameter values

λ1 = 1, λ2 =λ3 =
1

1+ i
, λ4 =λ5 = 3, bk (0) = 1 ∀k. (1.9)

The solution formulas are much too large to be written out in detail here, but can be
computed using a computer algebra system. We think it is safe to say that a solution
like this would be very difficult to discover by numerical integration of the differential
equations, since the clustering only happens for very special values of the parameters,
and numerical roundoff errors would unevitably disturb the delicate balance and cause
the peakons to scatter.

2 Preliminaries

2.1 Weak solutions of the Novikov equation

We begin by explaining exactly in which sense peakons are weak solutions. There are
various ways of defining weak solutions, all of which involve rewriting Novikov’s equa-
tion (1.1) into a form which is equivalent if u is a smooth function, but also makes sense
under weaker conditions, and then taking this new form as the definition. For example,
(1.1) can be written as

(1−∂2
x)(ut +u2ux)+3uuxuxx +2u3

x +3u2ux = 0.

Taking convolution with G(x) = 1
2 e−|x| as the inverse of the operator (1−∂2

x), this becomes
a nonlocal evolution eqation,

ut +u2ux +G ∗ (3uuxuxx +2u3
x +3u2ux) = 0, (2.1)

and one can consider functions u which satisfy this in a distributional sense (using test
functions ϕ(x, t ) of two variables).
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Figure 6: Spacetime plot showing the locations xk (t ) of the peakons in the (x, t )-plane
for the peakon–antipeakon solution of Novikov’s equation with n = 5 and parameters
as in (1.9). The parameters correspond to an asymptotic 3-cluster of peakons and an-
tipeakons, and a pair of peakons with logarithmic separation. Note how the peakons
switch roles, so that the asymptotic behaviour exhibited when t →−∞ is reversed after
interactions.

However, the nonlocal convolution term can lead to quite tedious calculations if one
wants to verify that a proposed solution really satisfies the definition, so another ap-
proach [18] is more convenient for dealing with peakons; rewrite (1.1) as

(1−∂2
x)ut + (4−∂2

x)∂x
(1

3 u3)+∂x
(3

2 uu2
x

)+ 1
2 u3

x = 0, (2.2)

leave the operator 1 − ∂2
x as it is (don’t apply the inverse), and consider distributions

in the x direction only, with time t entering as a parameter. Then computations with
peakons will involve nothing more complicated than the one-dimensional Dirac delta
distribution δ(x) and its distributional derivative δ′(x).

Definition 2.1. A (global) weak solution of the Novikov equation is a continuous func-
tion u(x, t ) such that:

1. For each t ∈ R, the function x 7→ u(x, t ) belongs to the Sobolev space W 1,3
loc (R), i.e.,

the functions x 7→ u(x, t )3 and x 7→ ux(x, t )3 are locally integrable.

(It then follows from Hölder’s inequality with conjugate indices 3 and 3
2 that uu2

x
is locally integrable as well. This means that u3, u3

x and uu2
x can be interpreted as

distributions in D′(R) for each fixed t .)

2. For almost every t ∈ R, the time derivative ut (·, t ) ∈ D′(R) exists as a distribution
defined as the limit of a difference quotient,〈

ut (·, t ),ϕ
〉
= lim
τ→0

〈
u(·, t +τ)−u(·, t ),ϕ

〉
τ

= lim
τ→0

∫
R

u(x, t +τ)−u(x, t )

τ
ϕ(x)d x,
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and equation (2.2) is satisfied in the space of distributions D′(R) for these values
of t , i.e., 〈

(1−∂2
x)ut + (4−∂2

x)∂x
(1

3 u3)+∂x
(3

2 uu2
x

)+ 1
2 u3

x ,ϕ
〉
= 0 (2.3)

for all test functions ϕ(x) ∈C∞
0 (R) (i.e., smooth and with compact support).

Remark 2.2. “Almost every” means except on a set of Lebesgue measure zero. The no-
tation 〈·, ·〉 means the action of a distribution (in x) on a test function; in particular
〈 f ,ϕ〉 = ∫

R f (x)ϕ(x)d x if f is a locally integrable function. Spatial derivatives ∂x are
taken in the distributional sense: 〈Tx ,ϕ〉 =−〈T,ϕx〉. So the requirement is, to be explicit,
that

lim
τ→0

∫
R

u(x, t +τ)−u(x, t )

τ

(
ϕ(x)−ϕxx(x)

)
d x

+
∫

R

(
1
3 u3(ϕxxx −4ϕx)− 3

2 uu2
xϕx + 1

2 u3
xϕ

)
d x = 0

(2.4)

for all test functions ϕ and almost all t .

Remark 2.3. In [18], equation (2.3) was required to hold for all t ∈ R. This is fine for
globally defined pure peakon solutions, but it turns out to fail at peakon–antipeakon
collisions, which is why we have relaxed the condition to hold only for almost all values
of t (which is rather natural if one compares to the approach with distributional solu-
tions using test functions of two variables). At the exceptional values of time, we instead
impose the extra requirement that u(x, t ) be continuous (as a function of two variables).

As mentioned in the introduction, it is readily verified that a function of the multi-
peakon form (1.6) is a weak solution in this sense, in an interval t ∈ I , if and only if it
satisfies the ODEs (1.7) for t ∈ I . Pure peakon and pure antipeakon solutions are glob-
ally defined (I = R), but for mixed peakon–antipeakon solutions we will see that there
are instants t = t j (isolated and at most countably many) when one or several pairs of
peakons collide (xk = xk+1), and the corresponding amplitudes mk and mk+1 tend to
plus or minus infinity; in other words, the solution of the ODEs blows up after finite
time. Then one must glue solutions from intervals (t1, t2) and (t2, t3), say, so that u(x, t )
becomes continuous across the line t = t2. The continuation after a collision will not be
unique; indeed, it is a subtle question to impose additional conditions which will pick
out a unique solution. This has been studied in depth for some other peakon equations,
such as the Camassa–Holm and Degasperis–Procesi equations (see Section 2.2), but not
yet for the Novikov equation, as far as we know. The n-peakon solutions of Novikov’s
equation that we will consider here are conservative in the sense that the energy integral∫

R(u2+u2
x)d x is preserved for all t ∈ R except at the instants of collision (cf. Sections 2.2

and 3), and also in the sense that the values of all the n constants of motion {Hk }n
k=1 of

the ODEs (1.7) (see Theorem 2.20) are preserved for all t ∈ R except for being undefined
at the instants of collision.
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2.2 Comparison with CH and DP peakon–antipeakon collisions

The question of peakon–antipeakon collisions has been very carefully studied in the
case of the Camassa–Holm equation (1.2). To begin with, Beals, Sattinger and Szmigiel-
ski [1, 2] derived solution formulas for n-peakon solutions, initially under the assump-
tion that all peakon amplitudes mk are of the same sign. In this case, the solution
{xk (t ), mk (t )}n

k=1 to the peakon ODEs exists for all times t ∈ R (and is given by completely
explicitly known expressions in terms of elementary functions). The ODE solution for-
mulas provide a globally defined (weak) solution

u(x, t ) =
n∑

k=1
mk (t )e−|x−xk (t )| (2.5)

to the Camassa–Holm PDE, with the property that the conditions x1 < x2 < ·· · < xn and
mk > 0 are preserved automatically by the evolution of the system. However, they also
noticed that the formulas obtained are purely algebraic and apply equally well in the
mixed peakon–antipeakon case where there are mk of both signs present. In this case, as
was already observed for n = 2 in the original Camassa–Holm article [5], it may happen
that the solution to the peakon ODEs develops a singularity after finite time (some mk

tends to ∞ or −∞).
The detailed analysis in [2] showed that the functions xk (t ) given by the explicit so-

lution formulas are defined for all t ∈ R, and that the condition x1 < x2 < ·· · < xn holds
except for finitely many values of t . At such an exceptional time t = t0, one has xk (t0) =
xk+1(t0) for one or several values of k (although “triple collisions” xk (t0) = xk+1(t0) =
xk+2(t0) can never occur), and then also the functions mk (t ) and mk+1(t ) (as given by
the solution formulas) have simple poles at t = t0 for those values of k. From the point
of view of the peakon ODEs, the explicit solution formulas provide an analytic continu-
ation of the solution by going around the singularities in the complex t plane. Moreover,
it was shown that even though some mk are undefined at t = t0, the function u(x, t ) in
(2.5) remains bounded and has a well-defined limit as t → t0, so that it can be extended
to a globally defined function (also denoted by u(x, t )) whose properties are described
in detail in [2]; for example, as t → t−0 , it exhibits “wave breaking” in the sense that the
derivative ux(x, t ) tends to −∞ on the shrinking interval xk (t ) < x < xk+1(t ). However,
from the point of view of the original PDE, it is not at all obvious that this function u(x, t )
really is a weak solution, and (if so) by what principle it has been continued past the sin-
gularity of the PDE at t = t0 (where ux blows up).

This question was addressed by Bressan and Constantin [3], who introduced a set of
new variables (both dependent and independent) in terms of which the Camassa–Holm
equation takes the form of a semilinear system with the property that solutions are glob-
ally defined in time. For example, one of the new dependent variables v is defined by
ux = tan v

2 ; then, instead of having a singularity where ux blows up, one can let v pass
smoothly from one interval ((2n − 1)π, (2n + 1)π) into a neighbouring one. The global
solution to their semilinear system translates back into a solution u(x, t ) of the original
PDE which is conservative in the sense that the energy integral

∫ ∞
−∞(u2 +u2

x)d x has the
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same value for almost all values of t ∈ R. The exceptional times correspond to singulari-
ties where a finite energy contribution from large values of u2

x on a very short interval is
“lost” as that interval momentarily shrinks to a point (but immediately reappears again
afterwards). Bressan and Constantin showed how to keep track of such effects by aug-
menting the function u with an accompanying measure µ in such a way as to obtain
a semigroup of solution couples (u,µ), and they also showed in detail how the n = 2
peakon–antipeakon solution (as given by the explicit solution formulas for all t ) fits into
their scheme.

In another paper [4], the same authors considered an alternative way of continuing
solutions of the Camassa–Holm equation past singularities. In this dissipative scenario,
the energy of every solution u(x, t ) is required to be a nonincreasing function of time,
so a “lost” piece of energy is gone forever and can not reappear. In terms of peakons,
this corresponds to a peakon and an antipeakon colliding and continuing afterwards as
a single peakon (or antipeakon) of lower total energy (or even annihilating each other
completely, if they have exactly equal strength). Since the number of peakons is not pre-
served (nor is the total energy), this is a different continuation of the solution to the PDE
than that directly provided by the explicit n-peakon solution formulas in [2]. (However,
those formulas provide a means to describe this situation explicitly as well, since one
can piece together solutions with different values of n in different time intervals.)

Another way of resolving these questions has been proposed by Holden and Raynaud
[14, 17], who also reformulate the Camassa–Holm equation as a semilinear system, but
in a different set of variables. Their approach uses the “Lagrangian” philosophy of fluid
dynamics, where one traces the flow of individual fluid elements; in particular, instead
of the “unphysical” variable v of Bressan and Constantin, they use the total energy to the
left of a given characteristic curve as one of the variables. They have gone to great lengths
to rigorously show how the multipeakon solutions for general n satisfy the Camassa–
Holm equation in their sense, both in the conservative and dissipative settings [15, 16].

The Degasperis–Procesi equation (1.3) displays a quite different behaviour. Here,
the n-peakon solution formulas derived by Lundmark and Szmigielski [25] in the pure
peakon case do provide solutions also in the mixed peakon–antipeakon case, but only
up until the time of the first collision. At that point, the solution becomes discontinuous,
so one is forced to leave the world of peakons, and instead consider so-called shock-
peakons. See [23, 28, 29] for more about shockpeakons, and [6, 7] for discontinuous
solutions of the DP equation in general.

When we now begin our study of peakon–antipeakon solutions of Novikov’s equa-
tion, the situation is similar to when Beals, Sattinger and Szmigielski started their inves-
tigations of Camassa–Holm peakon–antipeakon solutions. The subtle questions of con-
tinuation of solutions of the Novikov PDE past singularities have not yet (to our knowl-
edge) been studied as thoroughly as for the Camassa–Holm and Degasperis–Procesi
equations, and even if that were the case, it would be beyond the scope of this paper
to tackle all this at once. However, the explicit solution of the Novikov n-peakon ODEs is
known in the pure peakon case (Theorem 2.7), and we can at least study the properties
of the functions xk (t ) and mk (t ) given by these solution formulas, and the properties of
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the associated function u(x, t ) = ∑
k mk e−|x−xk |, when one relaxes the assumption that

all mk are of the same sign.

2.3 Explicit solution formulas for Novikov multipeakons

Here we recall some notation and results from the paper by Hone, Lundmark and Szmi-
gielski [18], to which we refer for proofs and more detailed explanations. In particular,
we will make heavy use of the explicit formulas derived in [18] for pure n-peakon so-
lutions of Novikov’s equation, i.e., global solutions of the peakon ODEs (1.7) which for
all t ∈ R have the properties

x1(t ) < x2(t ) < ·· · < xn(t ), all mi (t ) > 0.

These solution formulas, quoted in Theorem 2.7 below, are stated in terms of certain
symmetric functions of n constant parameters (λ1, . . . ,λn) called eigenvalues and n time-
dependent parameters (b1, . . . ,bn) called residues; the origin of this terminology will be-
come clear in Theorem 2.15 below. Collectively we refer to the eigenvalues and residues
as spectral data or spectral variables.

Definition 2.4. For k ≥ 0, let
([1,n]

k

)
denote the set of k-element subsets

I = {i1 < ·· · < ik }

of the integer interval [1,n] = {1,2, . . . ,n}. For I , J ∈ ([1,n]
k

)
, let

∆I =∆(λi1 , . . . ,λik ) =
∏
i< j

(λi −λ j ),

ΓI = Γ(λi1 , . . . ,λik ) =
∏
i< j

(λi +λ j ),

ΓI ,J = Γ(λi1 , . . . ,λik ;λ j1 , . . . ,λ jk ) =
∏

1≤p,q≤k
(λip +λ jq ),

(2.6)

with the special cases ∆; = Γ; =∆{i } = Γ{i } = 1. Furthermore, let

λI =
∏
i∈I
λi , bI =

∏
i∈I

bi ,

with λ; = b; = 1.

Definition 2.5. Using the abbreviation

ΨI =
∆2

I

ΓI
, (2.7)

let

Tk =
∑

I∈([1,n]
k )

ΨI bI

λI
, Uk =

∑
I∈([1,n]

k )
ΨI bI , Vk =

∑
I∈([1,n]

k )
ΨIλI bI , (2.8)
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for 1 ≤ k ≤ n, let U0 =V0 = T0 = 1, and let Uk =Vk = Tk = 0 if k < 0 or k > n. Moreover, let

Wk =
∣∣∣∣ Uk Vk−1

Uk+1 Vk

∣∣∣∣=UkVk −Uk+1Vk−1,

Zk =
∣∣∣∣ Tk Uk−1

Tk+1 Uk

∣∣∣∣= TkUk −Tk+1Uk−1.

(2.9)

Remark 2.6. In [25, Lemma 2.20], Wk is written as a sum of terms, each of which is
positive if all λi and bi are positive, and one obtains a corresponding formula for Zk by
changing bi to bi /λi everywhere. Thus Wk > 0 and Zk > 0 in this case; in Theorem 5.8
we show that this remains true under much weaker assumptions on λi and bi .

The following theorem summarizes the main results of [18]; see in particular Theo-
rem 9.1 in that paper.

Theorem 2.7 (Explicit solution formulas). The formulas

xn+1−k = 1

2
ln

Zk

Wk−1
, mn+1−k =

p
ZkWk−1

UkUk−1
(k = 1, . . . ,n) (2.10)

define a bijection between the set of admissible spectral data

R = {
(λ1, . . . ,λn ,b1, . . . ,bn) ∈ R2n : 0 <λ1 < ·· · <λn , all bi > 0

}
(2.11)

and the pure peakon sector

P = {
(x1, . . . , xn ,m1, . . . ,mn) ∈ R2n : x1 < ·· · < xn , all mi > 0

}
. (2.12)

Under this bijection, the Novikov peakon ODEs (1.7) for
{

xk (t ),mk (t )
}n

k=1 are equivalent
to the following linear ODEs for the spectral data:

λ̇k = 0, ḃk = bk

λk
(k = 1, . . . ,n). (2.13)

Consequently, any pure n-peakon solution of Novikov’s equation is obtained by fixing con-
stant parameters (

λ1, . . . ,λn ,b1(0), . . . ,bn(0)
) ∈R

and defining
{

xk (t ),mk (t )
}n

k=1 via (2.10), with bk having the time dependence

bk (t ) = bk (0)e t/λk (k = 1, . . . ,n). (2.14)
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Example 2.8. The two-peakon solution (n = 2) of Novikov’s equation is obtained by let-
ting b1 = b1(t ) = b1(0)e t/λ1 and b2 = b2(t ) = b2(0)e t/λ2 in the formulas

x1(t ) = 1

2
ln

Z2

W1
= 1

2
ln

(λ1 −λ2)4

(λ1 +λ2)2λ1λ2
b2

1b2
2

λ1 b2
1 +λ2 b2

2 +
4λ1λ2

λ1 +λ2
b1b2

,

x2(t ) = 1

2
ln

Z1

W0
= 1

2
ln

(
b2

1

λ1
+ b2

2

λ2
+ 4

λ1 +λ2
b1b2

)
,

m1(t ) =
√

Z2W1

U2U1
=

(
(λ1 −λ2)4 b2

1b2
2

(λ1 +λ2)2λ1λ2

(
λ1 b2

1 +λ2 b2
2 +

4λ1λ2

λ1 +λ2
b1b2

))1/2

(λ1 −λ2)2 b1b2

λ1 +λ2
(b1 +b2)

,

m2(t ) =
√

Z1W0

U1U0
=

(
b2

1

λ1
+ b2

2

λ2
+ 4

λ1 +λ2
b1b2

)1/2

b1 +b2
.

(2.15)

We return to these formulas and analyze them thoroughly in Section 4. For a larger
example, see [18, Example 9.3], where the solution formulas for n = 3 are written out in
detail.

The following [18, Theorem 9.4] is a fairly simple corollary to Theorem 2.7.

Theorem 2.9 (Asymptotics of pure peakon solutions). With spectral data in R, there is
a constant δ> 0 depending on {λ1, . . . ,λn} such that the asymptotic behaviour of the pure
n-peakon solution as t →±∞ is described by the following formulas (for k = 1, . . . ,n):

xk (t ) = t

λk
+ 1

2
ln

bk (0)2

λk
+

n∑
i=k+1

ln
(λi −λk )2

(λi +λk )λi
+O

(
eδt ), as t →−∞,

xn+1−k (t ) = t

λk
+ 1

2
ln

bk (0)2

λk
+

k−1∑
i=1

ln
(λi −λk )2

(λi +λk )λi
+O

(
e−δt ), as t →+∞,

(2.16)

and

mk (t ) = 1√
λk

+O
(
eδt ), as t →−∞,

mn+1−k (t ) = 1√
λk

+O
(
e−δt ), as t →+∞.

(2.17)

(Empty sums
∑0

i=1 and
∑n

i=n+1 are to be interpreted as zero.)

Remark 2.10. In [18], this theorem is formulated with o(1) instead of O
(
e−δ|t |), but the

stronger statement here follows easily from the proof in [18].
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Remark 2.11. What Theorem 2.9 says is that “initially”, for t ¿ 0, the peakons are well
separated, each of them behaving approximately like a travelling wave with constant
velocity and amplitude; peakon number 1 (the leftmost one) is the fastest, with veloc-
ity ẋ1 ≈ 1/λ1 and amplitude ṁ1 ≈ 1/

√
λ1, peakon number 2 is the second fastest, with

velocity ẋ2 ≈ 1/λ2 and amplitude ṁ2 ≈ 1/
√
λ2, and so on. As the faster peakons to the

left catch up with the slower peakons to the right, there is a complicated nonlinear in-
teraction with transfer of momentum from faster to slower peakons, and what emerges
“finally”, for t À 0, is again a train of peakons, each of which has almost constant veloc-
ity and amplitude, but now in the opposite order: peakon number n (the rightmost one)
has the greatest velocity ẋn ≈ 1/λ1 and amplitude ṁn ≈ 1/

√
λ1, peakon number n −1 is

the second fastest, with velocity ẋn−1 ≈ 1/λ2 and amplitude ṁn−1 ≈ 1/
√
λ2, and so on.

Figures 3, 4 and 5 provide an illustration of this phenomenon for n = 3.

In this paper, we are going to use the pure-peakon solution formulas (2.10) to describe
also mixed peakon–antipeakon solutions, simply by allowing spectral data in a bigger
domain. When investigating which spectral data that can be permitted, it will be neces-
sary to know some more details about how the map (2.10) from R to P was constructed
in [18], so we proceed to explain this now. In fact, the story begins with the map in the
opposite direction, from P to R.

Definition 2.12. Given any point (x1, . . . , xn ,m1, . . . ,mn) in R2n , and in particular given a
point in the pure peakon sector P , let

Sk (λ) =
1−λm2

k −2λmk e−xk −λ2 m2
k e−2xk

mk exk 1 λmk e−xk

m2
k e2xk 2mk exk 1+λm2

k

 (2.18)

for k = 1, . . . ,n. In terms of these matrices, we define the polynomials A(λ), B(λ) and C (λ)
by A(λ)

B(λ)
C (λ)

= Sn(λ)Sn−1(λ) · · ·S1(λ)

1
0
0

 , (2.19)

and the rational functions ω(λ) and ζ(λ), called the Weyl functions, by

ω(λ) =−B(λ)

A(λ)
, ζ(λ) =−C (λ)

A(λ)
. (2.20)

From equation (4.13) in [18] we then have the following theorem:

Theorem 2.13. The polynomial A(λ) is the characteristic polynomial of the n ×n ma-
trix T PEP,

A(λ) = det(I −λT PEP ), (2.21)

where the n ×n matrices P, E and T are defined as

P = diag(m1,m2, . . . ,mn),

E = (E j k ) = (
e−|x j−xk |),

T = (T j k ) = (
1+ sgn( j −k)

)
.

(2.22)
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Remark 2.14. The matrix T has the number 1 along the main diagonal, 0 everywhere
above it, and 2 everywhere below it. The matrix E is symmetric, with E j k = ex j−xk for
j ≤ k if we are in the pure peakon sector P where x1 < x2 < ·· · < xn .

The next result involves showing a matrix is oscillatory, i.e., a totally nonnegative ma-
trix, some power of which is totally positive. It is proved in Section A.2 and Theorem 6.1
in [18].

Theorem 2.15. In the polynomial

A(λ) = det(I −λT PEP ) = 1+
n∑

k=1
(−1)k Hkλ

k ,

each coefficient Hk is a homogeneous polynomial of degree 2k in the variables {m1, . . . ,mn},
with coefficients that are polynomials in the variables {Ei j }i< j .

If (x1, . . . , xn ,m1, . . . ,mn) ∈ P , then the matrix T PEP is oscillatory, and therefore its
eigenvalues {λ1, . . . ,λn} are positive and simple:

A(λ) = det(I −λT PEP ) =
(
1− λ

λ1

)(
1− λ

λ2

)
· · ·

(
1− λ

λn

)
,

where we choose to number the eigenvalues in increasing order,

0 <λ1 <λ2 < ·· · <λn .

Moreover, in this case the residues {b1, . . . ,bk } in the partial fraction expansion of the Weyl
function ω,

ω(λ) =−B(λ)

A(λ)
=

n∑
k=1

bk

λ−λk
, (2.23)

are positive.

Equation (2.23) (implicitly) defines the forward spectral map, from peakon variables
in P to spectral data in R, and the explicit formulas (2.10) in Theorem 2.7 give the in-
verse map from R to P .

Remark 2.16. The two Weyl functions ω and ζ are not independent, since they can be
shown to satisfy the relation

ζ(λ)+ζ(−λ)+ω(λ)ω(−λ) = 0. (2.24)

(See Section 6 in [18], and especially equation (6.4), together with the final paragraphs
of Section 5.)

In the situation (x1, . . . , xn ,m1, . . . ,mn) ∈ P , where the poles of ω(λ) are simple and
positive, (2.23) and (2.24) imply that ζ is uniquely determined by ω as

ζ(λ) =−C (λ)

A(λ)
=

n∑
k=1

ck

λ−λk
, ck =

n∑
m=1

bk bm

λk +λm
.
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Figure 7: Planar network for the matrix T PEP (in the case n = 4). Unlabelled edges have
weight 1.

Remark 2.17. The proof of Theorem 2.15 is based on the fact that the matrix T PEP is
the weighted path matrix of a planar network of the form illustrated in Figure 7. What
this means is that the entry (T PEP )i j equals the sum over all paths through the network
from source number i on the left to sink number j on the right, where each such path
contributes the product of the weights on its edges. In the pure peakon case, where
all the weights in the network are positive, this implies, via the famous path-counting
lemma of Karlin–McGregor, Lindström, and Gessel–Viennot [20, 22, 12], that T PEP is
an oscillatory matrix. The network can also be used for computing Hk , also with the
help of that lemma; Hk is the sum of the principal k × k minors of T PEP , and each
minor can be computed as a sum over node-disjoint path families through the network.
An alternative description is that Hk is the sum of all k ×k minors (principal and non-
principal) of the simpler matrix PEP . This follows by letting X = PEP in Theorem 2.18;
see [18, Theorem 4.1] and [13].

Theorem 2.18 (“The Canada Day Theorem”). Define T as in (2.22), and let X be any
symmetric n ×n matrix. Then, for every k ∈ {1,2, . . . ,n}, the sum of the principal k ×k
minors of T X equals the sum of all k ×k minors of X .

Example 2.19. For n = 2 we have A(λ) = 1−H1λ+H2λ
2, where

H1 = m2
1 +m2

2 +2m1m2E12,

H2 = m2
1m2

2(1−E 2
12),

(2.25)

and for n = 3 we have A(λ) = 1−H1λ+H2λ
2 −H3λ

3, where

H1 = m2
1 +m2

2 +m2
3 +2m1m2E12 +2m1m3E13 +2m2m3E23,

H2 = (1−E 2
12)m2

1 m2
2 + (1−E 2

13)m2
1 m2

3 + (1−E 2
23)m2

2 m2
3

+2(E23 −E12E13)m2
1 m2 m3 +2(E12 −E13E23)m1 m2 m2

3,

H3 = (1−E 2
12)(1−E 2

23)m2
1 m2

2 m2
3.

(2.26)
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The time dependence of the spectral data induced by the peakon evolution, which is
λ̇k = 0 and ḃk = bk /λk as we already stated in (2.13) above, is an immediate corollary of
the following facts (see equations (4.5), (4.22), (4.23) and Theorem 4.7 in [18]):

Theorem 2.20. If the positions xk (t ) and amplitudes mk (t ) are functions of time which
satisfy the Novikov peakon ODEs (1.7), then the corresponding (seemingly time-dependent)
polynomial A(λ) is in fact independent of t ; its coefficients {Hk }n

k=1 are functionally inde-
pendent constants of motion of the Novikov peakon ODEs (1.7). The Weyl function ω(λ)
satisfies the ODE

ω̇(λ) = ω(λ)−ω(0)

λ
. (2.27)

This concludes our summary of the results from [18].

3 Continuity of solutions at peakon–antipeakon collisions

Since we will be dealing with peakon–antipeakon collisions, let us begin our study by
stating some general properties which the Novikov equation has in common with the
Camassa–Holm equation. The basic fact is that these equations behave similarly at col-
lisions, and their behaviour is rather nice compared to the Degasperis–Procesi equa-
tion, for example. This similarity between peakon–antipeakon collisions for CH and for
Novikov is due to preservation of the H 1 norm in both cases. Indeed, the arguments in
this section are probably well-known to readers familiar with the Camassa–Holm equa-
tion, but we include them here for completeness.

Lemma 3.1. The integral

I =
∫

R

u2 +u2
x

2
d x (3.1)

is a conserved quantity for smooth decaying solutions to Novikov’s equation (1.1).

Proof. If u is a solution to Novikov’s equation

ut −uxxt = (3uxuxx −4uux +uuxxx)u

such that u and all its derivatives vanish as x →±∞, then

d I

d t
=

∫
R

∂

∂t

(
u2 +u2

x

2

)
d x =

∫
R

(uut +uxuxt )d x

=
∫

R

(
(uuxt )x +u(ut −uxxt )

)
d x

= 0+
∫

R
u2(3uxuxx −4uux +uuxxx)d x

=
∫

R
(u3uxx −u4)x d x = 0.

In the context of peakon solutions, the integral I reduces to a sum:
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Lemma 3.2. If u(x) =∑n
k=1 mk e−|x−xk | then

I =
∫

R

u2 +u2
x

2
d x =

n∑
i=1

n∑
j=1

mi m j e−|xi−x j |. (3.2)

Proof. We have I = 1
2〈u,u〉, where 〈u, v〉 = ∫

R(uv +ux vx)d x denotes the H 1 inner prod-
uct. For xi ≤ x j we compute

〈
e−|x−xi |,e−|x−x j |〉= ∫ xi

−∞
(ex−xi ex−x j +ex−xi ex−x j )d x

+
∫ x j

xi

(exi−xex−x j + (−1)exi−xex−x j )d x

+
∫ ∞

x j

(exi−xex j−x + (−1)2exi−xex j−x)d x

= exi−x j +0+exi−x j = 2e−|xi−x j |,

and by symmetry this holds also for xi ≥ x j . Now the claim follows from the bilinearity
of the inner product.

Corollary 3.3. The integral I remains a conserved quantity also for peakon solutions of
the Novikov equation.

Proof. The sum on the right-hand side in (3.2) is a constant of motion for the Novikov
peakon ODEs. Indeed, in terms of the matrices E , P and T defined in (2.22), that sum
equals the sum of the elements in the matrix PEP , which according to Theorem 2.18
(or by simple inspection) is the trace of the matrix T PEP ; this trace was named H1 in
Theorem 2.15. Thus I = H1 in the peakon case, and according to Theorem 2.20, H1 is a
constant of motion for the Novikov peakon ODEs.

Theorem 3.4. If u(x, t ) =∑n
k=1 mk (t )e−|x−xk (t )| is a Novikov multipeakon solution for t0 <

t < t1, and if there is a collision xk (t1) = xk+1(t1) at time t1, then

u(xk+1(t ), t )−u(xk (t ), t ) → 0 as t → t−1 , (3.3)

so that u(x, t ) extends continuously to t = t1.

Proof. Using Hölder’s inequality, together with the fact that the integral I = H1 is con-
served, we get

|u(xk+1(t ), t )−u(xk (t ), t )| ≤
∫ xk+1(t )

xk (t )
|ux(ξ, t )| dξ

≤
√∫ xk+1(t )

xk (t )
u2

x(ξ, t )dξ

√∫ xk+1(t )

xk (t )
12 dξ

≤
√

2H1

√
xk+1(t )−xk (t ),

(3.4)

so if xk+1(t )−xk (t ) → 0, then u(xk+1(t ), t )−u(xk (t ), t ) → 0.
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Remark 3.5. The wave profile at the collision, u(x, t1), will still have the multipeakon
shape seen in Figure 2, but with fewer peaks. Indeed, it must be an R-linear combination
of ex and e−x in each interval xi (t1) < x < xi+1(t1), and for x < x1(t1) and x > xn(t1) it is
a multiple of ex and e−x , respectively. And since it is a continuous function of x, this
means that it can be written as a multipeakon. We will see several examples of this, for
example in Figure 10.

Remark 3.6. There may be several pairs of peakons colliding at the same time, but that
doesn’t affect the argument above. However, three consecutive peakons cannot collide
with each other at the same time; this is Theorem 5.15.

(To be precise, this has only been proved under the assumption that all eigenvalues
λk are simple. In the multiple-eigenvalue case, treated in Section 6, we have no general
proof, only special cases. For example, Theorem 6.32 says that if n = 3 and λ1 =λ2 =λ3,
then a triple collision cannot happen.)

Remark 3.7. We will see that the amplitudes mk (t ) and mk+1(t ) blow up to +∞ or −∞
when xk (t ) = xk+1(t ); they are meromorphic functions of t with a pole at the time of
collision. (But unlike the CH case, this pole is not necessarily simple; see Theorem 5.16.)

What Theorem 3.4 says is that there must be cancellation between the correspond-
ing terms in the sum u(x, t ) = ∑n

k=1 mk (t )e−|x−xk (t )| so that u(x, t ) remains bounded,
and even continuous, at the collision. However, the derivative ux(x, t ) does not remain
bounded; see for example Figure 14, where the steepening of the wave between the col-
liding peakons is clearly visible.

4 Solutions of the Novikov equation with one peakon and
one antipeakon

As we remarked already in the introduction, Novikov’s equation has the property that
both peakons and antipeakons move to the right, since ẋk = u(xk )2. This is a signifi-
cant difference from the Camassa–Holm and Degasperis–Procesi equations where an-
tipeakons move to the left (except when they are close to a positive peakon of larger am-
plitude), and this feature gives rise to some interesting new kinds of peakon–antipeakon
interaction.

The behaviour of an n-peakon solution which is given by the explicit solution formu-
las from Theorem 2.7 is completely determined by the values of the spectral parameters{
λk ,bk (0)

}n
k=1. Section 2.3 cites the results from [18] which describe what happens in the

pure peakon case, and the more general case of mixed peakon–antipeakon solutions
(with arbitrary n) given by these same formulas will be described in Section 5 below.
There are also non-generic cases where some eigenvalues have multiplicity greater than
one; this cannot happen for pure peakon solutions, and solutions of this kind are not
covered by Theorem 2.7. The modified solution formulas which describe such solutions
are derived in Section 6.
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As a preparation for understanding the various phenomena that occur in the general
multipeakon case, it is worthwhile spending some time on examining the n = 2 peakon–
antipeakon interaction in detail, and this is the topic of Section 4. For comparison, we
also give a thorough review of the properties of the pure two-peakon solution.

4.1 The governing ODEs

For n = 2, the ODE system (1.7) governing the dynamics of peakons for Novikov’s equa-
tion takes the form

ẋ1 = m2
1 +2m1m2E12 +m2

2E 2
12,

ẋ2 = m2
1E 2

12 +2m1m2E12 +m2
2,

ṁ1 =−m2
1m2E12 −m1m2

2E 2
12,

ṁ2 = m2
1m2E 2

12 +m1m2
2E12,

(4.1)

where E12 = e−|x1−x2|; note that 0 < E12 < 1. If we assume that x1(t ) < x2(t ), then we
can write E12 = ex1−x2 ; this will hold at least for all t in some interval around t = 0 if
we impose initial data such that x1(0) < x2(0). We make no assumptions on the signs
of m1 and m2, although if mk (0) = 0, then the ODEs force mk (t ) = 0 for all t , so that
the corresponding term mk e−|x−xk | in u(x, t ) is absent. Let us therefore assume that m1

and m2 are nonzero.

4.2 Pure peakon (or pure antipeakon) solutions

Before we look at peakon–antipeakon solutions, let us recall what the situation is like
when all the amplitudes mk have the same sign. Such solutions are described by Theo-
rem 2.7, and the special case n = 2 follows below. (We already stated these formulas in
Example 2.8, but we repeat them here for convenience.)

Theorem 4.1 (Pure peakon solutions with n = 2). Given initial conditions x1(0) < x2(0),
m1(0) > 0, m2(0) > 0, there is a unique solution of (4.1), which is globally defined and
satisfies x1(t ) < x2(t ), m1(t ) > 0, m2(t ) > 0 for all t ∈ R. The set of all such pure peakon so-
lutions is parametrized by four constants 0 <λ1 <λ2, b1(0) > 0, b2(0) > 0, given explicitly
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by the formulas

x1(t ) = 1

2
ln

(λ1 −λ2)4

(λ1 +λ2)2λ1λ2
b2

1b2
2

λ1 b2
1 +λ2 b2

2 +
4λ1λ2

λ1 +λ2
b1b2

,

x2(t ) = 1

2
ln

(
b2

1

λ1
+ b2

2

λ2
+ 4

λ1 +λ2
b1b2

)
,

m1(t ) =

(
(λ1 −λ2)4 b2

1b2
2

(λ1 +λ2)2λ1λ2

(
λ1 b2

1 +λ2 b2
2 +

4λ1λ2

λ1 +λ2
b1b2

))1/2

(λ1 −λ2)2 b1b2

λ1 +λ2
(b1 +b2)

,

m2(t ) =

(
b2

1

λ1
+ b2

2

λ2
+ 4

λ1 +λ2
b1b2

)1/2

b1 +b2
,

(4.2a)

where
b1 = b1(t ) = b1(0)e t/λ1 , b2 = b2(t ) = b2(0)e t/λ2 . (4.2b)

Corollary 4.2 (Pure antipeakon solutions with n = 2). With initial data x1(0) < x2(0),
m1(0) < 0, m2(0) < 0, there is a unique solution of (4.1) which is globally defined and
satisfies x1(t ) < x2(t ), m1(t ) < 0, m2(t ) < 0 for all t ∈ R. The set of such pure antipeakon
solutions is parametrized by the four constants 0 < λ1 < λ2, b1(0) < 0, b2(0) < 0, and they
are given explicitly by the same formulas as in Theorem 4.1.

Proof. Given a solution of (4.1), we obtain another solution by keeping x1(t ) and x2(t )
but changing the sign of m1(t ) and m2(t ). In terms of the formulas (4.2), this is accom-
plished by keeping λ1 and λ2 but changing the sign of b1 and b2.

Remark 4.3. Note that this differs from the Camassa–Holm and Degasperis–Procesi
equations, where the pure antipeakon solutions are obtained by changing the signs of
the eigenvalues λk , but leaving the residues bk unchanged. When it comes to mixed
peakon–antipeakon solutions we will see further differences. For CH, the eigenvalues
are always real and simple, the residues are always positive, and the number of positive
and negative eigenvalues equals the number of peakons and antipeakons, respectively.
(This is proved in [2], except that they use the opposite sign convention for the eigen-
values.) For DP, the eigenvalues need neither be real nor simple in the mixed peakon–
antipeakon case with n ≥ 3, and at least for n = 3 the number of eigenvalues with posi-
tive and negative real part equals the number of peakons and antipeakons, respectively
[28, 29]. Also for Novikov’s equation, the eigenvalues can be complex or of multiplicity
greater than one, but they must always have positive real part, as we shall see.

Remark 4.4. In Section 2.3, especially Theorem 2.15, we explain where formulas (4.2)
come from. Let us recall what this construction looks like in the special case n = 2: the
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Weyl function is defined as

ω(λ) =−B(λ)

A(λ)
, (4.3)

where the polynomials A(λ) and B(λ) are given by equation (2.19) (cf. also (2.25)); with
E12 = ex1−x2 , one finds

B(λ) = (m1ex1 +m2ex2 )−λm2
1m2ex2 (1−E 2

12) (4.4)

and
A(λ) = 1−H1λ+H2λ

2, (4.5)

where
H1 = m2

1 +m2
2 +2m1m2E12, H2 = m2

1m2
2(1−E 2

12). (4.6)

If A(λ) has simple zeros λ1 and λ2, then the Weyl function has a partial fraction decom-
position of the form

ω(λ) = b1

λ−λ1
+ b2

λ−λ2
. (4.7)

By identifying coefficients we see that this holds if and only if

1

λ1
+ 1

λ2
= H1 = m2

1 +m2
2 +2m1m2E12,

1

λ1λ2
= H2 = m2

1m2
2(1−E 2

12),

b1

λ1
+ b2

λ2
= m1ex1 +m2ex2 ,

b1 +b2 =
ex2

m2
,

(4.8)

and the formulas (4.2a) give the unique solution of this system of equations for the vari-
ables {x1, x2,m1,m2}.

Next, recall that the asymptotic behaviour of pure peakon solutions is fully described
by Theorem 2.9 and Remark 2.11. Let us state the special case n = 2 explicitly, for later
comparison with the peakon–antipeakon case:

Theorem 4.5. For a Novikov pure two-peakon solution, given by (4.2) with positive simple
eigenvalues 0 < λ1 < λ2 and positive residues b1(0) and b2(0), there are no collisions, i.e.,
x1(t ) < x2(t ) for all t . With

δ= 1

λ1
− 1

λ2
> 0, (4.9)
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the asymptotics as t →−∞ are

x1(t ) = t

λ1
+ 1

2
ln

b1(0)2

λ1
+ ln

(λ1 −λ2)2

(λ1 +λ2)λ2
+O

(
eδt ),

x2(t ) = t

λ2
+ 1

2
ln

b2(0)2

λ2
+O

(
eδt ),

m1(t ) = 1√
λ1

+O
(
eδt ),

m2(t ) = 1√
λ2

+O
(
eδt ),

(4.10a)

and as t →+∞ we have

x1(t ) = t

λ2
+ 1

2
ln

b2(0)2

λ2
+ ln

(λ1 −λ2)2

(λ1 +λ2)λ1
+O

(
e−δt ),

x2(t ) = t

λ1
+ 1

2
ln

b1(0)2

λ1
+O

(
e−δt ),

m1(t ) = 1√
λ2

+O
(
e−δt ),

m2(t ) = 1√
λ1

+O
(
e−δt ).

(4.10b)

Remark 4.6. The Novikov equation is invariant with respect to translations in x and t , so
we can reduce the number of parameters by two. Indeed, consider the new independent
variables x̃ = x − x0 and t̃ = t − t0, and the corresponding dependent variables x̃k (t̃ ) =
xk (t̃ + t0)+ x0 and m̃k (t̃ ) = mk (t̃ + t0). Then {x̃k (t̃ ),m̃k (t̃ )} are given by (4.2), with λ1 and
λ2 unchanged, but with bk (t ) = bk (0)e t/λk replaced by b̃k (t̃ ) = b̃k (0)e t̃/λk where b̃k (0) =
bk (0)e−x0 e t0/λk . Consequently we can make b̃1(0) and b̃2(0) take any positive values by
a suitable choice of x0 and t0. Thus, λ1 and λ2 are the essential parameters in the two-
peakon solution, while the values of b1(0) and b2(0) merely reflect the choice of origin
in the coordinate system. (But for the n-peakon solution with n ≥ 3, things are of course
not this simple, since we can only simplify two of the residues bk in this way, not all n
of them.) As the next theorem shows, there is a particularly useful choice of parameters
which reveals that the pure two-peakon solution always has a certain symmetry (which
the n-peakon solution in general does not have); see Figure 8 for an illustration.

Theorem 4.7. When

b1(0) = b2(0) =
√

(λ1 +λ2)λ1λ2

λ2 −λ1
, (4.11)
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Figure 8: Spacetime plot showing the locations xk (t ) of the peakons in the (x, t )-plane
for the Novikov pure 2-peakon solution, with eigenvaluesλ1 = 1 andλ2 = 3. The residues
b1(0) = b2(0) =

p
3 are chosen as in Theorem 4.7, in order to make the solution symmet-

ric with respect to the origin. According to (4.13), as t → −∞ the curves x = x1(t ) and
x = x2(t ) approach the lines x = t − 1

2 ln3 and x = t/3, respectively, and (symmetrically)
as t →+∞ the curves approach the lines x = t/3 and x = t + 1

2 ln3. The eigenvalue ratio
λ2/λ1 = 3 is a bit special in that the asymptotic line for the slower peakon is the same
in both time directions. In general there will be a shift for both peakons; always in the
forward direction for the faster peakon, and forward/backward for the slower peakon if
λ2/λ1 is greater/less than 3.
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the pure two-peakon solution with 0 <λ1 <λ2 takes the following symmetric form:

x1(t ) =−x2(−t ),

m1(t ) = m2(−t ),

x2(t ) = 1

2
ln

(
e2t/λ1

λ1
+ e2t/λ2

λ2
+ 4e t/λ1+t/λ2

λ1 +λ2

)
− 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ1λ2
,

m2(t ) = 1

e t/λ1 +e t/λ2

(
e2t/λ1

λ1
+ e2t/λ2

λ2
+ 4e t/λ1+t/λ2

λ1 +λ2

)1/2

.

(4.12)

In this case, the asymptotics for the positions as t →±∞ are

x1(t ) = t

λ1
+ 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ2
+O

(
eδt ), as t →−∞,

x2(t ) = t

λ2
− 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ1
+O

(
eδt ), as t →−∞,

x1(t ) = t

λ2
+ 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ1
+O

(
e−δt ), as t →+∞,

x2(t ) = t

λ1
− 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ2
+O

(
e−δt ), as t →+∞,

(4.13)

where δ= 1/λ1 −1/λ2 > 0.

4.3 Extending the solution formulas to describing peakon–antipeakon
solutions

Next, we will show that the formulas for pure two-peakon solutions can also be used to
describe solutions with one peakon and one antipeakon, i.e., solutions where m1 and m2

have opposite signs: m1 m2 < 0. This is done simply by extending the range of allowed
spectral data. The following theorem is a special case of the much more general results
in Section 5, but in the spirit of this section, we will prove it here using simple direct
arguments.

Theorem 4.8. The formulas (4.2) in Theorem 4.1 provide solutions to the Novikov peakon
ODEs (4.1) also in the case

0 <λ1 <λ2, b1(0) ∈ R, b2(0) ∈ R, b1(0)b2(0) < 0, (4.14)

and in the case

λ1 =λ2 ∈ {λ ∈ C : Reλ> 0, Imλ 6= 0}, b1(0) = b2(0) ∈ C \ {0}. (4.15)

These solutions have the property that x1(t ) < x2(t ) and m1(t )m2(t ) < 0 for all t , except
for a discrete set of values of t where b1(t )+b2(t ) = 0. At those particular instants there
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is a collision: x1(t ) = x2(t ), while m1(t ) and m2(t ) are undefined. Thus, according to the
discussion in Section 3, the function u(x, t ), defined by the formula

u(x, t ) = m1(t )e−|x−x1(t )|+m2(t )e−|x−x2(t )|

for all t such that b1(t )+b2(t ) 6= 0, extends uniquely to a globally defined weak solution
of Novikov’s equation.

Proof. Note first that the conditions above are preserved by the time evolution bk (t ) =
bk (0)e t/λk , i.e., if (4.14) holds, then bk (t ) ∈ R and b1(t )b2(t ) < 0 for all t , and if (4.15)
holds, then b1(t ) = b2(t ) ∈ C \ {0} for all t .

It is a purely algebraic fact that the functions defined by the formulas (4.2) satisfiy
the ODEs (4.1) if E12 is interpreted as ex1−x2 ; in fact, we can take arbitrary complex con-
stants b1(0) 6= 0, b2(0) 6= 0 and λ1 6= λ2, if we choose some branches for the complex log-
arithm and square root functions appearing in (4.2a). Consequently, if the parameters{
λk ,bk (0)

}
are chosen such that the expressions inside the logarithms and the square

roots are positive, and such that x1(t ) < x2(t ), then (4.2) provides a solution to the actual
peakon ODEs (4.1) where E12 is interpreted as e−|x1−x2|, so these are the conditions that
we need to verify.

The positivity of the expressions inside logaritms and square roots is fairly obvious
in both cases (4.14) and (4.15), except for the quantities

W1 =λ1b2
1 +λ2b2

2 +
4λ1λ2

λ1 +λ2
b1b2

and

Z1 =
b2

1

λ1
+ b2

2

λ2
+ 4

λ1 +λ2
b1b2.

In the real case (4.14), we can see the positivity of W1 from

W1 =λ1

(
b1 +

2λ2

λ1 +λ2
b2

)2
+λ2

(λ1 −λ2

λ1 +λ2
b2

)2
> 0,

and in the complex-conjugate case (4.15) we have

W1 =λ1b2
1 +λ2b2

2 +
4λ1λ2

λ1 +λ2
b1b2

=λ1b2
1 +λ1b2

1 +
4λ1λ1

λ1 +λ1

b1b1

= 2Re(λ1b2
1)+ 4 |λ1|2

2Re(λ1)
|b1|2

= 2

Re(λ1)

(
Re(λ1)Re(λ1b2

1)+|λ1|
∣∣λ1b2

1

∣∣)> 0.

For Z1, just replace bk by bk /λk in these arguments.
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The properties x1 < x2 and m1 m2 < 0 follow from

e2x2 −e2x1 = (b1 +b2)4

W1
> 0 if b1 +b2 6= 0,

and
−sgn(m1) = sgn(m2) = sgn(b1 +b2).

As for the zeros of b1(t )+b2(t ), it is easy to see that in the real case there is exactly one
zero, and in the complex-conjugate case b1 +b2 becomes zero periodically; see Theo-
rem 4.12 and Remark 4.16 for details.

Remark 4.9. Theorem 4.10 below shows that we cannot extend the range of allowed
spectral data beyond this, i.e., for other values of {λk ,bk (0)} the formulas (4.2) do not
provide a solution to the peakon ODEs. There is one more type of solution, namely
peakon–antipeakon solutions with λ1 = λ2 > 0, but in this case the solution formulas
look different, as will be explained in Section 4.7 (and more generally in Section 6).

We shall return shortly to the question of how the peakon–antipeakon solution in
Theorem 4.8 actually behave, but first we will sort out exactly when the real case (4.14)
and the complex case (4.15) occur, in terms of the initital data {xk (0),mk (0)}.

4.4 Classification in terms of initial data

With just one peakon and one antipeakon, it is possible to give explicit conditions which
classify the behaviour of the system not just in terms of spectral data as in Sections 4.2
and 4.3, but also in terms of the initial conditions for the positions x1(0) < x2(0) and the
amplitudes m1(0) 6= 0 and m2(0) 6= 0.

Given some initial data, the eigenvalues λ1 and λ2 are defined as the zeros of the
polynomial A(λ) = 1−H1λ+H2λ

2, where

H1 = m1(0)2 +m2(0)2 +2m1(0)m2(0)E12(0),

H2 = m1(0)2m2(0)2(1−E12(0)2);

see (4.5) and (4.6) above. Since E12 = e−|x1−x2| = ex1−x2 always satisfies 0 < E12 < 1, we see
that H1 and H2 are both positive, regardless of the signs of m1 and m2. This observation
implies that the eigenvalues

λ1,2 =
H1 ±

√
H 2

1 −4H2

2H2
(4.16)

are located strictly in the right half of the complex plane:

Reλ1,2 > 0. (4.17)

Remember that in the pure peakon case one can say much more: λ1 and λ2 are positive
and distinct. Now that we allow m1 and m2 to have opposite signs, we might also get a
positive eigenvalue of multiplicity two, or a pair of complex conjugate eigenvalues. Let
us state the exact conditions for this to happen.
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Theorem 4.10. For a Novikov two-peakon solution, the eigenvalues λ1,2 are non-real if
and only if m1m2 < 0 (the mixed peakon–antipeakon case) and the amplitude ratio

ρ =
∣∣∣∣m1

m2

∣∣∣∣
is such that the quantity

σ= ρ+ 1

ρ

satisfies

2 ≤σ<
p

8

(
⇐⇒ 1p

2+1
< ρ <

p
2+1

)
(4.18)

and moreover the positions x1 < x2 are such that E12 = ex1−x2 satisfies

1
4

(
σ−

√
8−σ2

)< E12 < 1
4

(
σ+

√
8−σ2

)
. (4.19)

In this case, the real part of λ1 =λ2 is positive, and b1 = b2 6= 0.
The case with a double eigenvalue λ1 =λ2 > 0 occurs if and only if m1m2 < 0 and

2 <σ<
p

8

(
⇐⇒ 1p

2+1
< ρ <

p
2+1 and ρ 6= 1

)
(4.20)

and
E12 = 1

4

(
σ−

√
8−σ2

)
or E12 = 1

4

(
σ+

√
8−σ2

)
. (4.21)

(In this case, the complementary spectral variables b1 and b2 are defined differently; see
Section 4.7.)

Otherwise λ1 and λ2 are positive and distinct. In this case, if m1 and m2 are both
positive or both negative, then b1 and b2 are both positive or both negative, respectively. If
m1 and m2 have opposite signs, then b1 and b2 have opposite signs, and

− sgn(m1) = sgn(m2) = sgn(b1 +b2) (4.22)

holds.
See Figure 9 for an illustration of the conditions in this theorem.

Remark 4.11. Althoughσ and E12 are time-dependent, the eigenvaluesλk are not. Thus
if the conditions of Theorem 4.10 are satisfied at some time t , then they hold for all t
(except of course at the instant of a collision, where m1 and m2 are undefined).

Proof of Theorem 4.10. From (4.16) it is clear that the eigenvalues are non-real if and
only if

0 > H 2
1 −4H2 = (m2

1 +m2
2 +2m1m2E12)2 −4m2

1m2
2(1−E 2

12).
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σ

E12

1

2 p
8

•

Complex-conjugate pair of eigenvalues with positive real part

•

Positive eigenvalue of multiplicity 2

•

Pair of simple positive eigenvalues

Figure 9: If m1 and m2 are of the same sign, the eigenvalues λ1 and λ2 in the two-peakon
solution of the Novikov equation will always be positive and simple. But if m1 and m2

are of opposite signs, the character of the eigenvalues is determined by the conditions in
Theorem 4.10, illustrated in this picture: the quantitiesσ= |m1/m2|+|m2/m1| and E12 =
ex1−x2 automatically satisfy σ≥ 2 and 0 < E12 < 1 (since x1 < x2 is assumed), and within
this strip we distinguish the three cases that the point (σ,E12) lies inside/on/outside the
ellipse E12 = 1

4

(
σ±

p
8−σ2

)
, i.e., (σ2 −E12)2 +E 2

12 = 1. We see that in order for non-real
eigenvalues to occur, the amplitude ratio ρ = |m1/m2| must be fairly close to 1, and
exactly how much it is allowed to deviate from 1 depends on how far apart the peakons
are.

Dividing by the positive factor 8m2
1m2

2, one obtains the equivalent inequality

0 >
(

E12 +
m2

1 +m2
2

4m1m2

)2

+ m4
1 +m4

2 −6m2
1m2

2

16m2
1m2

2

=
(
E12 + sgn(m1m2)

σ

4

)2
+ σ2 −8

16
.

(4.23)

A necessary condition for this inequality to have any solutions is that σ2 − 8 < 0, i.e.,
σ <

p
8, which is the nontrivial half of condition (4.18); the other inequality σ ≥ 2 is

automatic, since ρ+ρ−1 ≥ 2 holds for all ρ > 0 (with equality if and only if ρ = 1).
With this condition satisfied, one can solve for E12 in (4.23), to get

1
4

(−sgn(m1m2)σ−
√

8−σ2
)< E12 < 1

4

(−sgn(m1m2)σ+
√

8−σ2
)

In the pure peakon (or pure antipeakon) case m1m2 > 0, the eigenvalues must be real
according to the general results in [18], and we can also see directly that in this case the
inequality above can’t be satisfied: E12 = ex1−x2 > 0, but 1

4

(−σ+
p

8−σ2
) ≤ 0 for σ ≤ 2 <p

8 (it’s a decreasing function of σ which equals 0 when σ= 2).
In the mixed peakon–antipeakon case m1m2 < 0, the inequality reduces to (4.19); in

this case there are indeed solutions, since the left-hand and right-hand sides are both in
the interval [0,1]; see Figure 9.

The statement about double eigenvalues follows by repeating the same calculations
with H 2

1 −4H2 = 0 instead of H 2
1 −4H2 < 0. The reason for excluding σ = 2 is that con-
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dition (4.21) becomes “E12 = 0 or E12 = 1” in this case, and this is impossible since
0 < E12 < 1 always.

As for b1 and b2, they are given by the last two equations in (4.8), which form a linear
system once λ1 and λ2 are known:(

1/λ1 1/λ2

1 1

)(
b1

b2

)
=

(
m1ex1 +m2ex2

ex2 /m2

)
,

i.e., (
b1

b2

)
= λ1λ2

λ2 −λ1

(
1 −1/λ2

−1 1/λ1

)(
m1ex1 +m2ex2

ex2 /m2

)
.

From this it is clear that b1 = b2 if λ1 = λ2, and we can also compute the expression

−
(
λ2−λ1
(λ1λ2

)2
b1b2 to be equal to

(m1ex1 +m2ex2 )2 −
(

1

λ1
+ 1

λ2

)
(m1ex1 +m2ex2 )

ex2

m2
+ 1

λ1λ2

(
ex2

m2

)2

= (m1ex1 +m2ex2 )2 −H1(m1ex1 +m2ex2 )
ex2

m2
+H2

(
ex2

m2

)2

= m2
1e2x1 +m2

2e2x2 +2m1m2ex1+x2 −H1(m1ex1 +m2ex2 )
ex2

m2
+m2

1(e2x2 −e2x1 )

= m2
2e2x2 +2m1m2ex1+x2 −H1(m1ex1 +m2ex2 )

ex2

m2
+m2

1e2x2

= H1e2x2 −H1(m1ex1 +m2ex2 )
ex2

m2

=−H1 m1ex1+x2

m2
6= 0,

which shows that b1 and b2 are nonzero. The sign relations between m1,2 and b1,2 in the
case of real simple eigenvalues can be seen from (4.2a), as already noted in the proof of
Theorem 4.1.

Next, we consider the dynamics of a peakon–antipeakon pair in these different cases
separately.

4.5 Dynamics of a peakon–antipeakon pair in the case of positive sim-
ple eigenvalues

In this section we consider the case 0 < λ1 < λ2, with b1 and b2 of opposite sign, so that
we get a peakon–antipeakon solution (rather than a pure peakon or pure antipeakon
solution as in Section 4.2 above). In terms of initial data {xk (0),mk (0)}, this case occurs
when m1(0)m2(0) < 0 and the point

(σ,E12) =
(∣∣∣∣m1(0)

m2(0)

∣∣∣∣+ ∣∣∣∣m2(0)

m1(0)

∣∣∣∣ ,ex1(0)−x2(0)
)

lies outside of the ellipse in Figure 9.
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Theorem 4.12. For a Novikov peakon–antipeakon pair, given by (4.2) with positive sim-
ple eigenvalues 0 < λ1 < λ2 and residues of opposite signs, b1(0)b2(0) < 0, there is exactly
one collision: x1(t ) = x2(t ) at t = t0, where

t0 =
λ1λ2

λ2 −λ1
ln

(
−b2(0)

b1(0)

)
. (4.24)

The asymptotics as t →±∞ are given by the same formulas (4.10) as in the pure peakon
case, except for the signs of m1 and m2:

m1(t ) = sgnb1(0)√
λ1

+O
(
eδt ), m2(t ) = sgnb2(0)√

λ2

+O
(
eδt ), as t →−∞,

m1(t ) = sgnb2(0)√
λ2

+O
(
e−δt ), m2(t ) = sgnb1(0)√

λ1

+O
(
e−δt ), as t →+∞.

(4.25)

Proof. By Theorem 4.8, collisions happen when

0 = b1(t )+b2(t ) = b1(0)e t/λ1 +b2(0)e t/λ2

i.e.,
e t/λ1−t/λ2 =−b2(0)/b1(0) > 0,

which clearly has exactly one solution, given by (4.24).
The proof of the asymptotic formulas is nearly identical to the pure peakon case. For

example, as t →+∞ we have

b2

b1
= b2(t )

b1(t )
= b2(0)e t/λ2

b1(0)e t/λ1
= b2(0)

b1(0)
e−δt =O

(
e−δt ),

so

x2(t ) = 1

2
ln

(
b2

1

λ1
+ b2

2

λ2
+ 4

λ1 +λ2
b1b2

)
= 1

2
ln

(
b2

1

λ1

(
1+ 4

λ1 +λ2

b2

b1
+ λ1

λ2

b2
2

b2
1

))

= 1

2
ln

(
b2

1

λ1

(
1+O

(
e−δt )+O

(
e−2δt )))

= 1

2
ln

b1(0)2 e2t/λ1

λ1
+ 1

2
ln

(
1+O

(
e−δt ))

= t

λ1
+ 1

2
ln

b1(0)2

λ1
+O

(
e−δt ).

The only difference is that we have to take the sign of bk into account when simplifying
(b2

k )1/2 in the expressions for m1 and m2.
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x

t
u(x, t )

Figure 10: The graph of u(x, t ) for the peakon–antipeakon solution in Theorem 4.13. The
eigenvalues are real and simple, λ1 = 1/2 and λ2 = 1, so the asymptotic velocities are 2
(for the peakon) and 1 (for the antipeakon). The residues, b1(0) =−b2(0) =

p
3, are cho-

sen to place the collision at the origin. At the instant of collision, the two peakons merge
into the single peak u(x,0) = 2e−|t |, indicated with red in the picture. The projection is
parallel, the scale is the same on all axes, and the domain shown is −15 ≤ x ≤ 15 and
−8 ≤ t ≤ 8, with the wave profile u(x, t ) sampled at equidistant times t = n/2, n ∈ Z.

−10 −8 −6 −4 −2 0 2 4 6 8 10
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0

2

4

x = x1(t ) x = x2(t )

Collision

m1 > 0,m2 < 0

m1 < 0,m2 > 0

x

t

Figure 11: Spacetime plot showing the locations xk (t ) of the peakons in the (x, t )-plane
for the peakon–antipeakon solution in Figure 10 with λ1 = 1/2, λ2 = 1 and b1(0) =
−b2(0) =

p
3. Note how the curves approach the straight lines x = t/λk + const. given

by (4.28) as t →±∞, and that both curves are tangent to the line x = (1/λ1 +1/λ2)t = 3t
at the origin, in agreement with (4.29).
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Figure 12: Graphs of the amplitudes mk (t ) for the peakon–antipeakon solution in Fig-
ures 10 and 11. At the instant of collision, t = 0, both m1(t ) and m2(t ) blow up, but
they do it in such a way that the sum m1(t ) + m2(t ), and hence the wave elevation
u = m1 e−|x−x1|+m2 e−|x−x2|, tends to a finite limit.

Just like in Remark 4.6, we can rescale b1(0) and b2(0) as we like (except altering their
signs), by making a suitable translation of the (x, t ) coordinate system. To see clearer
what happens at the collision, it is useful to place the origin of the coordinate system at
the site of the collision; this corresponds to one of the two choices

b1(0) =−b2(0) =±
√

(λ1 +λ2)λ1λ2

λ2 −λ1
=±

√(
1+ λ2

λ1

)
λ2

λ2
λ1

−1
.

Changing the sign here merely flips the signs of m1 and m2, so it is enough to study one
case. The following theorem describes the situation where m1 starts out positive and m2

negative; see Figures 10, 11 and 12 for illustrations.

Theorem 4.13. When

b1(0) =−b2(0) =
√

(λ1 +λ2)λ1λ2

λ2 −λ1
, (4.26)

the Novikov n = 2 peakon–antipeakon solution with 0 <λ1 <λ2 takes the following sym-
metric form:

x1(t ) =−x2(−t ),

m1(t ) = m2(−t ),

x2(t ) = 1

2
ln

(
e2t/λ1

λ1
+ e2t/λ2

λ2
− 4e t/λ1+t/λ2

λ1 +λ2

)
− 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ1λ2
,

m2(t ) = 1

e t/λ1 −e t/λ2

(
e2t/λ1

λ1
+ e2t/λ2

λ2
− 4e t/λ1+t/λ2

λ1 +λ2

)1/2

.

(4.27)
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In this case, the asymptotics for the positions as t →±∞ are

x1(t ) = t

λ1
+ 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ2
+O

(
eδt ), as t →−∞,

x2(t ) = t

λ2
− 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ1
+O

(
eδt ), as t →−∞,

x1(t ) = t

λ2
+ 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ1
+O

(
e−δt ), as t →+∞,

x2(t ) = t

λ1
− 1

2
ln

(λ1 −λ2)2

(λ1 +λ2)λ2
+O

(
e−δt ), as t →+∞,

(4.28)

where δ= 1/λ1 −1/λ2 > 0. Moreover, as t → 0,

x1(t ) =
( 1

λ1
+ 1

λ2

)
t + 1

3λ1λ2

( 1

λ1
+ 1

λ2

)
t 3 − 1

4λ1λ2

( 1

λ1
+ 1

λ2

)2
t 4 +O (t 5),

x2(t ) =
( 1

λ1
+ 1

λ2

)
t + 1

3λ1λ2

( 1

λ1
+ 1

λ2

)
t 3 + 1

4λ1λ2

( 1

λ1
+ 1

λ2

)2
t 4 +O (t 5),

m1(t ) = −1/t√
1
λ1

+ 1
λ2

+ 1

2

√
1

λ1
+ 1

λ2
+O (t ),

m2(t ) = 1/t√
1
λ1

+ 1
λ2

+ 1

2

√
1

λ1
+ 1

λ2
+O (t ),

(4.29)

so in particular

x2(t )−x1(t ) = x2(t )+x2(−t ) = 1

2λ1λ2

( 1

λ1
+ 1

λ2

)2
t 4 +O (t 6) (4.30)

and

m1(t )+m2(t ) = m2(−t )+m2(t ) =
√

1

λ1
+ 1

λ2
+O (t 2). (4.31)

At the collision, the wave profile u takes the shape of a single peakon with positive ampli-
tude,

u(x,0) := lim
t→0

u(x, t ) =
√

1

λ1
+ 1

λ2
e−|x|. (4.32)

Proof. This is straightforward computation; just insert (4.26) into (4.2) and (4.10), and
then calculate the Maclaurin/Laurent expansions of (4.27). The last claim (4.32) follows
since

u(x1(t ), t ) = m1(t )+m2(t )ex1(t )−x2(t )

= (
m1(t )+m2(t )

)−m2(t )
(
1− ex1(t )−x2(t ))︸ ︷︷ ︸
=O (t 3)

(4.33)
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and

u(x2(t ), t ) = m1(t )ex1(t )−x2(t ) +m2(t )

= (
m1(t )+m2(t )

)−m1(t )
(
1− ex1(t )−x2(t ))︸ ︷︷ ︸
=O (t 3)

(4.34)

both have the same limit as m1(t )+m2(t ) at t = 0, i.e., the both tend to (1/λ1 +1/λ2)1/2.

Remark 4.14. Similar calculations show that the derivative ux(x, t ) behaves like m2(t )−
m1(t ) in the interval x1(t ) < x < x2(t ), i.e., like a positive constant times 1/t . So the slope
between the peakons tends to −∞ as the collision approaches, and comes back from
+∞ afterwards (or the other way around, for the upside-down solution u(x, t ) with the
opposite sign.) This steepening is seen in Figure 10, and also in the figures for the other
cases below, especially Figure 14. However, we will see in Section 5.2 that m2(t )−m1(t )
may have a pole of higher order if n ≥ 3, leading to somewhat different behaviour.

4.6 Dynamics in the case of non-real eigenvalues

We now turn to the case of a complex conjugated pair of eigenvalues λ1 = λ2 with pos-
itive real parts and nonzero imaginary parts. In terms of initial data {xk (0),mk (0)}, this
case occurs when m1(0)m2(0) < 0 and the point

(σ,E12) =
(∣∣∣∣m1(0)

m2(0)

∣∣∣∣+ ∣∣∣∣m2(0)

m1(0)

∣∣∣∣ ,ex1(0)−x2(0)
)

lies inside the ellipse in Figure 9.
According to Theorem 4.8, the peakon solution {xk (t ),mk (t )} is given by the usual

formulas (4.2), but it is useful to rewrite these formulas in terms of real quantities, as
follows:

Theorem 4.15. Define the constants

α> 0, β> 0, ψ ∈ (0,π/2), B > 0, ϕ ∈ (−π,π]

by
1

λ1
=α+ iβ,

1

λ2
=α− iβ, ψ= arg(α+ iβ) (4.35)

and
b1(0) = Be iϕ, b2(0) = Be−iϕ. (4.36)

Moreover, let

T (t ) =βt +ϕ, K = 1
2 ln

2B 2β2

α
, L =−1

2 ln(sinψ) > 0. (4.37)
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In terms of these quantities, the Novikov n = 2 peakon–antipeakon solution with non-real
eigenvalues becomes

x1(t ) =αt +K −L− 1

2
ln

1+cosψcos(2T (t )−ψ)

sinψ
,

x2(t ) =αt +K +L+ 1

2
ln

1+cosψcos(2T (t )+ψ)

sinψ
,

m1(t ) = −1

cosT (t )

√
α2 +β2

2α

(
1+cosψcos(2T (t )−ψ)

)
,

m2(t ) = 1

cosT (t )

√
α2 +β2

2α

(
1+cosψcos(2T (t )+ψ)

)
.

(4.38)

Proof. This is just computation. We have

b1(t ) = b1(0)e t/λ1 = Be iϕe t (α+iβ) = Beαt e i T (t ),

b2(t ) = b2(0)e t/λ2 = b1(t ) = Beαt e−i T (t )

(so b1 and b2 move in spirals in the complex plane) and

α= (α2 +β2)
1
2 cosψ,

β= (α2 +β2)
1
2 sinψ,

λ1,2 = (α± iβ)−1 = (α2 +β2)−
1
2 e∓iψ.

(4.39)

Hence,
U1 = b1 +b2 = 2Re b1 = 2Beαt cosT (t )

and

U2 =Ψ12b1b2 =
(λ1 −λ2)2 b1b2

λ1 +λ2
=

( 1
λ2

− 1
λ1

)2 |b1|2( 1
λ2

+ 1
λ1

) 1
λ1λ2

= (−2iβ)2B 2e2αt

2α(α2 +β2)
= −2β2B 2e2αt

α(α2 +β2)
.

Moreover,

W1 =λ1 b2
1 +λ2 b2

2 +
4λ1λ2

λ1 +λ2
b1b2

= 2Re(λ1b2
1)+ 4 |b1|2

1
λ1

+ 1
λ2

= 2Re

(
B 2e2αt e2i T (t )

(α2 +β2)
1
2 e iψ

)
+ 4B 2e2αt

2α

= 2B 2e2αt

α

(
α

(α2 +β2)
1
2

Re
(
e i (2T (t )−ψ))+1

)

= 2B 2e2αt

α

(
1+cosψ cos(2T (t )−ψ)

)
,
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and a similar calculation gives

Z1 =
b2

1

λ1
+ b2

2

λ2
+ 4

λ1 +λ2
b1b2

= 2B 2e2αt (α2 +β2)

α

(
1+cosψcos(2T (t )+ψ)

)
.

Finally,

Z2 =
(λ1 −λ2)4

(λ1 +λ2)2λ1λ2
b2

1b2
2 =

U 2
2

|λ1|2
=

(−2β2B 2e2αt

α(α2 +β2)

)2

(α2 +β2) = 4β4B 4e4αt

α2(α2 +β2)
.

Now the result is obtained by inserting all this into the two-peakon solution formulas
(4.2):

x1(t ) = 1

2
ln

Z2

W1
, x2(t ) = 1

2
ln

Z1

W0
, m1(t ) =

√
Z2W1

U2U1
, m2(t ) =

√
Z1W0

U1U0
.

(Recall that U0 =W0 = 1 by definition.)

Remark 4.16. The interpretation of this theorem is that the quantities

x1(t )− (αt +K −L) and x2(t )− (αt +K +L)

oscillate with period π/β between the values ±M , where

M = 1
2 ln 1+cosψ

sinψ =−1
2 ln 1−cosψ

sinψ > L > 0.

(Since 1− cosψ > 1− cos2ψ = sin2ψ.) In other words, the motion of peakon number 1
consists of an oscillation of amplitude M and period π/β, overlaid on a drift with con-
stant speed along the straight line x =αt +K −L, and similarly peakon number 2 oscil-
lates around the line x = αt +K +L. We can thus consider the couple as a whole to be
centered on the line x = αt +K . The oscillations occur in such a way that x1(t ) ≤ x2(t )
for all t , with equality exactly for those values of t where 0 = cosT (t ) = cos(βt +ϕ):

t = 1

β

(
−ϕ+ π

2
+nπ

)
, n ∈ Z. (4.40)

This follows since we already know that collisions occur precisely when 0 =U1 = b1+b2 =
2Reb1 = 2Beαt cosT (t ), and it can also be seen using a bit of trigonometric manipula-
tion:

x2(t )−x1(t ) =
(
αt +K +L+ 1

2
ln

1+cosψcos(2T (t )+ψ)

sinψ

)
−

(
αt +K −L− 1

2
ln

1+cosψcos(2T (t )−ψ)

sinψ

)
= 1

2
ln

(
1+ 2cos2 T (t ) cos2ψ

sin4ψ

(
1+cos(T (t )+ψ) cos(T (t )−ψ)

))
≥ 0,

(4.41)
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x

t
u(x, t )

Figure 13: The graph of u(x, t ) for the peakon–antipeakon solution in Theorem 4.17.
The eigenvalues are λ1 = λ2 = 1/(α+ iβ) with α = 2 and β = 5/π, so that the peakon–
antipeakon couple travels together with the overall velocity α= 2, and the time between
collisions is π/β = 5. The coefficients b1(0) = b2(0) = −i B with B = 5/π are chosen to
place one of the collisions at the origin; see Figure 14 for a closeup of this collision. Thus
collisions occur when t = 5n, n ∈ Z, and are marked with red. The domain shown is
−15 ≤ x ≤ 15 and −8 ≤ t ≤ 8, with the wave profile u(x, t ) sampled at t = n/2, n ∈ Z.

with equality if and only if cosT (t ) = 0. One also sees from (4.38) that the amplitudes
m1(t ) and m2(t ) are 2π/β-periodic; during one such period of length 2π/β there are two
collisions, where m1 and m2 blow up and change their sign. In between the collisions,
one amplitude is positive and the other one is negative, as it should be. (We are looking
at peakon–antipeakon solutions, after all.)

If we want to take a closer look at what happens at a collision, we can place one of
them at the origin by a suitable choice of the parameters B and ϕ determining b1(0)
and b2(0); this also shows the symmetry of the solution. See Figures 13, 14, 15 and 16 for
illustrations.

x

t

u(x, t )

Figure 14: Closeup of the collision at the origin in Figure 13. Collisions occur periodi-
cally, and alternate between looking like this and being turned upside-down. The do-
main shown is −5 ≤ x ≤ 5 and −1 ≤ t ≤ 3/10, with the wave profile u(x, t ) sampled at
t = n/10, n ∈ Z.
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Figure 15: Spacetime plot showing the locations xk (t ) of the peakons in the (x, t )-plane
for the peakon–antipeakon solution with λ1 =λ2 = 1/(2+ 5

π i ) in Figure 13.
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Figure 16: Graphs of the amplitudes mk (t ) for the peakon–antipeakon solution withλ1 =
λ2 = 1/(2+ 5

π
i ) in Figure 13.
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Theorem 4.17. When

B = 1p
2α tanψ

=
p
α/2

β
, ϕ=−π

2
, (4.42)

the peakon–antipeakon solution with non-real eigenvalues λ1,2 = 1/(α± iβ), where α> 0
and β> 0, takes the following symmetric form:

x1(t ) =−x2(−t ),

m1(t ) = m2(−t ),

x2(t ) =αt + 1

2
ln

1−cosψcos(2βt +ψ)

sin2ψ
,

m2(t ) = 1

sin(βt )

√
α2 +β2

2α

(
1−cosψcos(2βt +ψ)

)
,

(4.43)

where ψ= arg(α+ iβ) ∈ (0,π/2). Collisions occur when t = nπ/β, n ∈ Z. As t → 0,

x1(t ) = 2α t − 2
3α(α2 +β2) t 3 −α2(α2 +β2) t 4 +O (t 5),

x2(t ) = 2α t − 2
3α(α2 +β2) t 3 +α2(α2 +β2) t 4 +O (t 5),

m1(t ) = −1/tp
2α

+
√
α

2
+O (t ),

m2(t ) = 1/tp
2α

+
√
α

2
+O (t ),

(4.44)

so in particular

x2(t )−x1(t ) = x2(t )+x2(−t ) = 2α2(α2 +β2) t 4 +O (t 6) (4.45)

and
m1(t )+m2(t ) = m2(−t )+m2(t ) =

p
2α+O (t 2). (4.46)

At the collision, the wave profile u takes the shape of a single peakon with positive ampli-
tude,

u(x,0) := lim
t→0

u(x, t ) =
p

2αe−|x|. (4.47)

Proof. It is a routine matter to just substitute the parameter values and compute the
series expansion. The claim about u(x,0) is proved exactly like in Theorem 4.13.

Remark 4.18. The value of B was chosen in order to make K = 1
2 ln(2B 2β2/α) vanish.

Taking ϕ= π
2 instead of ϕ=−π

2 puts the other kind of collision at the origin; it looks ex-
actly the same except for being turned upside down (the signs of m1 and m2 are flipped).
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4.7 Dynamics in the case of a positive double eigenvalue

The final (and non-generic) case in our investigation of a single peakon–antipeakon pair
occurs when λ1 and λ2 coincide, say

λ1 =λ2 =µ> 0.

In terms of initial data {xk (0),mk (0)}, this happens when m1(0)m2(0) < 0 and the point

(σ,E12) =
(∣∣∣∣m1(0)

m2(0)

∣∣∣∣+ ∣∣∣∣m2(0)

m1(0)

∣∣∣∣ ,ex1(0)−x2(0)
)

lies precisely on the ellipse in Figure 9, on the borderline between the real and complex
cases.

In this case, the spectral data cannot be defined as in (2.23), since the Weyl function
does not have simple poles. Instead the partial fraction expansion takes the form

ω(λ) = a1

λ−µ + a2

(λ−µ)2

for some time-dependent coefficients a1 and a2. As it turns out, the solution formulas
look nicer if stated in terms of b1 = a1 and b2 = a2/µ, so the partial fraction expansion
that we are actually going to work with is

ω(λ) = b1

λ−µ + µb2

(λ−µ)2
. (4.48)

Although we have continued to use the names b1 and b2 (since this will turn out con-
venient in the general case studied in Section 6), these coefficents are not on an equal
footing here, and the solution formulas will no longer be symmetric with respect to the
interchange of the indices 1 and 2. Also, the time dependence of b1 will be more com-
plicated than before; see (4.51) below.

In Section 6 we derive general peakon solution formulas, valid for any n and for
eigenvalues of arbitrary multiplicities, by applying a limiting procedure to the solution
formulas that we already know for the case of simple eigenvalues. But here we take a
more direct approach, and derive the solution for the particular case n = 2 by revisiting
the inverse spectral problem, and solving it for a Weyl function of the new form (4.48).

Theorem 4.19. The general Novikov n = 2 peakon–antipeakon solution corresponding
to an eigenvalue of multiplicity two is parametrized by spectral data consisting of three
constants:

µ> 0, b1(0) ∈ R, b2(0) ∈ R \ {0}. (4.49)

The solution formulas are

x1(t ) = 1
2 lnQ1, x2(t ) = 1

2 lnQ2, m1(t ) = P1

√
Q1, m2(t ) = P2

√
Q2, (4.50a)
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where

Q1 =
b4

2

4µ (b2
1 +b1b2 + 1

2 b2
2)

,

Q2 =
b2

1 −b1b2 + 1
2 b2

2

µ
,

P1 =
−2(b2

1 +b1b2 + 1
2 b2

2)

b1b2
2

,

P2 =
1

b1
,

(4.50b)

and where the coefficients b1 and b2 from the Weyl function (4.48) have the time depen-
dence

b1(t ) =
(
b1(0)−b2(0) t

µ

)
e t/µ, b2(t ) = b2(0)e t/µ. (4.51)

Proof. The time dependence of the Weyl function is given by the same differential equa-
tion (2.27) as before, but it will induce a different time dependence for b1 and b2:

ḃ1

λ−µ + µ ḃ2

(λ−µ)2
= ω̇(λ) = ω(λ)−ω(0)

λ

= 1

λ

((
b1

λ−µ + µb2

(λ−µ)2

)
−

(
b1

−µ + b2

µ

))
= (b1 −b2)/µ

λ−µ + b2

(λ−µ)2
.

This gives the equations

ḃ1 =
b1 −b2

µ
, ḃ2 =

b2

µ
, (4.52)

whose solution in terms of initial data b1(0) and b2(0) is given by (4.51).
Next, identifying coefficients in ω(λ) = −B(λ)/A(λ) = b1/(λ−µ)+µb2/(λ−µ)2, like

in Remark 4.4, we find the equations determining x1, x2, m1 and m2:

2

µ
= H1 = m2

1 +m2
2 +2m1m2E12,

1

µ2
= H2 = m2

1m2
2(1−E 2

12),

b1 +b2

µ
= m1ex1 +m2ex2 ,

b1 =
ex2

m2
.

(4.53)

This system has a structure similar to (4.8), but it is slightly different. Note that the first
and the second equation here are not independent, as H 2

1 − 4H2 = 0 is a necessary re-
quirement for λ1 = λ2, but it is also due to this supplementary condition that we can
describe the solution in this case using only three parameters {µ,b1,b2} rather than four.
In any case, solving for {xk ,mk }, one finds the formulas (4.50).

We prove later in Theorem 6.23 that each highest-order coefficient associated to an
eigenvalue in the Weyl function is nonzero, which in this case means that b2(0) 6= 0 (and
hence b2(t ) 6= 0 for all t ). But we can give a direct argument here: from (4.53) we have

b2 =
2(m1ex1 +m2ex2 )

H1
− ex2

m2
= (m2

2 −m2
1)ex2

H1m2
,

and this cannot be zero, since if m1 =−m2 = k 6= 0, then

H 2
1 −4H2 = 8k4E12(E12 −1) 6= 0,

in contradiction to the assumption that we are in the double eigenvalue case.
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Remark 4.20. Actually, if we compute the spectral data {µ,b1(0),b2(0)} from given initial
data {xk (0),mk (0)} at time t = 0, it is clear from the relation b1 = ex2 /m2 that b1(0) will be
nonzero as well, and not just b2(0). But it is still natural to allow b1(0) = 0 in the general
solution; this simply corresponds to the case when the collision happens to occur at
t = 0, as the next theorem shows.

Corollary 4.21. In the case of a double eigenvalue, the peakon and the antipeakon collide
exactly once, namely when

t =µ b1(0)

b2(0)
. (4.54)

The asymptotics as t →±∞ are given by

x1(t ) = t

µ
− 1

2
ln

2t 2

µ2
+ 1

2
ln

b2(0)2

2µ
+O (1/t ),

x2(t ) = t

µ
+ 1

2
ln

2t 2

µ2
+ 1

2
ln

b2(0)2

2µ
+O (1/t ),

m1(t ) = 1p
µ

sgn(t ) sgn(b2(0))
(
1+O (1/t )

)
,

m2(t ) =− 1p
µ

sgn(t ) sgn(b2(0))
(
1+O (1/t )

)
.

(4.55)

In particular the distance between the peakons tends to infinity at a logarithmic rate:

x2(t )−x1(t ) = ln
2t 2

µ2
+O (1/t ), as t →±∞. (4.56)

Proof. Since b2(t ) 6= 0 for all t , a collision happens exactly when b1(t ) = 0, i.e., when

b1(t ) = b1(0)−b2(0) t
µ
= 0,

which proves the first claim. As for the asymptotics, the solution formulas from Theo-
rem 4.19 say that

x1(t ) = 1

2
ln

1
2µ b2(0)4 e2t/µ

2
(
b1(0)−b2(0) t

µ

)2 +2
(
b1(0)−b2(0) t

µ

)
b2(0)+b2(0)2

= 1

2
lne2t/µ+ 1

2
ln

 1
2µ b2(0)4

2
(
b2(0) t

µ

)2 (
1+O (1/t )

)


= t

µ
− 1

2
ln

2t 2

µ2
+ 1

2
ln

b2(0)2

2µ
+O (1/t ),

as claimed; similarly for x2(t ), m1(t ) and m2(t ).
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x

t
u(x, t )

Figure 17: The graph of u(x, t ) for the peakon–antipeakon solution in Theorem 4.23,
with coinciding eigenvalues λ1 = λ2 = µ. Here µ = 1, and the parameters b1(0) = 0 and
b2(0) =−

p
2 are chosen to place the collision at the origin. The domain shown is −20 ≤

x ≤ 20 and −20 ≤ t ≤ 20, with the wave profile u(x, t ) sampled at t ∈ Z.
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Figure 18: Spacetime plot showing the locations xk (t ) of the peakons in the (x, t )-plane
for the peakon–antipeakon solution with a double eigenvalue µ = 1 in Figure 17. As
t →±∞, the peakon and the antipeakon both travel roughly with the velocity 1/µ, but
there is also a additional term making them separate slowly; the distance x2(t )− x1(t )
grows like ln(2t 2/µ2).
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Figure 19: Graphs of the amplitudes mk (t ) for the peakon–antipeakon solution with a
double eigenvalue µ= 1 in Figure 17.

Remark 4.22. As before, changing the sign of both b1 and b2 simply amounts to chang-
ing the sign of both m1 and m2, and we can change b1 and b2 as we like (except altering
the sign of b2) by translating the (x, t ) coordinate system, so the eigenvalue µ is the only
essential parameter in this case. The choice b1(0) = 0 and b2(0) =±√

2µ makes the col-
lision take place at the origin, and (not surprisingly) it also shows that the solution is
symmetric. One of these two particular solutions is described in the following theorem,
and illustrated in Figures 17, 18 and 19.

Theorem 4.23. When
b1(0) = 0, b2(0) =−

√
2µ, (4.57)

the Novikov n = 2 peakon–antipeakon solution with a double eigenvalue λ1 = λ2 = µ> 0
takes the following symmetric form:

x1(t ) =−x2(−t ),

m1(t ) = m2(−t ),

x2(t ) = t

µ
+ 1

2
ln

(
2t 2

µ2
+ 2t

µ
+1

)
,

m2(t ) = 1

t

√
µ

2

√
2t 2

µ2
+ 2t

µ
+1,

(4.58)

or more compactly written using the abbreviation τ= t/µ:

x2(t ) = τ+ 1

2
ln

(
2τ2 +2τ+1

)
,

m2(t ) =
√

2τ2 +2τ+1

τ
√

2µ
.

(4.59)
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As t → 0,

x1(t ) = 2

µ
t − 2

3µ3
t 3 − 1

µ4
t 4 +O (t 5),

x2(t ) = 2

µ
t − 2

3µ3
t 3 + 1

µ4
t 4 +O (t 5),

m1(t ) =−
√
µ

2

1

t
+ 1√

2µ
+O (t ),

m2(t ) =
√
µ

2

1

t
+ 1√

2µ
+O (t ),

(4.60)

so in particular

x2(t )−x1(t ) = x2(t )+x2(−t ) = 2

µ4
t 4 +O (t 6) (4.61)

and

m1(t )+m2(t ) = m2(−t )+m2(t ) =
√

2

µ
+O (t 2). (4.62)

At the collision, the wave profile u takes the shape of a single peakon with positive ampli-
tude,

u(x,0) := lim
t→0

u(x, t ) =
√

2

µ
e−|x|. (4.63)

Proof. This is a straight-forward computation: just insert

b1(t ) =
√

2
µ t e t/µ, b2(t ) =−

√
2µe t/µ

into the solution formulas, and so on.

Remark 4.24. Note that

2t 2

µ2
+ 2t

µ
+1 = 2

( t

µ
+ 1

2

)2
+ 1

2
> 0

for all t , so there are no problems with the logarithms or square roots. Note also that
m1(t ) and m2(t ) are actually algebraic functions of t in the double eigenvalue case; there
are no exponentials present.

5 Peakon–antipeakon solutions with arbitrary n and only
simple eigenvalues

Some of the theorems in the previous section generalize well to the case with n peakons
and antipeakons in any order, while others are much more difficult. For example, the
map to spectral data requires us to find the roots of a polynomial of degree n, where the
coefficients Hk are complicated expressions in {xk ,mk }. Thus it would be very difficult,
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and perhaps not very useful, to explicitly classify the behaviour of multipeakon solutions
in terms of the initial conditions {xk (0),mk (0)} for n ≥ 3.

Instead, the aim of this section is to investigate the range of possible spectral data,
show that the multipeakon solution formulas in Theorem 2.7 are valid for any simple
eigenvalues λk with positive real part and any nonzero residues bk , draw some conclu-
sions about collisions, and finally to derive the formulas for the asymptotics as t →±∞.
We will see that the asymptotics for Novikov peakon–antipeakon solutions can be much
more complicated than for any other peakon equation known to us. In fact, merely stat-
ing the asymptotic formulas requires the exact formulas for the general multipeakon
solution. This is due to the fact that when some of the eigenvalues have nonzero imag-
inary part, it is the real parts of the reciprocals of those eigenvalues that determine the
corresponding asymptotic velocities, and the eigenvalues can be placed so that there are
an arbitrary number of peakons, say m, with the same asymptotic velocity. And to de-
scribe the asymptotics of such an m-cluster within an n-peakon solution, we need the
exact formulas for the general m-peakon solution.

5.1 Spectral data and formulas for peakon–antipeakon solutions

We remind the reader about Definition 2.12, which to any given point

(x1, . . . , xn ,m1, . . . ,mn) ∈ R2n

associates certain polynomials A(λ), B(λ), C (λ) with real coefficients, and also defines
the Weyl functions

ω(λ) =−B(λ)

A(λ)
, ζ(λ) =−C (λ)

A(λ)
.

Also recall the notation P for the set of pure peakon configurations (those with x1 < ·· · <
xn and all mi > 0) and R for the corresponding set of spectral data (0 <λ1 < ·· · <λn and
all bi > 0) determined by the partial fraction decomposition

ω(λ) =
n∑

k=1

bk

λ−λk
.

This formula defines “the spectral map”, a bijection from P to R, whose inverse map
from R back to P is given explicitly by the formulas for the n-peakon solution; see The-
orems 2.7 and 2.15.

We will now extend the notation to cover mixed multipeakon configuration (where
x1 < ·· · < xn , and all mi are nonzero but may be either positive or negative), and inves-
tigate the nature of the spectral data in this case. Unfortunately our results are not quite
as complete as we would wish, but there are still many things that can be established.

Definition 5.1. Let

P̂ = {
(x1, . . . , xn ,m1, . . . ,mn) ∈ R2n : x1 < ·· · < xn , all mi 6= 0

}
(5.1)
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denote the set of n-peakon configurations, and let

P̂s ⊂ P̂ (5.2)

be the subset of configurations such that the corresponding polynomial A(λ) has only
simple roots λ1, . . . ,λn .

Remark 5.2. The hats on P̂ and P̂s are reminders that we are not necessarily in the pure
peakon case anymore, and the subscript “s” stands for “simple”.

Remark 5.3. The set P̂ is clearly open in R2n , and so is P̂s, since we are removing a
closed set from P̂ , namely the zero level set of the discriminant of A(λ).

(Recall that the discriminant of A(λ), which up to a conventional constant factor is
the resultant of A(λ) and its derivative A′(λ), is a polynomial expression in the coeffi-
cients {Hk }n

k=1, hence a continuous function of {xk ,mk }n
k=1, and it vanishes if and only if

A(λ) and A′(λ) have any roots in common, i.e., if and only if A(λ) has roots with multi-
plicity greater than one.)

The condition that A(λ) has simple roots ensures that the partial fraction decompo-
sition of ω(λ) still has the form above, so that we get an extended spectral map taking a
peakon configuration

(x1, . . . , xn ,m1, . . . ,mn) ∈ P̂s

to a tuple
(λ1, . . . ,λn ,b1, . . . ,bn) ∈ C2n ,

where allλk are distinct, and where any non-realλk and bk come in complex-conjugated
pairs since ω(λ) has real coefficients. Of course, this tuple is only well-defined up to re-
labeling of the indices {1, . . . ,n}, so to be precise we should think of the map as taking
values in the quotient space C2n/Sn , where the symmetric group acts by permuting the
indices. Since the coefficients ofω(λ) depend continuously on the variables {xk ,mk }n

k=1,
this extended spectral map is continuous, and we want to investigate its range.

This extended spectral map is only defined on P̂s, not on all of P̂ , since the residues
bk are not defined on P̂ \ P̂s. However, the eigenvalues λk are defined for any peakon
configuration in P̂ , and they are the topic of our first theorem.

Theorem 5.4. For any peakon configuration in P̂ , the roots of A(λ) lie in the closed half
plane Re(λ) ≥ 0.

Remark 5.5. We believe that the roots must actually lie in the open half plane Re(λ) > 0,
but unfortunately we have not been able to prove this in general. At least we saw in (4.17)
that it is true in the case of one peakon–antipeakon pair (n = 2). The solutions that will
be studied in the remainder of this paper are all associated with eigenvalues with strictly
positive real part, but we cannot at present rule out the possibility that there might be
other solutions, where some λk lie on the imaginary axis. (Note, however, that λ = 0 is
ruled out by the fact that A(0) = 1.)
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Proof of Theorem 5.4. Recall that the eigenvalues λk in the spectral data, i.e., the roots
of A(λ), are the eigenvalues of the matrix T PEP defined in Theorem 2.13. From the
planar network in Figure 7, we can easily find the kth principal minor of the matrix PEP .
In fact, according to the Gessel–Viennot lemma, calculating the minor is the same as
finding the sum of the weights of all nonintersecting path families connecting sources
1 through k with sinks 1 through k. In this network, there is only one such family for
each k, namely the one where each path from source l to sink l is a straight horizontal
path. The total weight of a family is the product of the weights of all paths included in
the family, so we find that the principal minor is equal to

m2
1 · · ·m2

k

k−1∏
l=1

(
1−E 2

l (l+1)

)
.

This expression is positive regardless of the signs of mk , which shows that PEP is a sym-
metric, positive definite matrix.

Next, we study the effect of multiplying PEP by the matrix T from the left. Split T in
its symmetric and skewsymmetric parts, shown here in the case n = 3,

T =
1 0 0

2 1 0
2 2 1

=
1 1 1

1 1 1
1 1 1

+
0 −1 −1

1 0 −1
1 1 0

=: R +S, (5.3)

and note that the symmetric part R is positive semidefinite: the corresponding quadratic
form is x t Rx = (

∑
xi )2. Thus, for any symmetric positive definite real matrix Q and for

any vector u with complex conjugate u,

0 ≤ 2uT QT RQu = uT QT (T +T T )Qu

= uT QT TQu +uT QT T T Qu.

Letting Q = PEP and u be an eigenvector of T PEP with eigenvalue λ, we get

0 ≤ uT (PEP )T T (PEP )u +uT (PEP )T T T (PEP )u

= uT (PEP )T (T PEPu)+ (T PEPu)T (PEP )u

= uT (PEP )Tλu + (λu)T (PEP )u.

Since PEP is symmetric,

0 ≤ (λ+λ)uT PEPu = 2Re(λ)uT PEPu,

and since PEP is positive definite, it follows that Reλ≥ 0.

Now we focus our attention on the case when the eigenvalues have positive real part.

Definition 5.6. Let R̂ s ⊂ C2n/Sn denote the set of all spectral data

(λ1, . . . ,λn ,b1, . . . ,bn)

satisfying the following conditions:
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• The eigenvalues λk are simple (λi 6=λ j if i 6= j ) and located strictly in the right half
of the complex plane (Reλk > 0), and non-real eigenvalues only exist in complex-
conjugated pairs.

• All residues bk are nonzero, and they too come in conjugated pairs: if λi =λ j then

bi = b j .

Remark 5.7. Spectral data coming from a peakon configuration in P̂s automatically sat-
isfy all these conditions except Reλk > 0 and bk 6= 0. We will prove in Theorem 6.23 that
if a peakon configuration is such that Reλk > 0 for all k, then in fact for each eigenvalue
the highest corresponding coefficient in the partial fraction expansion of ω(λ) must be
nonzero. In the case of simple eigenvalues, this just means that bk 6= 0 for all k, so this
requirement is actually redundant in Definition 5.6. (We don’t give a separate proof here,
since the argument would not really be any simpler than in the general case of multiple
eigenvalues.)

Theorem 5.8. For spectral data in R̂ s, the functions Wk and Zk (see Definition 2.5) are
strictly positive (for 0 ≤ k ≤ n).

Proof. We first prove the theorem for positive simple eigenvalues. Study the n ×n ma-
trix M with elements Mi j = 1

λi+λ j
. Each k×k minor MI J is a Cauchy determinant, and is

equal to ∆I∆J
ΓI ,J

in the notation of (2.6). The minors are all positive, in particular the prin-

cipal minors, so M is positive definite. Thus the exterior product Λk (M), which has as
its elements all minors of M of a given size k, is also positive definite. This follows from
the fact thatΛk (M) has eigenvalues that consist of all possible products of k eigenvalues
of M .

From equations (8.7) and (7.3) in [18] we know that the expression Zk can be calcu-
lated in terms of a bimoment determinant, from which one can get that

Zk = 2k
∑
I ,J

(∆I )2(∆J )2

ΓI ,J
bI b J .

This is equal to the quadratic form xTΛk (M)x, evaluated for the nonzero vector x with
elements xI =∆I bI . SinceΛk (M) is positive definite, it follows that Zk > 0. Since Wk can
be obtained by replacing bI with bIλI in the formula for Zk , we have Wk > 0 as well.

The proof for the non-real case is a bit trickier. Let us first study the simplest case,
i.e., Z1 = xT M x. Note that one can write

Z1 = xT MP x

for some permutation matrix P , since conjugating x is the same as switching the places
of each non-real component xi = bi and its conjugate bi . The matrix P should thus be
chosen to fix the rows in x containing real components, and swapping rows containing
conjugated pairs.
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Consider the product MP , which is just M with some columns swapped. Note that
P fixes the columns with indices belonging to real eigenvalues, and swaps the other
columns pairwise, in such a way that

(MP )i j =
1

λi +λ j

.

This matrix is Hermitian, as the elements (MP )i i on the diagonal are real, and

(MP )i j = 1/(λi +λ j ) = 1/(λi +λ j ) = (MP ) j i , i 6= j .

The leading principal minors of the Cauchy matrix MP are of the form∏
1≤i< j≤m

(λi −λ j )
∏

1≤i< j≤m
(λi −λ j )

∏
1≤i , j≤m

(λi +λ j )
, 1 ≤ m ≤ n.

The numerator is clearly real and positive, since the two products are conjugates of each
other. In the denominator, there are different kinds of factors. For i = j , the factors
simplify to 2Reλi , which is positive. For each factor (λi +λ j ) where i 6= j , its conjugate
is also in the product, so pairing them in this way, one sees that the denominator is also
positive. Thus, Sylvester’s criterion shows that Z1 is a positive definite form.

Now define J to be the index set corresponding to the complex conjugates of the
eigenvalues with indices in J . We note that the sum

Zk = 2k
∑
I ,J

(∆I )2(∆J )2

ΓI ,J
bI b J

is over all k-subsets of n, so we can replace J with J and change the order of summation
to get

Zk = 2k
∑
I ,J

(∆I )2(∆J )2

ΓI ,J

bI b J .

Since ∆J =±∆J , we have (∆J )2 = (∆J )2. Also, note that b J = b J . Thus we can write

Zk = 2k
∑
I ,J

∆I∆J

ΓI ,J

(∆I bI )(∆J b J ),

so that Zk = xTΛk (MP )x is the kth exterior power of Z1. It thus follows that any Zk is
positive definite. Again, Wk can be obtained by replacing bI with bIλI in the formula for
Zk , so the argument works for Wk as well.

Now recall the peakon solution formulas from Theorem 2.7,

xn+1−k = 1

2
ln

Zk

Wk−1
, mn+1−k =

p
ZkWk−1

UkUk−1
, (5.4)
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which are known to map positive spectral data in R bijectively to pure peakon configu-
rations in P . What Theorem 5.8 shows is that at least the expressions for the positions xk

are well-defined also for spectral data in in the larger domain R̂ s. And we can say a bit
more:

Theorem 5.9. With spectral data in R̂ s the formulas for xk in (5.4) preserve the ordering:

x1 ≤ x2 ≤ ·· · ≤ xn . (5.5)

The equality xk = xk+1 holds if and only if Un−k = 0.

Proof. We compute the difference

e2xn+1−k −e2xn−k = Zk

Wk−1
− Zk+1

Wk
= ZkWk −Zk+1Wk−1

Wk−1Wk
=

U 4
k

Wk−1Wk
, (5.6)

using [18, Corollary 8.4] in the final step. From Theorem 5.8 we know that Wk−1 > 0 and
Wk > 0 for all spectral data in P̂s, and clearly also U 4

k ≥ 0, and the claims follow.

Let us give a name to the set of spectral data for which we have strict inequalities,
x1 < ·· · < xn .

Definition 5.10. Let R̂nc be the subset of R̂ s defined by the condition that the quantities
U1, . . . ,Un−1 are all nonzero.

Remark 5.11. The subscript “nc” in R̂nc stands for “no collisions”.

Remark 5.12. Recall that the Uk are polynomials in b1, . . . ,bn with coefficients ΨI that
are rational functions in λ1, . . . ,λn ; see Definition 2.5. With spectral data in R̂ s, there
is no division by zero in these rational functions ΨI , since then the factors λi +λ j in
the denominators all have positive real part. Thus the Uk are continuous nonconstant
functions on R̂ s, so R̂nc is an open nonemtpy subset of R̂ s.

Theorem 5.13. The formulas (5.4) map spectral data in R̂nc injectively to peakon config-
urations in P̂s.

Proof. It is clear from Theorems 5.8 and 5.9, and the definition of R̂nc, that the formulas
produce values {xk ,mk }n

k=1 satisfying x1 < ·· · < xn and mk > 0 for all k. In other words,

they map given spectral dataΛ ∈ R̂nc to a configuration X ∈ P̂ .
Next, remember the expressions for the coefficient Hk in the polynomial

A(λ) = 1−H1λ+H2λ
2 −·· ·+ (−1)n Hnλ

n

in terms of {xk ,mk }n
k=1; see Theorem 2.15, Remark 2.17 and Example 2.19. We know

from the pure peakon case, where P and R are in bijection, that if we insert (5.4) into
the formula for Hk , we obtain the kth elementary symmetric function in the variables
{1/λ1, . . . ,1/λn}. And since this is a purely algebraic fact (an identity between rational
functions), it must hold here as well. This means that the polynomial A(λ) associated
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to the configuration X = {xk ,mk } coming from the spectral data Λ = {λk ,bk } actually
has precisely these numbers λk as its roots. By the same reasoning, inserting (5.4) into
the corresponding formulas for the coefficients of the polynomial B(λ), we find that the
Weyl function ω(λ) = −B(λ)/A(λ) becomes exactly what it must be in order that the
residues associated to X be the numbers bk that we started with.

So the map Λ→ X is indeed injective, with the spectral map as its inverse, and thus
we must have X ∈ P̂s, since the λk inΛ ∈ R̂nc are simple by definition.

We can now show that the peakon solution formulas from Theorem 2.7 remain valid
also for spectral data in R̂ s, so that we can use them for studying peakon–antipeakon
solutions.

Theorem 5.14. Let (
λ1, . . . ,λn ,b1(0), . . . ,bn(0)

)
be initial spectral data in the set R̂ s, i.e., such that the eigenvalues are simple with positive
real parts, all residues bi (0) are nonzero, and any non-real eigenvalues and residues come
in complex-conjugated pairs. Then the time-dependent spectral data(

λ1, . . . ,λn ,b1(t ), . . . ,bn(t )
)
, bk (t ) = bk (0)e t/λk ,

lie in the “no-collision” subset R̂nc ⊂ R̂ s for all t ∈ R \ T , where T is a (finite or countably
infinite) discrete set of values of t where Un−k (t ) becomes zero for at least one index k. The
formulas (5.4),

xn+1−k (t ) = 1

2
ln

Zk (t )

Wk−1(t )
, mn+1−k (t ) =

√
Zk (t )Wk−1(t )

Uk (t )Uk−1(t )
,

with the time dependence given by letting bk = bk (t ), yield a peakon configuration(
x1(t ), . . . , xn(t ),m1(t ), . . . ,mn(t )

)
which for all t ∈ R \ T lies in P̂s and satisfies the Novikov n-peakon ODEs (1.7). If tc ∈ T ,
and k is an index such that Un−k (tc ) = 0, then there is a collision: xk (tc ) = xk+1(tc ), while
mk (t ) and mk+1(t ) blow up as t → tc . The function

u(x, t ) =
n∑

k=1
mk (t )e−|x−xk (t )|, t ∈ R \ T,

extends continuously to t ∈ R and provides a global weak solution of Novikov’s equation,
in the sense of Section 2.1.

Proof. There is actually not much left to prove. Regarding the time dependence for the
Weyl function induced by the Novikov peakon ODEs, there is no difference from the pure
peakon case. The functions Uk (t ), meaning Uk with b = bk (t ), are entire function of t
(considered as a complex variable), hence they must have discrete zeros in the complex
plane, at most countably many, and T consists of all such zeros that happen to lie on the
real axis. All the rest follows from the earlier theorems in this section and the discussion
of collisions in Section 3.
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5.2 More about collisions

In Section 3, we saw that the Novikov equation is fairly well-behaved when it comes to
peakon–antipeakon collisions; even though ux(x, t ) blows up at a collision, the solution
u(x, t ) itself can be continued past the collision as a continuous function. The contin-
uation is not unique; here we only consider the “conservative” continuation given by
the explicit peakon formulas as described in Theorem 5.14 above. These formulas now
allow us to give a more detailed description of what collisions may look like in general.
(We have already seen some examples for n = 2 in Section 4.)

Theorem 5.15. The solutions in Theorem 5.14, with spectral data in R̂ s, do not allow
triple collisions. In other words, there is no time t such that xk (t ) = xk+1(t ) = xk+2(t ).

Proof. The two adjacent peakons xn+1−k (t ) and xn−k (t ) collide precisely when Uk (t )4 =
0. But from Theorem 5.8 and the definition (2.9) of Wk we get

0 <Wk =UkVk+1 −Uk+1Vk−1,

so Uk and Uk+1 cannot both be zero at the same time.

Theorem 5.16. For the solutions in Theorem 5.14, if t = tc ∈ T is the time of a collision
xk = xk+1, then

xk+1(t )−xk (t ) =O ((t − tc )4), as t → tc . (5.7)

Generically speaking, the distance does vanish as xk+1(t )−xk (t ) ∼α(t −tc )4 for some con-
stant α > 0, but it is also possible (if n ≥ 3) to have collisions where the distance tends to
zero even faster. The amplitudes mk (t ) and mk+1(t ) have a pole at t = tc , generically of
order 1, but higher-order poles are also possible.

Proof. Let r = n − k. The distance xk+1 − xk = xn+1−r − xn−r behaves like 1/2 times
e2xn+1−r − e2xn−r , which by (5.6) has a zero of order at least four at t = t0, since Ur and
Wr are analytic functions of t with Ur = 0 and Wr > 0 at t = tc . For the amplitudes, we
have

mn+1−r =
p

Zr Wr−1

Ur Ur−1
, mn−r =

p
Zr+1Wr

Ur+1Ur
,

where Ur±1 must be nonzero when Ur = 0 (by Theorem 5.15), so mk and mk+1 both have
a pole with the same order as the zero of Ur , i.e., of Un−k .

The existance of a case where Ur has a zero of multiplicity greater than one is shown
in Examples 5.18 and 5.19 below.

Remark 5.17. Equation (5.7) implies that the curves x = xk (t ) and x = xk+1(t ) lie very
close to each other near a collision, and from a plot of these curves alone it is difficult to
see exactly when the collision takes place.

As a comparison, we may recall that in a Camassa–Holm peakon–antipeakon colli-
son [2], the distance always behaves likeα(t − tc )2 withα> 0, and the poles of mk (t ) and
mk+1(t ) are always simple. And in Degasperis–Procesi collisions [23, 28, 29], the peakons
approach each other transversally, not tangentially, leading to shockpeakon formation.
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Example 5.18. If n = 3, then the collision x2 = x3 occurs precisely when U1 = 0, and

U1(t ) = b1(t )+b2(t )+b3(t )

= b1(0)e t/λ1 +b2(0)e t/λ2 +b3(0)e t/λ3

= b1(0)+b2(0)+b3(0)+
(b1(0)

λ1
+ b2(0)

λ2
+ b3(0)

λ3

)
t +O (t 2).

(5.8)

Hence, the condition for such a collision to occur at t = tc = 0 is that
∑3

1 bk (0) = 0, and
if the additional condition

∑3
1 bk (0)/λk = 0 holds as well, this will be a “higher-order

collision” with x2(t )− x1(t ) =O (t 8). There are many ways of satisfying these conditions;
one example is

λ1 =
1

4
, λ2 =

1

3
, λ3 =

1

2
, b1(0) = b3(0) = 1, b2(0) =−2. (5.9)

In this case the amplitudes m1(t ) and m2(t ) have double poles at t = 0, and hence they
keep their signs across the collision. Since the peakons approach each other even more
closely than usual, and also the steepening of the slope ux between them is faster than
usual it is difficult to make a good picture of the wave profile u(x, t ) where one can ac-
tually see what happens, so we must leave the visualization to the reader’s imagination.
(Recall that ux ∼ m2−m1 between the peakons, according to Remark 4.14, so it keeps its
sign across the collision too.)

Example 5.19. Another example of spectral data fulfilling the conditions for a higher-
order collision at t = 0,

3∑
1

bk (0) =
3∑
1

bk (0)

λk
= 0,

is

λ1 = 1, λ2 =
1

1+ iβ
, λ3 =

1

1− iβ
, b1(0) =−2, b2(0) = b3(0) = 1, (5.10)

for any β> 0. In this case the solution will consist of a 3-peakon cluster (see Section 5.3
below) moving with overall velocity 1, with collisions occuring periodically among the
peakons. In particular,

U1(t ) = b1(t )+b2(t )+b3(t )

= b1(0)e t/λ1 +b2(0)e t/λ2 +b2(0)e t/λ2

=−2e t +2Ree(1+iβ)t )

=−2e t (1−cosβt ),

so peakons number 2 and 3 will collide periodically, at t = 2πn/β, n ∈ Z, experience
higher-order collisions where m2(t ) and m3(t ) have double poles, like in Example 5.18
above.
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5.3 Peakon clusters

In Section 4.6 we saw what the 2-peakon solution looks like in the complex case

λ1 =λ2 =
1

α+ iβ
, α> 0, β> 0.

Namely, the peakons form a pair which travels together with the velocity α, and on top
of this linear drift there are oscillations with the period 2π/β, with two collisions x1 = x2

occuring during each period. Between the collisions, one of the amplitudes m1 and m2

is positive and the other one negative, and at each collision they blow up to ±∞ and
interchange their signs. See in particular the illustrations in Figures 13, 14, 15 and 16.

This generalizes to arbitrary n as follows:

Theorem 5.20. An n-peakon solution given by Theorem 5.14 with spectral data in R̂ s

satisfying

Re
1

λ1
= ·· · = Re

1

λn
=α> 0 (5.11)

will consist of a cluster of peakons and antipeakons, where the whole cluster travels with
overall velocity α, with the individual peakons and antipeakons oscillating and colliding
on top of this linear drift.

Proof. Notice that if I = {i1 < i2 < ·· · < ik }, then

bI (t ) = bi1 (0)e t/λi1 · · ·bik (0)e t/λik

= bI (0) exp
( 1

λi1

+·· ·+ 1

λik

)
t

= bI (0)ekαt e i t CI ,

(5.12)

where C I = ∑
i∈I Im 1

λi
is a real constant depending on I . Thus the quantities Uk , Vk

and Tk will all equal ekαt times some bounded (constant or oscillating) factor, and the
claim then follows easily from the peakon solution formulas (5.4).

Example 5.21. Figure 20 shows a 4-peakon cluster with

λ1 =λ2 =
1

1+ i
, λ3 =λ4 =

1

1+2i
(5.13)

and
b1(0) = b2(0) = 1, b3(0) = b4(0) = 1. (5.14)

Here the imaginary parts of 1/λk are commensurable, so the two corresponding oscilla-
tions have a common period, and the whole 4-peakon solution consists of a 2π-periodic
oscillating motion overlaid on the cluster’s overall linear drift with velocity 1.
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Figure 20: Positions x = xk (t ) for the 4-peakon cluster with periodic oscillations de-
scribed in Example 5.21.
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Figure 21: Positions x = xk (t ) for the 4-peakon cluster with quasi-periodic oscillations
described in Example 5.22.
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Example 5.22. Figure 21 shows a 4-peakon cluster with

λ1 =λ2 =
1

2+ i
, λ3 =λ4 =

1

2+2πi
(5.15)

and
b1(0) = b2(0) = 1, b3(0) = b4(0) = 1. (5.16)

Here the imaginary parts of 1/λk are incommensurable, and the two oscillations with
the corresponding frequencies give the whole solution a quasi-periodic character, but
with an overall linear drift with velocity 2.

5.4 Asymptotics

In this section we derive the asymptotics as t →±∞ for the Novikov peakon–antipeakon
solutions given by Theorem 5.14, where it is assumed that the n eigenvalues λ1, . . . ,λn

are all of multiplicity one.
The eigenvalues are assumed to lie strictly in the right half-plane, and are either

real or come in complex-conjugated pairs. Consider the n numbers 1/λk , also in the
right half-plane, and group them by their real parts. We will show that for each such
group of, say, m numbers with a common real part σ, one can observe as t → ∞ (or
t → −∞) a cluster of m peakons that separate from the other peakons, travel together
with speed σ, and interact among themselves like they would do if there were no other
peakons present, i.e., according to the solution formulas for the m-peakon solution.

Remark 5.23. This phenomenon is somewhat reminiscent of what is called “waltzing
peakons” in [8]. Note, however, that they are studying a pair of cross-coupled Camassa–
Holm-like PDEs, where the “waltzing” takes place between coupled peakons living in the
two different components u(x, t ) and v(x, t ). In our case, all the waltzing interactions
happen within one single function u(x, t ).

Definition 5.24. If I and J are sets of indices, let

ψI ,J =
∏

i∈I , j∈J

(λi −λ j )2

λi +λ j
. (5.17)

In particular, if J = { j } is a singleton set, we write

ψI , j =
∏
i∈I

(λi −λ j )2

λi +λ j
. (5.18)

Theorem 5.25 (Asymptotics). Fix σ> 0 such that

S = {i ∈ [1,n] : Re(1/λi ) =σ}

is nonempty (with |S| > 0 elements), and let

R = {i ∈ [1,n] : Re(1/λi ) >σ}
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(with |R| ≥ 0 elements). For i ∈ S, let

b′
i =

ΨR,i bi

λR
and b′

I = b′
i1

. . .b′
ik
= ΨR,I bI

λk
R

,

and let U ′
k denote the expression with the same form as Uk but computed only with indices

from the set S, and with b′
i instead of bi :

U ′
k =

∑
I∈(S

k)
ΨI b′

I ,

and similarly for T ′
k , V ′

k , W ′
k , Z ′

k . Then for k = 1, . . . , |S|, the peakon solution given by
Theorem 5.14 satisfies

xn+1−(|R|+k) −
1

2
ln

Z ′
k

W ′
k−1

→ 0, as t →+∞,

mn+1−(|R|+k) −

√
Z ′

kW ′
k−1

U ′
kU ′

k−1

→ 0, as t →+∞.

Similarly, if
L = {i ∈ [1,n] : Re(1/λi ) <σ}

(with |L| ≥ 0 elements), and

U ′′
k =

∑
I∈(S

k)
ΨI b′′

I , where b′′
i = ΨL,i bi

λL
,

etc., then for k = 1, . . . , |S|,

x|L|+k −
1

2
ln

Z ′′
k

W ′′
k−1

→ 0, as t →−∞,

m|L|+k −

√
Z ′′

k W ′′
k−1

U ′′
k U ′′

k−1

→ 0, as t →−∞.

Proof. We’ll show only the statement regarding t →+∞, since the case t →−∞ is anal-
ogous.

The growth rate of bi (t ) = bi (0)e t/λi as t →∞ increases with Re(1/λi ). Consequently
all the bi with i ∈ R grow faster than those with i ∈ S, which in turn all grow equally fast
(∼ eσt ), which is faster than those with i ∈ L. So in U|R|+k with 0 ≤ k ≤ |S|, the dominant
contribution as t →+∞ comes from those products bI where I contains all the indices
in R together with k indices from S (and none from L); in formulas, I = R ∪ J where
J ∈ (S

k

)
. All these terms grow like eµt where µ = kσ+∑

i∈R Re(1/λi ). The other terms (if
there are any) grow more slowly: if k < |S| there are terms where at least one index i is
chosen from S instead of from R, which decreases the coefficient of t in the exponent
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by at least mini∈R Re(1/λi )−σ, and if L is nonempty there are terms where at least one
i is chosen from L instead of from S or R, and this decreases the coefficient by at least
σ−maxi∈L Re(1/λi ). Letting δ denote the smallest of these two numbers, we see that the
non-dominant terms have growth rate at most e(µ−δ)t . Thus,

U|R|+k =
∑

I∈( [1,n]
|R|+k)

ΨI bI

=
∑

J∈(S
k)
ΨR∪J bR∪J +O (e(µ−δ)t )

=
∑

J∈(S
k)
ΨRΨR,JΨJ bR b J +O (e(µ−δ)t )

=λk
RΨR bR

∑
J∈(S

k)
ΨJ b′

J +O (e(µ−δ)t )

=λk
RΨR bRU ′

k +O (e(µ−δ)t ).

Similarly, one finds that

T|R|+k =λk−1
R ΨR bR T ′

k +O (e(µ−δ)t ),

V|R|+k =λk+1
R ΨR bRV ′

k +O (e(µ−δ)t ),

so that asymptotically as t →∞,

W|R|+k −λ2k+1
R Ψ2

R b2
RW ′

k → 0,

Z|R|+k −λ2k−1
R Ψ2

R b2
R Z ′

k → 0,

which gives the desired formulas:

xn+1−(|R|+k) =
1

2
ln

Z|R|+k

W|R|+k−1

= 1

2
ln

λ2k−1
R Ψ2

R b2
R Z ′

k +o(1)

λ2(k−1)+1
R Ψ2

R b2
RW ′

k−1 +o(1)
= 1

2
ln

Z ′
k

W ′
k−1

+o(1),

and similarly for mn+1−(|R|+k).

Example 5.26. Figure 22 shows the positions xk (t ) for a peakon–antipeakon solution
with n = 6, with eigenvalues

λ1 =λ2 =
1

1+ i
, λ3 =

1

2
, λ4 =λ5 =

1

2+3i
, λ6 =

1

4
(5.19)

and residues
b1(0) = b2(0) = b3(0) = b4(0) = b5(0) = b6(0) = 1. (5.20)

The location of the eigenvalues (see Figure 23) is chosen in order to obtain (asymptoti-
cally as t →±∞) one lone peakon with velocity 4, one 3-peakon cluster with velocity 2,
and one pair with velocity 1.
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Figure 22: Positions x = xk (t ) for the n = 6 peakon–antipeakon solution of Novikov’s
equation in Example 5.26. The eigenvalues λk are given by (5.19), as illustrated in Fig-
ure 23, and the residues bk (0) are all equal to 1. As t → −∞, the peakons are seen to
separate into a fast single peakon (velocity 4), an intermediate-speed 3-peakon cluster
(velocity 2), and a slow pair (velocity 1), and likewise as t →+∞, but with the grouping
taking place in the opposite order. (For example, peakons number 5 and 6 pair up as
t →−∞, but as as t →+∞ it is peakons number 1 and 2 that are forming a pair.)

Re

Im

1
λ1

= 1+ i

1
λ2

= 1− i

1
λ3

= 2

1
λ4

= 2+3i

1
λ5

= 2−3i

1
λ6

= 4

Figure 23: Location of the reciprocal eigenvalues 1/λk in the complex plane, for the 6-
peakon solution in Figure 22. They are situated on the lines Re(1/λ) ∈ {1,2,4}, and these
values are the asymptotic velocities of (respectively) the pair, the 3-peakon cluster, and
the single peakon seen as t →±∞.
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Figure 24: For the 6-peakon solution in Figure 22, the 3-peakon clusters seen as t →+∞
and as t →−∞ are associated with the three eigenvalues λ3 = 1

2 , λ4 = 1
2+3i and λ5 = 1

2−3i
satisfying Re 1

λ
= 2. This picture shows x = xk (t ) for the 3-peakon solution obtained

using these eigenvalues together with the unmodified residues b3(0) = b4(0) = b5(0) = 1,
and clearly it looks like neither of the two 3-peakon clusters in the 6-peakon solution. In
particular, one cannot obtain the correct asympotics for those clusters just by taking this
picture and translating it in the (x, t ) plane. (Cf. the case of real eigenvalues, where the
peakons asymptotically travel in straight lines, and the only difference between t →−∞
and t →+∞ is such a shift.) Instead we must use the modified residues b′

k (0) and b′′
k (0),

as shown in Figures 25 and 26.
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Figure 25: Positions x = xk (t ) for the 3-peakon solution obtained using the eigenvalues
λ3,4,5 from (5.19) together with the modified residues b′

3,4,5(0) from (5.21). This 3-peakon
solution looks just like the 3-peakon cluster seen in Figure 22 as t →+∞, in agreement
with Theorem 5.25.
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Figure 26: Positions x = xk (t ) for the 3-peakon solution obtained using the eigenvalues
λ3,4,5 from (5.19) together with the modified residues b′′

3,4,5(0) from (5.22). This 3-peakon
solution looks just like the 3-peakon cluster seen in Figure 22 as t →−∞, in agreement
with Theorem 5.25.

To illustrate Theorem 5.25, we shall consider the asymptotics of the 3-peakon cluster,
which is associated with the eigenvalues such that Re(1/λk ) = 2, namely those λk whose
index k belongs to the set

S = {3,4,5}.

To the left of 1/λ3, 1/λ4 and 1/λ5 in Figure 23 we have 1/λ1 and 1/λ2, and to the right
there is 1/λ6, so

L = {1,2}, R = {6}.

As Figure 24 illustrates, we do not get the correct description of the asymptotics just by
taking the 3-peakon solution with spectral data consisting of λ3, λ4, λ5 together with the
original residues b3(0) = b4(0) = b5(0) = 1. Instead, according to Theorem 5.25, we get
the right asymptotics as t →+∞ by using the modified residues b′

3,4,5 defined by

b′
i =

ΨR,i bi

λR
= (λ6 −λi )2

λ6(λ6 +λi )
bi =

(1− λi
λ6

)2

1+ λi
λ6

bi ,

i.e.,

b′
3(0) =

(1− 4
2 )2

1+ 4
2

b3(0) = 1

3
,

b′
4(0) = b′

5(0) =
(1− 4

2+3i )2

1+ 4
2+3i

b4(0) = −101+28i

195
.

(5.21)

As we can see in Figure 25, the 3-peakon solution with these spectral data agrees very
well with the 3-peakon cluster seen in the full 6-peakon solution for t ≥ 5 (roughly).
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Similarly, the correct asymptotics for the 3-peakon cluster as t → −∞ is obtained
using the modified residues b′′

3,4,5 defined by

b′′
i = ΨL,i bi

λL
= (λ1 −λi )2(λ2 −λi )2

λ1λ2(λ1 +λi )(λ2 +λi )
bi =

(1− λi
λ1

)2(1− λi
λ2

)2

(1+ λi
λ1

)(1+ λi
λ2

)
bi ,

i.e.,

b′′
3 (0) =

(1− 1+i
2 )2(1− 1−i

2 )2

(1+ 1+i
2 )(1+ 1−i

2 )
b3(0) = 1

10
,

b′′
4 (0) = b′′

5 (0) =
(1− 1+i

2+3i )2(1− 1−i
2+3i )2

(1+ 1+i
2+3i )(1+ 1−i

2+3i )
b4(0) = 283+1506i

4225
.

(5.22)

The 3-peakon solution with these spectral data is shown in Figure 26, and there is perfect
agreement between this picture and the asymptotic 3-peakon cluster.

6 Peakon–antipeakon solutions with arbitrary n and eigen-
values of any multiplicity

Finally, we turn to the most complicated case, when the eigenvalues are allowed to have
any multiplicity. This makes the bookkeeping a bit more complicated, so we begin by
defining some notation.

6.1 Notation

Given a peakon configuration {x1, . . . , xn ,m1, . . . ,mn} with x1 < . . . xn and all mk 6= 0, the
polynomials A(λ) and B(λ) is defined by the same formula (2.19) as before (and A(λ) is
also given by (2.21)), and the Weyl function is stillω(λ) =−B(λ)/A(λ). Also as before, the
eigenvalues are defined as the zeros of A(λ), they are still denoted by λ1, . . . ,λn , and they
still are time-independent since the coefficients of A(λ) are constants of motion for the
Novikov peakon ODEs. But now we no longer impose the condition that A(λ) has simple
zeros; in other words, we allow the possibility that some of the eigenvalues λk may have
the same numerical value.

Definition 6.1. We suppose throughout Section 6 that there are J distinct valuesµ1, . . . ,µJ

among the eigenvalues λ1, . . . ,λn , occuring with multiplicities d1, . . . ,d J , respectively,
where d1 +·· ·+d J = n. Numbering coinciding eigenvalues in sequence, we thus have

λ1 = ·· · =λd1 =µ1,

λd1+1 = ·· · =λd1+d2 =µ2,

λd1+d2+1 = ·· · =λd1+d2+d3 =µ3,

...

λn−d J+1 = ·· · =λn =µJ .

(6.1)
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Definition 6.2. Partition the index set {1, . . . ,n} into J integer intervals J1, . . . ,JJ with
lengths d1, . . . ,d J , in the obvious way:

J1 = [1,d1],

J2 = [d1 +1,d1 +d2],

J3 = [d1 +d2 +1,d1 +d2 +d3],

...

JJ = [n −d J +1,n].

(6.2)

(Hence if k ∈Ja , thenλk =µa .) To allow for an easy labelling of the elements of each J j ,
set

δ j =
j−1∑
i=1

di (with δ1 = 0), (6.3)

so that
J j = [δ j +1,δ j +d j ] = {

δ j +k : 1 ≤ k ≤ d j
}
. (6.4)

Definition 6.3. Define integers α1, . . . ,αn and β1, . . . ,βn , as follows: let αk be the sub-
script a of the index group Ja to which k belongs, so that we have

λk =µαk , (6.5)

and let βk = k −δαk −1, so that βk = 0,1,2, . . . according to which index k is within that
group, i.e.,

αk = 1, βk = k −δ1 −1 = k −1, if k ∈J1,

αk = 2, βk = k −δ2 −1 = k −d1 −1, if k ∈J2,

αk = 3, βk = k −δ3 −1 = k −d1 −d2 −1, if k ∈J3,

(6.6)

and so on.

As for the Weyl function, its partial fraction decomposition will no longer be given
by (2.23), since its poles are not necessarily simple anymore. Instead it takes the follow-
ing form:

Definition 6.4. Write the Weyl function ω(λ) =−B(λ)/A(λ) as

ω(λ) =
n∑

k=1

ak

(λ−λk )βk+1
=

J∑
j=1

d j∑
k=1

aδ j+k

(λ−µ j )k
, (6.7)

where a1, . . . , an are some (time-dependent) coefficients. In the proofs, it will be conve-
nient to work with these coefficients ak , but the final formulas will become more homo-
geneous if written using another set of coefficients,

bk = ak

λ
βk
k

. (6.8)
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In terms of these coefficients bk , (6.7) of course becomes

ω(λ) =
n∑

k=1

λ
βk
k bk

(λ−λk )βk+1
=

J∑
j=1

d j∑
k=1

µk−1
j bδ j+k

(λ−µ j )k
. (6.9)

Example 6.5. Suppose the multiplicities of the eigenvalues are

d1 = 5, d2 = 3, d3 = 1, d4 = 1.

Then n = 5+3+1+1 = 10 and the indices {1,2, . . . ,10} are partitioned into the four sets

J1 = {1,2,3,4,5}, J2 = {6,7,8}, J3 = {9}, J4 = {10},

with the offsets δ1 = 0, δ2 = 5, δ3 = 8, δ4 = 9, and we have

λ1 =µ1, α1 = 1, β1 = 0,

λ2 =µ1, α2 = 1, β2 = 1,

λ3 =µ1, α3 = 1, β3 = 2,

λ4 =µ1, α4 = 1, β4 = 3,

λ5 =µ1, α5 = 1, β5 = 4,

λ6 =µ2, α6 = 2, β6 = 0,

λ7 =µ2, α7 = 2, β7 = 1,

λ8 =µ2, α8 = 2, β8 = 2,

λ9 =µ3, α9 = 3, β9 = 0,

λ10 =µ4, α10 = 4, β10 = 0.

The Weyl function takes the form

ω(λ) =
(

a1

λ−µ1
+ a2

(λ−µ1)2
+ a3

(λ−µ1)3
+ a4

(λ−µ1)4
+ a5

(λ−µ1)5

)
+

(
a6

λ−µ2
+ a7

(λ−µ2)2
+ a8

(λ−µ2)3

)
+ a9

λ−µ3
+ a10

λ−µ4

=
(

b1

λ−µ1
+ µ1b2

(λ−µ1)2
+ µ2

1b3

(λ−µ1)3
+ µ3

1b4

(λ−µ1)4
+ µ4

1b5

(λ−µ1)5

)
+

(
b6

λ−µ2
+ µ2b7

(λ−µ2)2
+ µ2

2b8

(λ−µ2)3

)
+ b9

λ−µ3
+ b10

λ−µ4
.

Next, we define a generalization Ψ̃(s)
I of the function ΨI in (2.7). Here s is an integer

(in fact we will use only s ∈ {−1,0,1}), and the symbol

I = (i1, . . . , ik ) ∈ [1,n]k

now denotes an ordered k-tuple (where 1 ≤ k ≤ n) of indices with values in [1,n]. In
particular, repetitions will be allowed, i.e., several indices may have the same value, and
there is no assumption about the indices being sorted in increasing order. (Earlier we
had only distinct indices, and could therefore view I = {i1 < ·· · < ik } as a subset of [1,n].)

Definition 6.6. Suppose I = (i1, . . . , ik ) ∈ [1,n]k . With

Ψ(z1, . . . , zk ) = ∆(z1, . . . , zk )2

Γ(z1, . . . , zk )
=

∏
1≤a<b≤k

(za − zb)2

za + zb
,
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let

Ψ̃(s)
I =

[(
∂

∂z1

)βi1

. . .

(
∂

∂zk

)βik

(z1 · · ·zk )sΨ(z1, . . . , zk )

]
z1=λi1 ,...,zk=λik

βi1 ! · · ·βik !
. (6.10)

Remark 6.7. For convenience, we simply write

Ψ̃I = Ψ̃(0)
I

in the special case s = 0. And in concrete calculations, like in the examples in the later
sections, we will write simply Ψ̃213 instead of Ψ̃(2,1,3), etc.

Remark 6.8. If all eigenvalues are simple or, more generally, if I only contains indices i
with βi = 0, then

Ψ̃(s)
I = (λi1 · · ·λik )sΨ(λi1 , . . . ,λik ),

so in this case it agrees with our previous quantity λs
I ΨI if all the indices in I are distinct,

and equals zero if there are repetitions in I . But in other cases, Ψ̃(s)
I may be nonzero even

if I contains repetitions.

Remark 6.9. It is clear that Ψ̃I is invariant under permutations of the indices, i.e., Ψ̃I =
Ψ̃I ′ if I = (i1, . . . , ik ) and I ′ = (iπ(1), . . . , iπ(k)) for some permutation π ∈ Sk . Thus, one may
always write Ψ̃I with i1 ≤ ·· · ≤ ik .

Example 6.10. Given the eigenvalues in Example 6.5, let us compute Ψ̃(1)
137, i.e. Ψ̃(s)

I with
I = {1,3,7} and s = 1. The eigenvalues λ1 and λ3 are the first and the third in the group of
eigenvalues that are equal to µ1, and this is kept track of by the numbers β1 = 0 and β3 =
2. And λ7 was the second of the eigenvalues equal to µ2, so β7 = 1. The index set I has
three elements, so we are supposed to form the three-variable function

(z1z2z3)sΨ(z1, z2, z3) = z1z2z3 (z1 − z2)2(z1 − z3)2(z2 − z3)2

(z1 + z2)(z1 + z3)(z2 + z3)
,

and differentiate it β1 times with respect to z1, β3 times with respect to z2, and β7 times
with respect to z3. This is a routine matter for a computer algebra system, although it
would be quite tedious to do it by hand:(

∂

∂z1

)0( ∂

∂z2

)2( ∂

∂z3

)1 z1z2z3 (z1 − z2)2(z1 − z3)2(z2 − z3)2

(z1 + z2)(z1 + z3)(z2 + z3)

= 2z1(z1 − z3)
(
z6

1 z4
2 −6z5

1 z5
2 +6z3

1 z7
2 +3z2

1 z8
2 +4z6

1 z3
2 z3 −9z5

1 z4
2 z3

+6z3
1 z6

2 z3 −12z2
1 z7

2 z3 −9z1z8
2 z3 +6z6

1 z2
2 z2

3 +24z5
1 z3

2 z2
3 +19z4

1 z4
2 z2

3

+3z3
1 z5

2 z2
3 −51z2

1 z6
2 z2

3 −39z1z7
2 z2

3 −6z8
2 z2

3 −12z6
1 z2z3

3 +18z5
1 z2

2 z3
3

+28z4
1 z3

2 z3
3 +45z3

1 z4
2 z3

3 +3z2
1 z5

2 z3
3 −39z1z6

2 z3
3 −15z7

2 z3
3 −3z6

1 z4
3

−6z5
1 z2z4

3 −42z4
1 z2

2 z4
3 −24z3

1 z3
2 z4

3 +97z2
1 z4

2 z4
3 +54z1z5

2 z4
3 +3z5

1 z5
3

−84z3
1 z2

2 z5
3 −14z2

1 z3
2 z5

3 +69z1z4
2 z5

3 +30z5
2 z5

3 +15z4
1 z6

3

−9z3
1 z2z6

3 −45z2
1 z2

2 z6
3 −3z1z3

2 z6
3 +6z4

2 z6
3 +9z3

1 z7
3

−9z2
1 z2z7

3 −9z1z2
2 z7

3 −3z3
2 z7

3

)
(z1 + z2)−3(z1 + z3)−2(z2 + z3)−4.
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To obtain Ψ̃(1)
137 we now substitute z1 = λ1, z2 = λ3 and z3 = λ7 into this expression, in

other words z1 = z2 =µ1 and z3 =µ2, and divide by β1!β2!β3! = 0!2!1! = 2. The result is

Ψ̃(1)
137 =

µ1(µ1 −µ2)3(µ2
1 −6µ1µ2 −3µ2

2)

2(µ1 +µ2)3
.

Example 6.11. For an example showing that Ψ̃(s)
I can be nonzero even if I contains rep-

etitions, consider Ψ̃33 with the data from Example 6.5. Since β3 = 2, we compute(
∂

∂z1

)2( ∂

∂z2

)2 (z1 − z2)2

z1 + z2
= 16(z2

1 −4z1z2 + z2
2)

(z1 + z2)5
,

substitute z1 = z2 =λ3 =µ1 and divide by β3!β3! = 2!2! = 4, to obtain

Ψ̃33 =− 1

4µ3
1

.

Note that the computation of Ψ̃kk is basically the same whenever βk = 2. For example,
since β8 = 2 and λ8 =µ2, we also have

Ψ̃88 =− 1

4µ3
2

.

Definition 6.12. For I = (i1, . . . , ik ) ∈ [1,n]k , write

aI = ai1 · · ·aik =λ
βi1
i1

· · ·λβik
ik

bi1 · · ·bik =λ
βI
I bI . (6.11)

With this notation, together with the symbol Ψ(s)
I , we can now extend the definition

of Uk to the case of multiple eigenvalues.

Definition 6.13. Let

Ũk = 1

k !

∑
I∈[1,n]k

Ψ̃I aI =
1

k !

∑
I∈[1,n]k

Ψ̃Iλ
βI
I bI , (6.12)

with the same conventions for degenerate cases as in Definition 2.5 (Ũ0 = 1, etc.).

Remark 6.14. If all eigenvalues are simple, Ũk reduces to the old Uk : all terms where
I contains repetitions vanish, leaving k ! nonzero terms in the sum, coming from the k !
permutations of the distinct numbers (i1, . . . , ik ), and each of these k ! terms equals the
oldΨI bI (with I viewed as a set).

Remark 6.15. There is redundancy in the sum (6.12) even in cases where Ψ̃I can be
nonzero when I contains repetitions, since any term Ψ̃I aI remains unchanged under
permutations of the indices. So one can save some work by summing only over sorted
tuples I = (i1, . . . , ik ) with i1 ≤ ·· · ≤ ik , if one takes into account how many times each
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term occurs in the full sum (6.12). Suppose the sorted k-tuple I contains r distinct num-
bers occuring q1, q2, . . . , qr times:

i1 = ·· · = iq1︸ ︷︷ ︸
q1 repetitions

< iq1+1 = ·· · = iq1+q2︸ ︷︷ ︸
q2 repetitions

< ·· · .

Then there are
k !

q1! q2! · · ·qr !

tuples I ′ with the same value Ψ̃I ′aI ′ = Ψ̃I aI . Thus, if we let χI = q1! q2! · · ·qr !, we can
write (6.12) in the more economical way

Ũk =
∑

I sorted

Ψ̃I aI

χI
=

∑
I sorted

Ψ̃Iλ
βI
I bI

χI
. (6.13)

(In particular, χI = 1 if all indices in I are distinct, since q1 = ·· · = qk = 1 in that case.)

Example 6.16. If n = 3, then

Ũ3 = 1
6 (Ψ̃111a3

1 + Ψ̃222a3
2 + Ψ̃333a3

3)

+ 1
2 (Ψ̃112a2

1a2 + Ψ̃122a1a2
2 + Ψ̃113a2

1a3

+ Ψ̃133a1a2
3 + Ψ̃223a2

2a3 + Ψ̃233a2a2
3)

+ Ψ̃123a1a2a3,

(6.14)

In the case of simple eigenvalues, only the last term survives, and we recover the old
expression

Ũ3 = Ψ̃123a1a2a3 =Ψ123b1b2b3 =
(λ1 −λ2)2(λ1 −λ3)2(λ2 −λ3)2

(λ1 +λ2)(λ1 +λ3)(λ2 +λ3)
b1b2b3. (6.15)

In the case with one simple and one double eigenvalue, λ1 = µ1 6= λ2 = λ3 = µ2, it also
turns out that only one term survives, but this time it is Ψ̃133 that is nonzero:

Ũ3 = 1
2Ψ̃133 a1a2

3 =− (µ1 −µ2)4

2µ3
2(µ1 +µ2)

a1a2
3 =− (µ1 −µ2)4

2µ2(µ1 +µ2)
b1b2

3 (6.16)

And for a triple eigenvalue λ1 = λ2 = λ3 = µ (see Section 6.4), the sum also reduces to
one term, but now it is Ψ̃333 that is nonzero:

Ũ3 = 1
6Ψ̃333 a3

3 =− a3
3

8µ3
=−µ

3b3
3

8
. (6.17)

(This example is perhaps a little misleading, since Ũk for the maximal value k = n is
particularly simple. In general, Ũk can be a much more complicated expression than
the old Uk .)
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Similarly, we extend the definitions of Vk and Tk by using Ψ̃(1)
I and Ψ̃(−1)

I instead of

just Ψ̃I = Ψ̃(0)
I .

Definition 6.17. Let

Ṽk = 1

k !

∑
I∈[1,n]k

Ψ̃(1)
I aI =

1

k !

∑
I∈[1,n]k

Ψ̃(1)
I λ

βI
I bI ,

T̃k = 1

k !

∑
I∈[1,n]k

Ψ̃(−1)
I aI =

1

k !

∑
I∈[1,n]k

Ψ̃(−1)
I λ

βI
I bI ,

(6.18)

and
W̃k = ŨkṼk −Ũk+1Ṽk−1, Z̃k = T̃kŨk − T̃k+1Ũk−1. (6.19)

Finally, to describe the time dependence of the coefficients ak and bk , we will need
a certain sequence of polynomials pk .

Definition 6.18. Let the polynomials pk be defined, for k ≥ 0, by

pk (1/z) = zk

e1/z

(
∂

∂z

)k

e1/z . (6.20)

Example 6.19. One easily computes

p0(w) = 1,

p1(w) =−w,

p2(w) = w 2 +2w,

p3(w) =−(w 3 +6w 2 +6w),

p4(w) = w 4 +12w 3 +36w 2 +24w,

p5(w) =−(w 5 +20w 4 +120w 3 +240w 2 +120w),

and so on. For example, p2(w) = w 2 +2w since(
∂

∂z

)2

e1/z = ∂

∂z

(
− 1

z2
e1/z

)
= 2

z3
e1/z +

(
− 1

z2

)2

e1/z =
(

1

z2
+ 2

z

)
︸ ︷︷ ︸

p2(1/z)

e1/z

z2
.

Proposition 6.20. The polynomials pk satisfy the recurrence relation

p0(w) = 1,

pk+1(w) =−(w +k) pk (w)−w p ′
k (w), for k ≥ 0,

(6.21)

and are given explicitly by

p0(w) = 1,

pk (w) = (−1)k
k∑

r=1

(
k −1

r −1

)
k !

r !
w r , for k ≥ 1.

(6.22)
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In particular, p0(0) = 1, but pk (0) = 0 for k ≥ 1. Moreover,(
∂

∂z

)k

e t/z = pk (t/z)e t/z

zk
. (6.23)

We omit the proof; it is fairly straightforward to verify that (6.22) satisfies the recur-
rence (6.21), which in turn follows immediately from the definition (6.20), and equa-
tion (6.23) is a direct consequence of (6.20) and the chain rule. Several different proofs
that (6.20) ⇐⇒ (6.22) can be found in [9], which also contains more information about
the coefficients

L(k,r ) =
(

k −1

r −1

)
k !

r !
=

(
k

r

)(
k −1

r −1

)
(k − r )!,

which are known as the Lah numbers and, for example, connect rising and falling facto-
rial powers:

xk =
k∑

r=1
L(k,r ) xr , xk =

k∑
r=1

(−1)k−r L(k,r ) xr .

6.2 Multipeakon solution formulas

With the notation of Section 6.1 in place, we finally come to the solution formulas for the
Novikov peakon ODEs (1.7) in the case where eigenvalues may have multiplicity greater
than one. As will be apparent, the notation is designed in order to make the solution for-
mulas look just the same as before, when written in abbreviated form. However, the time
dependence of the coefficients bk is a bit more complicated than just bk (t ) = bk (0)e t/λk ,
and the expressions Ũk (etc.) can be quite a lot more involved than the old Uk (etc.), if
one actually writes out the details.

Before stating the results, let us recall some notation from Section 5.1. There P̂

denoted the set of all peakon configurations with x1 < ·· · < xn and all mk 6= 0 (Defi-
nition 5.1). To any such configuration, we associated eigenvalues λ1, . . . ,λn , namely the
zeros of the polynomial A(λ), but only for configurations in the subset P̂s such that these
eigenvalues are simple did we define the residues bk in the Weyl function ω(λ). We also
defined certain sets R̂ s and R̂nc of spectral data (Definitions 5.6 and 5.10) associated to
configurations in P̂s.

Now that we have extended the notation to include the general kind of partial frac-
tion expansion (6.9),

ω(λ) =
n∑

k=1

λ
βk
k bk

(λ−λk )βk+1
=

J∑
j=1

d j∑
k=1

µk−1
j bδ j+k

(λ−µ j )k
,

we can also extend the notion of the spectral map to all of P̂ : for every peakon configu-
ration we can talk about its associated eigenvalues λ1, . . . ,λn and coefficients b1, . . . ,bn .
If these eigenvalues take J distinct values µ j , as in Section 6.1, then the spectral data
are only defined up to a relabeling of the indices {1, . . . , J } (we permute the eigenval-
ues µ j , and then permute the corresponding coefficients bδ j+k in the same way), so we
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can think of the spectral map as taking its value in the quotient space C2n/S J at such a
peakon configuration. Note that even though we have continued to use the notation bk

for the coefficients in the Weyl function, it is definitely not the case that this extended
spectral map is in any sense continuous at a point where some eigenvalues coincide.

Since ω(λ) has real coefficients, any non-real spectral data must occur in complex-
conjugated pairs. We also know from Theorem 5.4 that Reλk ≥ 0 always.

Definition 6.21. Let R̂ denote the set of spectral data {λk ,bk }n
k=1 satisfying the following

conditions:

• The eigenvalues λk (taking the J distinct values µ j with multiplicities d j ) are lo-
cated strictly in the right half of the complex plane (Reλk > 0), and non-real eigen-
values only exist in complex-conjugated pairs.

• The corresponding coefficients bk also come in conjugated pairs: if µi = µ j , then

bδi+k = bδ j+k for 1 ≤ k ≤ d j .

• For each µ j , the corresponding highest coefficient is nonzero:

bδ j+d j 6= 0, for 1 ≤ j ≤ J . (6.24)

Remark 6.22. We will state our formulas for n-peakon solutions given that the spectral
data are in R̂ . We believe that this is the most general kind of spectral data that can
occur, but unfortunately we haven’t been able to rigorously rule out the possibility that
there might be other solutions with some Reλk = 0; cf. Remark 5.5.

The next theorem shows that the requirement about highest coefficients being non-
zero is actually redundant in Definition 6.21.

Theorem 6.23. If
(x1, . . . , xn ,m1, . . . ,mn) ∈ P̂

is a peakon configuration whose associated eigenvalues {λk }n
k=1 all satisfy Reλk > 0, then

(6.24) holds automatically.

Proof. Here we make use of both Weyl functionsω(λ) and ζ(λ) in (2.20). Since they have
the same denominator, their partial fraction expansions have the same structure,

ω(λ) =−B(λ)

A(λ)
=

bδ j+1

λ−µ j
+·· ·+

bδ j+d j

(λ−µ j )d j
+other terms,

ζ(λ) =−C (λ)

A(λ)
=

cδ j+1

λ−µ j
+·· ·+

cδ j+d j

(λ−µ j )d j
+other terms.

Studying the coefficient of (λ−µ j )−d j in the relation (2.24),

ζ(λ)+ζ(−λ)+ω(λ)ω(−λ) = 0,
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using that fact that there can be no pole in −µ j if all eigenvalues have positive real part,
one finds that if bδ j+d j = 0 then also cδ j+d j = 0.

Furthermore,

bδ j+d j = lim
λ→µ j

(λ−µ j )d j
−B(λ)

A(λ)
=−B(µ j )

Â(µ j )
,

where Â(µ j ) 6= 0, and similarly

cδ j+d j = lim
λ→µ j

(λ−µ j )d j
−C (λ)

A(λ)
=−C (µ j )

Â(µ j )
.

Thus, if bδ j+d j were zero, the vector (A(µ j ),B(µ j ),C (µ j ))T would also be zero, but this is
impossible due to the definition (2.19), since the matrices Sk (λ) all have determinant 1.

Now we can state our last major results. The proofs will be given in Section 6.6, after
we have looked at some examples.

Theorem 6.24. The time dependence induced by the Novikov equation on the Weyl func-
tion (6.9),

ω(λ; t ) =
n∑

k=1

λ
βk
k bk (t )

(λ−λk )βk+1
=

J∑
j=1

d j∑
k=1

µk−1
j bδ j+k (t )

(λ−µ j )k
, (6.25)

is given by

ω(λ; t ) =
n∑

s=1

λ
βs
s bs(0)

βs !

[(
∂

∂z

)βs e t/z

λ− z

]
z=λs

=
J∑

j=1

d j−1∑
r=0

µr
j bδ j+1+r (0)

r !

[(
∂

∂z

)r e t/z

λ− z

]
z=µ j

,

(6.26)

which is equivalent to the following time dependence for the coefficients:

bδ j+k (t ) =
d j−k∑
q=0

bδ j+k+q (0)

q !
pq (t/µ j )e t/µ j , (6.27)

for 1 ≤ j ≤ J and 1 ≤ k ≤ d j .

Theorem 6.25. Given spectral data in R̂ , the formulas

xn+1−k (t ) = 1

2
ln

Z̃k (t )

W̃k−1(t )
, mn+1−k (t ) =

√
Z̃k (t )W̃k−1(t )

Ũk (t )Ũk−1(t )
, (6.28)

for 1 ≤ k ≤ n, with the time dependence given by letting bi = bi (t ) as in (6.27), give a
solution of the Novikov peakon ODEs (1.7) in every time interval where Ũk (t ) 6= 0, W̃k (t ) >
0 and Z̃k (t ) > 0 for all k. .
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Remark 6.26. From the proof, where these formulas are obtained as a limiting case of
the simple-eigenvalue solution formulas where Wk > 0 and Zk > 0 always, it follows that
W̃k (t ) ≥ 0 and Z̃k (t ) ≥ 0 must hold. We believe that the inequality remains strict here,
but we don’t have a proof. Provided that it is true, the same facts as before will be valid:
a collision xk (t ) = xk+1(t ) will take place exactly when Ũn−k (t ) = 0, there will be no triple
collisions, and the solution u(x, t ) will extend to a global weak solution.

And finally, for convenience, a theorem which can make the computations a bit
shorter:

Theorem 6.27. The quantities {Ṽ1, . . . ,Ṽn} can be obtained from {Ũ1, . . . ,Ũn} by making
the substitutions

bδ j+k 7→µ j

min(d j−k,1)∑
r=0

bδ j+k+r , (6.29)

for 1 ≤ j ≤ J and 1 ≤ k ≤ d j , and similarly {T̃1, . . . , T̃n} is obtained from {Ũ1, . . . ,Ũn} via the
substitutions

bδ j+k 7→ 1

µ j

d j−k∑
r=0

(−1)r bδ j+k+r . (6.30)

Remark 6.28. We have not attempted to prove a general theorem about asymptotics.
Already the case with simple eigenvalues (Theorem 5.25) was fairly complicated, and
the formulas for multiple eigenvalues are much more involved. We will, however, look
at some concrete special cases in the next section, to give an idea of the phenomena that
may occur.

Remark 6.29. Also for the Degasperis–Procesi equation (1.3), eigenvalues of multiplicity
greater than one may appear in the context of peakon–antipeakon solutions [28, 29]. The
methods used here work exactly the same in that case too, so those solutions are given
by the old DP peakon solution formulas, but with the usual Uk (etc.) replaced by the
quantities with tilde defined above:

xn+1−k = ln
Ũk

Ṽk−1
, mn+1−k =

Ũ 2
k Ṽ 2

k−1

W̃kW̃k−1
. (6.31)

But for the DP equation, even in the cases with complex or multiple eigenvalues, we
don’t observe the rich dynamics displayed by Novikov peakon–antipeakon solutions, for
the reason that the peakon and antipeakon are not resurrected after a collision, but in-
stead merge and form a shockpeakon, as described in Section 2.2. Thus, the formulas
(6.31) cease to be relevant after the first collision, since the solution after that time can-
not be described by the peakon ansatz (1.6). (To be precise, (6.31) only gives the solution
under the assumption that λi +λ j 6= 0 for all i and j . Already with all eigenvalues simple,
the case where some λi +λ j vanishes must be dealt with separately. An example of this
is the completely symmetric n = 2 peakon–antipeakon collision [23], but that is another
story.)
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6.3 Example revisited: n = 2, one double eigenvalue

In Section 4.7 we studied the case n = 2 with one double eigenvalue,

λ1 =λ2 =µ> 0.

Let us see how the solution formulas (4.50) and (4.51) obtained there follow as a special
case of Theorem 6.25.

The Weyl function is

ω(λ) = a1

λ−µ + a2

(λ−µ)2
= b1

λ−µ + µb2

(λ−µ)2
(6.32)

where b1 = a1 and b2 =λ2a2 =µa2, with time dependence given by Theorem 6.24:

ω(λ) = b1(0)

[
e t/z

λ− z

]
z=λ1

+µb2(0)

[
∂

∂z

e t/z

λ− z

]
z=λ2

= b1(0)e t/µ

λ−µ +µb2(0)

(
(−t/µ2)e t/µ

λ−µ + e t/µ

(λ−µ)2

)
=

(
b1(0)−b2(0) t/µ

)
e t/µ

λ−µ + µb2(0)e t/µ

(λ−µ)2

= b1(t )

λ−µ + µb2(t )

(λ−µ)2
,

(6.33)

so that b1(t ) = (
b1(0)−b2(0) t/µ

)
e t/µ and b2(t ) = b2(0)e t/µ, in agreement with (4.51). We

compute

Ψ̃1 = [1]z1=λ1 = 1,

Ψ̃2 =
[
∂

∂z2
1

]
z2=λ2

= 0,

Ψ̃11 =
[

(z1 − z2)2

z1 + z2

]
z1=z2=λ1

= 0,

Ψ̃12 =
[
∂

∂z2

(z1 − z2)2

z1 + z2

]
z1=λ1,z2=λ2

=
[−(z1 − z2)(3z1 + z2)

(z1 + z2)2

]
z1=z2=µ

= 0,

Ψ̃22 =
[
∂

∂z1

∂

∂z2

(z1 − z2)2

z1 + z2

]
z1=z2=λ2

=
[ −8z1z2

(z1 + z2)3

]
z1=z2=µ

=− 1

µ
,

(6.34)

which implies that

Ũ1 = 1 ·a1 +0 ·a2 = b1,

Ũ2 =
1

2!

(
0 ·b2

1 +2 ·0 ·b1b2 +
−1

µ
a2

2

)
=−µb2

2

2
.

(6.35)
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Similarly,
Ψ̃(1)

1 = [z1]z1=λ1 =µ,

Ψ̃(1)
2 =

[
∂

∂z1
z1

]
z1=λ2

= 1,

Ψ̃(1)
11 =

[
z1z2 (z1 − z2)2

z1 + z2

]
z1=z2=λ1

= 0,

Ψ̃(1)
12 =

[
∂

∂z2

z1z2 (z1 − z2)2

z1 + z2

]
z1=λ1,z2=λ2

=
[

z1(z1 − z2)(z2
1 −3z1z2 −2z2

2)

(z1 + z2)2

]
z1=z2=µ

= 0,

Ψ̃(1)
22 =

[
∂

∂z1

∂

∂z2

z1z2 (z1 − z2)2

z1 + z2

]
z1=z2=λ2

=
[

2(z4
1 −6z2

1 z2
2 + z2

4)

(z1 + z2)3

]
z1=z2=µ

=−µ,

(6.36)

so that
Ṽ1 =µ ·a1 +1 ·a2 =µ(b1 +b2),

Ṽ2 =
1

2!

(
0 ·b2

1 +2 ·0 ·b1b2 + (−µ) a2
2

)=−µ
3 b2

2

2
,

(6.37)

and

Ψ̃(−1)
1 =

[
1

z1

]
z1=λ1

= 1

µ
,

Ψ̃(−1)
2 =

[
∂

∂z1

1

z1

]
z1=λ2

=− 1

µ2
,

Ψ̃(−1)
11 =

[
(z1 − z2)2

z1z2 (z1 + z2)

]
z1=z2=λ1

= 0,

Ψ̃(−1)
12 =

[
∂

∂z2

(z1 − z2)2

z1z2 (z1 + z2)

]
z1=λ1,z2=λ2

=
[−z1(z1 − z2)(z1 +3z2)

z2
2(z1 + z2)2

]
z1=z2=µ

= 0,

Ψ̃(−1)
22 =

[
∂

∂z1

∂

∂z2

(z1 − z2)2

z1z2 (z1 + z2)

]
z1=z2=λ2

=
[ −8

(z1 + z2)3

]
z1=z2=µ

=− 1

µ3
,

(6.38)

so that

T̃1 =
1

µ
·a1 +

−1

µ2
·a2 =

b1 −b2

µ
,

T̃2 =
1

2!

(
0 ·b2

1 +2 ·0 ·b1b2 +
−1

µ3
a2

2

)
=−b2

2

2µ
,

(6.39)
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From this we get

W̃1 = Ũ1Ṽ1 −Ũ2 = b1 ·µ(b1 +b2)− −µb2
2

2
=µ(

b2
1 +b1b2 + 1

2 b2
2

)
,

Z̃1 = T̃1Ũ1 − T̃2 =
b1 −b2

µ
·b1 −

−b2
2

2µ
=

b2
1 −b1b2 + 1

2 b2
2

µ
,

Z̃2 = T̃2Ũ2 =
−b2

2

2µ
· −µb2

2

2
= b4

2

4
,

(6.40)

and hence

e2x1 = Z̃2

W̃1
= b2

2/4

µ
(
b2

1 +b1b2 + 1
2 b2

2

) =Q1,

e2x2 = Z̃1 =
b2

1 −b1b2 + 1
2 b2

2

µ
=Q2,

m1 e−x1 = W̃1

Ũ2Ũ1
=
µ

(
b2

1 +b1b2 + 1
2 b2

2

)
−1

2µb2
2 ·b1

= P1,

m2 e−x2 = 1

Ũ1
= 1

b1
= P2,

(6.41)

in agreement with (4.50).
As an alternative to the computation of Ψ̃(±1)

I above, we could have used Theorem 6.27
and obtained Ṽk and T̃k from Ũk by making the substitions

b1 7→µ(b1 +b2), b2 7→µb2

and

b1 7→
b1 −b2

µ
, b2 7→

b2

µ
,

respectively.

6.4 Example: n = 3, one triple eigenvalue

Let us now consider the case n = 3 with one triple eigenvalue,

λ1 =λ2 =λ3 =µ> 0.

The coefficients in the Weyl function

ω(λ) = b1

λ−µ + µb2

(λ−µ)2
+ µ2 b3

(λ−µ)3
(6.42)
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have the time dependence

b1(t ) =
2∑

r=0

b1+r (0)

r !
pr ( t

µ
)e t/µ j =

(
b1(0)−b2(0) t

µ
+ 1

2 b3(0)
(

t 2

µ2 +2 t
µ

))
e t/µ,

b2(t ) =
1∑

r=0

b2+r (0)

r !
pr ( t

µ )e t/µ j =
(
b2(0)−b3(0) t

µ

)
e t/µ,

b3(t ) =
0∑

r=0

b3+r (0)

r !
pr ( t

µ
)e t/µ j = b3(0)e t/µ,

(6.43)

where the highest coefficient is nonzero: b3(0) 6= 0. We find after some computation that

Ũ1 = b1, Ṽ1 =µ (b1 +b2), T̃1 =
b1 −b2 +b3

µ
, (6.44)

Ũ2 =µ
(

b1b3

2
− b2

2

2
+ b2b3

4
− b2

3

8

)
,

Ṽ2 =µ3

(
b1b3

2
− b2

2

2
− b2b3

4
− 3b2

3

8

)
,

T̃2 =
1

µ

(
b1b3

2
− b2

2

2
+ 3b2b3

4
− 3b2

3

8

)
,

(6.45)

and

Ũ3 =−µ
3 b3

3

8
, Ṽ3 =−µ

6 b3
3

8
, T̃3 =−b3

3

8
. (6.46)

(Note that once we have computed Ũk , we can use Theorem 6.27 to obtain Ṽk and T̃k ,
by making the substitions

b1 7→µ(b1 +b2), b2 7→µ(b2 +b3), b3 7→µb3

and

b1 7→
b1 −b2 +b3

µ
, b2 7→

b2 −b3

µ
, b3 7→

b3

µ
,

respectively.) This gives

W̃1 = Ũ1Ṽ1 −Ũ2

=µ
(

b2
1 +b1b2 −

b1b3

2
+ b2

2

2
− b2b3

4
+ b2

3

8

)
,

W̃2 = Ũ2Ṽ2 −Ũ3Ṽ1

=µ4
(b2

1b2
3

4
+ b4

2

4
− b1b2

2b3

2
+ 3b4

3

64
+ 3b2

2b2
3

16
− b1b3

3

8
+ b2b3

3

16

)
(6.47)
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and
Z̃1 = T̃1Ũ1 − T̃2

= 1

µ

(
b2

1 −b1b2 +
b1b3

2
+ b2

2

2
− 3b2b3

4
+ 3b2

3

8

)
,

Z̃2 = T̃2Ũ2 − T̃3Ũ1

= b2
1b2

3

4
+ b4

2

4
− b1b2

2b3

2
+ 3b4

3

64
+ 7b2

2b2
3

16

+ b1b2b2
3

2
− b3

2b3

2
− 3b2b3

3

16
− b1b3

3

8
,

Z̃3 = T̃3Ũ3 =
µ3 b6

3

64
.

(6.48)

In terms of these quantities, the solution is given by

e2x1 = Z̃3

W̃2
, e2x2 = Z̃2

W̃1
, e2x3 = Z̃1,

m1 e−x1 = W̃2

Ũ3Ũ2
, m2 e−x2 = W̃1

Ũ2Ũ1
, m3 e−x3 = 1

Ũ1
.

(6.49)

with the time dependence (6.43).

Example 6.30. An example of a solution with a triple eigenvalue is plotted in Figures 27
and 28. The parameters are

µ= 1, b1(0) = b2(0) = 0, b3(0) =−1. (6.50)

It is straightforward to determine the asymptotics as t → ±∞ by factoring out the

dominant term 1
2 b3(0) t 2

µ2 e t/µ (which appears in b1(t )) from the numerators and denom-

inators in (6.49). We obtain the following result, which can be compared to the asymp-
totics (4.55) for the case of a double eigenvalue.

Theorem 6.31. The three-peakon solution with a triple eigenvalue µ> 0 satisfies, as t →
±∞,

x1(t ) = t

µ
+ 1

2
ln

b3(0)2

4µ
− 1

2
ln

t 4

µ4
+O (1/t ),

x1(t ) = t

µ
+ 1

2
ln

b3(0)2

4µ
+O (1/t ),

x3(t ) = t

µ
+ 1

2
ln

b3(0)2

4µ
+ 1

2
ln

t 4

µ4
+O (1/t ),

m1(t ) = 1p
µ

sgn(b3(0))
(
1+O (1/t )

)
,

m2(t ) =− 1p
µ

sgn(b3(0))
(
1+O (1/t )

)
,

m3(t ) = 1p
µ

sgn(b3(0))
(
1+O (1/t )

)
.

(6.51)

115



−20 −15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

x = x1(t )
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t

Figure 27: Spacetime plot showing the locations xk (t ) of the peakons in the (x, t )-plane
for the peakon–antipeakon solution with a triple eigenvalue λ1 = λ2 = λ3 = µ. The pa-
rameters used here are µ = 1 and b1(0) = b2(0) = 0, b3(0) = −1. In this case, there are
no collisions between x1 and x2, but x2 and x3 collide twice (when t = −2 and t = 0,
according to Theorem 6.32).
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Figure 28: Graphs of the amplitudes mk (t ) for the peakon–antipeakon solution with a
triple eigenvalue µ= 1 in Figure 27.
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It is also easy to determine exactly when collisions occur:

Theorem 6.32. For the three-peakon solution with a triple eigenvalue µ> 0, the collision
x1(t0) = x2(t0) occurs if and only if

t 2
0

µ2
−

(
1+ 2b2(0)

b3(0)

) t0

µ
+

(1

2
+ 2b2(0)2

b3(0)2
− b2(0)

b3(0)
− 2b1(0)

b3(0)

)
= 0, (6.52)

and the collision x2(t0) = x3(t0) occurs if and only if

t 2
0

µ2
+2

(
1− b2(0)

b3(0)

) t0

µ
+ 2b1(0)

b3(0)
= 0. (6.53)

Consequently, there can be at most two collisions of each kind. Moreover, there can be no
triple collision, i.e., there is no t0 such that x1(t0) = x2(t0) = x3(t0).

Proof. We know from (5.6) that

x1 = x2 ⇐⇒ Ũ2 = 0, x2 = x3 ⇐⇒ Ũ1 = 0.

Inserting the time dependence (6.43) into (6.44) and (6.45) yields

Ũ1(t ) = 1
2 e t/µ

(
b3(0) t 2

µ2 +2
(
b3(0)−b2(0)

)
t
µ +2b1(0)

)
and

Ũ2(t ) =−µ
8 e2t/µ

(
2b3(0)2 t 2

µ2 −
(
2b3(0)2 +4b2(0)b3(0)

)
t
µ

+b3(0)2 +4b2(0)2 −2b2(0)b3(0)−4b1(0)b3(0)

)
,

and the first claim follows.
Regarding triple collisions, note from (6.47) that

W̃1

µ
= Ũ1Ṽ1 −Ũ2

µ
= (

b1 + 1
2 b2 − 1

4 b3
)2 + 1

4 b2
2 + 1

16 b2
3 > 0,

since b3 6= 0 always, hence Ũ1 and Ũ2 cannot vanish simultaneously.

Example 6.33. It may happen that a pair collides exactly once; for example, if b1(0) = 1
2 ,

b2(0) = 0 and b3(0) = 1, then Ũ1(t ) = 1
2 e t/µ

( t
µ
−1

)2, so that the collision x2(t0) = x3(t0) oc-
curs for t0 =µ only. In that case, the collision will be of higher order, like in Example 5.18.
The amplitudes m2 and m3 keep their signs at the collision (which they must, in order
not to violate the sign conditions dictated by the asymptotics), behaving like (t − t0)−2

rather than (t − t0)−1, and the distance x3 −x2 behaves like (t − t0)8 rather than (t − t0)4.
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Example 6.34. There is a particular choice of the coefficients bk (0) which gives a solu-
tion that is symmetric with respect to the origin, namely

b1(0) = 3
p
µ

16
, b2(0) =

p
µ

2
, b3(0) = 2

p
µ. (6.54)

(And, as usual, also with the opposite sign on each bk (0), which amounts to flipping the
sign of u(x, t ).) These numbers are found by first choosing b3(0) to kill the constant term
ln

(
b3(0)2/4µ

)
in the asymptotic formulas (6.51), and then computing b1(0) and b2(0) so

that the polynomial in (6.53) equals the one in (6.52) with −t0 instead of t0, making the
collisions take place symmetrically with respect to t = 0. This symmetric solution takes
the following form, if we use the abbreviation τ= t/µ:

x1(t ) =−x3(−t ),

m1(t ) = m3(−t ),

x2(t ) =−x2(−t ) = τ+ 1
2 ln

τ4 −τ3 + 9
8τ

2 + 9
16τ+ 81

256

τ4 +τ3 + 9
8τ

2 − 9
16τ+ 81

256

,

m2(t ) = m2(−t )

=

√
τ4 −τ3 + 9

8τ
2 + 9

16τ+ 81
256

√
τ4 +τ3 + 9

8τ
2 − 9

16τ+ 81
256

−pµ
(
τ4 − 15

8 τ
2 + 9

256

) ,

x3(t ) = τ+ 1
2 ln

(
τ4 +5τ3 + 65

8 τ
2 + 59

16τ+ 257
256

)
,

m3(t ) =

√
τ4 +5τ3 + 65

8 τ
2 + 59

16τ+ 257
256

p
µ

(
τ2 + 3

2τ+ 3
16

) .

(6.55)

6.5 Example: n = 4, two double eigenvalues

Next, we look at the case n = 4 with two double eigenvalues,

λ1 =λ2 =µ1, λ3 =λ4 =µ2.

The Weyl function is

ω(λ) = b1

λ−µ1
+ µb2

(λ−µ1)2
+ b3

λ−µ2
+ µb4

(λ−µ2)2
,

but let us write c1 = b3 and c2 = b4 to emphasize the symmetry:

ω(λ) = b1

λ−µ1
+ µb2

(λ−µ1)2
+ c1

λ−µ2
+ µc2

(λ−µ2)2
. (6.56)
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The coefficients have the time dependence

b1(t ) =
(
b1(0)−b2(0) t

µ1

)
e t/µ1 , b2(t ) = b2(0)e t/µ1 ,

c1(t ) =
(
c1(0)− c2(0) t

µ2

)
e t/µ2 , c2(t ) = c2(0)e t/µ2 ,

(6.57)

where the highest coefficient associated to each eigenvalue is nonzero: b2(0) 6= 0 and
c2(0) 6= 0. There are two possibilities: the real case with 0 < µ1 < µ2, or the complex
case with µ2 = µ1 (with nonzero imaginary part). In the complex case, we also have the
constraints c1(0) = b1(0) and c2(0) = b2(0), since the Weyl function must be real. The
solution formulas (which apply in both cases) are

e2x1 = Z̃4

W̃3
, e2x2 = Z̃3

W̃2
, e2x3 = Z̃2

W̃1
, e2x4 = Z̃1,

m1 e−x1 = W̃3

Ũ4Ũ3
, m2 e−x2 = W̃2

Ũ3Ũ2
, m3 e−x3 = W̃1

Ũ2Ũ1
, m4 e−x4 = 1

Ũ1
,

(6.58)

where
Ũ1 = b1 + c1,

Ṽ1 =µ1 (b1 +b2)+µ2 (c1 + c2),

T̃1 =
b1 −b2

µ1
+ c1 − c2

µ2
,

(6.59)

Ũ2 =−µ1 b2
2

2
− µ2 c2

2

2
+ (µ1 −µ2)2

µ1 +µ2
b1 c1 +

µ1(µ1 −µ2)(µ1 +3µ2)

(µ1 +µ2)2
b2 c1

+ µ2(µ2 −µ1)(3µ1 +µ2)

(µ1 +µ2)2
b1 c2 −

8µ2
1µ

2
2

(µ1 +µ2)3
b2 c2,

Ṽ2 =−µ1 (µ1 b2)2

2
− µ2 (µ2 c2)2

2
+ (µ1 −µ2)2

µ1 +µ2
µ1µ2(b1 +b2)(c1 + c2)

+ µ1(µ1 −µ2)(µ1 +3µ2)

(µ1 +µ2)2
µ1µ2 b2(c1 + c2)

+ µ2(µ2 −µ1)(3µ1 +µ2)

(µ1 +µ2)2
µ1µ2(b1 +b2)c2

− 8µ2
1µ

2
2

(µ1 +µ2)3
µ1µ2 b2 c2,

T̃2 =−µ1 (b2/µ1)2

2
− µ2 (c2/µ2)2

2
+ (µ1 −µ2)2

µ1 +µ2

(b1 −b2)(c1 − c2)

µ1µ2

+ µ1(µ1 −µ2)(µ1 +3µ2)

(µ1 +µ2)2

b2(c1 − c2)

µ1µ2

+ µ2(µ2 −µ1)(3µ1 +µ2)

(µ1 +µ2)2

(b1 −b2)c2

µ1µ2
− 8µ2

1µ
2
2

(µ1 +µ2)3

b2 c2

µ1µ2
,

(6.60)
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Ũ3 =− (µ1 −µ2)4

2(µ1 +µ2)2

(
µ1 b2

2 c1 +µ2 b1 c2
2

)
+ µ1µ2 (µ1 −µ2)3

(µ1 +µ2)3

(
(3µ1 +µ2)b2

2 c2 − (µ1 +3µ2)b2 c2
2

)
,

Ṽ3 =− (µ1 −µ2)4

2(µ1 +µ2)2

(
µ1µ

2
1µ2 b2

2 (c1 + c2)+µ2µ1µ
2
2 (b1 +b2)c2

2

)
+ µ1µ2 (µ1 −µ2)3

(µ1 +µ2)3

(
(3µ1 +µ2)µ2

1µ2 b2
2 c2 − (µ1 +3µ2)µ1µ

2
2 b2 c2

2

)
,

T̃3 =− (µ1 −µ2)4

2(µ1 +µ2)2

(
µ1

b2
2(c1 − c2)

µ2
1µ2

+µ2
(b1 −b2)c2

2

µ1µ
2
2

)
+ µ1µ2 (µ1 −µ2)3

(µ1 +µ2)3

(
(3µ1 +µ2)

b2
2 c2

µ2
1µ2

− (µ1 +3µ2)
b2 c2

2

µ1µ
2
2

)
,

(6.61)

Ũ4 =
µ1µ2 (µ1 −µ2)8

4(µ1 +µ2)4
b2

2 c2
2 ,

T̃4 =
(µ1 −µ2)8

4(µ1 +µ2)4

b2
2 c2

2

µ2
1µ

2
2

,

Ṽ4 =
µ1µ2 (µ1 −µ2)8

4(µ1 +µ2)4
µ2

1µ
2
2 b2

2 c2
2 ,

and where W̃k and Z̃k are given by the usual expressions (6.19). Here we have used
Theorem 6.27 to obtain Ṽk from Ũk through the substitutions

b1 7→µ1(b1 +b2), b2 7→µ1b2, c1 7→µ2(c1 + c1), c2 7→µ2c2,

and T̃k from Ũk via

b1 7→
b1 −b2

µ1
, b2 7→

b2

µ1
, c1 7→

c1 − c2

µ2
, c2 7→

c2

µ2
.

Example 6.35. A plot of the real case with parameters

µ1 = 1, µ2 = 3, b1(0) = 0, b2(0) = 1, c1(0) = 0, c2(0) = 1 (6.62)

is shown in Figure 29. Asymptotically we see two peakon–antipeakon pairs travelling
with the velocities 1/µ1 and 1/µ2, and hence scattering from each other at a linear rate,
but also with the two peakons within each pair separating at a logarithmic rate.

Example 6.36. A plot of the complex case with parameters

µ1 =µ2 =
1

α+ iβ
= 1

1+ i
, b1(0) = c1(0) = 1, b2(0) = c2(0) = 1 (6.63)

is shown in Figure 30. Asymptotically we see two peakon–antipeakon pairs, both oscil-
lating with the same period 2π/β= 2π, and both travelling with a velocity approaching
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Figure 29: Positions x = xk (t ) for the n = 4 peakon–antipeakon solution with two posi-
tive double eigenvalues 0 <µ1 <µ2 in Example 6.35.
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Figure 30: Positions x = xk (t ) for the n = 4 peakon–antipeakon solution with two com-
plex double eigenvalues µ1 =µ2 in Example 6.36.
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1/α = 1, but separating from each other at a logarithmic rate. (As seen in the picture,
the solutions for xk (t ) asymptotically have π-periodic oscillations, but remember this
only represents half a period of the full solution, since the same oscillation is repeated
again with m1 and m2 having the opposite signs; compare with the 2-peakon case in
Section 4.6.)

6.6 Proofs

We finish by giving the proofs of the claims in Section 6.2. The peakon solution formulas
for the multiple-eigenvalue case will be obtained from the known solution formulas for
the simple-eigenvalue case (Theorem 5.14) via a limiting procedure. The setup is as in
Section 6.1; we have n eigenvalues λk with J distinct numerical values µ j and multiplic-
ities d j , the coefficientαk is defined byλk =µαk , the integer interval J j = [δ j +1,δ j +d j ]
contains those indices k for which αk = j , and the coefficient βk = k −δαk −1 ∈ {0,1, . . . }
keeps track of whether λk is the first/second/etc. eigenvalue with the value µαk .

We now consider (for some fixed ε> 0 to begin with) the simple-eigenvalue n-peakon
solution with ε-dependent spectral data defined as follows.

Definition 6.37. Let
λk (ε) =µαk +εω

βk
αk

, for 1 ≤ k ≤ n, (6.64)

where
ω j = exp(2πi /d j ), for 1 ≤ j ≤ J (6.65)

are roots of unity.

Remark 6.38. An equivalent way of writing this, using the offsets δ j , is

λδ j+1+r (ε) =µ j +εωr
j , (6.66)

for 1 ≤ j ≤ J and 0 ≤ r ≤ d j − 1. Obviously, for ε = 0, λk (ε) reduce to the λk in our
multiple-eigenvalue setup, but for ε> 0 each multiple eigenvalue λa+1 = ·· · = λa+d = µ

of multiplicity d is replaced by d simple eigenvalues λa+1(ε), . . . ,λa+d (ε) equally spaced
on a circle of radius ε around µ. (And if λk =µ is a simple eigenvalue already, it is moved
to λk (ε) = µ+ ε. We might as well leave it where it is, but then we would have to im-
plement that as an exception from the general formula (6.64), which would be inconve-
nient.) There might be accidental overlap for certain isolated values of ε, but for small
enough ε> 0 the eigenvalues λk (ε) are indeed simple (and have positive real part).

Definition 6.39. For ε> 0 small enough, so that the eigenvalues λk (ε) are simple, let

bk (t ;ε) = 1

dαk

( ∑
s∈Jαk

as(0)(
εω

βk
αk

)βs

)
e t/λk (ε), for 1 ≤ k ≤ n, (6.67)

where a1(0), . . . , an(0) are some constants fixed in advance.
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Remark 6.40. Another way of writing this is

bδ j+1+r (t ;ε) = 1

d j

(d j−1∑
s=0

aδ j+1+s(0)(
εωr

j

)s

)
exp

t

µ j +εωr
j

, (6.68)

for 1 ≤ j ≤ J and 0 ≤ r ≤ d j −1.

Remark 6.41. It is convenient to refer to {λk (ε),bk (t ;ε)} as the “perturbed spectral data”,
and similarly for other quantities depending on ε, but then we are only referring to the
fact that λk (ε) is a small perturbation of λk . We emphasize that bk (t ;ε) does not have a
limit as ε→ 0, because of ε in the denominator.

In particular, later on we will start with some functions bk (t ), let ak (0) = λ
βk
k bk (0),

and use these constants ak (0) to define bk (t ;ε). Then, despite the notation, the func-
tions bk (t ;ε) will not at all be small perturbations of the original functions bk (t ). (But
there will be other relations between them that justify using the same symbol bk for
both.)

Example 6.42. With the same numbers as in Example 6.5, the perturbed eigenvalues are

λ1(ε) =µ1 +ε,

λ2(ε) =µ1 +εω1,

λ3(ε) =µ1 +εω2
1,

λ4(ε) =µ1 +εω3
1,

λ5(ε) =µ1 +εω4
1,

λ6(ε) =µ2 +ε,

λ7(ε) =µ2 +εω2,

λ8(ε) =µ2 +εω2
2,

λ9(ε) =µ3 +ε,

λ10(ε) =µ4 +ε,

where
ω1 = e2πi /5, ω2 = e2πi /3 (and ω3 =ω4 = 1),
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and the residues are

b1(t ;ε) = 1

5

(
a1(0)(
εω0

1

)0 + a2(0)(
εω0

1

)1 + a3(0)(
εω0

1

)2 + a4(0)(
εω0

1

)3 + a5(0)(
εω0

1

)4

)
e t/λ1(ε),

b2(t ;ε) = 1

5

(
a1(0)(
εω1

1

)0 + a2(0)(
εω1

1

)1 + a3(0)(
εω1

1

)2 + a4(0)(
εω1

1

)3 + a5(0)(
εω1

1

)4

)
e t/λ2(ε),

b3(t ;ε) = 1

5

(
a1(0)(
εω2

1

)0 + a2(0)(
εω2

1

)1 + a3(0)(
εω2

1

)2 + a4(0)(
εω2

1

)3 + a5(0)(
εω2

1

)4

)
e t/λ3(ε),

b4(t ;ε) = 1

5

(
a1(0)(
εω3

1

)0 + a2(0)(
εω3

1

)1 + a3(0)(
εω3

1

)2 + a4(0)(
εω3

1

)3 + a5(0)(
εω3

1

)4

)
e t/λ4(ε),

b5(t ;ε) = 1

5

(
a1(0)(
εω4

1

)0 + a2(0)(
εω4

1

)1 + a3(0)(
εω4

1

)2 + a4(0)(
εω4

1

)3 + a5(0)(
εω4

1

)4

)
e t/λ5(ε),

b6(t ;ε) = 1

3

(
a6(0)(
εω0

2

)0 + a7(0)(
εω0

2

)1 + a8(0)(
εω0

2

)2

)
e t/λ6(ε),

b7(t ;ε) = 1

3

(
a6(0)(
εω1

2

)0 + a7(0)(
εω1

2

)1 + a8(0)(
εω1

2

)2

)
e t/λ7(ε),

b8(t ;ε) = 1

3

(
a6(0)(
εω2

2

)0 + a7(0)(
εω2

2

)1 + a8(0)(
εω2

2

)2

)
e t/λ8(ε),

b9(t ;ε) = a9(0)e t/λ9(ε),

b10(t ;ε) = a10(0)e t/λ10(ε).

Remark 6.43. The requirement that bi (t ;ε) = b j (t ;ε) if λi = λ j is fulfilled if the coeffi-
cients ak (0) form suitable complex-conjugate pairs. Moreover, if the highest-numbered
ak (0) associated with each eigenvalue is nonzero, then all bk (t ;ε) will be nonzero for all

sufficiently small ε > 0. Thus, if the spectral data
{
λk ,λβk

k ak (0)
}

is in R̂ and ε is small

enough, then the perturbed spectral data {λk (ε),bk (t ;ε)} will be in R̂ s for all t .
An example should make the first point clear. Suppose µ1 is a triple eigenvalue with

partnerµ2 =µ1. Thenω1 =ω2 = e2πi /3, which we simply callω, and the perturbed eigen-
values λk (ε) lie as illustrated in Figure 31. Note that they pair up with a “backwards”
numbering: the conjugates of λ1,2,3(ε) are λ4,6,5(ε), in that order. Considering for exam-
ple the index pair {2,6}, we have

b2(t ;ε) = 1

3

(
a1(0)(
εω1

)0 + a2(0)(
εω1

)1 + a3(0)(
εω1

)2

)
e t/λ2(ε),

b6(t ;ε) = 1

3

(
a4(0)(
εω2

)0 + a5(0)(
εω2

)1 + a6(0)(
εω2

)2

)
e t/λ6(ε),

(6.69)
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Re

Im

µ1

µ2 =µ1

λ1(ε)

λ2(ε)

λ3(ε)

λ4(ε) =λ1(ε)

λ5(ε) =λ3(ε)

λ6(ε) =λ2(ε)

Figure 31: Illustration for Remark 6.43.

and, since ω2 =ω1 and λ6(ε) =λ2(ε), we see that indeed b6(t ;ε) = b2(t ;ε) provided that

a4(0) = a1(0), a5(0) = a2(0), a6(0) = a3(0). (6.70)

This condition also makes things work out correctly for the other index pairs. Note that
the coefficients ak (0), unlike the eigenvalues, should be paired up using the natural
numbering: the conjugates of a1,2,3(0) are a4,5,6(0), in that order.

Remark 6.44. The residues bk (t ;ε) are obviously undefined for ε= 0, because of division
by zero. But what we will show is that the Weyl function

ω(λ; t ;ε) =
n∑

k=1

bk (t ;ε)

λ−λk (ε)

has a finite limit as ε→ 0 (which is moreover of the right form for a partial fraction ex-
pansion with poles of arbitrary multiplicity), and likewise for all the quantities Uk (t ;ε),
Wk (t ;ε), etc., in the n-peakon solution formulas with parameters λk (ε) and bk (t ;ε).
These formulas satisfy the n-peakon ODEs for every sufficiently small ε > 0, and since
all quantities involved depends analytically on ε, with removable singularities at ε = 0,
the limiting formulas obtained as ε→ 0 must also satisfy the same ODEs. These limiting
formulas thus give the solution for the multiple-eigenvalue setup that we started with.

To see what happens to ω(λ; t ;ε) as ε → 0, we need the following simple lemma,
where f (r )(z) denotes the r th derivative of f with respect to z.

Lemma 6.45. Suppose that f (z) is analytic and that ω = exp(2πi /d) for some integer
d ≥ 1. Then

1

d

d−1∑
s=0

f (z +εωs)

(ωs)r
= εr

(
f (r )(z)

r !
+O (εd )

)
(6.71)
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for r = 0, . . . ,d −1.

Proof. The formula for a geometric sum shows that

1

d

d−1∑
s=0

(ωq−r )s =
{

1, if q − r is a multiple of d ,

0, otherwise.

Writing out the Taylor series of f , switching the order of summation, and using the fact
just mentioned, we find

1

d

d−1∑
s=0

f (z +εωs)

(ωs)r
= 1

d

d−1∑
s=0

1

(ωs)r

(
∞∑

q=0

(εωs)q

q !
f (q)(z)

)

=
∞∑

q=0

(
1

d

d−1∑
s=0

(ωq−r )s

)
εq

q !
f (q)(z)

= εr

r !
f (r )(z)+ εr+d

(r +d)!
f (r+d)(z)+ εr+2d

(r +2d)!
f (r+2d)(z)+ . . .

= εr

r !
f (r )(z)+O (εr+d ),

as claimed.

Theorem 6.46. As ε→ 0, the Weyl function

ω(λ; t ;ε) =
n∑

k=1

bk (t ;ε)

λ−λk (ε)
, (6.72)

with λk (ε) and bk (t ;ε) given by Definitions 6.37 and 6.39, tends to

ω(λ; t ) :=
J∑

j=1

d j−1∑
r=0

aδ j+1+r (0)

r !

[(
∂

∂z

)r e t/z

λ− z

]
z=µ j

=
J∑

j=1

d j∑
k=1

aδ j+k (t )

(λ−µ j )k
,

(6.73)

where

aδ j+k (t ) =
d j−k∑
q=0

aδ j+k+q (0)

q !µq
j

pq (t/µ j )e t/µ j , (6.74)

for 1 ≤ j ≤ J and 1 ≤ k ≤ d j . (Recall the polynomials pk (w) from Definition 6.18.)

Remark 6.47. Since p0(0) = 1 and pq (0) = 0 for q ≥ 1, setting t = 0 in the right-hand side
of (6.74) does give the constant aδ j+k (0), so the notation is consistent.
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Proof of Theorem 6.46. Insert the expressions (6.66) and (6.68) for λk (ε) and bk (t ;ε) into
the Weyl function, change the order of summation, and apply Lemma 6.45 with f (z) =
e t/z/(λ− z):

ω(λ; t ;ε) =
n∑

k=1

bk (t ;ε)

λ−λk (ε)

=
J∑

j=1

d j−1∑
s=0

bδ j+1+s(t ;ε)

λ−λδ j+1+s(ε)

=
J∑

j=1

d j−1∑
s=0

1

d j

(d j−1∑
r=0

aδ j+1+r (0)(
εωs

j

)r

)
e t/(µ j+εωs

j )

λ− (µ j +εωs
j )

=
J∑

j=1

d j−1∑
r=0

aδ j+1+r (0)

εr

(
1

d j

d j−1∑
s=0

1(
ωs

j

)r
e t/(µ j+εωs

j )

λ− (µ j +εωs
j )

)

=
J∑

j=1

d j−1∑
r=0

aδ j+1+r (0)

εr

(
εr

r !

[(
∂

∂z

)r e t/z

λ− z

]
z=µ j

+O (εr+d j )

)

=
J∑

j=1

d j−1∑
r=0

aδ j+1+r (0)

r !

[(
∂

∂z

)r e t/z

λ− z

]
z=µ j

+O (ε),

which gives the first expression for ω(λ, t ) in (6.73) when ε→ 0. To see that this equals
the second expression in (6.73), it is enough to investigate what happens for each j , so
let us simplify the notation a little and write d , µ, δ instead of d j , µ j , δ j , and just Ar

instead of aδ j+1+r (0). Then we find, using the Leibniz rule for the r th derivative of a

product, and then formula (6.23) for the derivatives of e1/z , that

d−1∑
r=0

Ar

r !

[(
∂

∂z

)r e t/z

λ− z

]
z=µ

=
d−1∑
r=0

r+1∑
k=1

Ar

r !

(
r

k −1

)[((
∂

∂z

)r−(k−1)

e t/z
)((

∂

∂z

)k−1 1

λ− z

)]
z=µ

=
d∑

k=1

d−1∑
r=k−1

Ar

r !

(
r

k −1

)[
pr+1−k (t/z)e t/z

zr+1−k

(k −1)!

(λ− z)k

]
z=µ

=
d∑

k=1

d−1∑
r=k−1

Ar

(r +1−k)!

pr+1−k (t/µ)e t/µ

µr+1−k

1

(λ−µ)k

=
d∑

k=1

1

(λ−µ)k

( d−1∑
r=k−1

Ar /µr+1−k

(r +1−k)!
pr+1−k (t/µ)e t/µ

)

=
d∑

k=1

1

(λ−µ)k

(d−k∑
q=0

Aq+k−1

q !µq
pq (t/µ)e t/µ

)
,
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and thus

ω(λ; t ) =
J∑

j=1

d j∑
k=1

1

(λ−µ j )k

(d j−k∑
q=0

aδ j+1+(q+k−1)(0)

q !µq
j

pq (t/µ j )e t/µ j

)
,

as claimed.

Proof of Theorem 6.24 (time dependence of ω(λ)). Given spectral data

{λk ,bk (0)}n
k=1 ∈ R̂ ,

we want to find the time evolution of bk (t ) in the Weyl function (6.25). Let

ak (0) =λβk
k bk (0), (6.75)

and form perturbed spectral data {λk (ε),bk (t ;ε)}n
k=1 ∈ R̂ s as in Definitions 6.37 and 6.39.

Now the perturbed spectral data have the correct time evolution (known from the
simple-eigenvalue case) in order to make the corresponding perturbed Weyl function
ω(λ; t ;ε) satisfy the governing ODE for all sufficiently small ε> 0:

ω̇(λ; t ;ε) = ω(λ; t ;ε)−ω(0; t ;ε)

λ
.

And according to Theorem 6.46 we have

ω(λ; t ;ε) →ω(λ; t ) =
J∑

j=1

d j∑
k=1

aδ j+k (t )

(λ−µ j )k
, as ε→ 0,

with {ak (t )}n
k=1 given by (6.74). The limiting Weyl function ω(λ; t ) must satisfy the ODE

as well,

ω̇(λ; t ) = ω(λ; t )−ω(0; t )

λ
,

and for t = 0 it agrees with (6.25), by (6.75):

ω(λ;0) =
J∑

j=1

d j∑
k=1

aδ j+k (0)

(λ−µ j )k
=

J∑
j=1

d j∑
k=1

µk−1
j bδ j+k (0)

(λ−µ j )k
.

This means that ω(λ; t ) is the Weyl function (6.25) that we are looking for, so that the
functions bk (t ) in (6.25) are given by

bδ j+k (t ) =
aδ j+k (t )

µk−1
j

= 1

µk−1
j

d j−k∑
q=0

aδ j+k+q (0)

q !µq
j

pq (t/µ j )e t/µ j

= 1

µk−1
j

d j−k∑
q=0

µ
k+q−1
j bδ j+k+q (0)

q !µq
j

pq (t/µ j )e t/µ j

=
d j−k∑
q=0

bδ j+k+q (0)

q !
pq (t/µ j )e t/µ j ,
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for 1 ≤ j ≤ J and 1 ≤ k ≤ d j . This is equation (6.27).

Alternative proof of Theorem 6.24. It is also possible to derive the time dependence for
the coefficients in the Weyl function in a more conventional way. Simply inserting the
partial fraction expansion (6.25) into the governing ODE

ω̇(λ; t ) = ω(λ; t )−ω(0; t )

λ

and identifying coefficients, one obtains a coupled linear system of ODEs for {bk (t )}n
k=1.

With just one eigenvalue µ of multiplicity d , this system is

ḃk = 1

µ

d∑
s=k

(−1)s−k bs , 1 ≤ k ≤ d , (6.76)

and with several eigenvalues µ j , we get one such system for each j . One way of solving
this (triangular) system is by switching to the new time variable τ = t/µ, writing the
system’s coefficient matrix as A = I+N where N is nilpotent, and computing e Aτ = eτeNτ

via a (finite) Maclaurin expansion. The solution obtained in this way turns out to agree
with (6.27), of course. We omit the details.

Next we want to investigate what happens to Uk , Vk and Tk as we perform the same
limiting procedure. For this we need a few more simple facts; first, the generalization of
Lemma 6.45 to functions of k variables, where we will use the notation

f (r1,...,rk )(z1, . . . , zk ) =
(
∂

∂z1

)r1

· · ·
(
∂

∂zk

)rk

f (z1, . . . , zk ).

Lemma 6.48. Suppose f (z1, . . . , zk ) is analytic and that ω j = exp(2πi /d j ) for some inte-
gers d1, . . . ,dk ≥ 1. Then

1

d1 · · ·dk

d1−1∑
s1=0

· · ·
dk−1∑
sk=0

f (z1 +ε1ω
s1
1 , . . . , zk +εkω

sk
k )(

ω
s1
1

)r1 · · ·(ωsk
k

)rk

= εr1
1 · · ·εrk

k

(
f (r1,...,rk )(z1, . . . , zk )

r1! · · ·rk !
+O (εd1

1 )+·· ·+O (εdk
k )

)
.

(6.77)

for 0 ≤ r1 < d1, . . . , 0 ≤ rk < dk . In particular, with ε1 = ·· · = εk = ε:

1

d1 · · ·dk

d1−1∑
s1=0

· · ·
dk−1∑
sk=0

f (z1 +εωs1
1 , . . . , zk +εωsk

k )(
ω

s1
1

)r1 · · ·(ωsk
k

)rk

= εr1+···+rk

(
f (r1,...,rk )(z1, . . . , zk )

r1! · · ·rk !
+O (εmin(d1,...,dk ))

)
.

(6.78)
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Proof. The proof is virtually the same as in the one-variable case. For example, with two
variables:

1

d1d2

d1−1∑
s1=0

d2−1∑
s2=0

f (z1 +ε1ω
s1
1 , z2 +εeω

s2
2 )(

ω
s1
1

)r1
(
ω

s2
2

)r2

= 1

d1d2

d1−1∑
s1=0

d2−1∑
s2=0

1(
ω

s1
1

)r1
(
ω

s2
2

)r2

(
∞∑

q1=0

∞∑
q2=0

(
ε1ω

s1
1

)q1
(
ε2ω

s2
2

)q2

q1! q2!
f (q1,q2)(z1, z2)

)

=
∞∑

q1=0

∞∑
q2=0

(
1

d1

d1−1∑
s1=0

(
ω

q1−r1
1

)s1

)(
1

d2

d2−1∑
s2=0

(
ωq2−r2

)s2

)
ε

q1
1 ε

q2
2

q1! q2!
f (q1,q2)(z, z)

=
∑

q1∈r1+d1N
q2∈r2+d2N

ε
q1
1 ε

q2
2

q1! q2!
f (q1,q2)(z, z)

= εr1
1 ε

r2
2

(
f (r1,r2)(z1, z2)

r1!r2!
+O (εd1

1 )+O (εd2
2 )

)
,

as claimed.

Lemma 6.49. For analytic functions f (z1, . . . , zk ) and g1(z), . . . , gk (z), the identity

1

r1! . . .rk !

(
∂

∂z1

)r1

· · ·
(
∂

∂zk

)rk [
f (z1, . . . , zk ) g1(z1) · · ·gk (zk )

]
=

r1∑
q1=0

· · ·
rk∑

qk=0

f (r1−q1,...,rk−qk )(z1, . . . , zk )

(r1 −q1)! · · · (rk −qk )!

g (q1)
1 (z1)

q1!
· · ·

g (qk )
k (zk )

qk !

(6.79)

holds.

Proof. This is just repeated application (once for each variable zk ) of the Leibniz rule for
the r th derivative of a product, Dr ( f g ) =∑r

q=0
r !

(q−r )! q ! (Dr−q f )(Dq g ).

Theorem 6.50. Suppose {λk ,bk (t )}n
k=1 are spectral data in R̂ with the time dependence

of bk (t ) given by (6.27):

bδ j+k (t ) =
d j−k∑
q=0

bδ j+k+q (0)

q !
pq (t/µ j )e t/µ j .

Let ak (0) = λ
βk
k bk (0), define {λk (ε),bk (t ;ε)} ∈ R̂ s as in Definitions 6.37 and 6.39, and let

Uk (t ;ε) denote the quantity Uk computed using the perturbed spectral data {λk (ε),bk (t ;ε)}.
Then

Uk (t ;ε) → Ũk (t ), as ε→ 0,

where Ũk (t ) denotes the quantity Ũk computed using the spectral data {λk ,bk (t )} that we
started with. Similarly, Vk (t ;ε) → Ṽk (t ) and Tk (t ;ε) → T̃k (t ).
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Proof. Write the perturbed Uk as

Uk (t ;ε) =
∑

I∈([1,n]
k )
ΨI (ε)bI (t ;ε)

= 1

k !

n∑
i1=1

· · ·
n∑

ik=1
Ψ

(
λi1 (ε), . . . ,λik (ε)

)
bi1 (t ;ε) · · ·bik (t ;ε).

Here we have used thatΨ(z1, . . . , zn) =∆(z1, . . . , zn)2/Γ(z1, . . . , zn) is a symmetric function
which vanishes whenever two zi coincide. Since we have partitioned the interval [1,n]
into the subintervals J1, . . . ,JJ , we can split any sum over the “cube” [1,n]k into sums
over “cuboids”, i.e., products of the intervals J j :

∑
(i1,...,ik )∈[1,n]k

F (i1, . . . , ik ) =
∑

( j1,..., jk )∈[1,J ]k

( ∑
(i1,...,ik )∈J j1×···×J jk

F (i1, . . . , ik )

)

Taking one such cuboid in the sum for Uk (t ;ε) (by fixing some ( j1, . . . , jk ) ∈ [1, J ]k ) and
inserting the expressions (6.66) and (6.68) for the perturbed eigenvalues and residues,
we get ∑

(i1,...,ik )∈J j1×···×J jk

Ψ
(
λi1 (ε), . . . ,λik (ε)

)
bi1 (t ;ε) · · ·bik (t ;ε)

=
d j1−1∑
s1=0

· · ·
d jk

−1∑
sk=0

Ψ
(
λδ j1+1+s1 (ε), . . . ,λδ jk

+1+sk (ε)
)

bδ j1+1+s1 (t ;ε) · · ·bδ jk
+1+sk (t ;ε)

=
d j1−1∑
s1=0

· · ·
d jk

−1∑
sk=0

Ψ
(
µ j1 +εωs1

j1
, . . . ,µ jk +εω

sk
jk

)
× 1

d j1

(d j1−1∑
r1=0

aδ j1+1+r1 (0)(
εω

s1
j1

)r1

)
exp

t

µ j1 +εωr1
j1

×·· ·× 1

d jk

(d jk
−1∑

rk=0

aδ jk
+1+rk (0)(
εω

sk
jk

)rk

)
exp

t

µ jk +εω
rk
jk

=
d j1−1∑
r1=0

· · ·
d jk

−1∑
rk=0

aδ j1+1+r1 (0) · · ·aδ jk
+1+rk (0)

εr1+···+rk

×
 1

d j1 · · ·d jk

d j1−1∑
s1=0

· · ·
d jk

−1∑
sk=0

Ψ̂
(
µ j1 +εωs1

j1
, . . . ,µ jk +εω

sk
jk

; t
)

(
ω

s1
j1

)r1 · · ·(ωsk
jk

)rk

 ,

where
Ψ̂(z1, . . . , zk ; t ) =Ψ(z1, . . . , zk )e t/z1 · · · e t/zk .

By Lemma 6.48, this equals

d j1−1∑
r1=0

· · ·
d jk

−1∑
rk=0

aδ j1+1+r1 (0) · · ·aδ jk
+1+rk (0)

(
Ψ̂(r1,...,rk )(µ j1 , . . . ,µ jk ; t )

r1! · · ·rk !
+O (ε)

)
.
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Now we use Lemma 6.49 and formula (6.23),(
∂

∂z

)k

e t/z = pk (t/z)e t/z

zk
,

to compute

Ψ̂(r1,...,rk )(µ j1 , . . . ,µ jk ; t )

r1! · · ·rk !

=
r1∑

q1=0
· · ·

rk∑
qk=0

Ψ(r1−q1,...,rk−qk )(µ j1 , . . . ,µ jk )

(r1 −q1)! · · · (rk −qk )!

pq1 ( t
µ j1

)e t/µ j1

q1!µq1

j1

· · ·
pq1 ( t

µ j1
)e t/µ j1

q1!µq1

j1

When we insert this back into the sum we are investigating, we will obtain k double sums
of the form

d−1∑
r=0

r∑
q=0

F (r, q),

which can be rewritten as
d−1∑
R=0

d−1−R∑
q=0

F (R +q, q).

Hence, we find that the sum over the cuboid becomes, up to a term O (ε),

d j1−1∑
R1=0

· · ·
d jk

−1∑
Rk=0

d j1−1−R1∑
q1=0

· · ·
d jk

−1−Rk∑
qk=0

aδ j1+1+R1+q1 (0) · · ·aδ jk
+1+Rk+qk (0)

×Ψ
(R1,...,Rk )(µ j1 , . . . ,µ jk )

R1! · · · Rk !

pq1 ( t
µ j1

)e t/µ j1

q1!µq1

j1

· · ·
pq1 ( t

µ j1
)e t/µ j1

q1!µq1

j1

=
d j1−1∑
R1=0

· · ·
d jk

−1∑
Rk=0

Ψ(R1,...,Rk )(µ j1 , . . . ,µ jk )

R1! · · · Rk !

×
(d j1−1−R1∑

q1=0

µ
R1+q1

j1
bδ j1+1+R1+q1 (0)

q1!µq1

j1

)

×·· ·×
(d jk

−1−Rk∑
qk=0

µ
Rk+qk
jk

bδ jk
+1+Rk+qk (0)

qk !µqk
jk

)

=
d j1−1∑
R1=0

· · ·
d jk

−1∑
Rk=0

Ψ(R1,...,Rk )(µ j1 , . . . ,µ jk )

R1! · · · Rk !
µ

R1
j1

bδ j1+1+R1 (t ) · · · µRk
jk

bδ jk
+1+Rk (t )

=
∑

I∈J j1×···×J jk

Ψ̃Iλ
βI
I bI (t ).

And since Uk (t ;ε) was 1/k ! times the sum over all the cuboids, it equals

Uk (t ;ε) = 1

k !

∑
I∈[1,n]k

Ψ̃Iλ
βI
I bI (t )+O (ε) = Ũ (t )+O (ε),
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and the claim follows.
For Vk and Tk , the computation is almost the same, except that the function to which

Lemma 6.48 is applied is
(z1 · · ·zk )±1Ψ̂(z1, . . . , zk )

instead of just Ψ̂(z1, . . . , zk ), so when applying Lemma 6.49 in the next step, we take
derivatives of

(z1 · · ·zk )±1Ψ(z1, . . . , zk )

instead ofΨ(z1, . . . , zk ). Consequently we obtain almost the same expression in the end,
the only difference being that we get Ψ̃(±1)

I instead of Ψ̃I , hence Ṽk (t ) and T̃k (t ) instad
of Ũk (t ).

Proof of Theorem 6.25 (solution formulas). As explained in Remark 6.44, the solution for-
mulas for the multiple-eigenvalue case are the result of applying our limiting argument
to the solution formulas from the simple-eigenvalue case,

xn+1−k (t ) = 1

2
ln

Zk (t )

Wk−1(t )
, mn+1−k (t ) =

√
Zk (t )Wk−1(t )

Uk (t )Uk−1(t )
,

so the result follows directly from Theorem 6.50 which we just proved: we replace Uk (t )
by Uk (t ;ε) and let ε→ 0, which results in Ũk (t ), and similarly for the other quantities.

Proof of Theorem 6.27 (substitutions). Split the sums defining Ṽk and T̃k into sums over
“cuboids” as in the proof of Theorem 6.50. Then, in each such smaller sum, compute
Ψ̃(±1)

I by applying Lemma 6.49 with g (z1, . . . , zk ) = Ψ(z1, . . . , zk ) and g1(z) = . . . gk (z) =
z±1, using of course

1

k !

(
∂

∂z

)k

z =


z, k = 0,

1, k = 1,

0, k ≥ 2,

1

k !

(
∂

∂z

)k

z−1 = (−1)k

zk+1
.

This results in an expression which looks like Ũk , since we now have derivatives of Ψ̃I

instead of Ψ̃(±1)
I , but with additional terms as described by the substitution rules (6.29)

and (6.30), respectively.
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