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What does counting
paths through a graph. . .
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3 3
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. . . have to do with
water waves?
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Not very much, to be honest!

(If you’re a physicist.)

3



(But maybe a little, if you’re a mathematician.)
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Anyway, let us begin with a famous episode that took
place near Edinburgh in 1834, by the Union Canal. . .
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John Scott Russell
Scottish naval engineer

“I believe I shall best describe this phænomenon by de-
scribing the circumstances of my own first acquaintance
with it. I was observing the motion of a boat which
was rapidly drawn along a narrow channel by a pair
of horses, when the boat suddenly stopped—not so the
mass of water in the channel which it had put in mo-
tion; it accumulated round the prow of the vessel in a
state of violent agitation, then suddenly leaving it be-
hind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and
well-defined heap of water, which continued its course
along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and
overtook it still rolling on at a rate of some eight or nine
miles an hour, preserving its original figure some thirty
feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one or
two miles I lost it in the windings of the channel. Such,
in the month of August 1834, was my first chance in-
terview with that singular and beautiful phænomenon
which I have called the Wave of Translation [. . . ].”

Report on waves (1845), p. 13
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Reconstruction of a solitary wave near the site of discovery:

Naming ceremony for the Scott Russell Aqueduct over the Edinburgh City Bypass
(July 12, 1995)

(Photo from the web page of Chris Eilbeck, Heriot-Watt University, Edinburgh)
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Some results of Scott Russell’s water tank experiments:

• Solitary waves are very stable.

• The speed of a solitary wave depends on its height:

v =
Æ

g (d + h)

(d = depth of undisturbed water, h =wave height)

• If one tries to generate a wave which is “too big”,
it will decompose into several solitary waves, each
with its own speed (the largest first).

• During the passage of the wave, the water particles
are displaced. (In contrast to ordinary oscillatory
waves, where they return to their original position.)
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Scott Russell also found a way
to make canal boats go faster,
with less effort for the horses:
pull the boat at just the right
speed, and it will “surf” on the
solitary wave that it generates!

But some influential scientists (Airy, Stokes) were still sceptical, since
the solitary wave didn’t fit with their theories about water waves.
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Water wave theory is hard!

“Now, the next waves of interest,
that are easily seen by everyone and
which are usually used as an example
of waves in elementary courses, are
water waves. As we shall soon see,
they are the worst possible example,
because they are in no respects like
sound and light; they have all the
complications that waves can have.”

The Feynman Lectures on Physics
Vol. I, Sect. 51–4
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Fluid flow basics

Velocity vector field: v(x, y, z, t )

Basic equation: the Navier–Stokes equation.

(Newton’s law applied to each “fluid particle”.)

Acceleration=
Forces (pressure, viscosity, gravity)

Mass

∂ v

∂ t
+ v · ∇v=−

1

ρ
∇p + ν∇2v− g ẑ

Water is (nearly) incompressible =⇒
(

Constant density ρ
∇ ·v= 0
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In water wave problems, certain boundary conditions
must hold at the free surface and at the bottom.

Major difficulty:

It is not known in advance where the surface is!
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Some possible simplifying assumptions:

• Neglect viscosity.
(Euler equation. John von Neumann: “Dry water.”)

• Neglect surface tension.

• Assume that the vorticityω =∇×v is zero.
(Then v=∇φ, and∇ ·v= 0 becomes the Laplace equation∇2φ= 0.)

• One-dimensional wave propagation.

• Shallow water (compared to the wavelength).

• Small amplitude.
(Neglect higher order terms. Evaluate surface boundary condition at z = d
instead of at some unknown height z = η(x, y).)

Different assumptions lead to different “water wave models”, which
(hopefully) describe some aspect or another of real water.
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One such model is the KdV equation for shallow water waves:

ut + u ux + ux x x = 0

(Boussinesq 1871, Lord Rayleigh 1876, Korteweg & de Vries 1895)

Travelling wave solution: u(x, t ) = 3c
.

cosh2
h

1
2(x − c t )

p
c
i

x

u

3c

c t

(First theoretical explanation of the solitary wave.)
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Much later: surprising discoveries

Kruskal & Zabusky 1965

Numerical studies of the KdV equation.
Found that several solitary waves could coexist, almost
unaffected by each other: “solitons”.

Gardner, Green, Kruskal & Miura 1967

The Inverse Scattering Transform (IST), a method which
gives exact formulas for the multi-soliton solutions of the
KdV equation.

(Nonlinear PDEs were considered “impossible” to solve analytically until then.)

15



Example: a two-soliton solution of the KdV equation

u(x, t ) =
72
�

3+ 4cosh(2x − 8t )+ cosh(4x − 64t )
�

�

3cosh(x − 28t )+ cosh(3x − 36t )
�2

t

x

Shown in red: u(x, 0) = 36/cosh2 x

(Cf. Scott Russell’s big wave splitting into several solitary waves.)
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Martin Kruskal (right) playing chess against Francesco Calogero

(NEEDS ’97 conference, Kolymbari, Crete)
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Here is a more recent shallow water wave model, derived
in 1993 by Roberto Camassa and Darryl Holm:

ut − ut x x + k ux = 2ux ux x − 3u ux + u ux x x

(u = horizontal fluid velocity, k > 0 some physical parameter)

18



They are smiling, because their paper generates lots of citations:

Previous Up Next Article

Citations

From References: 354
From Reviews: 21

MR1234453 (94f:35121)35Q51 (58F07 76B15 76B25)

Camassa, Roberto(1-LANL-TD) ; Holm, Darryl D. (1-LANL-NL)
An integrable shallow water equation with peaked solitons. (English summary)
Phys. Rev. Lett.71 (1993),no. 11,1661–1664.

Summary: “We derive a new completely integrable dispersive shallow water equation that is
bi-Hamiltonian and thus possesses an infinite number of conservation laws in involution. The
equation is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler’s
equations in the shallow water regime. The soliton solution for this equation has a limiting form
that has a discontinuity in the first derivative at its peak.”

c© Copyright American Mathematical Society 1994, 2010

(And this count doesn’t even include the physics literature!)
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Why all this interest?

The Camassa–Holm equation is an integrable system.

• Lots of mathematical structure.

• IST and other methods are available.

It admits non-smooth solutions (in a suitable weak sense).

• Initially smooth solutions may lose smoothness after finite time.

• Possible model for wave breaking?

• In the limiting case k→ 0, it has peaked-shaped solitons with a
particularly straightforward structure: “peakons”.
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The one-peakon solution

The CH equation with k = 0 can be written as

mt +mx u + 2mux = 0 m = u − ux x

Travelling wave solution: u(x, t ) = c e−|x−c t |

x

u

c

c t
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u = e−|x| =

(

e x , x ≤ 0
e−x , x ≥ 0

ux =

(

+e x , x < 0
−e−x , x > 0

ux x = e−|x|− 2δ(x)

(δ is the Dirac delta at x = 0,

the distributional derivative of

the Heaviside step function)

=⇒ m = u − ux x = 2δ

22



The multi-peakon solution

x

u(x, t ) =
n
∑

i=1

mi (t ) e
−|x−xi (t )|

x
x1(t )

m1(t )

x2(t )

m2(t )

x3(t )

m3(t )

1
2 m(x, t ) =

n
∑

i=1

mi (t )δ
�

x − xi (t )
�
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This Ansatz satisfies the CH equation mt +mx u + 2mux = 0 iff

ẋk =
n
∑

i=1

mi e−|xk−xi |

ṁk =
n
∑

i=1

mk mi sgn(xk − xi ) e
−|xk−xi |

(2n-dimensional dynamical system for positions xk(t ) and amplitudes mk(t ).)

Shorthand notation:

ẋk = u(xk) ṁk =−mk



ux(xk)
�

(Note: Speed ẋk of the kth peakon = wave height at that point.)
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The travelling wave is the case n = 1:

ẋ1 = m1 ṁ1 = 0

The case n = 2, with E12 = e−|x1−x2|, reads

ẋ1 = m1+m2E12

ẋ2 = m1E12+m2

ṁ1 =−m1m2E12

ṁ2 = m1m2E12

(Camassa & Holm solved this by elementary methods, using the
constants of motion M = m1+m2 and H = 1

2 m1m2E12.)
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The Camassa–Holm peakon equations for arbitrary n were solved
using IST by Richard Beals, David Sattinger and Jacek Szmigielski.
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Suppose µ is a measure on the real line such that all its
moments βk =

∫

xk dµ(x) (k = 0,1,2, . . . ) are finite.

The Classical Moment Problem is the problem of re-
covering the measure µ from its moments. (Existence?
Uniqueness?)

This problem was important in the development of func-
tional analysis.

Basic object: the Hilbert space L2(µ) with inner product

〈 f , g 〉=
∫

f (x)g (x)dµ(x)

28



The moments βk determine the inner product of any
two polynomials:
*

r
∑

i=0

ai x i ,
s
∑

j=0

b j x
j

+

=
r
∑

i=0

s
∑

j=0

ai b j

∫

x i+ j dµ(x)
︸ ︷︷ ︸

βi+ j

(Important question: Are the polynomials dense in L2(µ)?)

First step: define orthogonal polynomials by doing Gram–
Schmidt on the standard basis 1, x, x2, . . .

And so on. Big theory. (Very pretty, very classical, many
connections to other parts of mathematics.)
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What does this have to do with peakons?

To any peakon configuration (values of the xk’s and mk’s)
Beals, Sattinger & Szmigielski associated a discrete string:

For k = 1,2, . . . , n, let yk = tanh xk (thus −1 < yk < 1)
and gk = 2mk/(1 − y2

k
). At the positions yk , put point

masses gk and connect them by weightless thread. Attach
the ends of the string to the points y =±1.

yy =−1 y =+1y = y1

g1

y = y2

g2

y = y3

g3
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Such a string has vibrational modes (just like a guitar
string has a fundamental frequency and overtones), but
only as many as there are point masses.

The squared eigenfrequencies are denoted λ1, . . . ,λn.

One also defines numbers b1, . . . , bn which contain some
information about the shape of the eigenfunctions.
(Basically the ratio between the slopes at the endpoints.)

31



We can view this as a change of variables: from {xk , mk}
to “spectral variables” {λk , bk}.

Miracle: In terms of the spectral variables, the compli-
cated nonlinear CH peakon equations simply become

λ̇k = 0 ḃk = bk/λk

(“Isospectral deformation” – the string’s spectrum doesn’t change!)

This system is of course easily solved:

λk = constant bk(t ) = bk(0) e
t/λk
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The inverse change of variables
is given by formulas found by
Thomas Joannes Stieltjes in his
study of the moment problem.
(Recherches sur les fractions continues, 1894)

This connection between the vibrat-
ing string and the work of Stieltjes
was noticed by Mark Grigorievich
Krein around 1950.
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The change of variables in a nutshell (with lk = yk+1− yk):

1/2

z
+

b1

z −λ1

+
b2

z −λ2

+ · · ·+
bn

z −λn
=

=
1

z ln +
1

−gn +
1

z ln−1+
1

...
+

1

−g2+
1

z l1+
1

−g1+
1

z l0

It corresponds to
converting between two ways
of representing a rational function:

LHS = partial fractions
RHS = Stieltjes continued fraction
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Example: The Camassa–Holm three-peakon solution

x1(t ) = ln
(λ1−λ2)

2(λ1−λ3)
2(λ2−λ3)

2b1b2b3
∑

j<k λ
2
jλ

2
k(λ j −λk)

2b j bk

x2(t ) = ln

∑

j<k(λ j −λk)
2b j bk

λ2
1b1+λ

2
2b2+λ

2
3b3

x3(t ) = ln(b1+ b2+ b3)

m1(t ) =

∑

j<k λ
2
jλ

2
k(λ j −λk)

2b j bk

λ1λ2λ3

∑

j<k λ jλk(λ j −λk)
2b j bk

m2(t ) =

�

λ2
1b1+λ

2
2b2+λ

2
3b3

�

∑

j<k(λ j −λk)
2b j bk

(λ1b1+λ2b2+λ3b3)
∑

j<k λ jλk(λ j −λk)
2b j bk

m3(t ) =
b1+ b2+ b3

λ1b1+λ2b2+λ3b3

�

λk = constant

bk(t ) = bk(0) e
t/λk

�
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I have worked (mostly together with Jacek Szmigielski)
on peakon solutions of some other integrable PDEs:

mt +mx u + 3mux = 0 m = u − ux x

(Antonio Degasperis & Michela Procesi, 1998)

mt +(mx u + 3mux)u = 0 m = u − ux x

(Vladimir Novikov, 2008)

Camassa–Holm, for comparison:

mt +mx u + 2mux = 0 m = u − ux x
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The vibrational modes of a string are given by the eigen-
value problem

−φ′′(y) = z g (y)φ(y)
φ(−1) =φ(+1) = 0

where g (y) describes the distribution of mass.

Peakon solution of the new equations (DP & Novikov)
are instead related to the third order eigenvalue problem

−φ′′′(y) = z g (y)φ(y)
φ(−1) =φ′(−1) =φ(+1) = 0

which we call the cubic string.
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The cubic string

Not selfadjoint. The eigenvalues λk are real anyway (if g is positive).
(Total positivity, Gantmacher–Krein theory of oscillatory kernels.)

Inverse spectral problem for discrete case gives explicit formulas for
the peakon solutions.
(Quite a lot harder than for the ordinary string.)

Instead of orthogonal polynomials: Cauchy biorthogonal polynomals

〈 f , g 〉=
∫∫ f (x) g (y)

x + y
dα(x)dβ(y)

¬

pi , q j

¶

=

(

1, i = j
0, i 6= j

(Bertola–Gekhtman–Szmigielski, 2009, 2010)
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Example: The Degasperis–Procesi three-peakon solution

x1(t ) = ln
U3

V2
x2(t ) = ln

U2

V1
x3(t ) = ln U1

m1(t ) =
U3(V2)

2

V3W2
m2(t ) =

(U2)
2(V1)

2

W2W1
m3(t ) =

(U1)
2

W1

where
U1 = b1+ b2+ b3 V1 = λ1b1+λ2b2+λ3b3

U2 =
(λ1−λ2)

2

λ1+λ2
b1b2+

(λ1−λ3)
2

λ1+λ3
b1b3+

(λ2−λ3)
2

λ2+λ3
b2b3

V2 =
(λ1−λ2)

2

λ1+λ2
λ1λ2b1b2+

(λ1−λ3)
2

λ1+λ3
λ1λ3b1b3+

(λ2−λ3)
2

λ2+λ3
λ2λ3b2b3

U3 =
(λ1−λ2)

2(λ1−λ3)
2(λ2−λ3)

2

(λ1+λ2)(λ1+λ3)(λ2+λ3)
b1b2b3 V3 = λ1λ2λ3U3

W1 =U1V1−U2 = λ1b 2
1 +λ2b 2

2 +λ3b 2
3 +

4λ1λ2

λ1+λ2
b1b2+

4λ1λ3

λ1+λ3
b1b3+

4λ2λ3

λ2+λ3
b2b3

W2 =U2V2−U3V1 =
(λ1−λ2)

4

(λ1+λ2)
2
λ1λ2(b1b2)

2+ · · ·+
4λ1λ2λ3(λ1−λ2)

2(λ1−λ3)
2b 2

1 b2b3

(λ1+λ2)(λ1+λ3)(λ2+λ3)
+ . . .
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Now, finally, some combinatorics!

Lindström’s Lemma

If X is the path matrix of a planar network,
then the minor (=subdeterminant) taken from
rows i1, . . . , ik and columns j1, . . . , jk equals the
sum of the weights of the non-intersecting path
families from the source nodes i1, . . . , ik to the
sink nodes j1, . . . , jk .

(Karlin & McGregor 1959, Lindström 1973, Gessel & Viennot 1985)
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Example:

1

2

1

2

a

b

c

d

e

f

g
Path matrix:

X =
�

ae + ad f ad g
b e + b d f + c f b d g + c g

�

detX = ae · c g
All other terms cancel in pairs.
(“Switch paths at first intersection”
is a sign-reversing involution.)

1

2

1

2

a

b

c

d

e

f

g

+ad f · b d g

−ad g · b d f
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The peakon ODEs for Novikov’s equation have constants
of motion, but the structure is not obvious.

Example: the case n = 3

H1 = m2
1 +m2

2 +m2
3 + 2m1m2E12+ 2m1m3E13+ 2m2m3E23

H2 = (1− E2
12)m

2
1 m2

2 +(1− E2
13)m

2
1 m2

3 +(1− E2
23)m

2
2 m2

3

+ 2(E23− E12E13)m
2
1 m2 m3+ 2(E12− E13E23)m1 m2 m2

3

H3 = (1− E2
12)(1− E2

23)m
2
1 m2

2 m2
3

(Abbreviation: Ei j = e−|xi−x j |. Assume x1 < x2 < x3.)

Question: What’s the pattern (for general n)?
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Conjecture early on in our investigations:

Hk = sum of all k × k minors (subdeterminants ) of

the n× n matrix X with entries Xi j = mi m j Ei j

X =









m2
1 m1m2E12 m1m3E13

m1m2E12 m2
2 m2m3E23

m1m3E13 m2m3E23 m2
3









1 1

2 2

3 3

m1 m1

m2 m2

m3 m3

E12

E23

E12

E23
1− E2

12

1− E2
23
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Later we found:

Hk = sum of the principal k × k minors of T X

where Ti j =







0, i < j
1, i = j
2, i > j

T =







1 0 0
2 1 0
2 2 1







1 1

2 2

3 3
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Does this result agree with the conjecture? Yes, and there is nothing
special with our particular matrix X , except that it is symmetric.

The Canada Day Theorem

For any symmetric n × n matrix X , the sum
of all k × k minors of X equals the sum of the
principal k × k minors of T X .

Example: n = 2 (Too simple, really. For n ≥ 4 it starts to get more interesting.)

X =
�

a b
b c

�

T X =
�

1 0
2 1

��

a b
b c

�

=
�

a b
2a+ b 2b + c

�

k = 1: a+ b + b + c = a+(2b + c)
k = 2: detX = det(T X ) (true since detT = 1)
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Like as the waves make towards the pebbled shore,
So do our minutes hasten to their end

William Shakespeare, Sonnet LX


