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Main topic in this talk:

• Explicit formulas for multipeakon solutions of
certain integrable PDEs.

Background:

• The Camassa–Holm equation.
(And the Degasperis–Procesi equation.)

New results:

• The Novikov equation.

• The Geng–Xue equation.

(Based on joint papers with Jacek Szmigielski, Marcus Kardell,
Budor Shuaib.)
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The Camassa–Holm equation

ut +2κux −uxxt +3uux = 2uxuxx +uuxxx

Derived in 1993 as a model for shallow water waves.

• u(x, t ) is the fluid velocity in the x direction.

• κ> 0 is a constant.

• Some controversy regarding derivation and validity.

R. S. Johnson (2002):

• Vertical domain 0 ≤ z ≤ 1.

• Then CH, with κ= 2
5

√
3
5 , describes what happens at z = 1p

2
.
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Here we’ll only consider the limiting case where κ= 0 :

ut −uxxt +3uux = 2uxuxx +uuxxx

Equivalently (easier to remember):

mt +mxu +2mux = 0 where m = u −uxx
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Or rewrite the equation like this:

0 = (u −uxx)t +3uux −2uxuxx −uuxxx

= (1−∂2
x)

[
ut +

(
1
2u2)

x

]
+ (

u2+ 1
2u2

x

)
x

Taking (1−∂2
x)−1 to be convolution with 1

2e−|x| gives

ut +∂x

[
1
2u2+ 1

2e−|x|∗ (
u2+ 1

2u2
x

)]= 0

(Better formulation for rigorously defining weak solutions.)
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The travelling wave

u(x, t ) = c e−|x−ct |

is a weak solution of the CH equation (with κ= 0).

xct

u

Amplitude c
Velocity c

Peakon = peaked soliton
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A peakon with c < 0 is sometimes called an antipeakon:

xct

u

Amplitude c
Velocity c
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Multipeakon solutions

xx1 x2 x3

u

m1

m2

m3

u(x, t ) =
N∑

i=1

mi (t )e−|x−xi (t )|
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The multipeakon Ansatz

u(x, t ) =
N∑

i=1

mi (t )e−|x−xi (t )|

is a weak solution of the CH equation (with κ= 0) iff

ẋk = u(xk) ṁk =−mk

〈
ux(xk)

〉
for k = 1, . . . , N .

So the PDE is reduced to a finite-dimensional system of ODEs
for the positions xk and the amplitudes mk .

(Hamilton’s equations with H = 1
2

∑
i , j

mi m j e−|xi−x j |.)

9



ODE for positions ẋk = u(xk)

xx1 x2 x3

u

ẋ1

ẋ2

ẋ3

Velocity of kth peakon = elevation of the wave at at that point.
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ODE for amplitudes ṁk =−mk

〈
ux(xk)

〉
〈

ux(xk)
〉= ux(x−

k )+ux(x+
k )

2
= average slope of the wave at xk .

ṁ1

ṁ2

ṁ3

d

d t
ln |mk | =

ṁk

mk
=−〈

ux(xk)
〉

(or mk(t ) ≡ 0)

Positive/negative slope =⇒ |mk | decreasing/increasing.
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Example. Peakon ODEs for N = 3, with Ei j = exi−x j :

ẋ1 = m1 +m2E12 +m3E13

ẋ2 = m1E12 +m2 +m3E23

ẋ3 = m1E13 +m2E23 +m3

ṁ1 =−m1(m2E12 +m3E13)

ṁ2 =−m2(−m1E12 +m3E23)

ṁ3 =−m3(−m1E13 −m2E23)

We assume x1 < x2 < x3 . This is preserved at least locally in
time, and in fact globally for pure peakon solutions (all mk > 0).

Note that Ei j ≈ 0 if the peakons are far apart, so in that situation
each peakon is approximately a travelling wave:

ẋk ≈ mk , ṁk ≈ 0.
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A pure 3-peakon solution of the CH equation:

x

−5

5

t

−10

10

u
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Viewing this from above, we see the positions x = xk(t ):
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12

x = x1(t )

x = x2(t )

x = x3(t )

x

t

Each peakon has its own asymptotic velocity (= amplitude).
Incoming ẋ1 = outgoing ẋ3. (Etc.)
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Exact solution formulas (Beals, Sattinger & Szmigielski 2000):

x1(t ) = ln
(λ1 −λ2)2(λ1 −λ3)2(λ2 −λ3)2a1a2a3∑

j<kλ
2
jλ

2
k(λ j −λk)2a j ak

x2(t ) = ln
(λ1 −λ2)2a1a2 + (λ1 −λ3)2a1a3 + (λ2 −λ3)2a2a3

λ2
1a1 +λ2

2a2 +λ2
3a3

x3(t ) = ln(a1 +a2 +a3)

m1(t ) =
∑

j<kλ
2
jλ

2
k(λ j −λk)2a j ak

λ1λ2λ3
∑

j<kλ jλk(λ j −λk)2a j ak

m2(t ) =
(
λ2

1a1 +λ2
2a2 +λ2

3a3

)∑
j<k(λ j −λk)2a j ak

(λ1a1 +λ2a2 +λ3a3)
∑

j<kλ jλk(λ j −λk)2a j ak

m3(t ) = a1 +a2 +a3

λ1a1 +λ2a2 +λ3a3

where λk = constant and ak(t ) = ak(0)e t/λk .

15



Sketch of derivation of N -peakon solution formulas
Consider a discrete string (N point masses connected by weightless thread)
where the positions yk ∈ (−1,1) and weights gk of the point masses are given
by yk = tanh(xk/2) and gk = 2mk/(1− y2

k).

Separation of variables U (y, t ) =ϕ(y)T (τ) in the usual linear wave equation
Uττ = g (y)Uy y for a string with mass distribution g (y) gives a selfadjoint
problem for the vibrational eigenmodes:

−ϕ′′(y) = z g (y)ϕ(y) ϕ(−1) =ϕ(1) = 0

Here: discrete mass distribution g (y) =
N∑

k=1

gk δ(y − yk).

Eigenvalues (squared eigenfrequencies): z =λ1, . . . ,λN , real, nonzero, distict.

Residues of Weyl function: a1, . . . , aN , positive.

(Number of pos/neg λk = number of pos/neg mk .)
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Integrability magic (due to Lax pair):

If {xk , mk}N
k=1 evolve in time according to the Camassa–Holm peakon

ODEs, then the associated discrete string deforms isospectrally,
meaning that the eigenvalues λk stay constant. Moreover, the
residues ak satisfy ȧk = ak/λk .

The inverse spectral problem is to reconstruct the string from the spectral
dataλk and ak . The solution involves Stieltjes continued fractions, orthogonal
polynomials, Padé approximation, etc.

(Stieltjes 1894, Krein 1951, Moser 1975)

The time evolution of the spectral data is known, so reconstructing the string
gives the time evolution of the string variables yk(t ) and gk(t ), and hence of
the peakon variables xk(t ) and mk(t ).

Done!
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The asymptotic velocities (and amplitudes) are
{

1
λk

}N
k=1.

For example, suppose N = 3 and 1
λ1

> 1
λ2

> 1
λ3

. Then, as t →+∞ :

x3(t ) = ln
(
a1(0) e t/λ1 +a2(0)e t/λ2 +a3(0)e t/λ3

)
= ln

(
a1(0)e t/λ1

(
1+o(1)

))
= t

λ1
+ ln a1(0)+o(1)

m3(t ) =
a1(0) e t/λ1 +a2(0)e t/λ2 +a3(0)e t/λ3

λ1a1(0) e t/λ1 +λ2a2(0)e t/λ2 +λ3a3(0)e t/λ3

= a1(0)e t/λ1
(
1+o(1)

)
λ1a1(0)e t/λ1

(
1+o(1)

)
= 1

λ1
+o(1)
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A mixed CH solution (two peakons, one antipeakon):

x

−5

5

t

−5

5
u

1
λ1

> 1
λ2

> 0 > 1
λ3
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x = x1(t )

x = x2(t )

x = x3(t )

x = x1(t )

x = x2(t )

x = x3(t )

t = t ′

t = t ′′

x

t

Collisions at t = t ′ and t = t ′′. Derivative ux blows up, u doesn’t.
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Easier to see with just one peakon and one antipeakon:

x

−5

5

t

−5

5
u

At the collision, there is only one peakon: u(x0, t0) = m0 e−|x−x0|.

m0 = lim
t↗t0

(
m1(t )+m2(t )

)
, where m1(t ) →+∞ and m2(t ) →−∞.
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Continuation past the collision is not unique.

Above:

• Conservative solution (Constantin & Escher 1998).

Peakon & antipeakon reappear.

The energy E(t ) = 1
2

∫
R(u2+u2

x)d x drops at the instant of col-
lision, then immediately returns to its previous value.

Also possible:

• Dissipative solution (Bressan & Constantin 2007).

Peakons stay merged. E(t ) only drops, never increases.

• α-dissipative solution (Grunert & Holden 2016).

Peakon & antipeakon reappear, but a fraction 0 < α < 1 of
the energy concentrated at the collision is lost).

(Conservative if α= 0, dissipative if α= 1.)
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Dissipative continuation of the solution starting out as above:

x

−5

5

t

−5

5
u
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x = x1(t )

x = x2(t )

x = x3(t )

t = t ′

t = t ′′′

x

t

Peakons merge at collisions.
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Some other integrable PDEs with peakon solutions:

mt +mxu +2mux = 0 Camassa–Holm (1993)

mt +mxu +3mux = 0 Degasperis–Procesi (1998)

mt + (mxu +3mux)u = 0 V. Novikov (2008)

mt + (mxu +3mux)v = 0

nt + (nx v +3nvx)u = 0
Geng–Xue (2009)

where m = u −uxx and n = v − vxx
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Multipeakon solutions have the form u =∑N
i=1 mi e−|x−xi |

for all these equations, but the ODEs differ:

CH ẋk = u(xk) ṁk =−mk

〈
ux(xk)

〉
DP ẋk = u(xk) ṁk =−2mk

〈
ux(xk)

〉
Novikov ẋk = u(xk)2 ṁk =−mk u(xk)

〈
ux(xk)

〉

GX

ẋk = u(xk) v(xk) ṁk = mk

(
u(xk)

〈
vx(xk)

〉−2
〈

ux(xk)
〉

v(xk)
)

ẏk = u(yk) v(yk) ṅk = nk

(〈
ux(yk)

〉
v(yk)−2u(yk)

〈
vx(yk)

〉)
where u =∑N1

i=1 mi e−|x−xi |, v =∑N2
j=1 n j e−|x−y j |, xi 6= y j .
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Degasperis–Procesi peakons

Solution formulas (Lundmark & Szmigielski 2005).

Discrete cubic string instead of ordinary string:

−ϕ′′′(y) = z g (y)ϕ(y)

ϕ(−1) =ϕ′(−1) = 0 ϕ(1) = 0

Positive & simple eigenvalues for pure peakon solutions (Gantmacher–Krein
theory of oscillatory kernels). Eigenvalues can be complex in general.

Cauchy biorthogonal polynomials (Bertola, Gekhtman & Szmigielski 2009).

Discontinuous shockpeakon solutions form at peakon–
antipeakon collisions (Lundmark 2007).

Open problem: Are the shockpeakon ODEs integrable?
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Novikov peakons

Solution formulas (Hone, Lundmark & Szmigielski 2009).

Dual discrete cubic string (swap distances and masses).

Positive & simple eigenvalues for pure peakon solutions.

Can have complex and/or multiple eigenvalues for mixed peakon–
antipeakon solutions. The real part is always nonnegative.

Because of ẋk = u(xk)2, both peakons and antipeakons move to
the right. But they still collide. At collisions, u stays continuous,
and E(t ) = 1

2

∫
R(u2 +u2

x)d x is preserved.

Conservative vs. dissipative distinction through a conserved (or
not) quantity of degree 4. (Chen, Chen & Liu, preprint 2015.)
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Example. A conservative solution of the Novikov equation:

x−5
5

t

−10

10

u

Three peakons, two antipeakons.

One real eigenvalue. Two complex-
conjugate eigenvalue pairs with
common value of Re(1/λ).

Re( 1
λ

)

Im( 1
λ

)
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x1

x2
x3

x4
x5

x

t

xk+1(t )−xk(t ) =O
(
(t − t0)4

)
at a typical collision. Powers 4k can also occur.

(The power is always 2 for Camassa–Holm collisions.)

30



Zoom out:

−40 −30 −20 −10 0 10 20 30 40

−40

−30

−20

−10

0

10

20

30

40

x

t

Asymptotically, one solitary peakon (velocity 1
λ
= 1) and a four-peakon cluster

with overall drift velocity Re( 1
λ

) = 1
2 and two frequencies Im( 1

λ
) ∈ {1

2 ,1}.
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Lots of possibilities:

• Arbitrarily many clusters, each with arbitrarily many
peakons.

• Frequencies commensurable or not.

(Periodic or quasi-periodic.)

• Eigenvalues of higher multiplicity.

(Peakons separate at logarithmic rate as t →±∞.)

• Purely imaginary eigenvalues.

(Peakons slow to a halt, amplitude tends to zero.)

(Kardell & Lundmark, in preparation.)
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Geng–Xue peakons

Peakons in u and v must be non-overlapping.

First: Solution formulas for interlacing K +K case

u(x, t ) =
K∑

i=1

mi (t )e−|x−xi (t )|

v(x, t ) =
K∑

i=1

ni (t )e−|x−yi (t )|

where

x1 < y1 < x2 < y2 < ·· · < xK < yK

(Lundmark & Szmigielski 2016, 2017.)
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The GX equation has two Lax pairs (swap u and v),
leading to two spectral problems of cubic string type.

The solution formulas for the K +K interlacing case
contain two sets of constant eigenvalues

{λi }K
i=1, {µ j }K−1

j=1

with associated residues {ai }K
i=1 and {b j }K−1

j=1 such that

ai (t ) = ai (0)e t/λi , b j (t ) = b j (0)e t/µ j ,

plus two additional constants C and D also coming
from the spectral problems.

(4K parameters in total, as it should be.)
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Example. The solution formulas for the 3+3 interlacing case:

X1 = 1
2 e2x1 = J00

32

J11
21+C J10

22

Y1 = 1
2 e2y1 = J00

32

J11
21

X2 = 1
2 e2x2 = J00

22

J11
11

Y2 = 1
2 e2y2 = J00

21

J11
10

X3 = 1
2 e2x3 = J00

11 Y3 = 1
2 e2y3 = J00

11+D J00
10

and

Q1 = 2m1e−x1 = µ1µ2

λ1λ2λ3

(
J11

21

J10
22

+C

)
P1 = 2n1e−y1 = J11

21 J10
22

J01
21 J01

32

Q2 = 2m2e−x2 = J11
11 J01

21

J10
11 J10

22

P2 = 2n2e−y2 = J11
10 J10

11

J01
10 J01

21

Q3 = 2m3e−x3 = J01
10

J10
11

P3 = 2n3e−y3 = 1

J00
10

where, for instance,

J01
21 =

(λ1 −λ2)2µ1

(λ1 +µ1)(λ2 +µ1)
a1a2b1 +

(λ1 −λ3)2µ1

(λ1 +µ1)(λ3 +µ1)
a1a3b1 +

(λ2 −λ3)2µ1

(λ2 +µ1)(λ3 +µ1)
a2a3b1

+ (λ1 −λ2)2µ2

(λ1 +µ2)(λ2 +µ2)
a1a2b2 +

(λ1 −λ3)2µ2

(λ1 +µ2)(λ3 +µ2)
a1a3b2 +

(λ2 −λ3)2µ2

(λ2 +µ2)(λ3 +µ2)
a2a3b2
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Collisions lead to shockpeakon formation, so here we
assume pure peakon solutions (no antipeakons).

Then the eigenvalues are positive and simple:

0 <λ1 <λ2 < ·· · <λK , 0 <µ1 <µ2 < ·· · <µK−1

Asymptotic velocities as t → ±∞ for 3+ 3 interlacing solution
(from fastest to slowest):

1

2

(
1

λ1
+ 1

µ1

)
︸ ︷︷ ︸

twice

,
1

2

(
1

λ2
+ 1

µ1

)
,

1

2

(
1

λ2
+ 1

µ2

)
,

1

2

(
1

λ3
+ 1

µ2

)
,

1

2

(
1

λ3

)
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Positions: x = xk(t ) and x = yk(t )

−80 −60 −40 −20 0 20 40 60 80
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−60

−40

−20

0

20

40

60

80

x1

y1

x2

y2 x3 y3

x1 y1 x2

y2

x3

y3

x

t

Incoming ẋ1 & ẏ1 = outgoing ẋ3 & ẏ3. Incoming ẋ2 = outgoing ẏ2. (Etc.)

37



The amplitudes mk and nk (typically) do not tend to
constants as t →±∞ !

Instead they grow or decay exponentially.

The curves s = lnmk(t ) and s =− lnnk(t ) asymptotically approach
straight lines as t →±∞.

Slopes:

1

2

(
1

λ1
− 1

µ1

)
︸ ︷︷ ︸

twice

,
1

2

(
1

λ2
− 1

µ1

)
,

1

2

(
1

λ2
− 1

µ2

)
,

1

2

(
1

λ3
− 1

µ2

)
,

1

2

(
1

λ3

)
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Logarithms of amplitudes: s = lnmk(t ) and s =− lnnk(t )
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lnm1

lnm2

lnm3

− lnn1

− lnn2

− lnn3

lnm1

lnm2

lnm3

− lnn1

− lnn2

− lnn3

t

s
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Next: Solution formulas for arbitrary configuration.

(Shuaib & Lundmark,in preparation.)

Notation for positions:

x1,1 < x1,2 < ·· · < x1,N X
1︸ ︷︷ ︸

First X -group

< y1,1 < y1,2 < ·· · < y1,N Y
1︸ ︷︷ ︸

First Y -group

< ·· ·

<x j ,1 < x j ,2 < ·· · < x j ,N X
j︸ ︷︷ ︸

j th X -group

< y j ,1 < y j ,2 < ·· · < y j ,N Y
j︸ ︷︷ ︸

j th Y -group

< ·· ·

<xK ,1 < xK ,2 < ·· · < xK ,N X
K︸ ︷︷ ︸

Last X -group

< yK ,1 < yK ,2 < ·· · < yK ,N Y
K︸ ︷︷ ︸

Last Y -group

Similarly for the amplitudes m j ,i and n j ,i .
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Inverse spectral technique doesn’t work directly.

(For non-interlacing configurations, the Lax pairs yield
too few constants of motion!)

Instead: use ghostpeakon technique.

Also useful for deriving exact formulas for the characteristic
curves x = ξ(t ) associated with a peakon solution u(x, t ):

ξ̇(t ) = u
(
ξ(t ), t

)
for CH & DP

ξ̇(t ) = u
(
ξ(t ), t

)2
for Novikov

These curves were used for making the 3D plots of u(x, t ) above.

(Lundmark & Shuaib, preprint 2018.)
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• An arbitrary configuration is given.

• Pad it with auxiliary peakons to obtain a K +K interlacing
configuration. In the known solution formulas for that con-
figuration, make a substitution of the form

λK = constant

ε
aK (0) = constant× εk1

µK−1 = constant

ε
bK−1(0) = constant× εk2

and let ε→ 0+ .

• With the powers k1 & k2 suitably chosen, this will turn one
of the inserted auxiliary peakons into a “ghostpeakon” with
amplitude zero.

• Repeat this, to “kill” all the inserted peakons, one by one.
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Example. Solution sought for this config with 3+3 groups:

x1 < y1,1 < y1,2 < y1,3︸ ︷︷ ︸
Y -group

< x2 < y2 < x3,1 < x3,2 < x3,3︸ ︷︷ ︸
X -group

< y3,1 < y3,2 < y3,3 < y3,4︸ ︷︷ ︸
Y -group

Schematically:

Steps to obtain solution formulas:

Start (10+10 interlacing) ,

Step 1a ,

Step 1b ,

Step 1c ,

Step 2a ,

Step 2b ,

Step 3a ,

Step 3b (finish) .

Need to keep track of what happens to all the solution formulas
at each step. At the end, the desired formulas remain.
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Results

• Singletons obey the formulas from the interlacing case.

• Each group with N ≥ 2 peakons has internal parameters

τ1, . . . ,τN−1 > 0 0 <σ1 < ·· · <σN−1

appearing only in the solution formulas for that group.

• The two spectral problems only sense the effective position
and amplitude of each group:

m̃ j e x̃ j =
N∑

i=1

m j ,i ex j ,i m̃ j e−x̃ j =
N∑

i=1

m j ,i e−x j ,i

The additional constants of motion τi and σi (not coming
from the Lax pairs) are needed in order to determine what
happens inside each group.
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Example. 3+3 groups, all singletons except one 5-peakon group.

X1 =
J00

32

J11
21+C J10

22

Y1 =
J00

32

J11
21

X2 =
J00

22

J11
11

Y2,1 = J00
22+τ1 J00

21

J11
11+τ1 J11

10

(
τi = τY

2,i & σi =σY
2,i

)
Y2,2 = J00

22+(τ1 +τ2) J00
21+(τ2σ1) J00

11

J11
11+(τ1 +τ2) J11

10+(τ2σ1) J11
00

Y2,3 = J00
22+(τ1 +τ2 +τ3) J00

21+(τ2σ1 +τ3σ2) J00
11

J11
11+(τ1 +τ2 +τ3) J11

10+(τ2σ1 +τ3σ2) J11
00

Y2,4 = J00
22+(τ1 +τ2 +τ3 +τ4) J00

21+(τ2σ1 +τ3σ2 +τ4σ3) J00
11

J11
11+(τ1 +τ2 +τ3 +τ4) J11

10+(τ2σ1 +τ3σ2 +τ4σ3) J11
00

Y2,5 = J00
21 +σ4 J00

11

J11
10 +σ4 J11

00

X3 =
J00

11

J11
00

= J00
11 Y3 = J00

11+D J00
10
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Positions for the config on the previous page: ︸ ︷︷ ︸
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3 4
5

x3

y3

x

t
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Two main cases

• Even case: K +K groups. {λi }K
i=1 and {µ j }K−1

j=1

• Odd case: (K +1)+K groups. {λi }K
i=1 and {µ j }K

j=1

Already the interlacing odd case is a bit surprising:

Asymptotic velocities

(4+3 interlacing case)
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Example. Positions for a 4+3 interlacing configuration:
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Incoming ẋ1 & ẏ1 = outgoing ẏ3 & ẋ4. But incoming ẋ2 6= outgoing ẋ3. (Etc.)
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THE END
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