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Classical results of Stieltjes are used to obtain explicit formulas for the

peakon�antipeakon solutions of the Camassa�Holm equation. The closed form

solution is expressed in terms of the orthogonal polynomials of the related classical

moment problem. It is shown that collisions occur only in peakon�antipeakon

pairs, and the details of the collisions are analyzed using results from the moment

problem. A sharp result on the steepening of the slope at the time of collision is

given. Asymptotic formulas are given, and the scattering shifts are calculated

explicitly. � 2000 Academic Press
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1. INTRODUCTION

The Korteweg�deVries equation is a simple mathematical model for

gravity waves in water, but it fails to model such fundamental physical

phenomena as the extreme wave of Stokes [23]. The failure of weakly non-

linear dispersive equations, such as the Korteweg�deVries equation, to

model the observed breakdown of regularity in nature, is a prime motivation

in the search for alternative models for nonlinear dispersive waves [20, 24].
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The Camassa–Holm equation

ut −uxxt +3uux = 2uxuxx +uuxxx

Equivalently (easier to remember):

mt +mxu +2mux = 0 where m = u −uxx
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Or rewrite the equation like this:

0 = (u −uxx)t +3uux −2uxuxx −uuxxx

= (1−∂2
x)

[
ut +

(
1
2u2)

x

]
+ (

u2+ 1
2u2

x

)
x

Taking (1−∂2
x)−1 to be convolution with 1

2e−|x| gives

ut +∂x

[
1
2u2+ 1

2e−|x|∗ (
u2+ 1

2u2
x

)]= 0

(Better formulation for rigorously defining weak solutions.)
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The travelling wave

u(x, t ) = c e−|x−ct |

is a weak solution of the CH equation.

xct

u

Amplitude c
Velocity c

Peakon = peaked soliton
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A peakon with c < 0 is sometimes called an antipeakon:

xct

u

Amplitude c
Velocity c
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Multipeakon solutions

xx1 x2 x3

u

m1

m2

m3

u(x, t ) =
N∑

i=1

mi (t )e−|x−xi (t )|
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The multipeakon Ansatz

u(x, t ) =
N∑

i=1

mi (t )e−|x−xi (t )|

is a weak solution of the CH equation iff

ẋk = u(xk) ṁk =−mk

〈
ux(xk)

〉
for k = 1, . . . , N .

So the PDE is reduced to a finite-dimensional system of ODEs
for the positions xk and the amplitudes mk .

(Hamilton’s equations with H = 1
2

∑
i , j

mi m j e−|xi−x j |.)
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ODE for positions ẋk = u(xk)

xx1 x2 x3

u

ẋ1

ẋ2

ẋ3

Velocity of kth peakon = elevation of the wave at at that point.

10



ODE for amplitudes ṁk =−mk

〈
ux(xk)

〉
〈

ux(xk)
〉= ux(x−

k )+ux(x+
k )

2
= average slope of the wave at xk .

ṁ1

ṁ2

ṁ3

d

d t
ln |mk | =

ṁk

mk
=−〈

ux(xk)
〉

(or mk(t ) ≡ 0)

Positive/negative slope =⇒ |mk | decreasing/increasing.
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Peakon ODEs, special cases

For N = 1, we get the travelling wave (single peakon or antipeakon):

ẋ1 = m1 ṁ1 = 0

For N = 2, with Ei j = e−|xi−x j | = exi−x j for i < j :

ẋ1 = m1 +m2E12

ẋ2 = m1E12 +m2

ṁ1 =−m1m2E12

ṁ2 = m1m2E12

Can be integrated directly in new variables x1 ± x2 and m1 ±m2,
using constants of motion:

M = m1 +m2 H = 1
2(m2

1 +m2
2 +2m1m2E12)

(We always assume x1 < x2 < ·· · < xN . This is preserved at least
locally in time, and in fact globally for pure peakon solutions
where all mk > 0.)
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For N = 3, direct integration seems virtually impossible:

ẋ1 = m1 +m2E12 +m3E13

ẋ2 = m1E12 +m2 +m3E23

ẋ3 = m1E13 +m2E23 +m3

ṁ1 =−m1(m2E12 +m3E13)

ṁ2 =−m2(−m1E12 +m3E23)

ṁ3 =−m3(−m1E13 −m2E23)

But with the help of inverse spectral methods, the general solu-
tion (for arbitrary N ) can be found explicitly.

(Beals, Sattinger & Szmigielski 2000)

Remark. Ei j ≈ 0 if the peakons are far apart, so in that situation
each peakon is approximately a travelling wave:

ẋk ≈ mk ṁk ≈ 0
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For N = 3, the exact solution looks like this:

x1(t ) = ln
(λ1 −λ2)2(λ1 −λ3)2(λ2 −λ3)2a1a2a3∑

j<kλ
2
jλ

2
k(λ j −λk)2a j ak

x2(t ) = ln
(λ1 −λ2)2a1a2 + (λ1 −λ3)2a1a3 + (λ2 −λ3)2a2a3

λ2
1a1 +λ2

2a2 +λ2
3a3

x3(t ) = ln(a1 +a2 +a3)

m1(t ) =
∑

j<kλ
2
jλ

2
k(λ j −λk)2a j ak

λ1λ2λ3
∑

j<kλ jλk(λ j −λk)2a j ak

m2(t ) =
(
λ2

1a1 +λ2
2a2 +λ2

3a3

)∑
j<k(λ j −λk)2a j ak

(λ1a1 +λ2a2 +λ3a3)
∑

j<kλ jλk(λ j −λk)2a j ak

m3(t ) = a1 +a2 +a3

λ1a1 +λ2a2 +λ3a3

where λk = constant and ak(t ) = ak(0)e t/λk (for k = 1,2,3).
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The asymptotic velocities (and amplitudes) are 1
λk

.

For example, suppose 1
λ1

> 1
λ2

> 1
λ3

. Then, as t →+∞ :

x3(t ) = ln
(
a1(0) e t/λ1 +a2(0)e t/λ2 +a3(0)e t/λ3

)
= ln

(
a1(0)e t/λ1

(
1+o(1)

))
= t

λ1
+ ln a1(0)+o(1)

m3(t ) =
a1(0) e t/λ1 +a2(0)e t/λ2 +a3(0)e t/λ3

λ1a1(0) e t/λ1 +λ2a2(0)e t/λ2 +λ3a3(0)e t/λ3

= a1(0)e t/λ1
(
1+o(1)

)
λ1a1(0)e t/λ1

(
1+o(1)

)
= 1

λ1
+o(1)

15



A pure 3-peakon solution of the CH equation:

x

−5

5

t

−10

10

u

Asymptotic velocities : 1
λ1

= 3 1
λ2

= 1 1
λ3

= 2
5
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Viewing this from above, we see the positions x = xk(t ):

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

x = x1(t )

x = x2(t )

x = x3(t )

x

t

Incoming velocity for x1 = outgoing velocity for x3. (Etc.)

Always x1(t ) < x2(t ) < x3(t ), so no overtaking.
More like runners in a relay race.
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Sketch of derivation of N -peakon solution formulas
Consider the usual linear wave equation Uy y = g (y)Uττ for vibrations of a
string with mass distribution g (y). Assume ends are attached at y =±1.

Separation of variables U (y,τ) = Y (y)T (τ) gives a selfadjoint problem for the
vibrational eigenmodes of the string:

−Y ′′(y) = z g (y)Y (y) Y (−1) = Y (1) = 0
(
and T̈ (τ) =−z T (τ)

)
In particular: discrete mass distributions g (y) =

N∑
k=1

gk δ(y − yk) give eigen-

functions Y (y) that are piecewise linear.

Y1(y)
Y2(y) Y3(y)

Eigenvalues (squared eigenfrequencies): z =λ1, . . . ,λN . Real, nonzero, distict.

Number of pos./neg. eigenvalues λk = number of pos./neg. weights gk .

Residues of Weyl function: a1, . . . , aN . Positive. (Constant times Y ′
k(1)/Y ′

k(0).)

18



Integrability magic (thanks to the Lax pair for the CH equation):

• Let {xk(t), mk(t)}N
k=1 evolve in time according to the Camassa–Holm

peakon ODEs.

• Consider an associated discrete string where the positions yk ∈ (−1,1)
and weights gk of the point masses are given by yk = tanh(xk/2) and
gk = 2mk/(1− y2

k).

• Then this string deforms isospectrally, meaning that the eigenvalues λk

stay constant as t changes.

Moreover, the residues ak satisfy d
d t ak = ak/λk

(⇐⇒ ak(t ) = ak(0)e t/λk
)
.

The inverse spectral problem is to reconstruct the string from the spectral
dataλk and ak . The solution involves Stieltjes continued fractions, orthogonal
polynomials, Padé approximation, etc.

(Stieltjes 1894, Krein 1951, Moser 1975)

The time evolution of the spectral data is known, so reconstructing the string
gives the time evolution of the string variables yk(t ) and gk(t ), and hence of
the peakon variables xk(t ) and mk(t ). Done!
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A mixed CH solution (two peakons, one antipeakon):

x

−5

5

t

−5

5
u

1
λ1

> 1
λ2

> 0 > 1
λ3

1
λ1

= 3 1
λ2

= 1 1
λ3

=−2
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−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x = x1(t )

x = x2(t )

x = x3(t )

x = x1(t )

x = x2(t )

x = x3(t )

t = t ′

t = t ′′

x

t

Collisions at t = t ′ and t = t ′′. Derivative ux blows up, u doesn’t.
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Easier to see with just one peakon and one antipeakon:

x

−5

5

t

−5

5
u

1
λ1

> 0 > 1
λ2

1
λ1

= 2 1
λ2

=−1
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x

t =−2 t =−1

t = 0

At the collision, there is only one peakon

u(x,0) = lim
t↗0

u(x, t ) = m0 e−|x|

of amplitude
m0 = lim

t↗0

(
m1(t )+m2(t )

)
where m1(t ) →+∞ and m2(t ) →−∞.

(Actually M = m1 +m2 is a constant of motion for N = 2, so m0 = M .)

Similarly for collisions in general (N > 2).
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Weak solutions of the CH eqn are not unique.

In particular, continuation past the collision is not unique.

• Above: Conservative solution (Constantin & Escher 1998).

Peakon & antipeakon reappear.

The energy E(t ) = 1
2

∫
R(u2 +u2

x)d x drops at t = t0, and then
immediately returns to its previous value.

Also possible:

• Dissipative solution (Bressan & Constantin 2007).

Peakons stay merged. E(t ) only drops, never increases.

• α-dissipative solution (Grunert, Holden & Raynaud 2015).

Peakon & antipeakon reappear, but a fraction 0 < α < 1 of
the energy concentrated at the collision is lost).

(Conservative if α= 0, dissipative if α= 1.)
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Dissipative continuation of the solution starting out as above:

x

−5

5

t

−5

5
u
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−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

x = x1(t )

x = x2(t )

x = x3(t )

t = t ′

t = t ′′′

x

t

Peakons merge at collisions.
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mt +mxu +2mux = 0 Camassa–Holm (1993)

Some other integrable PDEs with peakon solutions:

mt +mxu +3mux = 0 Degasperis–Procesi (1998)

mt + (mxu +3mux)u = 0 V. Novikov (2008)

mt + (mxu +3mux)v = 0

nt + (nx v +3nvx)u = 0
Geng–Xue (2009)

where m = u −uxx and n = v − vxx
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Multipeakon solutions have the form u =∑N
i=1 mi e−|x−xi |

for all these equations, but the ODEs differ:

CH ẋk = u(xk) ṁk =−mk

〈
ux(xk)

〉
DP ẋk = u(xk) ṁk =−2mk

〈
ux(xk)

〉
Novikov ẋk = u(xk)2 ṁk =−mk u(xk)

〈
ux(xk)

〉

GX

ẋk = u(xk) v(xk) ṁk = mk

(
u(xk)

〈
vx(xk)

〉−2
〈

ux(xk)
〉

v(xk)
)

ẏk = u(yk) v(yk) ṅk = nk

(〈
ux(yk)

〉
v(yk)−2u(yk)

〈
vx(yk)

〉)
where u =∑N1

i=1 mi e−|x−xi |, v =∑N2
j=1 n j e−|x−y j |, xi 6= y j .
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Degasperis–Procesi peakons

Explicit N -peakon solution formulas via the inverse
spectral problem for the discrete cubic string:

− Y ′′′(y) = z g (y)Y (y)

Y (−1) = Y ′(−1) = 0 Y (1) = 0

(Lundmark & Szmigielski 2005)

Positive & simple eigenvalues for pure peakon solutions (Gantmacher–Krein
theory of oscillatory kernels). Eigenvalues can be complex in general.

Cauchy biorthogonal polynomials (Bertola, Gekhtman & Szmigielski 2009).
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Pure peakon solutions for DP look similar to CH.

But peakon–antipeakon collisions for DP behave very
differently:

x

t =−2 t =−1

t = 0

In the limit, u(x, t ) develops a shock.
(Lundmark 2007, Szmigielski & Zhou 2013)
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The DP equation rewritten as

ut +∂x

[
1
2u2+ 1

2e−|x|∗ 3
2u2

]
= 0

admits weak solution that need not be continuous.
Entropy condition gives existence and uniqueness.

(Coclite & Carlsen 2006)

The entropy solution after the collision (for t ≥ 0) is a
shockpeakon:

u(x, t ) = (
m1(t )− s1(t )sgn(x −x1(t ))

)
e−|x−x1(t )|

ẋ1 = m1 ṁ1 = 0 ṡ1 =−s2
1

(Lundmark 2007)
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x

t = 0

t = 1
t = 2 t = 3 t = 4

m1

Constant velocity ẋ1

= average amplitude m1 at the jump.

Shock strength s1(t ) = s1(0)

t + s1(0)
decays like

1

t
.
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More generally: multishockpeakon solutions.

u(x, t ) =
N∑

k=1

(
mk(t )− sk(t )sgn(x −xk(t ))

)
e−|x−xk(t )|

Governed by a system of 3N ODEs for positions xk,
amplitudes mk and shock strengths sk.

(Lundmark 2007)

Open problem:

Are these ODEs integrable?

(Trivial for N = 1, but very little is known for N ≥ 2.)
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Novikov peakons

Explicit N -peakon solution using dual discrete cubic
string (swap roles of distances and masses).

Positive & simple eigenvalues in pure peakon case.
(Hone, Lundmark & Szmigielski 2009)

For mixed peakon–antipeakon solutions, eigenvalues
need not be real, nor simple.

The real part is always nonnegative.

Since ẋk = u(xk)2, both peakons and antipeakons move
to the right, but they collide anyway.

(Kardell & Lundmark, in preparation)
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At collisions, u stays continuous, and

E(t ) = 1

2

∫
R

(u2+u2
x)d x

is preserved.

Conservative solutions are instead defined using a
conserved quantity of degree four,

F (t ) =
∫

R
(u4+2u2u2

x − 1
3u4

x)d x.

(Chen, Chen & Liu 2018)
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Novikov two-peakon ODEs

ẋ1 = (m1 +m2E12)2

ẋ2 = (m1E12 +m2)2

ṁ1 =−m1m2E12(m1 +m2E12)

ṁ2 = m1m2E12(m1E12 +m2)

Constants of motion:

H1 = c1 + c2 = m2
1 +m2

2 +2m1m2E12

H2 = c1c2 = m2
1m2

2(1−E 2
12)

where c1,2 are asymptotic velocities (for pure peakons at least).

Already this two-peakon system is quite difficult to solve completely by direct
integration!
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• Hone & Wang (2008) give explicit expressions (in the pure peakon case)
for m2(t )2 −m1(t )2, m1(t )m2(t ) and x2(t )−x1(t ), together with

x1(t )+x2(t ) = (c1 + c2)(t − t0)+
∫

f (T )dT

f (T ) = 2(c2
1 − c2

2)
(
(c1 − c2)2 +8c1c2 cosh2 T

)
(c1 − c2)4 +16c1c2(c1 + c2)2 cosh4 T

T = 1
2(c1 − c2)(t − t0)

“and the quadrature can be performed explicitly by partial fractions in
tanh(T ), but the answer is omitted here.”

• Himonas, Holliman & Kenig (2018), looking specifically at the peakon–
antipeakon case x1(0) = −a, x2(0) = a, m1(0) = −b −δ, m2(0) = b, give
formulas for m2(t )±m1(t ) and m1(t )m2(t ) in terms of q(t ) = x2(t )−x1(t ),
together with an ODE for q(t ),

q̇(t ) =−
(

w 2
0 +2z1

(p
1−e−2q0

1+e−q0
−
p

1−e−2q(t )

1+e−q(t )

))1/2

×
(

p2
0 +2z1

(
1+e−q(t )

p
1−e−2q(t )

− 1+e−q0

p
1−e−2q0

))1/2

(1−e−2q(t ))

They then estimate the solution in terms of solutions to a simpler ODE.
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Novikov two-peakon solution, as obtained from the
(almost) general N -peakon solution formulas:

x1(t ) = 1
2 ln

(λ1−λ2)4

(λ1+λ2)2λ1λ2
b2

1b2
2

λ1 b2
1 +λ2 b2

2 + 4λ1λ2

λ1+λ2
b1b2

x2(t ) = 1
2 ln

(
1
λ1

b2
1 + 1

λ2
b2

2 + 4
λ1+λ2

b1b2

)

m1(t ) =

(
(λ1−λ2)4

(λ1+λ2)2λ1λ2
b2

1b2
2

(
λ1 b2

1 +λ2 b2
2 + 4λ1λ2

λ1+λ2
b1b2

))1/2

(λ1−λ2)2

λ1+λ2
b1b2 (b1+b2)

m2(t ) =

(
1
λ1

b2
1 + 1

λ2
b2

2 + 4
λ1+λ2

b1b2

)1/2

b1+b2

where b1(t ) = b1(0)e t/λ1 b2(t ) = b2(0)e t/λ2
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• m1 & m2 positive ⇐⇒ 0 <λ1 <λ2, b1 & b2 positive.

• m1 & m2 negative ⇐⇒ 0 <λ1 <λ2, b1 & b2 negative.

• m1 & m2 of opposite signs ⇐⇒

0 <λ1 <λ2, b1 & b2 of opposite signs.

or

λ2 = λ1 with positive real part and nonzero imaginary part,
b2 = b1 nonzero.

or

Double eigenvalue 0 <λ1 =λ2 for which the above formulas
are not valid, since b1 & b2 are not meaningful.

(Separate solution formulas for this case can be obtained
by letting λ2 →λ1 while handling b1,2 properly.)
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The character of the eigenvalues in the mixed peakon–antipeakon
case are determined by

E = ex1−x2 and σ=
∣∣∣∣m1

m2

∣∣∣∣+ ∣∣∣∣m2

m1

∣∣∣∣
as follows:

σ

E

1

2 p
8

(σ2 −E)2 +E 2 = 1

•

Complex-conjugate pair of eigenvalues with positive real part

•

Positive eigenvalue of multiplicity 2

•

Pair of simple positive eigenvalues
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Real and simple eigenvalues (conservative solution)

x

−5

5

t

−5

5

u

1
λ1

= 1 1
λ2

= 1
2 b1,2(0) =±

p
6

Just one collision. Scattering. Asymptotic velocities 1 and 1
2.
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Complex eigenvalues (conservative solution)

x

−5

5

t

−4

4

u

1
λ1,2

= 2
3 ± i π4 b1,2(0) =∓ 4i

π
p

3

Periodic + drift of velocity 2
3. Frequency π

4 (i.e. period 2π
π/4 = 8).
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The Novikov equation can be written as

ut +u2ux + 1
2e−|x|∗

((
u3 + 3

2uu2
x

)
x + 1

2u3
x

)
= 0

• Well-posed in H s for s > 3
2.

Sobolev embedding: H s ⊂C 1. Smoother than peakons.

(Tığlay 2011 for s > 5
2 , Himonas & Holliman 2012)

• But ill-posed for s < 3
2 (peakons).

Shown by studying the N = 2 peakon–antipeakon solution.

(Himonas, Holliman & Kenig 2018)
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Similar results for CH and DP are much easier to obtain,
since one can get them already from the particularly simple
antisymmetric peakon–antipeakon solution:

x

x1 +x2 = m1 +m2 = 0

The Novikov equation has no such solution, since xk = u(xk)2

cannot be negative. Everything moves to the right.
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A conservative 5-peakon solution of the Novikov equation:

x−5
5

t

−10

10

u

Three peakons, two antipeakons.

One real eigenvalue λ= 1.

Two complex-conjugate eigenvalue pairs
with common value of Re(1/λ) = 1

2.
Re( 1

λ
)

Im( 1
λ

)

1

1
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12

x1

x2
x3

x4
x5

x

t

xk+1(t )−xk(t ) =O
(
(t − t0)4

)
at a typical collision. Powers 4k can also occur.

(The power is always 2 for Camassa–Holm collisions.)
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0
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x

t

Asymptotically, a solitary peakon (velocity 1
λ
= 1) and a four-peakon cluster

with overall drift velocity Re( 1
λ

) = 1
2 and two frequencies Im( 1

λ
) ∈ {1

2 ,1}.

To describe the asymptotics precisely, one needs the exact 4-peakon solution
formulas!
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Lots of possibilities:

• Arbitrarily many clusters, each with arbitrarily many
peakons.

• Frequencies commensurable or not.

(Periodic or quasi-periodic behaviour.)

• Eigenvalues of higher multiplicity.

(Peakons separate at logarithmic rate as t →±∞.)

• Purely imaginary eigenvalues (if N ≥ 3).

(Peakons slow to a halt, amplitude tends to zero.)

(Kardell & Lundmark)
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Geng–Xue peakons

Peakons in u and v must be non-overlapping.

First: Solution formulas for interlacing K +K case

u(x, t ) =
K∑

i=1

mi (t )e−|x−xi (t )|

v(x, t ) =
K∑

i=1

ni (t )e−|x−yi (t )|

where

x1 < y1 < x2 < y2 < ·· · < xK < yK

(Lundmark & Szmigielski 2016, 2017)
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The GX equation has two Lax pairs (swap u and v),
leading to two spectral problems of cubic string type.

The solution formulas for the K +K interlacing case
contain two sets of constant eigenvalues

{λi }K
i=1, {µ j }K−1

j=1

with associated residues {ai }K
i=1 and {b j }K−1

j=1 such that

ai (t ) = ai (0)e t/λi , b j (t ) = b j (0)e t/µ j ,

plus two additional constants C and D also coming
from the spectral problems.

(4K parameters in total, as it should be.)
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Example. The solution formulas for the 3+3 interlacing case:

X1 = 1
2 e2x1 = J00

32

J11
21+C J10

22

Y1 = 1
2 e2y1 = J00

32

J11
21

X2 = 1
2 e2x2 = J00

22

J11
11

Y2 = 1
2 e2y2 = J00

21

J11
10

X3 = 1
2 e2x3 = J00

11 Y3 = 1
2 e2y3 = J00

11+D J00
10

Q1 = 2m1e−x1 = µ1µ2

λ1λ2λ3

(
J11

21

J10
22

+C

)
P1 = 2n1e−y1 = J11

21 J10
22

J01
21 J01

32

Q2 = 2m2e−x2 = J11
11 J01

21

J10
11 J10

22

P2 = 2n2e−y2 = J11
10 J10

11

J01
10 J01

21

Q3 = 2m3e−x3 = J01
10

J10
11

P3 = 2n3e−y3 = 1

J00
10

where, for instance,

J01
21 =

(λ1 −λ2)2µ1

(λ1 +µ1)(λ2 +µ1)
a1a2b1 +

(λ1 −λ3)2µ1

(λ1 +µ1)(λ3 +µ1)
a1a3b1 +

(λ2 −λ3)2µ1

(λ2 +µ1)(λ3 +µ1)
a2a3b1

+ (λ1 −λ2)2µ2

(λ1 +µ2)(λ2 +µ2)
a1a2b2 +

(λ1 −λ3)2µ2

(λ1 +µ2)(λ3 +µ2)
a1a3b2 +

(λ2 −λ3)2µ2

(λ2 +µ2)(λ3 +µ2)
a2a3b2

51



Collisions lead to shockpeakon formation, so here we
assume pure peakon solutions (no antipeakons).

Then the eigenvalues are positive and simple:

0 <λ1 <λ2 < ·· · <λK , 0 <µ1 <µ2 < ·· · <µK−1

Asymptotic velocities as t → ±∞ for 3+ 3 interlacing solution
(from fastest to slowest):

1

2

(
1

λ1
+ 1

µ1

)
︸ ︷︷ ︸

twice

,
1

2

(
1

λ2
+ 1

µ1

)
,

1

2

(
1

λ2
+ 1

µ2

)
,

1

2

(
1

λ3
+ 1

µ2

)
,

1

2

(
1

λ3

)
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Positions: x = xk(t ) and x = yk(t )

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

x1

y1

x2

y2 x3 y3

x1 y1 x2

y2

x3

y3

x

t

Incoming ẋ1 & ẏ1 = outgoing ẋ3 & ẏ3. Incoming ẋ2 = outgoing ẏ2. (Etc.)
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The amplitudes mk and nk (typically) do not tend to
constants as t →±∞ .

Instead they grow or decay exponentially.

Thus, the curves

s = lnmk(t ) s =− lnnk(t )

asymptotically approach straight lines as t → ±∞, with slopes
as follows (in order):

1

2

(
1

λ1
− 1

µ1

)
︸ ︷︷ ︸

twice

,
1

2

(
1

λ2
− 1

µ1

)
,

1

2

(
1

λ2
− 1

µ2

)
,

1

2

(
1

λ3
− 1

µ2

)
,

1

2

(
1

λ3

)
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Logarithms of amplitudes: s = lnmk(t ) and s =− lnnk(t )

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

lnm1

lnm2

lnm3

− lnn1

− lnn2

− lnn3

lnm1

lnm2

lnm3

− lnn1

− lnn2

− lnn3

t

s
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Next, solution formulas for arbitrary configurations.
(Shuaib & Lundmark, preprint 2018)

Notation for positions:

x1,1 < x1,2 < ·· · < x1,N X
1︸ ︷︷ ︸

First X -group

< y1,1 < y1,2 < ·· · < y1,N Y
1︸ ︷︷ ︸

First Y -group

< ·· ·

<x j ,1 < x j ,2 < ·· · < x j ,N X
j︸ ︷︷ ︸

j th X -group

< y j ,1 < y j ,2 < ·· · < y j ,N Y
j︸ ︷︷ ︸

j th Y -group

< ·· ·

<xK ,1 < xK ,2 < ·· · < xK ,N X
K︸ ︷︷ ︸

Last X -group

< yK ,1 < yK ,2 < ·· · < yK ,N Y
K︸ ︷︷ ︸

Last Y -group

Similarly for the amplitudes m j ,i and n j ,i .
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Inverse spectral technique does not work directly.

For non-interlacing configurations, the Lax pairs yield
too few constants of motion.

Instead: use ghostpeakon technique.

Ghostpeakons are also useful for deriving exact formulas for the
characteristic curves x = ξ(t ) of a peakon solution u(x, t ):

ξ̇(t ) = u
(
ξ(t ), t

)
for CH & DP

ξ̇(t ) = u
(
ξ(t ), t

)2
for Novikov

These curves were used for making the 3D plots of u(x, t ) above.

(Lundmark & Shuaib 2019)
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• An arbitrary configuration is given.

• Pad it with auxiliary peakons to obtain a K +K interlacing
configuration. In the known solution formulas for that con-
figuration, make a substitution of the form

λK = constant

ε
aK (0) = constant× εk1

µK−1 = constant

ε
bK−1(0) = constant× εk2

and let ε→ 0+ .

• With the powers k1 & k2 suitably chosen, this will turn one
of the inserted auxiliary peakons into a “ghostpeakon” with
amplitude zero.

• Repeat this, to “kill” all the inserted peakons, one by one.
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Example. Solution sought for this config with 3+3 groups:

x1 < y1,1 < y1,2 < y1,3︸ ︷︷ ︸
Y -group

< x2 < y2 < x3,1 < x3,2 < x3,3︸ ︷︷ ︸
X -group

< y3,1 < y3,2 < y3,3 < y3,4︸ ︷︷ ︸
Y -group

Schematically:

Steps to obtain solution formulas:

Start (10+10 interlacing) ,

Step 1a ,

Step 1b ,

Step 1c ,

Step 2a ,

Step 2b ,

Step 3a ,

Step 3b (finish) .

Need to keep track of what happens to all the solution formulas
at each step. At the end, the desired formulas remain.
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Results

• Singletons obey the formulas from the interlacing case.

• Each group with N ≥ 2 peakons has internal parameters

τ1, . . . ,τN−1 > 0 0 <σ1 < ·· · <σN−1

appearing only in the solution formulas for that group.

• The two spectral problems only sense the effective position
and amplitude of each group:

m̃ j e x̃ j =
N∑

i=1

m j ,i ex j ,i m̃ j e−x̃ j =
N∑

i=1

m j ,i e−x j ,i

The additional constants of motion τi and σi (not coming
from the Lax pairs) are needed in order to determine what
happens inside each group.
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Example. 3+3 groups, all singletons except one 5-peakon group.

X1 =
J00

32

J11
21+C J10

22

Y1 =
J00

32

J11
21

X2 =
J00

22

J11
11

Y2,1 = J00
22+τ1 J00

21

J11
11+τ1 J11

10

(
τi = τY

2,i & σi =σY
2,i

)
Y2,2 = J00

22+(τ1 +τ2) J00
21+(τ2σ1) J00

11

J11
11+(τ1 +τ2) J11

10+(τ2σ1) J11
00

Y2,3 = J00
22+(τ1 +τ2 +τ3) J00

21+(τ2σ1 +τ3σ2) J00
11

J11
11+(τ1 +τ2 +τ3) J11

10+(τ2σ1 +τ3σ2) J11
00

Y2,4 = J00
22+(τ1 +τ2 +τ3 +τ4) J00

21+(τ2σ1 +τ3σ2 +τ4σ3) J00
11

J11
11+(τ1 +τ2 +τ3 +τ4) J11

10+(τ2σ1 +τ3σ2 +τ4σ3) J11
00

Y2,5 = J00
21 +σ4 J00

11

J11
10 +σ4 J11

00

X3 =
J00

11

J11
00

= J00
11 Y3 = J00

11+D J00
10
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Positions for the config on the previous page: ︸ ︷︷ ︸

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

x1

y1

x2

y2,i

i = 1
2

3

4

5

x3 y3

x1 y1 x2

y2,i

1

2

3 4
5

x3

y3

x

t
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Two main cases

• Even case: K +K groups. {λi }K
i=1 and {µ j }K−1

j=1

• Odd case: (K +1)+K groups. {λi }K
i=1 and {µ j }K

j=1

Already the interlacing odd case is a bit surprising:

Asymptotic velocities

(4+3 interlacing case)

t →−∞ t →+∞

1

2

(
1

λ1
+ 1

µ1

)
= 1

2

(
1

λ1
+ 1

µ1

)
(twice)

1

2

(
1

λ2
+ 1

µ1

)
6= 1

2

(
1

λ1
+ 1

µ2

)
1

2

(
1

λ2
+ 1

µ2

)
= 1

2

(
1

λ2
+ 1

µ2

)
1

2

(
1

λ3
+ 1

µ2

)
6= 1

2

(
1

λ2
+ 1

µ3

)
1

2

(
1

λ3
+ 1

µ3

)
= 1

2

(
1

λ3
+ 1

µ3

)
1

2

(
0 + 1

µ3

)
6= 1

2

(
1

λ3
+ 0

)
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Example. Positions for a 4+3 interlacing configuration:

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

x1

y1

x2

y2 x3 y3 x4

x1 y1 x2 y2

x3 y3

x4

x

t

Incoming ẋ1 & ẏ1 = outgoing ẏ3 & ẋ4. But incoming ẋ2 6= outgoing ẋ3. (Etc.)
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THE END


