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LINKÖPINGS UNIVERSITET Kurskod: TAMS24
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Matematisk statistik Datum: 2018-10-22

Institution: MAI

Exam in Statistics
TAMS24/TEN1 2018-10-22 8–12

You are permitted to bring:

• a calculator (no computer);

• Formel- och tabellsamling i matematisk statistik (from MAI);

• Formel- och tabellsamling i matematisk statistik, TAMS65;

• TAMS24: Notations and Formulas (by Xiangfeng Yang).

Grading: 8-11 points giving grade 3; 11.5-14.5 points giving grade 4; 15-18 points giving grade 5.
Your solutions need to be complete, well motivated, carefully written and concluded by a clear
answer. Be careful to show what is random and what is not. Assumptions you make need to be
explicit. The exercises are in number order.

Solutions can be found on the homepage a couple of hours after the finished exam.

1. Let f(x ; θ) be the density function for the Gamma distribution (with unknown parame-
ter θ),

f(x ; θ) =
θ(θx)v−1e−θx

Γ(v)
,

where x > 0 and v > 0.

(a) Find the ML-estimate θ̂ for θ. (2p)

(b) Show that the estimate 1/θ̂ is an unbiased estimate of 1/θ. Hint: If X is Gamma
distributed like above, then E(X) = v/θ. (1p)

2. During one hundred days, Lena and Sture has been collecting used syringes at a central
cemetery that’s used by the local drug addicts. They’ve written down the number found
each day and the corresponding frequencies can be found below.

Number found 0 1 2 3 4
Frequency 38 33 26 2 1

Lena believes the data is Po(1)-distributed (Poisson distributed with expectation 1), but
Sture disagrees. Use a suitable test to see if Sture is correct in rejecting the hypothesis at
the 1%-level. (2p)



3. Belinda is a hobby chemist experimenting with organic peroxides. She’s trying to synthesize
hexamethylene triperoxide diamine (HMTD) using two slightly different methods. Method
one uses citric acid and method two uses glacial acetic acid. Belinda is interested in if the
yield is better when using citric acid, since this method produces more heat and requires
more attention. She’s done 10 experiments using each method and the yield (calculated
as a fraction of the amount of hexamethylene diamine used) rounded off can be seen in
the table below. We assume that the measurements are normally distributed and that
different batches are independent. We also assume that the variance is the same for both
methods.

Yield x s
Citric acid 55 36 55 64 53 58 55 45 51 40 51.2 8.5088
Acetic acid 50 38 39 40 27 54 47 40 53 35 42.3 8.5641

(a) Perform a test using at least one confidence interval to see if the method using citric
acid produces a better yield with confidence level 90%. (2p)

(b) Perform a test to check if it was reasonable to assume that the variances were equal
(with significance level 5%). (1p)

4. In matlab there is a command randn(n) for creating square matrices with random ele-
ments from a normal distribution. When testing to generate a growing sequence of matrices
and timing the operation for each matrix (for example by using the command cputime),
the following execution times were obtained.

x 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
y 0.03 0.09 0.21 0.37 0.58 0.84 1.15 1.49 1.90 2.32 2.83 3.36 3.93 4.57

The number x is the number of rows times divided by one thousand (so x = 2 means 2000
rows) and y is the execution time (the time it took to generate the matrix in question).
Since the number of elements in the matrix grows quadraticly, the following model seems
reasonable

Y = β0 + β1x+ β2x
2 + ε,

where ε ∼ N(0, σ) and different measurements are assumed to be independent.

(a) At the 1% level, can you reject the hypothesis that β1 = 0? Interpretation? (1p)

(b) Find a prediction interval with degree of confidence 99% for the execution time
if x = 11.5. (2p)

(c) Estimate the execution time if x = 20 using a reasonable estimate based on the
model. Is there a problem with using the model for “large” x? (1p)

A helpful mathematician has done the following calculations for you.

i β̂i d(β̂i)
0 −0.2198 · 10−3 6.7413 · 10−3

1 0.5220 · 10−3 2.0676 · 10−3

2 23.2692 · 10−3 0.1341 · 10−3

Analysis of variance
Degrees of freedom Square sum

REGR 2 29.3755
RES 11 5.7582 · 10−4

TOT 13 29.3761

(XTX)−1 =

 868.1319 −239.0110 13.7363
−239.0110 81.6621 −5.1511

13.7363 −5.1511 0.3434

 · 10−3.



5. Conny is ordering a bunch of seeds from the Netherlands, planning to do some ”farming.”
The guy selling them claims that out of 10 seeds, at least 8 will grow pretty much no
matter how much abuse you throw at them. Conny believes this and orders 15 seeds and
plants them. After a while, he finds that only 10 has grown. Conny – who considers himself
a decent enough statistician – forms the hypothesis test H0 : p = 0.8 versus H1 : p < 0.8
and assumes that the seeding of the seeds is independent.

(a) Carry out the test at the significance level 5%. (1p)

(b) What is the power of the test at p = 0.65? (1p)

(c) How many seeds would Conny need to order to obtain a test with a power of 90%
at p = 0.65 (using the same level of significane)? (2p)

6. Suppose that Y = (Y1 Y2 · · · Yk)T , where the components Yi are normally distributed
and independent with the same variance. If A,B ∈ Rk×k are constant symmetric matrices
such that A2 = A and B2 = B, prove that Y TAY and Y TBY are independent if AB = 0.

(2p)



Solutions
TAMS24/TEN1 2018-10-22

1. Let x1, x2, . . . , xn be a sample of size n from the Gamma distribution given in the exercise.

(a) The likelihoodfunction L(θ) is given by

L(θ) =
n∏
i=1

θ(θxi)
v−1e−θxi

Γ(v)
.

The parameter space is Ωθ = (0,∞). We were not given any restrictions on θ, but
without this assumption it is not clear that we end up with a density function. We
form the loglikelihood and take the derivative

logL(θ) =
n∑
i=1

(
v log θ + (v − 1) log xi − θxi − log Γ(v)

)
,

d logL(θ)

dθ
=
n

θ
+
n(v − 1)

θ
−

n∑
i=1

xi.

We’re seeking an extremum, so we’re looking for points where the derivative is zero:

n+ n(v − 1)

θ
− nx̄ = 0 ⇔ θ =

v

x̄
,

where x̄ is the mean value of the sample. The sign-change for the derivative at the
point θ̂ = v/x̄ is +0−, so we’re dealing with a maximum. It is also clear that θ̂ ∈ Ωθ

unless all samples are equal to zero, which would be a ridiculous sample.

(b) We replace x̄ by the stochastic quantity X̄, where xj are observations of Xj that are
Gamma distributed. We obtain that

E

(
1

Θ̂

)
= E

(
X̄

v

)
=

1

nv

n∑
i=1

E(Xi) =
1

nv

nv

θ
=

1

θ
,

where we used the hint that told us that the expectation of a Gamma distributed
random variable is v/θ.

Answer: a) The ML-estimate is given by θ̂ = v/x̄. b) See above.

2. Let H0 be the hypothesis that the data is from a Po(1) variable X and H1 that this is not
true. In total, we have n = 100 observations. Suppose that H0 is true. Then

P (X = j) =
1j

j!
e−1 =

e−1

j!
,

so we can calculate the last two lines in the following table

X = ? 0 1 2 3 4 ≥ 5
xj (frequency) 38 33 26 2 1 0
pj 0.368 0.368 0.184 0.061 0.015 0.004
npj 36.8 36.8 18.4 6.1 1.5 0.4



We used that P (X ≥ 5) = 1 −
∑4

j=0 pj to calculate p5. We realize here that we have a

problem with the last categories since npj < 5. We have to merge these to use a χ2-test,
so let us consider the following categories.

X = ? 0 1 2 ≥ 3
xj (frequency) 38 33 26 3
pj 0.368 0.368 0.184 0.0805
npj 36.8 36.8 18.4 8.05

The normal test quantity is found in

q =
3∑
j=0

(xj − npj)2

npj
=

(38− 36.8)2

36.8
+

(33− 36.8)2

36.8
+

(26− 18.4)2

18.4
+

(3− 8.05)2

8.05
= 6.7387.

If H0 is true, then q is an observation of Q
appr.∼ χ2(4 − 1) = χ2(3). We reject H0 if q is

large, so we need a critical region C. From a table we find that c = χ2
0.01(3) = 11.34 and

we define C = [c,∞). If q ≥ c, we reject H0.

x

y

c

Reasonable observations if H0 holds. C

α

Since q 6∈ C, the conclusion is that we can’t reject H0. So Sture is wrong in rejecting H0

at this level.

Answer: Sture is wrong. The hypothesis can not be rejected at this level.

3. So the model is that for using citric acid we assume that Xi ∼ N(µ1, σ
2) and for acetic

acid that Yi ∼ N(µ2, σ
2) (same variance). All variables are assumed to be independent.

(a) We weight together the variances according to the pooled variance:

s2 =
9s2

1 + 9s2
2

18
=

1

2

(
s2

1 + s2
2

)
.

It now follows that (by Cochran’s and Gosset’s theorems)

T =
X − Y − (µ1 − µ2)

S
√

1
10

+ 1
10

∼ t(18),

and
P (T < tα(18)) = 1− α,



where we can solve the inequality for

X − Y − tα(18) · S√
5
< µ1 − µ2.

We use a one-sided interval since we only want to investigate if µ1 > µ2. From a
table, we find that t0.10(18) = 1.3304.

x

y

tα(18)

As an observation of S, we use
√
s2, so

t0.10(18)
s√
5

= 1.3304 · 3.8176 = 5.0790.

Since x− y = 8.9, the interval is given by

Iµ1−µ2 = (8.9− 5.0790, ∞)

= (3.821, ∞).

We see that 0 is not included in the interval, so we can claim that the citric acid
produces a better yield at this significance level. (it is reasonable that µ1 > µ2).

(b) Let
H0 : σ2

1 = σ2
2 = σ2

versus
H1 : σ2

1 6= σ2
2.

If H0 is true, then 9S2
1/σ

2 ∼ χ2(9) and 9S2
2/σ

2 ∼ χ2(9). Since these quantities are
independent, we have

V =

9S2
1

σ2
/(9)

9S2
2

σ2
/9

=
S2

1

S2
2

∼ F (9, 9).

We’re looking for a critical region C such that

α = P (V ∈ C |H0)

and we reject H0 if we obtain an observation in C.



x

y

ba

Reasonable

observations

if H0 holds.

C C

α
2

α
2

We find a and b from a table such that

P (V < a) = P (V > b) =
α

2
= 0.025,

so b = 4.0260 and a = 0.2484. Since

v =
8.50882

8.56412
= 0.9871 6∈ C

we can’t reject H0. The variances might be the same (it is not unreasonable).

Answer: (a) Citric acid produces a better yield. (b) Inconclusive. It is not unreasonable
that the variances are the same.

4. We can formulate the problem as a matrix equation Y = Xβ + ε, where X is the design
matrix

XT =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 4 9 16 25 36 49 64 81 100 121 144 169 196

 .

The LSE β̂ of β can be obtained from the well-known formula

(XTX)−1XTy =

 −0.2198
0.5220
23.2692

 · 10−3.

We recognize this from the data given in the exercise (and thus it’s not a step necessary
for the solution). The estimated regression line can be written

µ̂(x) = (−0.21978 + 0.521978x+ 23.269x2) · 10−3

and the estimate value at the point x = 20 is obtained as µ̂(20) = β̂T ·(1, 20, 202)T ≈ 9.32,
so that’s the answer for the last part of this exercise. But we’ll get back to that.

(a) To test if β1 = 0, let H0 : β1 = 0 and H1 : β1 6= 0. Assume that H0 holds. Then

T =
β̂1 − 0

S
√
h11

∼ t(11),

where the distribution is clear since H0 holds. We need a critical region C such
that P (T ∈ C |H0) = 0.05 and since H1 is double sided, we choose symmetrically.



Figure 1: The given measurements match the regression line. If the model holds when x� 14
is not clear.

x

y

t0.025(11)−t0.025(11) 0

Reasonable

observations

if H0 holds.

C C

We find tα/2(11) = t0.005(11) = 3.1058 in a table. An observation of S
√
h11 is given

by the standard error d(β̂1) and thus we find that the observation

t =
0.5220 · 10−3

2.0676 · 10−3
= 0.2525

does not belong to the critical region. So we can not reject H0. The coefficient β1

might very well be zero.

(b) When it comes to finding a prediction interval at x = 11.5, we let u = (1 11.5 11.52)T

and Y0 be an independent random observation at x = 11.5. Let µ̂0 be the estimate
for µ at x = 11.5. A well known test quantity is

T =
Y0 − µ̂0

S
√

1 + uT (XTX)−1u
∼ t(11).

We can box in this variable and solve for Y0:

−t < T < t ⇔ −t < Y0 − µ̂0

S
√

1 + uT (XTX)−1u
< t

⇔ µ̂0 − tS
√

1 + uT (XTX)−1u < Y0 < µ̂0 + tS
√

1 + uT (XTX)−1u,

where t = tα/2(11) = t0.005(11) = 3.1058. We can now calculate that

uT (XTX)−1u = 0.1417,



so
√

1 + uT (XTX)−1u = 1.0685. As an observation of S, we use

s =

√
5.7582 · 10−4

11
= 0.0072.

For µ̂0, we use the observation uT β̂ = 3.0831. Thus we obtain the prediction interval

IY0 =

(
3.0831∓ 3.1058 · 0.0072 · 1.0685

)
= (3.0592, 3.1070).

Answer:

(a) No, β1 could be zero. A possible interpretation is that the first degree term is drowned
out in the second algorithmically, meaning that operations are always performed on
all elements squarely.

(b) (3.059, 3.107).

(c) The estimated value is 9.32. It is always uncertain to predict values outside the
domain from which we’ve measured. In this case, there would be a gigantic shift in
time consumption if the physical RAM memory would run out and the computer
moves on to storing things on a hard drive instead. It might stile scale quadratically,
but the constants will change. Moreover, if the hard drive runs out of space? What
happens then... etc. Don’t use a method outside the interval for which we have
observations.

5. (a) We help Conny by performing his hypothesis test. Let X be the number of seeds that
grow when planting 15. Then X ∼ Bin(n, p), where n = 15 och p is the unknown
probability of a seed to grow. We want to test

H0 : p = 0.8

versus
H1 : p < 0.8.

Given that H0 is true, we expect the frequency 15 · 0.8 = 12 for the number of seeds
that grow. Is x = 10 significantly less? We need the critical region C.

x

y

c

C observations here do not support H1

Since

p(x) =

(
15
x

)
0.8x · 0.215−x,



we can calculate that

8∑
x=0

p(x) = 0.0181 och
9∑

x=0

p(x) = 0.0611

so it is clear that c = 8 is necessary for obtaining a significance level not higher
than 5% . Thus,

C = {x ∈ Z : 0 ≤ x ≤ 8}
and our observation x = 10 6∈ C. Hence we can’t reject H0. The seller might be
speaking the truth.

(b) The power at p = 0.65 can be calculated straight from the definition:

h(0.65) = P (H0 rejected | p = 0.65) = P (X ∈ C | p = 0.65)

=
8∑

x=0

(
15
x

)
0.65x · 0.3515−x = 0.2452.

(c) We assume that we can approximate X by a normal distribution so that

X
appr.∼ N(np, np(1− p)).

This will be okay if np(1− p) ≥ 10. We’ll need to check that this holds when we’re
done. Let c = Φ−1(0.05) and d = Φ−1(0.90). Then

0.05 = Φ(c) = P (H0 rejected | p = 0.8) = P (X ≤ a | p = 0.8) ≈ Φ

(
a− 0.8n√
n · 0.8 · 0.2

)
⇔ c =

a− 0.8n√
n · 0.8 · 0.2

⇔ a = c
√
n · 0.16 + 0.8n

and

0.9 = P (H0 rejected | p = 0.65) = P (X ≤ a | p = 0.65) ≈ Φ

(
a− 0.65n√
n · 0.65 · 0.35

)
⇔ d =

a− 0.65n√
n · 0.2275

⇔ a = d
√
n · 0.2275 + 0.65n

Thus

c
√
n · 0.16+0.8n = d

√
n · 0.2275+0.65n ⇔

√
n =

d
√

0.2275− c
√

0.16

0.15
= 8.4614,

so n = 72 is sufficient. With this n we can find a according to

a = d
√
n · 0.2275 + 0.65n = 51.99

or
a = c

√
n · 0.16 + 0.8n = 52.02.

We choose a = 51 to be sure that the critical region doesn’t become too large.
Since n = 72 makes np(1− p) > 10 for both p = 0.8 and p = 0.65, our approximation
should be okay.

Doing an exact verification, we can see that if X ∼ Bin(72, p) we obtain that

P (X ≤ 51 | p = 0.8) = 0.0406 and P (X ≤ 51 | p = 0.65) = 0.8783.



Alternate interpretation. One could also interprete the question as using the
exactly same significance level we ended up with earlier, i.e., α = 0.0181. In this
case, letting c = Φ−1(0.0181) = −2.0947 we will obtain that

√
n = 9.6609, so n = 94

would be chosen. This leads to a = 67.

Answer:

(a) We can’t reject H0.

(b) The power is 0.2452.

(c) n = 72 (giving c = 51).

6. It is clear that D = cov(Y ) is a diagonal matrix since the components are independent.
Moreover, since A2 = AT = A, we can see that

Y TAY = Y TATAY = (AY )T (AY ),

and similarly that Y TBY = (BY )T (BY ). Let us show that AY and BY are independent.
The result will then follow since Y TAY and Y TBY clearly are functions of AY and BY ,
respectively. Since Y is normally distributed, this is also true for AY and BY . Thus
it is enough to show that the variables are uncorrelated to obtain independence. The
covariance is given by

cov(AY , BY ) = E(AY (BY )T )− E(AY )E(BY )T

= AE(Y Y T )BT − AE(Y )(BE(Y ))T

= A
(
E(Y Y T )− E(Y )E(Y )T

)
BT = A (cov(Y ))BT = ADB = DAB = 0,

if D = σ2I.

Answer: See above.



LINKÖPINGS UNIVERSITET Kurskod: TAMS24
Matematiska institutionen Provkod: TEN1
Matematisk statistik Datum: 2019-01-09

Institution: MAI

Exam in Statistics
TAMS24/TEN1 2019-01-09

You are permitted to bring:

• a calculator (no computer);

• Formel- och tabellsamling i matematisk statistik (from MAI);

• Formel- och tabellsamling i matematisk statistik, TAMS65;

• TAMS24: Notations and Formulas (by Xiangfeng Yang).

Grading (sufficient limits): 8-11 points giving grade 3; 11.5-14.5 points giving grade 4; 15-18
points giving grade 5. Your solutions need to be complete, well motivated, carefully written and
concluded by a clear answer. Be careful to show what is random and what is not. Assumptions
you make need to be explicit. The exercises are in number order.

Solutions can be found on the homepage a couple of hours after the finished exam.

1. A reasonable question is which one of Morbid Angel’s first bunch of studio albums is
the best (so no live albums and to avoid confusion not the Abominations of Desolation
album1). The following data was collected from two sources on the internet.

Album Title Web page
Nuclear War Now! Metalstorm.net

Altars of Madness 67 82
Blessed Are The Sick 18 34
Covenant 11 32
Domination 1 21
Formulas Fatal To The Flesh 6 4
Gateways to Annihilation 1 10
Heretic 0 2

Use a suitable test with significance level 0.01 to see if there is a difference between
opinions on the two sites. (2p)

2. Lina is experimenting with water cooling for her computers. She’s measured temperatures
of the cpu:s in 5 different computers (those who survived the experiment), first with
conventional cooling and then after switching to water cooling.

1Since it’s obviously the best.



Temperature
Computer: C-1 C-2 C-3 C-4 C-5
Conventional cooling 55 36 55 64 53
Water cooling 50 38 39 50 44

We assume that the temperatures are normally distributed and that different computers
are independent.

(a) Find 95% confidence intervals for the expected temperatures with conventional cooling
and water cooling, respectively. (2p)

(b) Perform a test for if there is a difference in the expected temperature between the
cooling techniques at the level 5%. (2p)

(c) Find a confidence interval Iσ2 = [0, a) for the variance of the temperature using water
cooling. Use the degree of confidence 90%. (1p)

3. In statistics, one frequently works with stochastic processes. One such example could
be expressed as X(n) for n = 1, 2, 3, . . ., where X(n) is a random variable for each n.
Let one such process X(n) satisfy the following. It has expectation 0 for every n (that
is, E(X(n)) = 0) and if Y (n) is the random vector Y (n) = (X(n), X(n− 1), X(n− 2) )T ,
then the covariance matrix is given by

CY (n) = E(Y (n)Y (n)T ) =

 2 1 0
1 2 1
0 1 2


for every n = 3, 4, 5, . . ..

Find a linear predictor X̂(n) = aX(n − 1) + bX(n − 2) of X(n) that minimizes the

quadratic error. In other words, find a and b such that E((X̂(n)−X(n))2) is minimal. (2p)

4. Crawford Tillinghast has built a machine that enables people to see and interact with
alternate dimensions. It works by stimulating the pineal gland in the brain by means of
resonance waves. While building his machine, he measured the frequency of the waves
as a function of the voltage he applied, and he also took note of if the measurement was
made at night (represented by 0) or during the day (represented by 1).

Frequency (f) 1.86 2.41 3.26 3.88 4.64 5.50 6.40
Voltage (v) 1 2 3 4 5 6 7
Day/Night (u) 0 0 1 0 0 1 1

Crawford believes that the frequency depends linearly on the voltage, but he isn’t sure
that the time of day is important (but he gets his most spectacular results at night). He
considers the following two models:

Model 1: F = β0 + β1v + ε

and
Model 2: F = β0 + β1v + β2u+ ε,

where ε ∼ N(0, σ2) and different measurements are assumed to be independent. The
following calculations has already been carried out.



Model 1:

i β̂i d(β̂i)
0 0.9671 0.0984
1 0.7564 0.0220

Analysis of variance
Degrees of freedom Square sum

REGR 1 16.0212
RES 5 0.0678
TOT 6 16.0889

Model 2:

i β̂i d(β̂i)
0 0.9866 0.0923
1 0.7370 0.0250
2 0.1363 0.1009

Analysis of variance
Degrees of freedom Square sum

REGR 2 16.0424
RES 4 0.0466
TOT 6 16.0889

(a) Is the term in model 2 corresponding to day/night meaningful? Carry out a test at
the 1%-level. What is the interpretation of your result? (2p)

(b) Find a 95% confidence interval for β1 using model 2. (1p)

5. In a game of Death Adder Roulette, played out in the Australian outback, people take
turns in trying to pet a venomous snake (traditionally a death adder) on the head. The
game is played until someone is bitten. Assume that the probability of being bitten is
constant.

(a) Assume that a person is bitten at try number n. Find a reasonable (using n) point
estimate for p and calculate the expectation for the estimator. Is the estimator
unbiased? (2p)

(b) One participant claims that the current snake i feisty so that p = 0.4. In one
game, the first person was bitten at the fifth try. Test the hypothesis H0 : p = 0.4
versus H1 : p < 0.4 at the significance level 5%. (1p)

(c) What is the power of the test at p = 0.2? (1p)

6. Suppose that Y = (Y1 Y2 · · · Yk)T ∼ N(0, Ik), where Ik is the k × k identity matrix.
If A ∈ Rk×k is such that A is symmetric, the column rank of A is l (0 < l ≤ k), and A2 = A,
derive the distribution for Y TAY . (2p)



Solutions
TAMS24/TEN1 2019-01-09

1. Let H0 be the hypothesis that the data is homogeneous between the two sites and H1 that
this is not true. In total, we have n = 289 observations. We can directly see that the last
four albums will have too small nip̂j (significantly less than 5), so we have to combine
these to obtain a usable test. Note that this changes what we actually test, but it’s the
best we can do using the tools from this course. We can calculate the following from the
data given.

Album Title Web page Sum p̂j
Nuclear War Now! Metalstorm.net

Altars of Madness 67 82 149 0.516
Blessed Are The Sick 18 34 52 0.180
Covenant 11 32 43 0.149
D–H 8 37 45 0.156
ni 104 185 289

The usual test quantity is found in

q =
1∑
i=0

3∑
j=0

(Nij − nip̂j)2

nip̂j
=

(67− 53.62)2

53.62
+

(82− 95.38)2

95.38
+

(18− 18.72)2

18.72

+
(34− 33.29)2

33.29
+

(11− 15.47)2

15.47
+

(32− 27.53)2

27.53

+
(8− 16.19)2

16.19
+

(37− 28.81)2

28.81
= 13.76.

If H0 is true, then q is an observation of Q
appr.∼ χ2((2− 1)(4− 1)) = χ2(3). We reject H0

if q is large, so we need a critical region C of the form C = [c,∞). From a table we find
that c = χ2

0.01(3) = 11.34. If q ≥ c, we reject H0.

x

y

c

Reasonable observations if H0 holds. C

α

Since q ∈ C, the conclusion is that we reject H0. There is very likely a difference in
opinions between the two sites.

Answer: There is a difference.



2. (a) Let Xi be the temperatures with conventional cooling and Yi the temperatures with
water cooling. Assume that Xi ∼ N(µX , σ

2
X) and that Yi ∼ N(µY , σ

2
Y ), where µX

and µY are the expected temperatures using the different cooling techniques. We
can not assume that the variance is the same or that Xi and Yi are independent, but
different Xi and different Yi are independent. We do not know that this model is
true (there might be different expected temperatures for the different computers),
but it’s the best we can do to answer the question. Another interpretation is that it
is the mean temperatures we’re interested in.

It now follows that (by Cochran’s and Gosset’s theorems)

TX =
X − µX
S/
√

5
∼ t(4),

and
P (−tα/2(4) < TX < tα/2(4)) = 1− α,

where we can solve the inequality for

X − tα/2(4) · S√
5
< µX < X + tα/2(4) · S√

5
.

From a table, we find that t0.025(4) = 2.7764.

x

y

−tα/2(4) tα/2(4)

As an observation of SX , we use
√
s2
X , so

t0.025(4)
s√
5

= 2.7764 · 10.2127

2.2361
= 12.6808.

Since x = 52.6, the interval is given by

IµX = (39.9, 65.3).

Analogously, we find a confidence interval for µY in

IµY = (37.1, 51.4).

(b) To obtain a significant result, we can not use the intervals derived in (a) for several
reasons. First, the intervals are not independent (at least we can’t be sure). Secondly,
the simultaneous degree of confidence will be wrong compared to what we’re asked
to do in this part.

The model we need to use is samples in pairs.

If xi is the temperature before introducing water cooling and yi the temperature after,
we assume that xi are observations of Xi ∼ N(µi, σ

2
1) and yi from Yi ∼ N(µi + ∆, σ2

2).
Define Zi = Yi−Xi ∼ N(∆, σ2). We consider the sequence zi = yi−xi as observations
of Zi. Note that the variables Zi are independent since we assumed that different
computers are independent.



Temperature difference
zi 5 -2 16 14 9

We can now calculate s = 7.2319 and z = 8.4. Moreover, n− 1 = 4 and α = 0.05,
so tα/2(4) = t0.025(4) = 2.7764. Thus,

I∆ = (8.4− 2.7764 · 7.2319/
√

5, 8.4 + 2.7764 · 7.2319/
√

5) = (−0.58, 17.4).

Since 0 ∈ I∆, we can’t reject the hypothesis that ∆ = 0. It is not clear that there is
a difference.

(c) This is a similar situation to (a), where we have to assume that the temperatures are
from the same distribution N(µY , σ

2) (or consider the mean temperature). We define

V =
4S2

σ2
∼ χ2(4).

From a table we find c such that P (c < V ) = 0.90 by choosing c = χ2
0.10(4) = 1.064.

x

y

1.06

We solve for σ2:

c <
4S2

σ2
⇔ σ2 <

4S2

c

and use s2 = 33.2 as the estimate for S2, leading to the confidence interval

Iσ2 = (0, 124.9) .

Answer:

(a) IµX = (39.9, 65.3) and IµY = (37.1, 51.4).

(b) Inconclusive. There might not be a difference.

(c) Iσ2 = (0, 124.9).

3. Let Z = X̂(n)−X(n). Then Z = AY (n), where A = (−1, a, b ). Thus,

E(Z2) = V (Z) + E(Z)2 = ACY (n)A
T + 0

= · · · = 2− 2a+ 2a2 + 2ab+ 2b2 =: f(a, b).

We seek a and b that minimizes f(a, b). Letting ∇f = 0, we find that{
f ′a(a, b) = −2 + 4a+ 2b = 0

f ′b(a, b) = 2a+ 4b = 0



Solving the system of equations, we obtain a = 2/3 and b = −1/3. Is this a minimum?
Calculating the derivatives of order two, we have f ′′aa = f ′′bb = 4 and f ′′ab = 2. Looking at
the quadratic form,

Q(h, k) = 4k2 + 4hk + 4k2 = 4(k + h/2)2 + 3h2,

we see that it is positively definite. Hence this is indeed a minimum.

Answer: The linear predictor is given by

X̂(n) =
2

3
X(n− 1)− 1

3
X(n− 2).

4. (a) We can perform this test in several different ways. We can test whether β2 = 0
in model 2 directly or we can compare model 1 and model 2 and see if model 2 is
significantly better.

Alternative 1. To test if β2 = 0, let H0 : β2 = 0 and H1 : β2 6= 0. Assume that H0

holds. Then

T =
β̂2 − 0

S
√
h22

∼ t(4),

where the distribution is clear since H0 holds. We need a critical region C such
that P (T ∈ C |H0) = 0.01 and since H1 is double sided, we choose symmetrically.

x

y

t0.005(4)−t0.005(4) 0

Reasonable

observations

if H0 holds.

C C

We find tα/2(4) = t0.005(4) = 4.6041 in a table. An observation of S
√
h22 is given by

the standard error d(β̂2) and thus we find that the observation

t =
0.1363

0.1009
= 1.35

does not belong to the critical region. So we can not reject H0. The coefficient β2

might very well be zero.

Alternative 2.

We have model 1:
y = β0 + β1x1 + ε

and model 2:
y = β0 + β1x1 + β2x2 + ε.



We can test if the second model is significantly better by testing whether β2 = 0 in a
slightly different way.

Let
H0 : β2 = 0,

and
H1 : β2 6= 0.

If H0 is true, then Y ∼ N(X1β1, σ
2I), so

W =
(SS

(1)
E − SS

(2)
E )/1

SS
(2)
E /4

∼ F (1, 4) if H0 is true

since this is a quotient of independent χ2 variables. If H0 is not true, then W will
tend to grow large. The critical domain is given by C =]c,∞[ for some c > 0.

x

y

ba

Reasonable

observations

if H0 is true.

C

α

From the table we find that c = 21.1977. The observation of W is found as

w =
(0.0678− 0.0466)/1

0.0466/4
= 1.82,

so clearly w 6∈ C. We can not reject the null hypothesis.

(b) We wish to find a confidence interval for β1 using model 2. We know that

T =
β̂1 − β1

S
√
h11

∼ t(4).

So
P (−tα/2(4) < T < tα/2(4)) = 1− α,

where we can solve the inequality for

β̂1 − tα/2(4) · S
√
h11 < β1 < β̂1 + tα/2(4) · S

√
h11.

x

y

−tα/2(4) tα/2(4)



From a table, we find that t0.025(4) = 2.7764. An observation of S
√
h11 is given by

the standard error d(β̂1) = 0.025 and thus we find the confidence interval

Iβ1 =
(
β̂1 − 2.7764 · 0.025, β̂1 + 2.7764 · 0.025

)
= (0.67, 0.81).

Answer:

(a) A significance test shows that we can’t conclude that β2 6= 0 at the significance
level 1%. The conclusion is that we really don’t know.

(b) (0.67, 0.81).

5. (a) A reasonable estimate that is fairly obvious is to let p̂ = x−1, where x is the observation
of the number of trials it takes for the snake to bite someone. We note that the
assumptions lead to the conclusion that X ∼ Ffg(p). If the estimate p̂ = x−1 is not
obviously reasonable, we can show that this is actually the MLE.

The likelihood-function L(p) is given by

L(p) = p(1− p)x−1,

where x is the observation described above and p is the unknown probability. We
only have one probability function to work with, so there’s no product of n different
probability functions. The parameter space is Ωp = (0, 1) (the extreme cases at p = 0
and p = 1 are not very interesting). We form the log-likelihood and take the derivative
with respect to p (remember that x is fixed):

logL(p) = log p+ (x− 1) log(1− p),
d logL(p)

dp
=

1

p
− x− 1

1− p
.

We’re seeking an extremum, so we’re looking for points where the derivative is zero:

1

p
− x− 1

1− p
= 0 ⇔ p =

1

x
.

The sign-change for the derivative at the point p̂ = 1/x is +0−, so we’re dealing with
a maximum. It is also clear that p̂ ∈ Ωp since x ≥ 1.

The expectation of the estimator can be calculated as follows (remember the second
course in single variable analysis):

E(P̂ ) = E(X−1) =
∞∑
x=1

x−1pX(x) =
∞∑
x=1

x−1p(1− p)x−1 =
p

1− p

∞∑
x=1

(1− p)x

x
.

Let f(t) =
∞∑
k=1

tk

k
. We can calculate this series by observing that

f(t) =
∞∑
k=1

tk

k
=
∞∑
k=1

∫ t

0

uk−1 du =

∫ t

0

(
∞∑
k=1

uk−1

)
du =

∫ t

0

1

1− u
du = − ln(1− t),

provided that 0 < t < 1 (where the series is absolutely convergent). Thus we have
shown that

E(P̂ ) =
pf(1− p)

1− p
=
−p ln p

1− p
6= p,

so the estimator is not unbiased.



(b) Let X be the number of trials it takes for someone to finally get bitten. We concluded
above that X ∼ Ffg(p), where p is the unknown probability of a bite. We want to
test

H0 : p = 0.4

versus
H1 : p < 0.4.

Given that H0 is true, we expect that it takes 1/0.4 = 2.5 times to end the game.
Is x = 5 significantly greater? Large observations indicate that the probability is low.
We need the critical region C.

x

y

0.4

c

Reasonable observa-

tions if H0 is true.

C

Since
p(x) = p(1− p)x−1,

we can calculate that

P (X ≥ x) =
∞∑
k=x

p(1− p)k−1 = p(1− p)x−1

∞∑
k=0

(1− p)k

= p(1− p)x−1 1

1− (1− p)
= (1− p)x−1.

Testing values for x we find that P (X ≥ 7) ≤ 0.05 but P (X ≥ 6) > 0.05. So

C = {x ∈ Z : x ≥ 7}

and our observation x = 5 6∈ C. Hence we can’t reject H0. The snake might be feisty
to a value of p = 0.4.

(c) The power at p = 0.2 can be calculated straight from the definition:

h(0.2) = P (H0 rejected | p = 0.2) = P (X ∈ C | p = 0.2)

=
∞∑
x=7

0.2 · 0.8x−1 = 0.262.

Answer: (a) P̂ =
1

x
; not unbiased. (b) We can’t reject H0. (c) The power is 0.262.



6. Since A is a symmetric matrix, there exists an orthonormal basis where A is a diagonal
matrix. In other words, there is an orthonormal matrix C such that A = CDCT .
Let Z = CTY . Now, since A2 = A, the only possible eigenvalues of A are 0 and 1.
These are the values on the diagonal of D. We assume that these are in decreasing
order 1, 1, . . . , 1, 0, . . . , 0. The rank of A is l, so there are precisely l ones. Now,

Y TAY = Y TCDCTY = (CZ)TCDCTCZ

= ZTCTCDCTCZ = ZTDZ,

since CTC = I. The fact that D is of the form described above shows that

ZTDZ =
l∑

j=1

Z2
j .

We can also see that the components of Z are independent since

cov(Z) = cov(CTY ) = CT cov(Y )C = CTC = I

due to the fact that cov(Y ) = I.

We have thus shown that Y TAY can be expressed as a sum of l squares of indepen-
dent N(0, 1)-distributed variables. This implies that

Y TAY ∼ χ2(l).

Answer: Y TAY ∼ χ2(l).
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O
nce upon a time, in a land far far away, Rick and Gary
started a flamingo farm that was called Exodus. When
starting out, Exodus was filled up by a large amount of

flamingos that were obtained from a woman living in the swamps
of Louisiana. The farm was built in southern Florida in a suit-
able habitat for flamingos. Both Gary and Rick quickly became
rather proficient in the art of breeding flamingos. Aiming to export
flamingos both to the animal parks of the world and to private
citizens, Rick and Gary proudly produced commercials exclaiming
their competence in flamingo breeding. Before not too long, they
got a call from their very first customer. Things did not turn out
the way they expected...



1. A Danish doughnut company – with a secret recipe – wants to buy large amounts of
flamingos each month for some reason. They are prepared to pay a certain amount per
kilogram of flamingos, so heavier flamingos render more profit. Gary picks out a random
sample of flamingos and measures their weight:

2.69 2.90 3.23 3.52 2.65 3.71 3.46 3.05

Assume that the samples are independent and from a normal distribution with vari-
ance 0.0625 and an unknown expectation µ.

(a) Test the hypothesis H0 : µ = 3.0 against H1 : µ 6= 3.0 at the significance level 5%. (2p)

(b) What is the power of this test at µ = 3.1? (1p)

(c) What is the highest level of confidence we can choose when using this sample and
still reject H0? Is it reasonable to use this calculation to choose the significance level
of the test you want to perform? (2p)

2. When using the results from the previous exercise to decide what to charge the Danish
company, things did not turn out exactly as calculated. To avoid a faster disaster, Gary
and Rick decided to not assume that the variance is known. Using the same sample as in
the previous exercise, answer the following questions.

(a) Test the assumption that the variance actually is equal to 0.0625 against the alternate
hypothesis that the variance is greater. Use the significance level 0.05. (2p)

(b) Assume that the variance is unknown. Find a confidence interval for µ with 99%
degree of confidence. (1p)

3. It turns out that in the contract with the Danish company, there was some fine print
detailing that the flamingos were to be slaughtered prior to shipping. Obviously upset,
Rick and Gary devised a plan for euthanizing the flamingos as humanly as possible by
means of the flamingo decapitator 2000TM (a shovel headed killing machine). The
blades are very sharp, but need additional sharpening after a certain time to keep the
efficiency of the strike of the beast.

The distributor of the blades (a company called metal command) claim that the time until
sharpening is necessary (assuming a certain prescribed use) is exponentially distributed
with the expectation 1.0 days. Rick and Gary puts this to the test using 50 identical
machines in parallel (and in exactly the same way) over the course of 2.5 days. They take
note every 6 hours of how many machines that has been taken out for sharpening (these
machines are then kept out of circulation to not interfer with the measurements).

Time (hours) < 6 < 12 < 18 < 24 < 30 < 36 < 42 < 48 < 54 < 60
Frequency: 11 20 26 32 36 39 42 44 46 47

Use a suitable test with significance level 10% to see if we can reject the hypothesis that
the samples are from an Exp(µ = 1.0)-distribution. (2p)



4. A company called pleasures of the flesh got into contact and offered to sell a growth
hormone specifically tailored to birds of a similar type as flamingos. The company
claimed that the size of the flamingos was linearly dependent on the amount of hormone
administered. An experiment to investigate a reasonable dosage was carried out, but when
studying residual plots from a linear regression there were hints of something quadratic.

Size (kg) 2.1344 2.3870 2.5861 2.8209 3.0492 3.2521 3.6765 4.0815
Hormone (mg/kg) 0.1250 0.2500 0.3750 0.5000 0.6250 0.7500 0.8750 1.0000

Consider the following two models:

Model 1: Y = β0 + β1x+ ε

and
Model 2: Y = β0 + β1x+ β2x

2 + ε,

where ε ∼ N(0, σ2) and different measurements are assumed to be independent. The
following calculations has already been carried out.

Model 1:

i β̂i d(β̂i)
0 1.8036 0.0784
1 2.1242 0.1241

Analysis of variance
Degrees of freedom Square sum

REGR 1 2.9610
RES 6 0.0607
TOT 7 3.0217

Model 2:

i β̂i d(β̂i)
0 2.0456 0.0813
1 0.9627 0.3315
2 1.0324 0.2876

Analysis of variance
Degrees of freedom Square sum

REGR 2 3.0047
RES 5 0.0170
TOT 7 3.0217

(a) Is the term in model 2 corresponding to x2 meaningful? Carry out a test at the 5%-
level. What is the interpretation of your result? (2p)

(b) Find a 99% confidence interval for β1 using model 2. Does it differ from the
corresponding confidence interval for β1 using model 1? How do we interpret this? (1p)



5. Exodus runs into a problem of a certain species of fish that competes with the flamingos
for food. The first idea for a solution was based on a chemical method called Chemi-kill,
but due to fears of the effect on the flamingos this plan was scrapped. Fortunately, their
close friend Susan stops by and claims that someone told her in a dream that introducing
piranhas to the habitat would solve the problem.

Gary contacts a Peruvian specialist Maria, who claims that there are two particularly
ferocious types of red-bellied piranhas. Rick and Gary imports an equal amount of both
types and devise an experiment where two identical tanks are filled with the different
types of piranhas and 300 exemplars of the problem fish in each tank. What followed was
a lesson in violence, where the starving piranhas went to attack. They stop the experiment
after a day has passed and takes a count of the remaining problem fish. In the first tank
there were 200 left and in the second 180. Let p1 be the probability that a fish is eaten in
the first tank and p2 be the probability that a fish is eaten in the second tank.

(a) Propose unbiased point estimators for p1, p2, and p2 − p1. Then find 95% confidence
intervals for p1, p2 and p2 − p1. Can we reject that they’re equally ferocious at this
level? (2p)

(b) After another call to Maria, she tells them that the second type might be a bit more
aggressive. At the significance level 5%, can we reject the hypothesis that the types
of piranhas are equally ferocious using the alternate hypothesis that the second type
(corresponding to p2) is more ferocious instead? (1p)

6. At the Exodus farm, a test is planned to verify certain conditions. To understand the
test, Rick and Gary are going through the proof but got stuck at the following part.
Let p = (p1, p2, . . . , pk)

T be a probability vector, where k ≥ 2 is an integer. Suppose
that Y = (Y1 Y2 · · · Yk)T ∼ N(0,C), where

C =


1− p1 −√p1p2 −

√
p1p3 · · · −

√
p1pk

−√p2p1 1− p2 −√p2p3 · · · −
√
p2pk

−√p3p1 −
√
p3p2 1− p3 · · · −√p3pk

...
...

. . .
...

−√pkp1 −
√
pkp2 −

√
pkp3 · · · 1− pk

 .

It is stated in the proof that it now follows that Y TY ∼ χ2(k − 1). Prove this. (2p)

Have a nice weekend!



Solutions
TAMS24/TEN1 2019-08-23

1. (a) We know that

X ∼ N

(
µ,

σ2

n

)
so since σ is known, we could use X directly. However, we might as well follow the
usual procedure. If H0 holds, then

Z =
X − µ0

σ/
√
n
∼ N(0, 1).

The critical region C is chosen so that

P (Z ∈ C |H0) = α,

where we due to symmetry assume the form

C = {z ∈ R : |z| > c} = {z ∈ R : z > c or z < −c}.

We note that C consists of two parts C1 and C2, where C1 is on the negative half-axis.
Due to symmetry,

P (Z ∈ C1) = P (Z ∈ C2) =
α

2
.

In our case, α = 0.05, so c = Φ−1(0.975) = 1.96.

x

y

c−c 0

Reasonable

observations

if H0 holds.

C1 C2

α
2

α
2

Using our observations, we find that the test statistic is given by

z =
x− 3.0√

0.0625/
√

8
= 1.7118 6∈ C

so we can not reject H0.

(b) The power at µ = 3.1 can be calculated straight from the definition. Remember

that Z =
X − 3.0√
0.0625/

√
8

, so if µ = 3.1, then

Z ∼ N

(
0.1√

0.0625/
√

8
, 1

)
= N(1.1314, 1).



Hence,

h(3.1) = P (H0 rejected |µ = 3.1) = P (Z ∈ C |µ = 3.1) = P (Z < −1.96 eller Z > 1.96)

= Φ(−1.96− 1.1314) + 1− Φ(1.96− 1.1314) = 0.2047.

(c) Given the observation x = 3.1513 and z = 1.7118, we can follow the same procedure
as in the previous exercise. However, in this case with C unknown. It is clear that
we want to choose c = 1.7118 and since we found c = Φ−1(1− α/2), it follows that

1.7118 = Φ−1(1− α/2) ⇔ Φ(1.7118) = 1− α

2
,

so α = 2(1− Φ(1.7118)) = 0.087. So we can choose the significance level 8.7% and
still reject H0. This is not good in practice! You should not look at the data to
choose your significance level.

Answer: (a) We can not reject H0. (b) 0.205 (c) α = 0.087.

2. (a) Let H0 : σ2 = 0.0625 and the alternate hypothesis be H1 : σ2 > 0.0625. We
have n = 8 samples, so

V =
7S2

0.0625
∼ χ2(7).

We’re seeking a limit c so that

α = P (V > c) = P

(
S2 >

cσ2
0

n− 1

)
and define the critical region as C =]c,∞[.

x

y

c

Reasonable if H0 holds. C

α

From a table, we find c = 14.07, so

v =
7 · s2

0.0625
= 17.39 ∈ C.

We therefore reject H0 and claim that it is very likely that the variance is greater
than 0.0625.

(b) It follows that (by Cochran’s and Gosset’s theorems)

TX =
X − µX
S/
√

8
∼ t(7),

and
P (−tα/2(7) < TX < tα/2(7)) = 1− α,



where we can solve the inequality for

X − tα/2(7) · S√
8
< µX < X + tα/2(7) · S√

8
.

From a table, we find that t0.005(7) = 3.50.

x

y

t0.005(7)−t0.005(7) 0

Reasonable

observations

if H0 holds.

C C

As an observation of SX , we use
√
s2
X , so

t0.005(7)
s√
8

= 3.50 · 0.3943

2.8284
= 0.4879.

Since x = 3.1513, the interval is given by

IµX = (2.66, 3.64).

Answer: (a) We reject H0. We believe that the variance is higher. (b) (2.66, 3.64).

3. We need to organize the data so that we can see how many machines were taken out of
action in each time interval. We also need to choose these intervals so that — under the
assumption that times are Exp(µ = 1.0)-distributed — all intervals are comparable in
probability. The rule of thumb is to use 50/10 = 5 classes, so we can try the following.

Time How many
I1 = [0, 6) 11
I2 = [6, 12) 8
I3 = [12, 24) 12
I4 = [24, 36) 8
I5 = [36, ∞) 11

It is not clear that this partitioning is good enough. Let H0 be the hypothesis that times
are Exp(µ = 1.0)-distributed. If H0 is true, then the probability density of the time
before a machine has to have its blades sharpened is given by f(x) = µ−1 exp(−µ−1 x)
(with µ = 1.0), so

P (a ≤ X < b) =

∫ b

a

1

µ
exp

(
−x
µ

)
dx = exp

(
−a
µ

)
− exp

(
− b
µ

)
.



With these numbers, we can do the calculations and see that the probability of ending up
in each interval is given by

P (X ∈ Ik) =



p1 = 0.2212, k = 1,

p2 = 0.1723, k = 2,

p3 = 0.2387, k = 3,

p4 = 0.1447, k = 4,

p5 = 0.2231, k = 5.

The testing quantity we now use is given by

q =
5∑
j=1

(xj − npj)2

npj
=

(11− 50 · 0.2212)2

50 · 0.2212
+ · · ·+ (11− 50 · 0.2231)2

50 · 0.2231
= 8.65.

If H0 is true, then q is an observation of Q
appr.∼ χ2(5 − 1) = χ2(4). We reject H0 if q

is large, so we need a critical region C of the form C = [c,∞). From a table we find
that c = χ2

0.10(4) = 7.78. If q ≥ c, we reject H0.

x

y

c

Reasonable observations if H0 holds. C

α

Since q ∈ C, the conclusion is that we reject H0. We do not believe that Pleasures of the
flesh is telling the truth.

Answer: We reject the assumption.

4. (a) We can perform this test in several different ways. We can test whether β2 = 0
in model 2 directly or we can compare model 1 and model 2 and see if model 2 is
significantly better.

Alternative 1. To test if β2 = 0, let H0 : β2 = 0 and H1 : β2 6= 0. Assume that H0

holds. Then

T =
β̂2 − 0

S
√
h22

∼ t(8− 3) = t(5),

where the distribution is clear since H0 holds. We need a critical region C such
that P (T ∈ C |H0) = 0.05 and since H1 is double sided, we choose symmetrically.



x

y

t0.025(5)−t0.025(5) 0

Reasonable

observations

if H0 holds.

C C

We find tα/2(5) = t0.025(5) = 2.57061 in a table. An observation of S
√
h22 is given by

the standard error d(β̂2) and thus we find that the observation

t =
1.0324

0.2876
= 3.59

does belong to the critical region. So we reject H0. The coefficient β2 is probably not
zero.

Alternative 2.

We have model 1:
y = β0 + β1x1 + ε

and model 2:
y = β0 + β1x1 + β2x2 + ε,

where x2 = x2
1. We can test if the second model is significantly better by testing

whether β2 = 0 in a slightly different way.

Let
H0 : β2 = 0,

and
H1 : β2 6= 0.

If H0 is true, then Y ∼ N(X1β1, σ
2I), so

W =
(SS

(1)
E − SS

(2)
E )/1

SS
(2)
E /5

∼ F (1, 5) if H0 is true

since this is a quotient of independent χ2 variables. If H0 is not true, then W will
tend to grow large. The critical region is given by C =]c,∞[ for some c > 0.



x

y

ba

Reasonable

observations

if H0 is true.

C

α

From the table we find that c = 10.0070. An observation of W is found in

w =
(0.0607− 0.0170)/1

0.0170/5
= 12.85,

so w ∈ C. We can reject the null hypothesis.

(b) We wish to find a confidence interval for β1 using model 2. We know that

T =
β̂1 − β1

S
√
h11

∼ t(5).

So
P (−tα/2(5) < T < tα/2(5)) = 1− α,

where we can solve the inequality for

β̂1 − tα/2(5) · S
√
h11 < β1 < β̂1 + tα/2(5) · S

√
h11.

x

y

t0.005(5)−t0.005(5) 0

Reasonable

observations

if H0 holds.

C C

From a table, we find that t0.005(4) = 4.0321. An observation of S
√
h11 is given by

the standard error d(β̂1) = 0.3315 and thus we find the confidence interval

Iβ1 =
(
β̂1 − 4.0321 · 0.3315, β̂1 + 4.0321 · 0.3315

)
= (−0.37, 2.30).

A similar calculation for model 1 yields

Iβ1 =
(
β̂1 − 4.0321 · 0.1241, β̂1 + 4.0321 · 0.1241

)
= (1.62, 2.63).



Different intervals with different interpretations. For model 2, we could perform a
hypothesis test to investigate whether β1 = 0 or not and the conclusion would be
that β1 = 0 might very well be true. For model 1, the conclusion is that β1 6= 0.

Answer:

(a) A significance test shows that we conclude that β2 6= 0 at the significance level 5%.

(b) (−0.37, 2.30). Different intervals with different interpretations. See above.

5. (a) Let X1 be the number of fish eaten in the first tank and X2 the number of fish eaten
in the second tank. Assuming independence, it is clear that X1 ∼ Bin(300, p1) and
that X2 ∼ Bin(300, p2). As estimators we choose

P̂1 =
X1

300
, P̂2 =

X2

300
, and P̂2 − P1 = P̂2 − P̂1.

We note that E(P̂1) = E(X1)/300 = 300p1/300 = p1 and similarly E(P̂2) = p2,

so E(P̂2 − P1) = p2 − p1. Our estimators are unbiased.

Now, we have observed that p̂1 = 100/300 = 1/3 and that p̂2 = 120/300 = 2/5. The
binomial distribution is a bit messy to deal with in this instance (discrete intervals?),
so let’s try an approximation instead. Since

300 · p̂1 · (1− p̂1) = 300 · 1

3
· 2

3
= 66.67

and

300 · p̂2 · (1− p̂2) = 300 · 2

5
· 3

5
= 72

are both greater than 10, a normal approximation is reasonable. Hence,

P̂1
appr.∼ N(p1, p1(1− p1)/300)

and
P̂2

appr.∼ N(p2, p2(1− p2)/300).

From this it also follows that

P̂2 − P̂1
appr.∼ N(p2 − p1, p1(1− p1)/300) + p2(1− p2)/300).

We now have

Z1 =
P̂1 − p1√

p̂1(1− p̂1)/300

appr.∼ N(0, 1).

Note that we’ve replaced p1 by the estimate p̂1 in the denominator. Similarly

Z2 =
P̂2 − p2√

p̂2(1− p̂2)/300

appr.∼ N(0, 1)

and

Z =
P̂2 − P̂1 − (p2 − p1)√

p̂2(1− p̂2)/300 + p̂1(1− p̂1)/300

appr.∼ N(0, 1).

One reason for approximating the denominator is that we can use the normal
distribution directly (with known variance). We seek a number λ so that, e.g.,

P (−λ < Z < λ) = 0.95.



x

y

λ−λ 0

α
2

α
2

We find λ = 1.96 from a table (λ = Φ−1(0.975)). So approximate confidence intervals
(with 95% degree of confidence) can be found in

Ip1 = (0.333− 1.96 · 0.0272, 0.333 + 1.96 · 0.0272) = (0.28, 0.39),

Ip2 = (0.4− 1.96 · 0.0283, 0.4 + 1.96 · 0.0283) = (0.34, 0.46),

and since √
p̂1(1− p̂1)/300 + p̂2(1− p̂2)/300 = 0.0393,

we obtain

Ip2−p1 = (0.0667− 1.96 · 0.0393, 0.0667 + 1.96 · 0.0393) = (−0.01, 0.15).

Since 0 ∈ Ip2−p1 , we can’t reject the hypothesis that p1 = p2.

(b) In this case, we want to test against the alternate hypothesis that p2 > p1 (not
that p1 6= p2). We use the same significance level, but place all the uncertainty in
one tail. We use the same estimator for p2 − p1 and transform according to

Z =
P̂2 − P̂1 − (p2 − p1)√

p̂2(1− p̂2)/300 + p̂1(1− p̂1)/300

appr.∼ N(0, 1).

We seek λ so that P (Z > −λ).

x

y

−λ 0

α

Since all the probability α is in the left tail, this pushes λ closer to the origin. From
a table we find that λ = Φ−1(0.95) = 1.645. Then

−λ < Z ⇔ P̂2 − P̂1 − λ
√
p̂2(1− p̂2)/300 + p̂1(1− p̂1)/300 < p2 − p1.

Using the point estimates for P̂1 and P̂2, we find that

p2 − p1 > 0.0021.

Hence Ip2−p1 = (0.0021, 1). We can now reject the hypothesis that p2 = p1 and claim
that p2 > p1 is very likely.

Answer: (a) Ip1 = (0.28, 0.39), Ip2 = (0.34, 0.46) and Ip2−p1 = (−0.01, 0.15). Nope.
(b) Ip2−p1 = (0.0021, 1). The second type is likely more ferocious.



6. We note that the covariance matrix can be written more compactly as C = I − qqT ,
where q = (

√
p1
√
p2 · · ·

√
pk)

T . Using this representation, we can verify that

(I − qqT )2 = I − qqT and (I − qqT )T = I − qqT ,

so C = I − qqT is a projection matrix and therefore has the eigenvalues λ = 0 and λ = 1.
For these types of matrices, we know that the rank is equal to the trace. Since the trace
of the matrix is equal to the sum of the eigenvalues, it is clear that

rank(I − ppT ) = tr(I − ppT ) = k − (p1 + p2 + · · ·+ pn) = k − 1,

so λ = 0 is a simple eigenvalue. The matrix is symmetric and positive semidefinite, so
there exists an orthonormal matrix U such that UTCU = diag(1, 1, . . . , 1, 0) becomes a
diagonal matrix. If we let Z = UY , we see that Z ∼ N(0, diag(1, 1, . . . , 1, 0)) and that

Y TY = (UTZ)TUTZ = ZTZ =
k−1∑
j=1

Z2
j ,

where Zj ∼ N(0, 1) are independent. This sum is obviously χ2(k − 1)-distributed!

Answer: See above.
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O
nce upon a time, in a land far far away, Rick and Gary
had run into problems with their flamingo farm Exodus.
Someone had posted threatening notes all around the farm.

Gary suggested that it was the animal liberation army (or was it
perhaps the different organization known as the liberation army
of the animals?) that disliked the fact that there was flamingos
in captivity (and, perhaps, also the slaughtering of said animals).
Rick — on the other hand — assumed that it was the cult (devoted
to the crawling chaos) that usually drifted around in the wooden
area mumbling on about the great old ones and the unmentionable
horrors at the mountains of madness. In either case, the result was
that Exodus was shut down and Gary and Rick went into hiding.
When they finally managed to return, things had taken a turn for
the worse. The beautiful exodus sign had been scribbled over with
frantic writing in something brownish red, stating that Beneath the
Columns of Abandoned Gods lies Dormant Hallucinations, where
the Conjuration of the Sepulchral results in The Sleep of Morbid
Dreams. In The Dead of Winter, Pestilential Winds causes the
Exhumation of the Ancient.
The air felt stale and suddenly there was no wind. Slowly, they
entered the compound.



1. Since the flamingos had been left to their own devices while Exodus was shut down, they
had managed to get into the storage where all the growth hormone was kept. By some
coincidence — or perhaps supernatural reason caused by colors out of space — some of
the flamingos had managed to ingest huge amounts of hormone and developed rapidly.
Taking a random sample of the surviving flamingos (apparently aggression levels had gone
up causing quite a lot of conflict), Gary wants to investigate the current state of affairs.
Gary’s measurements can be seen below.

7.18 7.69 6.09 7.31 7.09 6.46 6.80 7.10

Assume that the samples are independent and from a normal distribution with unknown
variance σ2 and an unknown expectation µnow.

(a) Find a confidence interval (99% degree of confidence) for the expectation µnow. (1p)

(b) Gary also found his old notes from before where he obtained the following random
sample of weights.

2.69 2.90 3.23 3.52 2.65 3.71 3.46 3.05

Assume that these two samples are independent and that the old ones are from
an N(µold, σ

2)-distribution. Test the hypothesis that the expected weight before is
less than half of the current expected weight at the significance level 5%. (2p)

(c) Test the assumption that the variance of the two previous samples is the same. Use
the significance level 5%. Conclusion? (2p)

2. After Gary shared his findings, Rick came clean about a mistake he made before the
shut down. A New Mexico-native woman called Trinity had sold him some beautiful
sand, full of greenish glass-like particles, that she had brought with her from the desert
near Alamogordo. Rick had poured out several hundreds of kilos all around the water
pond where the flamingos congregated. Unfortunately, it turned out that the sand
contained high amounts of plutonium and fission products thereof. Rick is worried that
the radioactivity is affecting the flamingos, so he takes some measurements using his old
but trustworthy Geiger counter. The counter is calibrated to measure Giga Becquerel (1
Bq means 1 decay per second). Assume that the decay can be characterized by a Poisson
process X(t) with intensity λ > 0. Assume that Rick’s counter reading is an observation
of an X = X(1) ∼ Po(µ) variable. When Rick took his measurement he obtained x = 8.
For some reason, Rick felt that if the expectation µ wasn’t greater than 5, everything was
good enough (Not great. Not terrible).

Let H0 : µ = 5 and H1 : µ > 5.

(a) Perform a hypothesis test using the null hypothesis H0 and the alternate hypothesis H1

at the significance level 5%. (2p)

(b) What is the power of the test at µ = 10 (1p)

3. Assuming the same situation as in the previous exercise, additionally assume that we
measure for 10 seconds and obtain the observation y = 82 of the random variable Y = X(10)
(meaning that we measure the stochastic process X(t) for 10 seconds; t = 10). Find a 90%
confidence interval for the intensity λ. (2p)



4. During their absence, cult members had obviously gained access to the farm and carried
out their vile and unspeakable rituals. Both Gary and Rick found that the place felt very
different from before. Shadows were angling in weird ways and from distant and terrible
dimensions, echoes could be heard: ”Cthulhu fhtagn! Cthulhu fhtagn! Iä! Shub-Niggurath!

The Goat with a Thousand Young!”

Not only had the flamingos grown a lot larger, but the radioactive sludge that had been
formed in the water seemed to combine with the abysmal incantations, causing some of
the flamingos to mutate and start forming tentacles. When using resonance amplifiers to
increase the power of the echo from beyond, the tentaclification seemed to depend both
on the intensity of the echoes and the level of radiation observed. It was unclear though,
if administered growth hormone had any effect on the tentacles. To answer the obvious
questions, a model was proposed:

Model: Y = β0 + β1a+ β2r + β3h+ ε,

where ε ∼ N(0, σ2) and different measurements are assumed to be independent. The
quantity a is amplifier power and r is the radioactive intensity (in suitable units). The
growth hormone is a binary where h = 1 means that growth hormone has been administered.
The variables and measurements can be found below.

y a r h
59.72 10 9 0
10.70 0 9 1
21.95 4 3 0
28.65 4 8 0
48.18 8 8 1
41.42 8 2 1
12.51 2 1 1
32.28 5 6 0
33.03 4 12 1
33.67 6 4 0

The abstract unit used to describe how tentaclified the flamingos had become was denoted
tentacliness. The following calculations has already been carried out.

i β̂i d(β̂i)
0 0.41 0.82
1 4.86 0.10
2 1.11 0.08
3 0.28 0.56

Analysis of variance
Degrees of freedom Square sum

REGR 3 2063.96
RES 6 4.35
TOT 9 2068.32

(XTX)−1 =


931 −74 −50 −284
−74 13 0 19
−50 0 9 −4
−284 19 −4 428

 · 10−3.

(a) Find a prediction interval for Y , with 90% degree of confidence, when a = 2, r = 5
and h = 0. (2p)

(b) Test the hypothesis that the addition of growth hormone has an effect at the
significance level 1%. (1p)



5. The effect on the flamingos seemed to be the at its worst at a specific place near the
edge of the water, where moving a flamingo was impossible due to twisting displays of
noneuclidian geometry and nauseating vortexes swirling like maelstroms of bent light. Rick
and Gary managed to trap 5 flamingos in a box without seeing them clearly. The question
was how many of these flamingos that had been distinctly affected by the tentaclification
process. To investigate the matter, the following procedure was carried out.

Their friend Susan — who seemed to be less affected by everything — put her hand inside
the box while keeping her eyes away to avoid madness. She then grabs hold of a random
flamingo in the box and feels for tentacles. Then she immediately releases the flamingo
(still inside the box). This process is repeated n times, each repetition independent of the
previous ones. Let Xi = 0 if the flamingo in try i was unaffected and let Xi = 1 if it was
tentaclified. Furthermore, let θ be the total number of affected flamingos in the box.

(a) When carrying out the first 7 tries, the result was x = 1, 0, 1, 0, 1, 1, 0. Find the

maximum likelihood estimation θ̂ of θ in this instance. (2p)

(b) Choose one of the following questions (and answer it). (1p)

i. Prove that Θ̂ is unbiased.

ii. Prove that Θ̂ is biased.

iii. Argue for why the previous questions are difficult to answer.

6. Since it apparently was the day of the tentacle (DoTT), Rick and Gary wondered if
the tentacle lengths on the different affected flamingos was independent. Rick pointed
out that the lengths should be normally distributed and Gary thought that they might
find the correlation between different lengths. Looking at some theorems, they find that
uncorrelated normally distributed variables are independent!

Let X1, X2, . . . , Xn ∼ N(0, 1) be independent and let A ∈ Rn×n be invertible. Moreover,
let µ ∈ Rn. Show that the components in Y = AX + µ, where X = (X1, X2, . . . , Xn),
are independent if and only if the covariance matrix of Y is a diagonal matrix. (2p)

Ia! Ia! Cthulhu ftagnh!



Solutions
TAMS24/TEN1 2019-09-07

1. (a) Let Xi ∼ N(µX , σ
2) be the new random sample. It follows that (by Cochran’s and

Gosset’s theorems)

TX =
X − µX
S/
√

8
∼ t(7),

and
P (−tα/2(7) < TX < tα/2(7)) = 1− α,

where we can solve the inequality for

X − tα/2(7) · S√
8
< µX < X + tα/2(7) · S√

8
.

From a table, we find that t0.005(7) = 3.50.

x

y

t0.005(7)−t0.005(7) 0

As an observation of SX , we use
√
s2
X , so

t0.005(7)
s√
8

= 3.50 · 0.5032

2.8284
= 0.6226.

Since x = 6.965, the interval is given by

IµX = (6.34, 7.59).

(b) Let Y ∼ N(µY , σ
2) be the old sample. Since the variances are equal, we weight them

together according to the pooled variance:

s2 =
7s2

1 + 7s2
2

14
=

1

2

(
s2

1 + s2
2

)
.

It now follows that (by Cochran’s and Gosset’s theorems)

T =
0.5X − Y − (0.5µX − µY )

S

√
0.52

8
+

(−1)2

8

∼ t(16− 2) = t(14),

and
P (T < tα(14)) = 1− α,

where we can solve the inequality for

0.5 ·X − Y − tα(14) · S
√

0.52

8
+

1

8
< 0.5 · µX − µY .

We use a one-sided interval since we only want to investigate if 0.5 · µX > µY . From
a table, we find that t0.05(14) = 1.7613.



x

y

tα(14)

As an observation of S, we use
√
s2, so

t0.05(14) · s ·
√

0.52

8
+

1

8
= 1.7613 · 0.4520 · 0.3953 = 0.3147.

Since 0.5 · x− y = 0.3312, the interval is given by

I0.5·µX−µY = (0.3312− 0.3147, ∞)

= (0.0165, ∞).

We see that 0 is not included in the interval, so we can claim that it is likely
that 0.5 · µX > µY at this significance level.

(c) Let
H0 : σ2

X = σ2
Y = σ2

and
H1 : σ2

X 6= σ2
Y .

If H0 is true, then 7S2
X/σ

2 ∼ χ2(7) and 7S2
Y /σ

2 ∼ χ2(7). Thus

V =

7S2
X

σ2
/7

7S2
Y

σ2
/7

=
S2
X

S2
Y

∼ F (7, 7)

since S2
1 and S2

2 are independent. We seek a critical region C such that

α = P (V ∈ C |H0).

x

y

ba

Reasonable

observations

if H0 is true.

C1 C2

α
2

α
2



We find the bounds a and b from a table so that

P (V < a) = P (V > b) =
α

2
.

with a = 0.2002 and b = 5.00. Note that a two-sided interval is necessary here. Since

v =
0.2532

0.1553
= 1.6306 6∈ C

we can’t reject H0. The variances could be equal (but are they?)

Answer:

(a) (6.34, 7.59)

(b) The new expectations seems to be more than twice the old one.

(c) We can’t reject the hypothesis that they are equal; we do not know.

2. (a) Assume that H0 is true. Let X ∼ Po(5) (since the expected number of counts is 5
during 1 second). We need to find the critical region C.

x

y

c

CReasonable observations if H0 is true

Let p(k), k = 0, 1, 2, . . ., be the probability function for X. From a table we can find
that

∞∑
k=9

p(k) = 1−
8∑

k=0

p(k) = 0.0681 and
∞∑

k=10

p(k) = 0.0318.

Thus we choose
C = {k ∈ Z : k ≥ 10}.

Since our observation is x = 8 and 8 6∈ C, we can’t reject H0. It is possible that µ = 5.
Great news, right?!

(b) The power at µ = 10 can be calculated straight from the definition:

h(10) = P (H0 rejected |µ = 10) = P (X ∈ C |µ = 10)

=
∞∑

x=10

e−10 10x

x!
= 0.5421.

Answer: (a) We can’t reject H0. It could be that µ = 5 (we do not know). (b) 0.5421.



3. When measuring for 10 seconds, the expectation of Y = X(10) ∼ Po(10·λ) is E(Y ) = 10·λ.
We have observed y = 82, so it is reasonable to assume that E(Y ) > 15. Thus we can
use a normal approximation for Y . Moreover, V (Y ) = 10 · λ (the Poisson distribution is
funny..). Thus

Z =
Y − 10λ√

10λ̂

appr.∼ N(0, 1),

so we find a > 0 so that
0.90 = P (−a < Z < a).

Here we’ll use the estimate λ̂ = 8.2 (this will simplify matters).

x

y

a−a 0

α
2

α
2

So a = 1.645 is suitable. Then

−a < Z < a ⇔ −a < Y − 10λ√
10λ̂

< a ⇔ Y − a
√

10λ̂

10
< λ <

Y + a
√

10λ̂

10

so with the observation y = 82 and estimate λ̂ = 8.2, we obtain the (approximate)
confidence interval

Iλ = (6.7, 9.7).

Answer: Iλ = (6.7, 9.7).

4. (a) Let u = (1 2 5 0)T and let Y0 be an independent random observation at a = 2, r = 5
and h = 0. Let µ̂0 be the estimate for the expectation µ at the same point. A well
known test quantity is

T =
Y0 − µ̂0

S
√

1 + uT (XTX)−1u
∼ t(10− 4) = t(6).

We can box in this variable and solve for Y0:

−t < T < t ⇔ −t < Y0 − µ̂0

S
√

1 + uT (XTX)−1u
< t

⇔ µ̂0 − tS
√

1 + uT (XTX)−1u < Y0 < µ̂0 + tS
√

1 + uT (XTX)−1u,

where t = tα/2(6) = t0.005(6) = 1.9432. We can now calculate that

uT (XTX)−1u = 0.412,

so
√

1 + uT (XTX)−1u = 1.1883. As an observation of S, we use

s =

√
SSE

10− 4
=

√
4.35

6
=
√

0.725 = 0.851.



For µ̂0, we use the observation uT β̂ = 15.6755. Thus we obtain the prediction interval

IY0 =

(
15.6755∓ 1.9432 · 0.851 · 1.1883

)
= (13.7, 17.6).

(b) To test if β3 = 0, let H0 : β3 = 0 and H1 : β3 6= 0. Assume that H0 holds. Then

T =
β̂3 − 0

S
√
h33

∼ t(10− 4) = t(6),

where the distribution is clear since H0 holds. We need a critical region C such
that P (T ∈ C |H0) = 0.01 and since H1 is double sided, we choose symmetrically.

x

y

t0.025(5)−t0.025(5) 0

Reasonable

observations

if H0 holds.

C C

We find tα/2(6) = t0.005(6) = 3.7074 in a table. An observation of S
√
h33 is given by

the standard error d(β̂3) and thus we find that the observation

t =
0.28

0.56
= 0.5

does not belong to the critical region. So we can’t reject H0. The coefficient β2 might
be zero.

Answer:

(a) (13.7, 17.6).

(b) A significance test shows that we can’t conclude that β3 6= 0 at the significance
level 1%. The addition of growth hormone might not have any effect.

5. (a) We start by noting that the parameter space is Ωθ = {0, 1, 2, 3, 4, 5}. This means
that continuous methods are problematic and it might be better to just find the
ML-estimator directly. Why? Well, let us look at the likelihood function. Each Xi

has the probability function

pXi(k) =

{
1− θ

5
, k = 0,

θ
5
, k = 1,

where the outcome Xi = 1 means that we’ve found a tentaclified flamingo. Thus the
likelihood function is given by

L(θ) =
n∏
i=1

pXi(xk) =

(
1− θ

5

)n−∑xk
(
θ

5

)∑
xk

=

(
1− θ

5

)n(1−x)(
θ

5

)nx
.



In our case we have n = 7, but we’ll get to that. If we were to consider L(θ) as a
function of a continuous θ > 0, we could proceed as usual:

l(θ) = lnL(θ) = n(1− x) ln
5− θ

5
+ nx ln

θ

5
,

so

0 = l′(θ) = −n(1− x)

5− θ
+
nx

θ
⇔ θ = 5x.

We can verify that θ̂ = 5x actually is a maximum of l′(θ) by observing the sign
change of l′(θ), i.e., that we obtain ↗ max ↘ for the function l(θ), so this would

be our ML-estimate. However, there’s no way to guarantee that θ̂ ∈ Ωθ. We might
surmise though that what we’re looking for is close to 5x.

Using our sample (x1, . . . , x6) = (1, 0, 1, 0, 1, 1, 0), we see that

L(θ) =

(
1− θ

5

)3(
θ

5

)4

,

so doing the calculations we find that

L(θ) = 10−3 ·



0, θ = 0,

0.8192, θ = 1,

5.5296, θ = 2,

8.2944, θ = 3,

3.2768, θ = 4,

0, θ = 5.

We see that θ = 3 provides the highest probability, so by definition this is the MLE.

What happens with the continuous version? Well, we have 5x = 5 · 4

7
= 2.857.

Rounding it we’d obtain θ̂ = 3, but we would have to prove that this is the actual
MLE in that case.

(b) This is a rather tricky question. If you’d try and just use the estimator 5x (which
gives values very likely outside of the parameter space), it’s rather easy to show that
it is unbiased:

E(5X) = 5E(X) = 5
θ

5
,

where X has the same distribution as all the Xi:s in the average. But we can’t really
use this as our estimator. So what about the integer part of 5X? Well, the maximum
should (considering the investigation above) happen if we either round up or down,
so how would we know which one? Should we choose whichever is closest? What’s
to say that choosing in that way would yield the true MLE? So yeah.. difficult to
answer :).

Answer: (a) θ̂ = 3 (b) see above.



6. Since A is invertible, we know that detA 6= 0.

⇒) This direction is more or less trivial. If the components of Y are independent,
then C(Yi, Yj) = 0 for i 6= j and C(Yi, Yi) = σ2

i , so CY is obviously a diagonal matrix.

⇐) Now suppose that CY is a diagonal matrix, e.g.,
σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

 .

Since CY = AAT we know that CY is invertible, which implies that σ2
i 6= 0 for all i. The

inverse C−1
Y is the diagonal matrix with the diagonal elements σ−2

i . We thus obtain the
joint density function

fY (y) =
1

(2π)n/2
√

detCY
exp

(
−1

2
(y − µ)TC−1(y − µ)

)
=

1

(
√

2π)nσ1σ2 · · · σn
exp

(
−1

2

n∑
j=1

(yj − µj)σ−2
j (yj − µj)

)

=
n∏
j=1

1

σj
√

2π
exp

(
−(yj − µj)2

2σ2
j

)
=

n∏
j=1

fYj(yj).

We have now shown that the joint density function is given by the product of the density
functions for Yj, which immediately implies that the components of Y are independent.

Answer: See above.
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Exercises loosly based on an exam in TAMS65 by Martin Singull.

1. A study of use of cannabis amongst youth (445 people) and their parents use of alcohol
and/or other narcotics gave the following table.

Usage (youths)
Never Sometimes Regularly

Usage (parents)
None 141 54 40
One 68 44 51
Both 17 11 19

Using a suitable test, examine if there is a connection between the parents use of alcohol
and/or narcotics and the youth’s use of cannabis. (2p)

2. A company has stores in 4 large cities and measure sales during 8 weeks. They divide the
raw numbers by the population in each city to normalize and the result (rounded off) can
be seen in the table below.

Week
1 2 3 4 5 6 7 8 x s

City

1 19 14 12 17 21 16 15 19 16.50 2.88
2 8 12 9 9 8 10 11 8 9.38 1.51
3 13 6 6 8 11 8 9 9 8.75 2.38
4 17 18 17 22 16 18 14 21 17.88 2.59



We assume that the data are observations of independent random variables such that on
row i, we have observations of N(µi, σ

2) (the variance is σ2). We assume that all rows
have the same variance. Construct two-sided confidence intervals for µi − µj such that
the simultaneous degree of confidence is ≥ 94%. Are there differences between the cities? (3p)

3. For a number of coal driven power plants with similar construction, one has measured the
level y of sulphur dioxide release (ppm) and the effect x (GW). A helpful technician has
provided the following computer analysis of the data. The model used was

Y = β0 + β1x+ β2x
2 + ε,

where ε ∼ N(0, σ2) (the variance is σ2) and different measurements are assumed to be
independent. The regression line obtained was y = 204− 638x+ 959x2 and we have the
following data:

i β̂i d(β̂i)
0 204.46 82.95
1 -638.0 298.5
2 959.2 263.6

Analysis of variance
Degrees of freedom Square sum

REGR 2 15049.3
RES 6 254.3
TOT 8 15303.6

(XTX)−1 =

 162.38 −581.90 508.70
−581.90 2102.17 −1850.58
508.70 −1850.58 1639.75


(a) How many power plants were examined? (1p)

(b) Is the second degree term necessary? Motivate your answer at the level 5%. (1p)

(c) Find a 95% confidence interval for E(Y ) when the effect is 0.5 GW. (2p)

4. A company is measuring the quality of work and for a certain variable used 25 sam-
ples x1, . . . , x25 are collected independently during a day. It is reasonable to assume that
this sample comes from the distribution N(µ, σ2 = 1.22) (where σ2 = 1.22 is the variance).
The company wants to have µ > 30 and needs help performing the test H0 : µ = 30
against H1 : µ > 30.

(a) If x = 30.35, carry out the test at the significance level 5%. (1.5p)

(b) For which values of µ is the power of the test at least 75%? (1.5p)

5. The life time of a certain type of electrical components has the probability density

f(x) = a2xe−ax, x ≥ 0,

where a > 0 is an unknown constant. During a test-run, 50 such components were found
to have a cumulative life time of 250 time units (the 50 life times added together).

(a) Find a reasonable point estimate for a. (2p)

(b) Find a 95% confidence interval – one-sided bounded from below –for the expected
life time of such a component. (2p)

6. Prove that S2 is an unbiased estimate for σ2. (2p)
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Example exam in Statistics (solutions)

1. We expand the table a bit to introduce some quantities.

Usage (youth)
Never Sometimes Regularly Sum

Usage (parents)
None 141 54 40 235
One 68 44 51 163
Both 17 11 19 47

Sum 226 109 110 445
p̂j 0.5079 0.2449 0.2472 1.000

We see that nip̂j ≥ 5 for all 9 boxes, so we can perform a χ2-test. Let

H0 : Parents use of alcohol/narcotics is independent of the adolescents use

and
H1 : The usage is not independent.

We calculate

q =
(141− 235 · 0.5079)2

235 · 0.5079
+

(54− 235 · 0.2449)2

235 · 0.2449
+ · · ·+ (19− 47 · 0.2472)2

47 · 0.2472
= 22.3350.

If H0 is true, then q is an observation of Q
appr.∼ χ2((3− 1)(3− 1)) = χ2(4). We reject H0

if q is large, so we need a critical region C. From a table we find that c = χ2
0.01(4) = 13.28

and we define C = [c,∞).

x

y

c

Reasonable observa-

tions if H1 doesn’t hold.

C

α

Since q = 22.335 ∈ C, we reject H0. The adolescents use is not independent of the parents
usage.

Answer: The adolescents use is not independent of the parents usage.



2. First, the requirement that the confidence intervals should be simultaneous needs to be
addressed. What this means, is that if I1, I2, . . . , Ik are independent confidence intervals
for θ1, θ2, . . . , θk, then

P (θ1 ∈ I1 and θ2 ∈ I2 · · · and θk ∈ Ik) =
k∏
j=1

P (θj ∈ Ij) = (1− α)k,

if we use the same level of confidence 1− α for all intervals. Here we used the fact that
the variables used are independent, so that the confidence intervals are independent.

For this exercise, we need to compare four cities, so 6 confidence intervals are needed:

Iµ1−µ2 , Iµ1−µ3 , Iµ1−µ4 , Iµ2−µ3 , Iµ2−µ4 , Iµ3−µ4 .

Is this clear? Well, we’ve assumed that all Xij are independent, so the means X for each
row are independent. By Cochran’s theorem, we know that S2 are independent of the mean
for each line. Since the pooled variance is a function of the variances, it will also be
independent of the means. So the limits of the confidence intervals are indeed independent
of each other.

Now, by Bernoulli’s inequality, we know that (1− α)k ≥ 1− kα, so with α = 0.01, the
simultaneous degree of confidence will be better than 94% if we use 6 intervals. We could
also just test different values for the confidence level in (1− α)6 until we hit a sweet spot.

We weight together the variances according to the pooled variance:

s2 =
7s2

1 + 7s2
2 + 7s2

3 + 7s2
4

28
=

1

4

(
s2

1 + s2
2 + s2

3 + s2
4

)
.

For each row, let Xi denote the mean value of said row, i = 1, 2, 3, 4. It now follows that
(by Cochran’s and Gosset’s theorems)

T =
Xi −Xj − (µi − µj)

S
√

1
8

+ 1
8

∼ t(28),

and
P (−tα/2(28) < T < tα/2(28)) = 1− α

where we can solve the inequality for

Xi −Xj − tα/2(28) · S
2
< µi − µj < Xi −Xj + tα/2(28) · S

2
.

Note that

√
1

8
+

1

8
=

1

2
. From a table, we find that t0.005(28) = 2.7633.

x

y

−tα/2(28) tα/2(28)



We use the observation
√
s2 =

√
5.74 of S, so

t0.005(28)
s

2
= 3.3102.

We now get 6 interesting intervals for comparison of differences µi − µj. We use the
observations xi − xj of Xi −Xj in each case, leading to

Iµi−µj = (xi − xj ∓ 3.3102) .

Thus
Iµ1−µ2 = (3.81, 10.43)

Iµ1−µ3 = (4.44, 11.06)

Iµ1−µ4 = (−4.69, 1.93)

Iµ2−µ3 = (−2.68, 3.94)

Iµ2−µ4 = (−11.81, −5.19)

Iµ3−µ4 = (−12.44, −5.82)

We can see from this that µ1 > µ2,3 but that it is inconclusive if µ1 6= µ4. Similarly, µ2 < µ4

and µ3 < µ4, but we do not know if µ2 6= µ3 or not. The conclusion that can be drawn is
that offices in cities 1 and 4 has better sales than 2 and 3, whereas nothing can be said
about city 1 and 4 and between 2 and 3.

Answer: See above.

3. (a) 9 power plants were examined. This is clear since SSE has n − k − 1 degrees of
freedom and SSR has k. From the table we see that n−k−1 = 6 and k = 2, so n = 9.

(b) To test if the second term is necessary, let H0 : β2 = 0 and H1 : β2 6= 0. Assume
that H0 holds. Then

T =
β̂2 − 0

S
√
h22

∼ t(6),

where the distribution is clear since H0 holds. We need a critical region C such
that P (T ∈ C |H0) = 0.05 and since H1 is double sided, we choose symmetrically.

x

y

t0.025(6)−t0.025(6) 0

Reasonable

observations

if H0 holds.

C C

We find tα/2(6) = t0.025(6) = 2.4469 from a table and we use the observation of S
√
h22

in the form of the standard error d(β̂2). Thus we find that the observation

t =
959.2

263.6
= 3.64

is in the critical region, so we reject H0. The second degree term is useful.



(c) To find a confidence interval for the expectation at x = 0.5, we let u = (1 0.5 0.52)T .

Let µ̂0 = uT β̂ be the estimate for µ at x = 0.5. Then (by Gosset’s theorem)

T =
uT β̂ − uTβ

S
√
uT (XTX)−1u

∼ t(6),

if we use S2 = SSE/6. We box in T and solve for uTβ:

−t < T < t ⇔ uT β̂ − tS
√
uT (XTX)−1u < uTβ < uT β̂ + tS

√
uT (XTX)−1u,

where t = tα/2(6) = t0.025(6) = 2.4469.

x

y

−tα/2(6) tα/2(6)

A straight forward calculation yields uT (XTX)−1u = 0.2119. As an observation of S,
we use

s =
√

SSE/6 =
√

254.3/6 = 6.5102,

and uT β̂ = 125.26, from which we obtain the confidence interval

Iµ =

(
125.26∓ 2.4469 · 6.5102 ·

√
0.2119

)
= (117.9, 132.6).

Answer: (a) n = 9 (b) It is useful. (c) I = (117.9, 132.6).

4. (a) Assume that H0 is true. Then x is an observation of

X ∼ N(30, 1.22/25) = N(30, 0.0576).

The critical region is of the form C = [a,∞) since H1 is one sided and we’re looking
at a higher mean value. Since

0.05 = P (X ≥ a) = 1−P (X < a) = 1−P
(
X − 30

0.24
<
a− 30

0.24

)
= 1−Φ

(
a− 30

0.24

)
,

we obtain that

Φ−1(0.95) =
a− 30

0.24
⇔ a = 30 + 0.24 · 1.645 = 30.3948.

x
a30

Reasonable observations if H1 is false. C

α
2



Since x = 30.35 was observed, we did not get an observation in the critical region.
Hence we can not reject H0. The expectation might very well be µ = 30.

Note that it is unfeasible to use x as test statistic if σ is unknown (why?).

(b) The power at µ is defined as

h(µ) = P (H0 rejected |µ is the correct value) = P (X ≥ a |X ∼ N(µ, 0.242))

= 1− Φ

(
a− µ
0.24

)
.

If we want the power to be ≥ 75%, then

0.75 ≤ 1− Φ

(
a− µ
0.24

)
= Φ

(
µ− a
0.24

)
⇔ 0.6745 ≤ µ− a

0.24

⇔ a+ 0.6745 · 0.24 ≤ µ,

since Φ is strictly increasing. Hence µ ≥ 30.557.

Answer: (a) We can’t reject H0 (b) µ ≥ 30.557.

5. We let X be a random variable with density function

f(x) = a2xe−ax, x ≥ 0,

where a > 0 is an unknown constant.

(a) To find an estimate for a, let’s use the method of moments (since it’s usually the
easiest). We find

E(X) = a2

∫ ∞
0

x2e−ax dx = · · · = 2

a
,

using integration by parts for example. To find the MME, we solve for â in

2

â
= x ⇔ â =

2

x

if x 6= 0. We have observed that the cumulative lifetime of 50 units was 250, so we
can estimate a by

â =
2 · 50

250
= 0.4.

(b) By the CLT, we know that
50∑
k=1

Xk
appr.∼ N(50µ, 50σ2), where σ2 and µ are the variance

and expectation of a single X, respectively. We know that µ = 2/a but need to
calculate the variance. The second moment is given by

E(X2) = a2

∫ ∞
0

x3e−ax dx = · · · = 6

a2
,

again using integration by parts. By Steiner’s theorem, we thus obtain that

V (X) = E(X2)− E(X)2 =
6

a2
− 4

a2
=

2

a2
.

Hence

Y :=
50∑
k=1

Xk
appr.∼ N

(
100

a
,

100

a2

)
.



We are asked to find a confidence interval Iµ for µ, but since µ = 2/a we can start
by finding one for a. Since Iµ should be bounded from below, we seek Ia bounded
from above. Therefore we choose c = Φ−1(0.95) = 1.645 such that

0.95 = P

(
Y − 100/a

10/a
≤ c

)
.

Solving the inequality in the probability measure yields

Y − 100

a
≤ 16.45

a
⇔ Y ≤ 116.45

a
⇔ a ≤ 116.45

Y
.

Using the observation y = 250 of Y , we obtain a confidence interval Ia = (0, 0.4658).
Since µ = 2/a, we therefore have Iµ = (4.29, ∞).

Answer: (a) a = 0.4 (b) Iµ = (4.29, ∞).

6. The sample variance is defined by S2 =
1

n− 1

n∑
i=1

(Xi −X)2. Hence

E

(
1

n− 1

n∑
i=1

(Xi −X)2

)
=

1

n− 1
E

(
n∑
i=1

X2
i − 2XiX +X

2

)

=
1

n− 1

n∑
i=1

(
E(X2

i )− 2E(XiX) + E(X
2
)
)
.

We know that E(X) = µ and V (X) = σ2/n, and since E(Y 2) = V (Y ) + E(Y )2, we have

E(X2
i ) = V (Xi) + E(Xi)

2 = σ2 + µ2 and E(X
2
) = σ2/n+ µ2.

Furthermore,

E(XiX) = E

(
Xi

1

n

n∑
k=1

Xk

)
=

1

n

n∑
k=1

E(XiXk)

and since E(XiXk) = E(Xi)E(Xk) = µ2 if i 6= k (since these variables are independent)
and E(X2

i ) = σ2 + µ2 (when i = k), it follows that

E(XiX) = ((n− 1)µ2 + σ2 + µ2)/n = µ2 + σ2/n.

In summary, we have now shown that

E(S2) =
1

n− 1

n∑
i=1

(
σ2 + µ2 − 2(µ2 + σ2/n) + σ2/n+ µ2

)
=
nσ2 − nσ2/n

n− 1
= σ2,

so S2 is an unbiased estimator for σ2.

Answer: See above.


