Linköping University Department of Mathematics Lars Eldén

August 20, 2010

Matrix Methods in Data Mining and Patter Recognition Computer Assignment Least Squares and Orthogonal Transformations

ASSIGNMENT

An introduction to basic matrix concepts and to using orthogonal transformations and decompositions in Matlab.

SPECIFIC TASKS

- 1. Solve the following least squares problems using the normal equations and QR decomposition. In both cases, plot the data and the polynomial approximation.
 - (a) Fit a third degree polynomial to the data

(b) Fit a third degree polynomial to the data

Explain the differences between (a) and (b).

2. Fit the third degree polynomial $P(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ to the following data, using normal equations.

What is the condition number of the matrix in the normal equations? Use a better model and compute the condition number of the normal equations.

3. (a) Compute the solution of the least squares problem

$$\min_{\beta} \|X\beta - y\|, \qquad X = \begin{pmatrix} 1 & 1\\ \epsilon & 0\\ 0 & \epsilon \end{pmatrix}, \qquad y = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$$

for the values $\epsilon = 1, 10^{-1}, \dots, 10^{-8}, 10^{-9}$ using QR decomposition and normal equations. Compare the results. Which are more accurate?

- (b) Illustrate the condition numbers of the data matrix and the normal equations as a function of ϵ .
- 4. Write a MATLAB function for reducing

$$\begin{pmatrix} R \\ x^T \end{pmatrix} \longrightarrow Q^T \begin{pmatrix} R \\ x^T \end{pmatrix} = \begin{pmatrix} \hat{R} \\ 0 \end{pmatrix},$$

where R is upper triangular, using n plane rotations. (See Section 5.6).

- 5. (a) Write a Matlab function [Q,R,P]=qrpiv(A) that computes a QR decomposition with column pivoting. Construct a matrix that does not have full column rank, and apply the function to it. Also test the function on the Kahan matrix.
 - (b) For reasons of further enhanced numerical stability one sometimes uses column pivoting also for problems with full column rank. Solve the least squares problem min $||Ax b||_2$, where A and b are taken from item 1 above.
- 6. (a) Is it possible to construct a finite sequence of orthogonal transformations, $Q = Q_1 Q_2 \cdots Q_n$, such that when applied to a symmetric matrix A, it is diagonalized,

$$A \longrightarrow Q^T A Q = \text{diag}$$

(no coding, answer and motivate).

(b) Write a MATLAB function for reducing a non-symmetric square matrix to upper Hessenberg form

$$A \longrightarrow Q^T A Q = H,$$

using Householder transformations (how many?). See Chapter 15.

(c) Exactly the same function can be used to reduce a symmetric matrix to tridiagonal form

$$A \longrightarrow Q^T A Q = T.$$

(Check that).