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1 Introduction

A great deal of linguistic knowledge is encoded implicitly in bilingual resources
such as parallel texts and bilingual dictionaries. Dyvik [7,6] has provided a knowl-
edge discovery method based on the semantic relationship between words in a
source language and words in a target language, as manifested in parallel texts.
His method is called Semantic Mirroring and the approach utilizes the way that
different languages encode lexical meaning by mirroring source words and target
words back and forth, in order to establish semantic relations like synonymy and
hyponymy. This knowledge can then be applied in the creation or extension of
wordnets, thesauri and ontologies. Work in this area is also related to work within
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Word Sense Disambiguation (WSD) and the observation that translations are a
good source for detecting such distinctions [21,13,5]. A word that has multiple
meanings in one language is likely to have different translations in other languages.
This means that translations can serve as sense indicators for a particular source
word, and make it possible to derive different senses for it.

In this paper we propose a method for the analysis of semantic mirrors (a very
preliminary version of the method is described in the conference presentation [9]),
with the objective to produce synonym sets. The semantic mirroring procedure
can be interpreted as the construction of a graph where each node represents a
word, and each edge one or more translations via words in the second language.
If the graph consists of disconnected subgraphs then it is very likely that those
represent different senses. Similarly, if there are two subgraphs, say, that internally
are strongly connected but are only weakly connected to one another (via a small
number of edges), then it is likely that the subgraphs represent different senses.
The method used to find the weak connections in the graph is spectral partitioning

[19,4]. This method is widely used e. g. for the partitioning of graphs for load
balancing in parallel computing [22]. Here we use the ordering of the nodes in
the graph produced by the method and search the graph for weak connections.
The algorithm is hierarchical : the original connected graph is divided into two
subgraphs, which are then subdivided, until a specified number of subgraphs is
reached.

The outcome of the procedure is two or more sets of words, which we will refer
to as semantic clusters. As there are many parameters to the method, including
the bilingual resource, the number of graph divisions and the thresholds set on
eigenvalues, there is no guarantee that there will be a one-to-one correspondence
between groupings and word senses as recognized by, say, a dictionary or a Word-
Net. On the other hand, there is no universally recognized notion of word sense
either, cf. Section 2.1.

In the following section we provide a linguistic background and present the
method of Semantic Mirrors in more detail. In section 3 we show how it is imple-
mented as spectral graph partitioning, and, in section 4, we give illustrations of
its application to a bilingual dictionary of English and Swedish adjectives. Related
work on semantic mirrors is briefly discussed in Section 5. Finally, in Section 6 we
discuss how the proposed method can be used in (explorative) lexical semantics
and state our conclusions.

1.1 Notation

Graphs are denoted by calligraphic Roman letters. The corresponding weighted
adjacency matrices, which will be real throughout, are denoted by capital Roman
letters. The standard basis vector with zeros in all positions except the i’th, which
holds a 1, is denoted ei. The vector e has all entries equal to 1. We also denote sets
of words by capital Roman letters. For a vector x, diag(x) denotes the diagonal
matrix with the vector elements on the diagonal.
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2 Semantic Mirroring

Helge Dyvik introduced translations (“semantic mirrors”) as a semantic knowledge
source [6,7]. In a two-way lexicon with translations of a word in one language into
different words in the other, and translations back to the first language, there
is much information that is only implicitly given. By using this partially hidden
information, we can extract an intricate network of translational correspondences,
bringing together the vocabularies of the two languages. This makes it possible
for us to treat each language as the semantic mirror of the other language, in a
way that will be described further on. To motivate the procedure of extracting the
information Dyvik makes the following assumptions [8]:

1. Semantically closely related words tend to have strongly overlapping sets of
translations.

2. Words with a wide meaning tend to have a higher number of translations, than
words with a more narrow meaning.

3. Contrastive ambiguity, i.e. ambiguity between two unrelated senses of a word,
tend to be a historically accidental and idiosyncratic property. Therefore, we
don’t expect to find instances of the same contrastive ambiguity in other words,
or by words in other languages.

4. Words with unrelated meanings will not share translations into another lan-
guage, except in cases where the shared words are contrastively ambiguous
between the two unrelated meanings. By assumption (3) there should then be
at most one such shared word.

Example 1 To give a first illustration of the ideas of semantic mirroring we consider
a small, contrived and somewhat simplified, “manually performed” example. Note
that our description differs from that in the papers by Dyvik: In order to keep the
example small we only perform one and a half mirroring1, while Dyvik normally
does two (as we will do in the rest of the paper).

Using a publicly available dictionary2, and a Swedish seed word rätt, we get
the following translation,

rätt −→ {course, dish, a lot, meal, proper, right, justice, rightly, somewhat,
correct, directly, fair and square, full, law, court, quite, fairly} =: U0.

These are the words that we want to cluster, hoping that the clustering will reveal
different senses. We translate each word in U0 to Swedish and then back to English
and note which words in U0 are returned. For instance, course is translated

course −→ {lopp, kurs, lärokurs, flöde, fat, g̊ang, str̊at, väg}.

Out of those Swedish words, only kurs and fat have a translation in U0:

kurs −→ {tack, course, class},
fat −→ {bowl, saucer, plate, barrel, course, dish, platter}.

Analogously,

dish −→ {bunke, fat, beh̊allare, bytta, kärl},

and here again fat translates back to dish, course.
If we perform all the translations we get the graphs in Figure 1. The edge

1 Translation Swedish → English → Swedish → English.
2 www.gratisordbok.se.
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Fig. 1 Translations of the words in U0: disconnected graphs. The edge weights are the number
of Swedish words in the translation between the two node words.
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labels denote the number of translations between the English words via Swedish
words. It is clear that the disconnected graphs are groups of words with different
meanings. We also get the more interesting larger subgraph, where parts of the
graphs are rather tight with weaker couplings to the rest. It is apparent that we
have three different meanings, or three groups of synonyms.

In the rest of the paper we will describe how by spectral partitioning methods
we can partition graphs like the bottom one in Figure 1, and thereby compute
groups of words, where each group contains semantically related words.

2.1 Word Senses and Synonym Sets

A word sense is in principle one of the various meanings a word can have. But to
actually pinpoint what constitutes a word sense is very difficult, both to determine
the exact characteristics of the word sense and what words actually belong to that
word sense. As Kilgarriff [14] writes: Identifying a word’s senses is an analytic task

for which there are no straightforward answers. When constructing thesauruses, the
objective is primarily to provide consistent meaning clusters, and when compiling
dictionaries the objective is to list all the possible word senses for a word entry.
Kilgarriff [14] points out that dictionaries often disagree. If we look at the Mer-
riam Webster on-line English dictionary (www.merriam-webster.com), there are, for
example, 13 different word senses for the adjective blue (including subsenses). In
WordNet (wordnetweb.princeton.edu) the adjective blue is found in 8 so called
synsets (synonymy sets), each of which represents a word sense, especially since
all 8 of them have definitions. The disagreement in the choice of word senses be-
tween the two resources is dependent on granularity (if something is divided into
subsenses or not) and in coverage (missing sense in one of the resources). For ex-
ample, the word sense of blue depicting “aristocratic” or “blue-blooded” is present
in WordNet but not in Merriam Webster. On the other hand there are three word
senses present in Merriam Webster that cannot be found in WordNet, for exam-
ple, “blue states”, describing states that support Democrats in general elections,
“blue music” in the music genre blues, and “blue” used about learned, intellectual
women.

The disagreement between different lexical resources, such as WordNet and
Merriam Webster, could be seen as unfortunate because it points to a lack of
consensus and thereby making it difficult to compare new, derived lexical data with
any gold standards. A complete list of all word senses or synonym sets is probably
not feasible to create, as the potential usage of words is virtually unlimited [17].
Some word senses are of course more or less recognized (with the process known as
lexicalization), but others are more dynamic and are created in certain contexts.

In this study a bilingual lexicon of English and Swedish adjectives is used.
There are no explicit synonym sets or word senses listed in the dictionary, but
the procedure described in this paper has the goal to group words into clusters of
words that have identical or related meanings, as far as possible.
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2.2 The Mirroring Method Explained

While the method often produces neat word clusters, word meanings do not always
correspond one-to-one in two languages, so the mirroring method can impose a
semantic structure on the source language that is not inherent to it. Let us see
how this can happen.

Denote the words in the source language by σ1, σ2, . . . , σm, and those in the tar-
get language by τ1, τ2, . . . , τn. For concreteness we will give examples from English
and Swedish. The lexical resource that we use, whether a man-made bilingual dic-
tionary or the output from a word alignment system, is assumed to be reasonably
complete.

The seed word σ is a word with possibly several senses, Ξ1, Ξ2, . . . , Ξs. This
set is referred to as a sense space. We assume that for each sense there exists a
synonym set of words expressing that sense. Let Si = {σ(i)1 , σ

(i)
2 , . . . , σ

(i)
si } be the

synonym set for the i’th sense.
In the general case the mirroring method is applied in four steps:

1. First image t(σ) = {τ1, τ2, . . . , τr} =: T0.
2. First inverse image t−1(T0) = {σ, σ1, σ2, . . .}. Put Σ0 = t−1(T0) \σ.
3. Second image t(Σ0). Put T = t(Σ0)\T0.
4. Second inverse image t−1(T ). Put Σ = t−1(T ) ∩Σ0.

The first image t(σ) generates a set of words in the target language. Each one
of these words should have at least one sense in common with σ. However, in case
one of the languages makes finer distinctions than the other in this area of the
lexicon, we may get a sub-sense, or a super-sense, instead of Ξi. A typical case is
given by family relationships, where Swedish has some lexical items with a more
specific meaning than the common English counterparts, e.g., grandmother ↔
mormor, farmor (mother’s mother, father’s mother).

It may also happen that some words in the first image have other senses than
those covered by σ, i.e., a case of contrastive ambiguity. They may be homonyms
or they may be polysemic in a manner that σ is not. An example is pond →
damm, where the Swedish word may mean ’dust’ as well as ’pond’.

As a result, the sense space of the first image need not be isomorphic with the
sense space of σ. In the case of Swedish words having more specific meanings, one
sense has been divided into two or more specific senses; in the case of contrastive
ambiguities, we will introduce unrelated senses that have no counterpart in the
original sense space.

The first inverse image Σ0 will introduce a number of source words apart
from σ. Considering all senses of all these words, we might have an enlargement
of senses due to homonymy, polysemy and sense narrowings/widenings. Thus, the
sense space spanned by all of the words surely includes the original sense space, but
may be both enlarged, sub-specified, or generalized. It is unlikely, however, that
the space is both specified and generalized, since a specification in one direction,
should result in a generalization in the inverse direction, and vice versa. But we
may have introduced senses semantically unrelated to the ones we started with.

At this stage, we have little knowledge of the structure of the sense space.
However, we may see clusters of words σj that are reached from the seed word via
different paths σ → τi → σj .
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When computing the second image we leave out the original word, σ, but map
all the new source words obtained by the first inverse image. As an effect we may
see new target words that we didn’t see from the first image. Also, we may see
new paths to the target words of the first image.

As compared with the target sense space of the first image, the sense space
of the second image may contain sub-senses and super-senses to the senses of the
first image. And, just as for the source language, we may have introduced senses
that are unrelated to those of the first image.

For each word of the first image, we can see clusters via paths to the source
side that share images.

In the second inverse image we exclude the target words from the first image
and we are only interested in new paths to words of the first inverse image. As
this is our last mirroring, any source word that has not be seen previously has
uncertain relations to the target side and is seen as unhelpful.

We can now look at clusters formed by the words of the first inverse image,
including or excluding the seed word. A graph can be obtained in the following
way:

– each word σj ∈ Σ is represented as a node j of the graph,
– if there is a path σi → τj → σk we register an edge between the nodes i and
k,

– the weight of edge (i, k) is set equal to the number of paths linking nodes i and
k,

– loops (i, i) are included, for reasons that will be discussed later.

It may happen that some node i has no edges with the other nodes (except self-
loops). This may be taken as evidence that it represents a separate sense, which
may or may not be part of the original sense space of σ, as it may be the result of
target word homonymy or polysemy. Example: pond → damm → {dust, pond,

... } where dust has no semantic relation to pond and possibly not to any other
word as well generated from pond.

Generally speaking, if the edge weight is high for (i, k), this is strong evidence
that they belong to the same semantic cluster and share at least one sense, or
super-sense. But other words may belong here too. Rather than defining clusters
positively, we can look at weak relations between sets of nodes, and, if we find a
weak relation, draw the tentative conclusion that there is no interesting cluster
that include two nodes from the different sub-sets. This requires, however, that we
can find a suitable definition of weak relation. To do this we turn to graph theory,
and spectral graph partitioning, in particular.

2.3 Translation Matrix and Mirror Graph

We will now give a matrix/graph oriented description of the mirroring procedure.
The lexicon in the preceding section defines a sparse matrix B. In our experiments
we have worked with an English-Swedish lexicon consisting of 14850 English ad-
jectives, and their corresponding 20714 Swedish translations. For concreteness we
will refer to this lexicon in the sequel; obviously the method can be applied to an
arbitrary lexicon between two languages.

The words in the two languages are σ1, σ2, . . . , σm, and τ1, τ2, . . . , τn. We first
illustrate the mirroring procedure in an example.
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Example 2 The mirroring procedure is illustrated in Figure 2. For simplicity of
notation we here assume that the words occurring in the translation are those
with indices 1, 2, . . .. We do not want σ1 to occur in the first inverse t-image,

seed T0 = t(σ1) Σ0 = t−1(T0)\σ1

σ2

τ1

22

σ3

σ1

++

//

33

τ2

22

,,

σ1

τ3 //

,,

σ4

σ5

Fig. 2 First mirroring operation.

because in the second mirroring σ1 would only reproduce the first mirroring.

Next we are going to perform a second mirroring, which will make it possible
to group the words in the inverse t-image, Σ0 = {σ2, σ3, σ4, σ5}, which, in turn,
will reveal the different meanings of the seed word σ1. In the second mirroring, see
Figure 3, we omit the translations via τ1, τ2, τ3, as those will only reproduce the
first mirroring.

T0 Σ0 T Σ

τ4 //

))

σ6

σ2

55

// τ5 //

))

σ2

τ1

55

σ3

55

τ1 σ3

σ1

))

//

55

τ2

55

))

σ1 τ2 σ1

τ3 //

))

σ4

))

τ3 σ4

σ5 //

))

τ6

55

//

))

σ5

τ7

55

// σ7

Fig. 3 First and second mirroring.

The second mirroring defines a mirror graph involving the words σ2, σ3, σ4, σ5.
It is seen that the graph in the example is disconnected, which suggests that there
are two different senses. As noted in the previous subsection the source words σ6
and σ7 have uncertain relations to the words in T and are therefore excluded from
the final image Σ.
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The translation matrix B ∈ Rm×n is defined

bij =

{
1, if σi translates to τj ,

0, otherwise.

The weighted adjacency matrix of the mirror graph can be computed from the
translation matrix as follows. The translations of a seed word, σ, are found by the
operation BTeσ, where eσ is a unit vector with zeros everywhere except in the
position of σ. The nonzero components of BTeσ will indicate the Swedish words
that are translations of σ, the t-image of σσ.

Translation back to English of all the Swedish words is then obtained by the
multiplication BBTeσ. As we do not want σ to occur in the first inverse t-image
(see above), we remove it by multiplication by I − eσeTσ ,

f = (I − eσeTσ)BBTeσ.

Assume that the nonzero elements of f are in positions i1, i2, . . . , is, which
means that the first inverse t-image is Σ0 = {σi1 , σi2 , . . . , σis}. Define the first
inverse t- image matrix

Fs =
(
ei1 ei2 · · · eis

)
.

To avoid using translations via the first t-image (cf. the example above), we use
a modified translation matrix B(2), where the columns corresponding to (the
Swedish) words in the first t-image T0 have been replaced by zeros, as well as
the column corresponding to σ. The second inverse t-image is then obtained from
the multiplication B(2)B

T
(2)Fs. Finally, we are not interested in the English words

that occur for the first time in the second inverse t-image, so we remove those
by multiplication by FT

s . Thus the adjacency matrix for the graph, where the
nodes represent words in the first inverse t-image is given by the nonzero rows and
columns of

A = FT
s B(2)B

T
(2)Fs. (1)

The adjacency matrix is weighted : a mirroring of σk via two different τp and τq back
into σl indicates a stronger relation between σk and σl than a mirroring via only
one Swedish word. The multiplication (1) gives the weight 2 to the corresponding
edge.

Example 3 The translation matrix of Example 2 can be written (if we exclude all
words that do not occur in the present translation)

B =



1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 0 1 0 0
0 1 1 0 0 1 0
0 0 1 0 0 1 1
0 0 0 1 0 0 0
0 0 0 0 0 1 1


.

The weighted adjacency matrix becomes

A =


2 1 0 0
1 1 0 0
0 0 1 1
0 0 1 2

 ,
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where the rows and columns correspond to the words σ2, σ3, σ4, σ5. Note that the
matrix is reducible, which is equivalent to the graph being disconnected and here
having two components.

The elements on the diagonal are the number of self-loops. We will let the
weighted adjacency matrix have self-loops, based on the following heuristics. An
English word with many self-loops but few edges corresponds to a wider meaning
in Swedish than in English (cf. assumption 2 on page 3), and that should be given
a weight when we try to cluster the English words according to different senses.
However, we will demonstrate later that the use of node weight does not influence
the ordering of the nodes induced by the spectral partitioning method, it only
influences our measure of sparseness of the graph.

Example 4 Consider the graph in Figure 4. A single English word σ1 that has

σ1 σ2 σ3

σ4

σ5

σ6

Fig. 4 Example 4. Partitioning of a graph, where σ1 is assumed to have several self-loops.

translations back to itself via many Swedish words (many self-loops) is more likely
to represent a different meaning from σ2, . . . , σ6 than if it has only one self-loop,
say. In this situation, when the weight of the node σ1 is high, the graph should be
partitioned between σ1 and σ2.

We will come back to this example when we have defined a measure of the
“well-connectedness” of a partitioning of a graph.

3 Spectral Graph Partitioning

We first give some basic definitions and state properties of graphs related to spec-
tral partitioning. For extensive presentations of the theory, we refer e. g. to [4,
23].

Let A ∈ Rn×n be the weighted adjacency matrix of an undirected, connected
graph A on n nodes. The degree di of node i is the number of edges that em-
anate from the node, including self-loops (counted once). The degree vector d =(
d1 d2 · · · dn

)T
satisfies

d = Ae,

where e ∈ Rn is the vector of all ones. Let D be the diagonal matrix made up from
d, i.e. D = diag(d1, d2, . . . , dn). The Laplacian matrix L of the graph is defined as

L = D −A.
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Obviously e is an eigenvector of L with eigenvalue 0. Since A is connected (equiv-
alently, A is irreducible) this is the only zero eigenvalue, all the rest are positive.
Denote the eigenvalues of L by

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1,

and the corresponding eigenvectors are ui, i = 0, 1, . . . , n− 1.

In this paper we will mainly use the normalized Laplacian matrix Ln,

Ln = I −D−1/2AD−1/2.

Here D1/2e is an eigenvector of Ln with eigenvalue 0. The eigenvalues of Ln are

0 = ν0 < ν1 ≤ ν2 ≤ · · · ≤ νn−1,

and the eigenvectors are vi, i = 0, 1, . . . , n− 1.

The relations between the properties of the graph and those of the eigenvalue
problems for the two Laplacian matrices are similar.

The first nonzero eigenvalue3 ν1 (or λ1) is called the Fiedler eigenvalue; we will
refer to the corresponding eigenvector v1 as the Fiedler vector4. The connectivity
of the graph is strongly related to the value of ν1: loosely speaking, the closer the
value of ν1 to zero, the closer the graph is to being disconnected. For more precise
statements of this property, see [4] and below.

We want to partition a connected graph in two, by removing some edges.
Thus we want to find the part of the graph, where it can be split up in two
subgraphs by breaking as few edges as possible. Let S be a subgraph5 of A, and
S its complement. The volume of S is defined vol(S) =

∑
i∈S di; this is the sum of

the degrees of the nodes in S. Then define the edge boundary δS of S to consist
of all edges with exactly one endpoint in S. We first formulate, tentatively, the
following partitioning problem:

Find a subgraph S such that its edge boundary δS contains as few edges
(counted with weights) as possible.

However, that problem may be too simplistic: S consisting of any node with only
one edge of weight one would be a solution to that problem. To avoid that situation
we require that the two subgraphs are not too small [4]:

Partitioning problem: For a fixed number m, find a subgraph S with
m ≤ vol(S) ≤ vol(S) such that the edge boundary δS contains as few edges
as possible.

3 It need not be unique: there are graphs for which ν1 = ν2 = · · · = νk, for some k. In our
application usually this poses no problems.

4 The terminology is not always consistent here: sometimes in the literature D−1/2v1 is
called the Fiedler vector.

5 With some abuse of notation, we will refer to a subset of the nodes as a subgraph, whose
edges are those between the nodes in the subset.
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To quantify the relation between the solution of the best partitioning problem
we define the conductance of a partitioning. Assume that we have partitioned A
into two subgraphs S and S by removing a set of edges. The conductance ψ(S) is
defined

ψ(S) =
|E(S,S)|

min(vol(S),vol(S))
, (2)

where |E(S,S)| is the total weight of the edges that are removed. The conductance
of the graph6 A is defined

ψ(A) = min
S

ψ(S),

where the minimum is taken over all possible partitionings. The Cheeger inequalities

[4, Section 2] give a relation between the Fiedler value and the conductance of the
graph:

2ψ(A) ≥ ν1 ≥
(ψ(A))2

2
.

Finding the optimal partition, i.e. the one that minimizes the conductance over all
possible partitionings, is NP-hard [1,23]. However, spectral partitioning provides a
heuristic.

Spectral partitioning: Given the Fiedler vector v1 (or u1), reorder its
elements in ascending order. This defines a permutation of the integers
{1, 2, . . . , n}. This induces a reordering of the nodes of the graph: Apply
the permutation to the nodes of the graph, and modify the set of edges
accordingly. For each partitioning Sη = {1, . . . , η}, Sη = {η+1, . . . , n}, η =
1, 2, . . . , n, of the reordered graph, compute the corresponding conductance.
Choose the partitioning with the smallest conductance.

The heuristic is based on the following well-known Rayleigh quotient property
of the Fiedler vector.

Proposition 1 The Fiedler vector u1 is the solution of the minimization problem,

min
x⊥e

xTLx

xTx
=

1

2
min
x⊥e

∑
i,j aij(xi − xj)

2

xTx
=: µ1, (3)

and the Fiedler value µ1 is the minimum.

In the normalized case the Fiedler vector is v1 = D1/2ŷ, where ŷ is the solution of

min
y⊥D1/2e

yTLny

yTy
=

1

2
min

y⊥D1/2e

∑
i,j aij(

yi√
di
− yj√

dj
)2

yTy
=: ν1, (4)

and the Fiedler value is the minimum.

The proof can be found, e.g., in [3,4,23]. We only give a sketch here.

6 Also called the Cheeger constant [4].
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Proof From the identity L = D−A we see that L =
∑
Lij , where the edge between

nodes i and j is represented by the matrix

(Lij)pq = aij


1 if p = q = i, or p = q = j,

−1 if p = i, q = j, or p = j, q = i,

0 otherwise.

Then, since xTLijx = aij(xi−xj)2, the relation (3) follows from the Rayleigh quo-
tient characterization of the eigenvalues and eigenvectors of a symmetric matrix.

The proof of the second part is analogous, using the identity Ln = D−1/2LD−1/2.

Denote the components of the Fiedler vector u1 = (ξ1, ξ2, . . . , ξn)T , and let U
be the mapping of the nodes onto the real line, U : i→ ξi, i = 1, 2, . . . , n. From the
minimization property (3) we see that nearby nodes (aij 6= 0), are mapped closely
on the real line. In addition, edges (i, j) with high weight, force the image points ξi
and ξj closer to each other. Now, if we reorder the elements of the Fiedler vector in
ascending order, and induce the same reordering on the nodes, then nearby nodes
i1 and i2 (ai1i2 6= 0) in the new ordering, will have |i1− i2| small. Therefore, if the
graph has two well connected subgraphs and a weak coupling between them, it is
likely that the weak coupling will be found by testing (computing the conductance
of ) partitionings (Sη, Sη) as defined in the heuristic.

A similar interpretation can be done for the heuristic based on the normalized
Laplacian. An examination of a path graph (i.e. one with a tridiagonal adjacency
matrix), where one edge has much larger weight than the others, shows that in
the normalized case the edge with large weight is deemphasized as compared to
the unnormalized case.

In [23, Section 6] an alternative derivation of the heuristic is given, based on
the notion of random walks on graphs, where the matrix of transition probabilities
is D−1A:

“... spectral clustering can be interpreted as trying to find a partition of
the graph such that the random walk stays long within the same cluster
and seldom jumps between clusters.”

In Section 2.3 we argued that self-loops should be allowed. That leads to el-
ements on the diagonal of the adjacency matrix. Let A = D0 + A0, where D0 is
diagonal with the weights of the self-loops, and A0 has a zero diagonal. Then, since
D = diag(Ae) = D0 + diag(A0e), it is easily seen that D − A = diag(A0e) − A0.
Therefore, the eigenvalues or eigenvectors of the Laplacian are independent of the
self-loops. However, from the definition (2) we see that the self-loops influence the
conductance of the partitioning.

Example 5 Define two partitionings of the graph in Example 4,

S1 = {σ1}, S2 = {σ1, σ2},

and let the number of self-loops in nodes 1 and 2 be s1 and s2, respectively, with
si ≥ 0, i = 1, 2. Assume that all edges have weight 1. If we assume that for the
partitionings vol(Si) ≤ vol(Si), i = 1, 2, then the conductances are

ψ(S1) =
1

s1 + 1
, ψ(S2) =

2

s1 + s2 + 4
.
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It follows that

ψ(S1) < ψ(S2) ⇐⇒ 2 + s2 < s1.

Thus, if we do not include the self-loops, i.e. if we put s1 = s2 = 0, then, based on
conductance, we will not be able to partition the graph between nodes 1 and 2.

3.1 Partitioning Mirror Graphs

In Algorithm 3.1 we give a pseudocode for the partitioning of a connected graph.
It is assumed that the function MinConductance computes the conductance of
partitionings along the ordering of the graph.

Algorithm 3.1 Spectral partitioning of a connected graph S(j)

function [S(a),S(b)] = Partition(S(j))
v = FiedlerVector(S(j))
[vsorted, iv] = Sort(v)

S(j) = S(j)(iv) {Reorder the nodes}
p = MinConductance(S(j)) {Compute partitioning (Sp,Sp) with minimum conductance}
S(a) = Sp; S(b) = Sp

In the overall algorithm the set of graphs S is initialized as a connected
graph. At the stage when it has been partitioned into k disconnected graphs,
S = {S(j)}kj=1, the one with the smallest Fiedler value is further partitioned. The
pseudocode is given in Algorithm 3.1. This algorithm is related to one of the nor-
malized Laplacian algorithms in [16] (k = 1), but it differs in the way the cut is
made: we are computing explicitly the conductance along the new node ordering
to find the cut with minimum conductance.

Algorithm 3.2 Partitioning of a graph S
k = 1
while k < kmax do
S(min)=MinFiedlerValue(S)

S = S\S(min)

[S(a),S(b)] = Partition(S(min))

S = S ∪ S(a) ∪ S(b)
k = k + 1

When the original graph has been partitioned into kmax disconnected graphs,
where kmax is a user-supplied parameter (perhaps given interactively), this final
result can be considered as a weighted supergraph, where each node represents a
cluster of words. The edge weights are the sums of the weights of the corresponding
edges in the original graph.

The stopping criterion in Algorithm 3.1 based on kmax is suitable in the case
when the partioning is performed in a supervised way. In an automatic setting one
can take the Fiedler values as stopping criterion: continue partitioning as long as
any S(j) has Fiedler value below a specified threshold, cf. [16]. Note that 1 is an
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upper bound for the largest Fiedler value for a normalized Laplacian; therefore an
absolute threshold can be used.

4 Experiments

We have conducted a number of experiments with the lexicon of Swedish and En-
glish adjectives. We followed the mirroring procedure of Section 2.3, and performed
spectral partitioning of the graph according to Section 3.1 using the normalized
Laplacian. In most examples very similar results were obtained with the unnor-
malized Laplacian (see, however, the word destitute below).

Small graphs

Some words give rise only to one-word disconnected subgraphs or very small graphs
that cannot be partitioned in any reasonable way. For instance, mirroring of Amer-

ican gives two disconnected graphs with the words Yankee and stateside. Similarly,
British gives the word Britannic and the small graph in Figure 5, indicating that
the three words are synonyms.

 1 

 1 

 1 

Saxon

English

Sassenach

Fig. 5 Graph for British.

Destitute

The original graph (with 14 nodes) for the second mirroring of destitute is illus-
trated in Figure 6. Inspection of the graph7 suggests that there are three groups

7 The layout of the nodes in the figure is based on the Fiedler vector.
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uncovered

naked

bare

barren

submerged

succourless

indigent

necessitous

needy

beggarly

moneyless

penniless

impoverished

poverty−stricken

Fig. 6 Original graph of destitute.

of words. The graph was partitioned twice; the Fiedler values for the cuts were
0.16, 0.15. The words of the three clusters for destitute are given in Table 1.

bare poverty-stricken indigent beggarly
barren moneyless needy submerged
naked impoverished necessitous
uncovered penniless succourless

Table 1 Three clusters for destitute.

In order to investigate synonymy between the original seed word and the
clusters, we performed the mirroring procedure with the words bare, poverty-

stricken, and indigent.

The graph for bare had 101 nodes. After partitioning into 8 clusters, there
was one cluster with the words bald, naked, nude, undraped, unclad, unclothed,

featherless, sky-clad, bareassed, uncovered, and one with the words Mickey Mouse,
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 11 

 3 

 4 

bare (4,0.33)

needy (6,0.28)

poverty−stricken (4,0.56)

Fig. 7 Clustering for destitute. The first number in the node label is the number of words
in the group, the second is the Fiedler value of the cluster (for further partitioning). The edge
labels show the total weight of the edges between the subgraphs.

needy, penurious, necessitous, indigent, moneyless, downscale, destitute, submerged,

beggarly, succourless (cf. Tables 1 and 3).

The adjective poverty-stricken generated one graph with 50 nodes. Partition-
ing it three times (Fiedler values 0.13, 0.19, and 0.56) we obtained the clusters in
Table 2.

destitute wretched miserable scanty mean
moneyless vile mangy bald penurious
impoverished paltry woeful unsubstantial barren
penniless low-down abject insubstantial arid

ratty sorry meager skimpy
sordid distressful tenuous beggarly
forlorn rotten jejune comfortless
unhappy deplorable parsimonious frugal
back verminous lean homely
dusty misbegotten hungry coarse
squalid godforsaken poky poor
miscreated threadbare

Table 2 Four clusters for poverty-stricken. The clusters are given in the order of appearance
in the partitioning procedure.

We partitioned the graph for indigent into four clusters (Fiedler values 0.26,
0.19, and 0.26). The clustering is given in Table 3.
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needy mean submerged Mickey Mouse
necessitous poor destitute penurious
deprived barren succourless downscale
moneyless bare

beggarly

Table 3 Three clusters for indigent.

Notice the overlap between the clusters two for destitute (Table 1) and one
for poverty-stricken (Table 2), which indicates synonymy.

Yellow

The original graph had two components, one consisting of the words xanthous,

jaundiced, amber, and the other one with 21 nodes. After one partitioning (with
Fiedler value 0.11) of the large component we have the clustering given in Table
4.

jaundiced base weak-hearted skulking windy
amber mean-spirited white-livered yellow-bellied funky
xanthous faint-hearted poor-spirited gutless trembly

cowardly chicken chicken-livered
caitiff recreant chicken-hearted
pigeon-hearted craven lily-livered

Table 4 Clustering of yellow.

Blue

Two mirrorings of blue gave two disconnected graph components, one with 146
nodes and the other with only one (porny). As a graph of 146 nodes becomes
illegible when displayed, we give in Figure 8 instead a spy plot of the adjacency
matrix (i.e. a plot where each non-zero matrix element is shown as a dot).

We then partitioned the graph with Fiedler values between 0.048 and 0.150 .
The results are given in Table 5 and Figure 9.

Green

Two mirrorings of green gave two disconnected graph components, one with 144
nodes and the other with only one (unfired). In Figure 10 a spy plot of the adjacency
matrix is given.

We then partitioned the graph with Fiedler values between 0.0079 and 0.22 .
The results are given in Table 6 and Figure 11.

4.0.1 Raw

The word is contained in the last cluster for green in Table 6. Two mirrorings of
that word gave two disconnected graph components, one with 160 nodes and the
other with three. In Figure 12 a spy plot of the adjacency matrix is given.
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Fig. 8 Left: Spy plot of the 146 node unordered and unpartitioned largest graph component
for blue. Right: The final ordering of the graph after partitioning into nine clusters.

porny conservative livid downbeat depressed dejected
old-line azure doomy drooping despondent
Tory pissed-off crestfallen discouraged
standpat dispirited chapfallen

downcast flat

mean low ignoble humble sordid gentle
menial base ornery short bass stumpy
low-pitched neap low-slung splenetic

foul free nasty greasy broad filthy
obscene coarse smutty foul-mouthed lewd scabrous
raunchy immodest naughty improper indecent ribald
prurient bawdy

rude hard close tight severe harsh
grim rigorous strict stern inclement gruelling
intense stringent rigid unrelaxed ironclad hard-handed
austere dour scrupulous astringent unrelenting chaste
strait exacting iron iron-bound unsparing censorious
hardshell tight-laced blue-nosed puritan Puritan puritanical

heavy dull sad dark gloomy murky
grave dismal cloudy sullen woeful dreary
dusky overcast melancholy tenebrous wan saturnine
doleful sunless mournful low-browed Stygian sombre
blackbrowed deep obscure heavy-hearted bleak leaden
funereal mirthless grey woebegone cheerless morose
depressing disconsolate gaunt lonely glum lugubrious
beetle-browed dyspeptic Lenten lenten rueful chill
depressive offputting discouraging dismaying disheartening atrabilious
melancholic

Table 5 Clustering of blue.

We then partitioned the graph with Fiedler values between 0.053 and 0.086 .
The results are given in Table 7.

In Figure 13 we show the clustering into 6 clusters. We see that the Fiedler
value for the cluster rough is quite low. Therefore we performed three more steps
in the procedure, which led to the addition, in order, of the cluster mean, foul,
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heavy (55,0.25)

rude (36,0.22)

mean (16,0.2)

flat (10,0.28) foul (20,0.37) doomy (3,0.5)

conservative (4,0.49)

livid (2,0.24)

porny (1,1)

Fig. 9 Clustering of blue.
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Fig. 10 Left: Spy plot of the 144 node unordered and unpartitioned largest disconnected
graph component for green. Right: The final ordering of the graph after partitioning into
eleven clusters.

low, vile, nasty, sordid, mangy, shabby, ignoble, base, shoddy, low-down, homely, paltry,

dirty, scurvy, menial, humble, ornery, ratty, illiberal, infamous, tacky, sodden, caddish,

tatty, plebeian, common, cheap, scummy, loud, ugly, snide, unhandsome, greasy, shiv-

ery, with partitioning Fiedler value 0.31, green, fresh, half-baked, young, unfledged,

verdant, callow, unseasoned, sucking, tinhorn, inexpert, unformed, unpractised, imma-

ture, untutored, untrained, uncultivated, undeveloped, undergrown, stunted, inchoate,

unbred, with partitioning Fiedler value 0.18, and finally rusty.
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unfired vegetable lush half-baked inexpert unexperienced
virescent untried callow unversed
verdurous unpractised unskilled freshwater

sucking unlearned inexperienced

fit chipper simple unworldly wet moist
buoyant thoroughbred unsophisticated simple-minded waterish wettish
elastic athletic artless soft-headed vapoury damp
racy hale innocent dewy-eyed soggy springy
supple untutored simplistic drizzly
resilient ingenuous cabbage-looking oozy
vigorous naive humid

juvenile sweet brisk sickly rough feral
young smart whole wishy-washy rude beastly
unfledged keen well-conditioned washy crude unseasoned
verdant fresh untainted bloodless coarse brute
unformed clear recent wan vulgar swinish
untimely snappy tinhorn pale foul greige
immature sound upstart anodyne raw bestial
bread-and- gradely new-laid watered-down uncouth brutish
butter warm whey-faced gross blackguardly
youthful new pasty-faced broad rheumy
adolescent caller vealy tough butcherly
juvenescent original white brutal dank
unripe breezy innocuous indelicate Gothic
underripe well mealy barbarious uncooked
sophomoric rattling untanned scurrilous ruffianly

unvitiated whitish bearish unchastened
wholesome pale-faced foul-mouthed clammy
healthy pallid churlish

Table 6 Clustering of green.
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rough (35,0.52)

juvenile (14,0.18)

sweet (26,0.29)

simple (13,0.67) wet (10,0.51)

half−baked (12,0.56)

sickly (18,0.67)

lush (3,0.35)

fit (12,0.44) vegetable (1,1)

unfired (1,1)

Fig. 11 Clustering of green.

5 Related Work

The notion of synonym sets (synsets) was made primary in the construction of
the English WordNet where it is used to represent a sense (Miller, 1995; [18,
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Fig. 12 Left: Spy plot of the 159 node unordered and unpartitioned largest disconnected
graph component for raw. Right: The final ordering of the graph after partitioning into 6
clusters.

uncured unprofessional gentle rough bleak rare
unhealed unworkmanlike tender heavy parky sanguinary

amateurish sensitive rugged bloody
sore crude cruel
fond vulgar gory
loving coarse bloodstained
affectionate hard scathing
yearning foul underdone
amatory gross blood-and-guts
fatherly · · ·
caressing · · ·
thin-skinned unbred

Table 7 Clustering of raw. The largest cluster has 134 words.

10]. Bilingual dictionaries have been used for the construction and population of
WordNets in other languages. They are applied for the generation of candidate
words and senses in the target language. These candidates are then filtered on the
basis of some simple criteria. For instance, Chugur et al. [2] assigned a Spanish
word to a WordNet sense if it appeared among the translations of at least two
words from the English synset for that sense. Automated procedures of this kind
work best for the cases where single-sense single word synsets map to single words
in the target language and thus no synonym relations are produced.

Priss and Old [20] proposed to base the construction of senses and semantic
relations from semantic mirrors on Formal Concept Analysis (FCA [12]). Direct
comparisons of their approach with ours are difficult to make, however, as both
aims and means are different. We are primarily interested in bringing information
to light that is available, but not explicit, in a resource such as a bilingual dictio-
nary, while Priss and Old are more concerned with the construction of ”smaller
size bilingual resources, such as ontologies and classification systems”. We have
in common, however, the belief that the generated data is often not the desired
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rough (134,0.14)

gentle (12,0.33)

rare (9,0.45)

unprofessional (3,0.39)

bleak (2,0.6)

uncured (2,1)

Fig. 13 Clustering of raw into 6 clusters.
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unhealed (2,1)

Fig. 14 Clustering of raw into 9 clusters.
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end-product, but something that has to be reviewed and worked upon to fit a
given purpose.

As for the means, both approaches use graph structures, but the graph struc-
tures model different aspects of a semantic mirror: (i) our graphs are monolingual,
while graphs of [20] are bilingual, (ii) our graphs are not lattices; all nodes repre-
sent a word and there are no nodes representing meets or joins, (iii) edges in our
graphs carry weights, representing the number of different translations common
to two words, whereas the lattices in [20] do not.

Priss and Old hold that bilingual dictionaries are likely to be less useful than
parallel corpora for the method of semantic mirrors as ”different translations of
a word in a bilingual dictionary will more often refer to different senses than to
synonyms / ... /. For a single sense fewer translations can be expected than would
be found in a parallel corpus.” We believe this to be false. In a large dictionary, like
the one used in our experiments, we will find many rare words, that will not occur
at all in even a large parallel corpus8. Also, for a large enough parallel corpus,
many of the translations will not be synonyms, and thus provide noise when the
goal is to find synonym sets.

Liliehöök and Merkel [16] show one way of automatically combining overlapping
synonym sets generated from different seed words into unified clusters by applying
vector-space models on the output from the approach described in this article.

6 Conclusions

In this paper we have discussed the spectral partitioning of graphs obtained using
the mirroring method on a bilingual dictionary. The purpose was to find subgraphs
that are only weakly coupled; we conjectured that the subgraphs would correspond
to a clustering of words into groups with different meanings.

A lexical entry of a bilingual dictionary, or a similar resource created from
a parallel corpus, gives information on a single word only. By making explicit
what is implicit in this lexical resource, semantic mirroring enables a user to get
a picture of large subsets of related words. In [7], the construction of senses is
based on overlaps among the sets that are produced, first as images of individual
words and then from images of the sets so constructed. The original seed word is
supposed to be part of all subsets. Here, we do not make such a strong assumption,
and, in addition, we include the number of common paths for different words when
constructing the graph as this is likely to indicate a stronger semantic relationship.
By representing the generated subset in this way, we can directly apply methods
from spectral graph partitioning to structure our data. Graph partitioning can be
applied iteratively yielding finer and finer clusters using the model parameters to
guide the process.

Semantic mirroring has several potential applications within lexicography, termi-
nology and ontology. Lexicographers could with the presented approach explore
an existing bilingual dictionary and discover missing word senses in lexical entries,
and add new synonyms to a thesaurus. For many languages there are no fully de-
veloped wordnets, but by using semantic mirroring along the lines presented here,

8 For example, the following words in our dictionary, mealy, vealy, pallid, unvitiated all have
frequency 0 in the English part of the Europarl corpus [15] totalling 45.8 million words.
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wordnet-like resources could be created much more efficiently [7]. However, as the
outcome is dependent on the basic resource, and languages do not correspond in
a simple one-to-one fashion, a human expert is required, at some point, to decide
whether a particular cluster corresponds to a sense, or forms a semantically inter-
esting cluster of any kind. The basic approach presented here is centered around
an interactive approach, meaning that different thresholds and parameters can be
tested interactively by a linguist.

In terminology work, bilingual term lists extracted from parallel domain-specific
texts [11] could be fed into the machinery and, given a slightly more developed
framework, terms could be grouped into semantically related clusters. If the ter-
minologist has access to an existing termbase, new term candidates have to be
connected to existing terms in the termbase in order to make a decision on whether
the new terms should be added to the termbase, and to what concept. If terms are
added to the term base they can either be added to new non-existing concepts or
to already existing concepts. The task of deciding of which status each term should
have in a concept cluster is still tricky, e.g. what term is to be recommended, are
there terms that should be regarded as forbidden or obsolete? However, the point is
that the terminologist could get assistance in how to create or enrich terminologies
by using the presented approach.

Methodologically, the technique described can be further developed. The cur-
rent approach takes a seed word as input and returns a set of word clusters. In
real-life applications, this can be looped over all source words in a bilingual dic-
tionary. Such a loop has been implemented and tested in Lilliehöök and Merkel
[16] where it was shown that the interactive tool proposed in this article can be
extended to be run in an unsupervised fashion and where overlapping synonym
sets can be unified into synonym sets of high quality using vector-space models.

We have chosen spectral partitioning because of its simplicity and because com-
pared to other methods it has a solid mathematical foundation, see the discussion
in Section 3. For instance, unlike some other clustering and partitioning methods,
the algorithm is invariant under different original orderings of the nodes.

In other applications of spectral clustering, where it is essential that all the
clusters are reasonably large, it is common to start out from the relaxation or
approximation of a partitioning criterion such as Ncut or RatioCut (see e. g. [23,
Section 5]). Here we use the the Fiedler vector to find a reordering of the nodes
of the graph. Based on that ordering we have partitioned the graph where the
value for the corresponding conductance is smallest, even if one of the subgraphs
is considerably smaller than the other. We have used both the unnormalized and
the normalized graph Laplacian. In our experiments we have seen small differences
between these two approaches. In fact, little guidance is given in the spectral par-
titioning literature concerning qualitative differences between the two alternatives.
It may well turn out that the inherent uncertainty in the determination of word
senses, see Section 2.1, due to human differences and different regional practices,
is as large as that in the choice of computational alternatives.
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