
9.1 Linear Programs in canonical form

LP in standard form:

(LP)


max z =

∑
j cjxj

s.t.
∑

j aijxj ≤ bi ∀i = 1, . . . ,m

xj ≥ 0 ∀j = 1, . . . , n

where bi ∈ R, ∀i = 1, . . . ,m

But the Simplex method works only on systems of equations!

Introduce nonnegative slack variables si for each constraint i and
convert the standard form into a system of equations.



9.1 Linear Programs in canonical form

New LP formulation:

(LP)



max z (1a)

s.t. z −
∑

j cjxj = 0 (1b)∑
j aijxj + si = bi ∀i = 1, . . . ,m (1c)

xj ≥ 0 ∀j = 1, . . . , n (1d)

si ≥ 0 ∀i = 1, . . . ,m (1e)

where bi ∈ R, ∀i = 1, . . . ,m. This is also called canonical form.

Solving a LP may be viewed as performing the following three tasks

1. Find solutions to the augumented system of linear equations in 1b and 1c.

2. Use the nonnegative conditions (1d and 1e) to indicate and maintain the
feasibility of a solution.

3. Maximize the objective function, which is rewritten as equation 1a.



9.2 Basic feasible solutions and reduced costs

Definitions
Given that a system Ax = b, where the numbers of solutions are infinite, and
rank(A) = m (m < n), a unique solution can be obtained by setting any n −m
variables to 0 and solving for the remaining system of m variables in m
equations. Such a solution, if it exists, is called a basic solution. The variables
that are set to 0 are called nonbasic variables, denoted by xN. The variables
that are solved are called basic variables, denoted by xB. A basic solution that
contains all nonnegative values is called a basic feasible solution. A basic
solution that contains any negative component is called a basic infeasible
solution. The m × n coefficient matrix associated with a give set of basic
variables is called a basis, or a basis matrix, and is denoted as B. The number
of basic solutions possible in a system of m equations in n variables is
calculated by

C n
m =

n!

m!(n −m)!



9.2 Basic feasible solutions and reduced costs

(LP)


max cB

TxB + cN
TxN

s.t. BxB + NxN = b

xB, xN ≥ 0

(2)

Example:

Consider

x1 + x2 + x3 = 6 (3)

2x1 + x2 + x4 = 8 (4)

The system has six basic solutions displayed below:

Infeasible!
∃xi < 0



9.2 Basic feasible solutions and reduced costs

Definitions:
A nonbasic variable is called an entering variable if it is selected to become
basic in the next basis. Its associated coefficient column is called a pivot
column. A basic variable is called a leaving variable if it’s selected to become
nonbasic in the next basis. Its associated coefficient row is called a pivot row.
The element that intersects a pivot column and a pivot row is called a pivot or
pivot element. A pivoting operation is a sequence of elementary row operations
that makes the pivot element 1 and all other elements 0 in the pivot column.
Two basic feasible solution is said to be adjacent if the set of their basic
variables differ by only one basic variable.



9.2 Basic feasible solutions and reduced costs

Have constraint matrix:
BxB + NxN = b

By performing row operations we obtain:

IxB + B−1NxN = B−1b ⇒ xB = B−1b− B−1NxN

Substituting into z = cB
TxB + cN

TxN we have

z = (cB
TB−1N− cN

T )xN

Reduced space and reduced costs

The subspace that contains only the nonbasic variables is referred to a reduced
space. The components of the objective row in a reduced space are called
reduced costs, denoted by c̄:

c̄T = (c̄T
B , c̄

T
N) = (0T , cB

TB−1N− cN
T )



9.3 The Simplex Method

The Simplex method consists of three steps:

1. Initialization: Find an initial basic solution that is feasible.

2. Iteration: Find a basic solution that is better, adjacent, and feasible.

3. Optimality test: Test if the current solution is optimal. If not, repeat step
2.



2. Iteration: Find a basic solution that is better, adjacent, and feasible.

1. determining the entering variable
A new basic solution will be better if an entering variable is properly
chosen.

2. determining the leaving variable
A new basic solution will be feasible if a leaving variable is properly chosen.

3. pivoting on the pivot element for exchange of variables and updating the
data in the simplex tableau.

How do we chose?



2. Iteration: Find a basic solution that is better, adjacent, and feasible.

Pick an entering variable xk = {xj ∈ xN : minj c̄j , c̄j < 0} with most negative
reduced cost. → will improve the solution most.

c̄T = (c̄T
B , c̄

T
N) = (0T , cB

TB−1N− cN
T )



2. Iteration: Find a basic solution that is better, adjacent, and feasible.

Pick an entering variable xk = {xj ∈ xN : minj c̄j , c̄j < 0} with most negative
reduced cost. → will improve the solution most

Pick a leaving variable xBr = {xBi ∈ xB : mini
b̄i
āik
, āik > 0} Why? Explained in

the next slide



When increasing xk from 0:

z + c̄kxk = b̄0 ⇒ z = b̄0 − c̄kxk

and xBi + āikxk = b̄i or xBi = b̄i − āikxk ∀i

Want new solution to remain feasible.

xBi = b̄i − āikxk ≥ 0 ∀i



xBi = b̄i − āikxk ≥ 0 ∀i

āik < 0: then xBi increases as xk increases
āik > 0: then xBi decreases as xk increases

To satisfy nonnegativity xk is increased until xBi drops to zero. The first basic
variable dropping to zero is

xBr = {xBi ∈ xB : min
i

b̄i
āik
, āik > 0}



Updating the Simplex Tableau

1. Divide row r by ārk .

2. ∀i 6= r , update the ith row by adding to it (−āik) times the new rth row.

3. Update row 0 by adding to it c̄k times the new rth row.



Updating the Simplex Tableau

1. Divide row r by ārk .

2. ∀i 6= r , update the ith row by adding to it (−āik) times the new rth row.

3. Update row 0 by adding to it c̄k times the new rth row.

Optimality Test: An optimal solution is found if there is no adjacent basic
feasible solution that can improve the objective value. (That is, all reduced
costs for nonbasic variables are positive.



Find initial basic feasible solution

Construct phase-I problem:

Example

(LP)



max z = 4x1 + 3x2

s.t. x1 + x2 ≤ 6

2x1 + x2 ≤ 8

−2x1 + x2 ≥ 2

x1, x2 ≥ 0

(5)

1) Convert each constraint so RHS is nonnegative. Then do the following:

≤-form: add nonnegative slack variable

=-form: add nonegative artificial variable (basic variables for a stating basis)

≥-form: add nonnegative slack variable and nonnegative artificial variable



Find initial basic feasible solution

Construct phase-I problem:

Example

(LP)



max z = 4x1 + 3x2

s.t. x1 + x2 + s1 = 6

2x1 + x2 + s2 = 8

−2x1 + x2 + s3 + xa = 2

x1, x2, s1, s2, s3, x
a ≥ 0

(6)

1) Convert each constraint so RHS is nonnegative. Then do the following:

≤-form: add nonnegative slack variable

=-form: add nonegative artificial variable (basic variables for a stating basis)

≥-form: add nonnegative slack variable and nonnegative artificial variable



Find initial basic feasible solution

Construct phase-I problem:

Example

(LP)



max z = 4x1 + 3x2

s.t. x1 + x2 + s1 = 6

2x1 + x2 + s2 = 8

−2x1 + x2 + s3 + xa = 2

x1, x2, s1, s2, s3, x
a ≥ 0

(7)

2) Solve a phase I problem by minimizing the sum of artificial variables using
the same set of constraints.



Find initial basic feasible solution

Construct phase-I problem:

Example

(Phase I )



min z = xa

s.t. x1 + x2 + s1 = 6

2x1 + x2 + s2 = 8

−2x1 + x2 + s3 + xa = 2

x1, x2, s1, s2, s3, x
a ≥ 0

(8)

2) Solve a phase I problem by minimizing the sum of artificial variables using
the same set of constraints.



Find initial basic feasible solution



Find initial basic feasible solution

xa basic variable. Reduced cost should be 0.
⇓



Find initial basic feasible solution

x2 entering variable, xa leaving variable
⇓



Find initial basic feasible solution

xa no longer in basis. Have basic feasible solution for original problem.
⇓



Find initial basic feasible solution

Negative constants in row 0 for basic variable =⇒ not in canonical form
(coefficient of basic variable x2 is negative).

⇓



Find initial basic feasible solution

x1 entering variable and s1 leaving variable.
No negative coefficients in row 0. Optimal! ⇓



9.5 Geometric interpretation of the simplex method

x1 + x2 ≤ 6 (9)

2x1 + x2 ≤ 8 (10)

The system has six basic solutions displayed below:



9.5 Geometric interpretation of the simplex method

Example of a degenerate system

x1 + x2 ≤ 6 (11)

2x1 + x2 ≤ 8 (12)

x1 ≤ 4 (13)

Degenerate solutions!
Same solution, different basis



9.5 Geometric interpretation of the simplex method

Identifying an Extreme Ray in a Simplex Tableau

Extreme ray

x = x0 + dλ, λ ≥ 0,

where x0 is the root or vertex and d is the extreme direction.



9.5 Geometric interpretation of the simplex method

Example

(LP)


max z = 4x1 + 3x2

s.t. −x1 + x2 ≤ 4

x1 − 2x2 ≤ 2

x1, x2 ≥ 0

Extreme ray(
2
0

)
+ λ

(
2
1

)
, λ ≥ 0



9.5 Geometric interpretation of the simplex method

x1 entering variable, x4 leaving variable.



9.5 Geometric interpretation of the simplex method

x1 entering variable, x4 leaving variable.

Unbounded!



9.5 Geometric interpretation of the simplex method

Simplex tableau reveals that current basic feasible solutions is

x = (2, 0, 6, 0)T = x0

The pivot column is

ā2 =

(
−1

−2

)
To ensure feasiblility 

2
0
6
0

−

−2
0
−1
0

 x2 ≥


0
0
0
0

 , x2 ≥ 0

The extreme direction is d = (2, 0, 1, 0)T



9.5 Geometric interpretation of the simplex method

General description (maximization problem):

Have basic feasible solution with c̄k < 0 and āik ≤ 0∀i for some nonbasic
variable xk (i.e. unbounded solution).
Also xB = b̄− ākxk
Coefficient of entering variable xk is 1, so xN = ek

This yields

x =

(
xB

xN

)
=

(
b̄− ākxk

ek

)
xk =

(
b̄

0̄

)
+

(
āk

ek

)
xk

The extreme ray is now given by:

x = x0 + dλ, λ ≥ 0

where x0 =
(

b̄
0̄

)
, d =

(
āk
ek

)
and λ = xk



9.6 The Simplex Method for upper bounded variables

Have variables with upper and lower bound.

xj ≥ lj , xj ≤ uj

The lower bound can be handled by a simple variable substitution:

x ′j = xj − lj , x ′j ≥ 0

Upper bounds are slightly more tricky.



9.6 The Simplex Method for upper bounded variables

Upper bounded variable: basic concept
Allow an upper bounded variable to be nonbasic if xj = 0(as usual) or xj = uj .

Using the following strategy.
Change variable to x̄j defined by the relationship

xj + x̄j = uj ⇒ x̄j = uj − xj

Note! If xj = 0, x̄j = uj and vice versa.



9.6 The Simplex Method for upper bounded variables

Suppose solving a maximization problem using the simplex method. An
entering variable is chosen as usual. The method for choosing a leaving variable
is altered. Have three cases:

Case 1: xk cannot exceed the minimum ratio θ = mini{ b̄i
āik
, āik > 0} as usual.

Case 2: xk cannot exceed the amount by which will cause one or more current
basic feasible variables to exceed its upper bound. (Denote amount by

θ′ = mini{ ui−b̄i
−āik

, āik < 0})
Case 3: xk cannot exceed its upper bound uk .



9.6 The Simplex Method for upper bounded variables

Denote ∆ = min{θ, θ′, uk}

If ∆ = θ: then determina leaving variable xk and perform ordinary pivoting.
If ∆ = θ′: then replace leaving variable xBr with uBr − x̄Br in row r and the
”label” for xBr with x̄Br and perform ordinary pivoting.
If ∆ = uk : then replace the entering variable xk with uk − x̄k in each row of the
tableau, and xk with x̄k in the ”label” row. Go to step one and do an optimality
test.



9.6 The Simplex Method for upper bounded variables - Example

(LP)



max z = 4x1 + 3x2

s.t. x1 + x2 ≤ 6

2x1 + x2 ≤ 8

x1 ≥ 1

1 ≤ x2 ≤ 3

(LP)



max z = 4x ′1 + 3x ′2 + 7

s.t. x ′1 + x ′2 + s1 = 4

2x ′1 + x ′2 + s2 = 5

x ′2 ≤ 2

x ′1, x
′
2 ≥ 0

Using x ′1 = x1 − 1 and x ′2 = x2 − 1.



9.6 The Simplex Method for upper bounded variables - Example

Let x ′2 + x̄ ′2 = 2. starting base is s1, s2. Initial tableau is:

Not optimal! x ′1 is entering variable. θ′ does not exist since ā11, ā21 ≥ 0.

θ = min{4

1
,

5

2
} = 2.5

s2 leaving variable



9.6 The Simplex Method for upper bounded variables - Example

Not optimal! x ′2 entering variable. Still haven’t any θ′. Since x2 ≤ 2,
∆ = min{θ = 3, u′2 = 2}. Replace x ′2 with 2− x̄ ′2.



9.6 The Simplex Method for upper bounded variables - Example

Optimal!


