9.1 Linear Programs in canonical form

LP in standard form:

$$
(L P) \begin{cases}\max & z=\sum_{j} c_{j} x_{j} \\ \text { s.t. } & \sum_{j} a_{i j} x_{j} \leq b_{i} \quad \forall i=1, \ldots, m \\ & x_{j} \geq 0 \quad \forall j=1, \ldots, n\end{cases}
$$

where $b_{i} \in \mathbb{R}, \quad \forall i=1, \ldots, m$

But the Simplex method works only on systems of equations!

Introduce nonnegative slack variables s_{i} for each constraint i and convert the standard form into a system of equations.

9.1 Linear Programs in canonical form

New LP formulation:

$$
(L P) \begin{cases}\max & z \tag{1a}\\ \text { s.t. } & z-\sum_{j} c_{j} x_{j}=0 \\ & \sum_{j} a_{i j} x_{j}+s_{i}=b_{i} \quad \forall i=1, \ldots, m \\ & x_{j} \geq 0 \quad \forall j=1, \ldots, n \\ & s_{i} \geq 0 \quad \forall i=1, \ldots, m\end{cases}
$$

where $b_{i} \in \mathbb{R}, \quad \forall i=1, \ldots, m$. This is also called canonical form.

Solving a LP may be viewed as performing the following three tasks

1. Find solutions to the augumented system of linear equations in 1 b and 1 c .
2. Use the nonnegative conditions (1d and 1e) to indicate and maintain the feasibility of a solution.
3. Maximize the objective function, which is rewritten as equation 1a.

9.2 Basic feasible solutions and reduced costs

Definitions

Given that a system $\mathbf{A x}=\mathbf{b}$, where the numbers of solutions are infinite, and $\operatorname{rank}(\mathbf{A})=m(m<n)$, a unique solution can be obtained by setting any $n-m$ variables to 0 and solving for the remaining system of m variables in m equations. Such a solution, if it exists, is called a basic solution. The variables that are set to 0 are called nonbasic variables, denoted by x_{N}. The variables that are solved are called basic variables, denoted by $\mathbf{x}_{\mathbf{B}}$. A basic solution that contains all nonnegative values is called a basic feasible solution. A basic solution that contains any negative component is called a basic infeasible solution. The $m \times n$ coefficient matrix associated with a give set of basic variables is called a basis, or a basis matrix, and is denoted as \mathbf{B}. The number of basic solutions possible in a system of m equations in n variables is calculated by

$$
C_{m}^{n}=\frac{n!}{m!(n-m)!}
$$

9.2 Basic feasible solutions and reduced costs

$$
(L P) \begin{cases}\max & \mathbf{c}_{\mathbf{B}}^{\top} \mathbf{x}_{\mathbf{B}}+\mathbf{c}_{\mathbf{N}}{ }^{\top} \mathbf{x}_{\mathrm{N}} \tag{2}\\ \text { s.t. } & \mathbf{B} \mathbf{x}_{\mathbf{B}}+\mathbf{N} \mathbf{x}_{\mathrm{N}}=\mathbf{b} \\ & \mathbf{x}_{\mathbf{B}}, \mathbf{x}_{\mathbf{N}} \geq \mathbf{0}\end{cases}
$$

Example:
Consider

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=6 \\
2 x_{1}+x_{2}+x_{4}=8 \tag{4}
\end{array}
$$

The system has six basic solutions displayed below:

	Basic Solution					
	1	- 2	3	4	5	6
Nonbasic variables \mathbf{x}_{N}	$\begin{aligned} & x_{1}=0, \\ & x_{2}=0 \end{aligned}$	$\begin{aligned} & x_{1}=0, \\ & x_{3}=0 \end{aligned}$	$\begin{aligned} & x_{1}=0, \\ & x_{4}=0 \end{aligned}$	$\begin{aligned} & x_{2}=0, \\ & x_{3}=0 \end{aligned}$	$\begin{aligned} & x_{2}=0, \\ & x_{4}=0 \end{aligned}$	$\begin{aligned} & x_{3}=0, \\ & x_{4}=0 \end{aligned}$
Basic variables $\mathbf{x}_{\mathbf{B}}$	$\begin{aligned} & x_{3}=6, \\ & x_{4}=8 \end{aligned}$	$\begin{aligned} & x_{2}=6, \\ & x_{4}=2 \end{aligned}$	$\begin{aligned} & x_{2}=8, \\ & x_{3}=\overline{\mathrm{nff}} \end{aligned}$	$x_{1}=6$ sible!	$\begin{aligned} & x_{1}=4, \\ & x_{3}=2 \end{aligned}$	$\begin{aligned} & x_{1}=2, \\ & x_{2}=4 \end{aligned}$

9.2 Basic feasible solutions and reduced costs

Definitions:

A nonbasic variable is called an entering variable if it is selected to become basic in the next basis. Its associated coefficient column is called a pivot column. A basic variable is called a leaving variable if it's selected to become nonbasic in the next basis. Its associated coefficient row is called a pivot row. The element that intersects a pivot column and a pivot row is called a pivot or pivot element. A pivoting operation is a sequence of elementary row operations that makes the pivot element 1 and all other elements 0 in the pivot column.
Two basic feasible solution is said to be adjacent if the set of their basic variables differ by only one basic variable.

9.2 Basic feasible solutions and reduced costs

Have constraint matrix:

$$
\mathbf{B} \mathbf{x}_{\mathbf{B}}+\mathbf{N} \mathrm{x}_{\mathbf{N}}=\mathbf{b}
$$

By performing row operations we obtain:

$$
\mathbf{x}_{\mathrm{B}}+\mathrm{B}^{-1} \mathbf{N} \mathbf{x}_{\mathrm{N}}=\mathrm{B}^{-1} \mathbf{b} \Rightarrow \mathbf{x}_{\mathrm{B}}=\mathrm{B}^{-1} \mathbf{b}-\mathbf{B}^{-1} \mathbf{N} \mathrm{x}_{\mathrm{N}}
$$

Substituting into $z=\mathbf{C}_{\mathbf{B}}{ }^{T} \mathbf{x}_{\mathbf{B}}+\mathbf{c}^{\mathbf{N}}{ }^{T} \mathbf{x}_{\mathrm{N}}$ we have

$$
z=\left(\mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} \mathbf{N}-\mathbf{c}_{\mathbf{N}}^{T}\right) \mathrm{x}_{\mathrm{N}}
$$

Reduced space and reduced costs
The subspace that contains only the nonbasic variables is referred to a reduced space. The components of the objective row in a reduced space are called reduced costs, denoted by $\overline{\mathbf{c}}$:

$$
\overline{\mathbf{c}}^{T}=\left(\overline{\mathbf{c}}_{\mathbf{B}}^{T}, \overline{\mathbf{c}}_{\mathrm{N}}^{T}\right)=\left(\mathbf{0}^{T}, \mathbf{C}_{\mathbf{B}}^{T} \mathbf{B}^{-1} \mathbf{N}-\mathbf{c}_{\mathbf{N}}^{T}\right)
$$

9.3 The Simplex Method

The Simplex method consists of three steps:

1. Initialization: Find an initial basic solution that is feasible.
2. Iteration: Find a basic solution that is better, adjacent, and feasible.
3. Optimality test: Test if the current solution is optimal. If not, repeat step 2.
4. Iteration: Find a basic solution that is better, adjacent, and feasible.
5. determining the entering variable

A new basic solution will be better if an entering variable is properly chosen.
2. determining the leaving variable

A new basic solution will be feasible if a leaving variable is properly chosen.
3. pivoting on the pivot element for exchange of variables and updating the data in the simplex tableau.

How do we chose?
2. Iteration: Find a basic solution that is better, adjacent, and feasible.

Basic	x_{B}				x_{N}				RHS
Variable	z	$x_{B_{1}} \ldots$	$x_{B_{r}} \ldots$	$x_{B_{m}}$. \cdot	$x_{j} \ldots$	x_{k}	\cdots	Solution
z	1	$0 \ldots$	$0 \ldots$	0	\cdots	$\bar{c}_{j} \quad \ldots$	\bar{c}_{k}	\cdots	\bar{b}_{o}
$x_{B_{1}}$	0	$1 \ldots$	0 ...	0	...	$\bar{a}_{1 /} \ldots$	$\bar{a}_{1 k}$. \cdot	\bar{b}_{1}
\vdots	\vdots	\vdots	\vdots	\vdots		\vdots	:		
$x_{B r}$	0	$0 \ldots$	1 ...	0	\cdots	$\bar{a}_{r j} \ldots$	$\bar{a}_{r k}$	\cdots	b_{r}
\vdots	:	\vdots		i			:		
$x_{B_{\text {m }}}$	0	$0 \quad \ldots$	$0 \ldots$	1	\cdots	$\bar{a}_{m j} \ldots$	$\bar{a}_{m k}$	\cdots	\bar{b}_{m}

Pick an entering variable $x_{k}=\left\{x_{j} \in \mathbf{x}_{N}: \min _{j} \bar{c}_{j}, \bar{c}_{j}<0\right\}$ with most negative reduced cost. \rightarrow will improve the solution most.

$$
\overline{\mathbf{c}}^{T}=\left(\overline{\mathbf{c}}_{\mathbf{B}}^{T}, \overline{\mathbf{c}}_{\mathbf{N}}^{T}\right)=\left(\mathbf{0}^{T}, \mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} \mathbf{N}-\mathbf{c}_{\mathbf{N}}{ }^{T}\right)
$$

2. Iteration: Find a basic solution that is better, adjacent, and feasible.

Basic Variable	x_{B}				x_{N}				RHS Solution
	z	$x_{B_{1}} \ldots$	$x_{B_{r}} \cdots$	$x_{B_{m}}$	\cdots	$x_{j} \ldots$	x_{k}	\cdots	
z	1	$0 \ldots$	$0 \ldots$	0	...	$\bar{c}_{j} \quad \ldots$	\bar{c}_{k}	\cdots	\bar{b}_{o}
$x_{B_{1}}$	0	$1 \ldots$	0 ...	0	...	$\bar{a}_{1 j} \ldots$	$\bar{a}_{1 k}$	\cdots	\bar{b}_{1}
\vdots	:	\vdots	\vdots	\vdots		\vdots	\vdots		
$x_{B r}$	0	$0 \quad \ldots$	1 ...	0	\cdots	$\bar{a}_{r j} \ldots$	$\bar{a}_{r k}$	\cdots	\bar{b}_{r}
\vdots	:	!	\vdots	:			\vdots		
$x_{B_{\text {m }}}$	0	$0 \ldots$	$0 \ldots$	1	\cdots	$\bar{a}_{m j} \ldots$	$\bar{a}_{m k}$	\cdots	\bar{b}_{m}

Pick an entering variable $x_{k}=\left\{x_{j} \in \mathbf{x}_{\mathbf{N}}: \min _{j} \bar{c}_{j}, \bar{c}_{j}<0\right\}$ with most negative reduced cost. \rightarrow will improve the solution most
Pick a leaving variable $x_{B_{r}}=\left\{x_{B_{i}} \in \mathbf{x}_{\mathbf{B}}: \min _{i} \frac{\bar{b}_{i}}{\bar{a}_{i k}}, \bar{a}_{i k}>0\right\}$ Why? Explained in the next slide

Basic Variable	x_{B}							x_{N}			RHS
	z	$x_{B_{1}}$...	x_{B}	...	$x_{B_{m m}}$...	$x_{j} \ldots$	x_{k}	\ldots	Solution
z	1	0	.	0	\ldots	0	\cdots	$\bar{c}_{j} \ldots$	\bar{c}_{k}	...	\bar{b}_{o}
$x_{B_{1}}$	0	1	...	0	.	0	\cdots	$\bar{a}_{1 j} \ldots$	$\bar{a}_{1 k}$	\cdots	\bar{b}_{1}
\vdots	\vdots	\vdots		\vdots		\vdots		\vdots	:		
$x_{B,}$	0	0	\ldots	1	\cdots	0	\cdots	$\bar{a}_{r j} \ldots$	$\bar{a}_{r k}$	\cdots	\bar{b}_{r}
\vdots	\vdots	:							:		
$x_{B_{\text {m }}}$	0	0	\ldots	0	...	1	\cdots	$\bar{a}_{m j} \ldots$	$\bar{a}_{m k}$	\ldots	\bar{b}_{m}

When increasing x_{k} from 0 :

$$
\begin{gathered}
z+\bar{c}_{k} x_{k}=\bar{b}_{0} \Rightarrow z=\bar{b}_{0}-\bar{c}_{k} x_{k} \\
\text { and } x_{B_{i}}+\bar{a}_{i k} x_{k}=\bar{b}_{i} \text { or } x_{B_{i}}=\bar{b}_{i}-\bar{a}_{i k} x_{k} \forall i
\end{gathered}
$$

Want new solution to remain feasible.

$$
x_{B_{i}}=\bar{b}_{i}-\bar{a}_{i k} x_{k} \geq 0 \forall i
$$

Basic	x_{B}				x_{N}				RHS
Variable	z	$x_{B_{1}} \ldots$	$x_{B_{r}} \ldots$	$x_{B_{m}}$...	$x_{j} \ldots$	x_{k}	\cdots	Solution
z	1	$0 \ldots$	$0 \ldots$	0	\cdots	$\bar{c}_{j} \quad \ldots$	\bar{c}_{k}	\cdots	\bar{b}_{o}
$x_{B_{1}}$	0	$1 \ldots$	$0 \quad \ldots$	0	...	$\bar{a}_{1 /} \ldots$	$\bar{a}_{1 k}$	\cdots	\bar{b}_{1}
\vdots	\vdots	\vdots	:	\vdots		\vdots	:		
x_{B},	0	$0 \quad \ldots$	1 ...	0	\cdots	$\bar{a}_{r j} \ldots$	$\bar{a}_{r k}$	\cdots	b_{r}
\vdots		:		i					
$x_{B_{\text {m }}}$	0	$0 \quad \ldots$	$0 \ldots$	1	\cdots	$\bar{a}_{m j} \ldots$	$\bar{a}_{m k}$	- \cdot	\bar{b}_{m}

$$
x_{B_{i}}=\bar{b}_{i}-\bar{a}_{i k} x_{k} \geq 0 \forall i
$$

$\bar{a}_{i k}<0$: then $x_{B_{i}}$ increases as x_{k} increases $\overline{\bar{a}}_{i k}>0$: then $x_{B_{i}}$ decreases as x_{k} increases

To satisfy nonnegativity x_{k} is increased until $x_{B_{i}}$ drops to zero. The first basic variable dropping to zero is

$$
x_{B_{r}}=\left\{x_{B_{i}} \in \mathbf{x}_{\mathbf{B}}: \min _{i} \frac{\bar{b}_{i}}{\frac{\bar{a}_{i k}}{\bar{a}}}, \bar{a}_{i k}>0\right\}
$$

Updating the Simplex Tableau

Basic	$\mathrm{x}_{\text {B }}$						x_{N}				RHS Solution
Variable	z	$x_{B_{1}}$..	$x_{B r}$	\ldots	$x_{B_{m}}$...	$x_{j} \ldots$	x_{k}	\cdots	
z	1	0	. \cdot	0	\cdots	0	. ${ }^{\text {r }}$	$\bar{c}_{\text {c }} \quad \ldots$	\bar{c}_{k}	\cdots	\bar{b}_{o}
$x_{B_{1}}$	0	1	..	0	..	0	...	$\bar{a}_{1 /} \ldots$	$\bar{a}_{1 k}$	\cdots	\bar{b}_{1}
\vdots	!	\vdots		\vdots		\vdots		:	\vdots		
$x_{B r}$	0	0	.	1	...	0	.	$\bar{a}_{r j} \ldots$	$\bar{a}_{r k}$	-	\bar{b}_{r}
\vdots	:	\vdots		\vdots		!			\vdots		
$x_{B_{m}}$	0	0		0		1	...	$\bar{a}_{m j} \ldots$	$\bar{a}_{m k}$	\cdots	\bar{b}_{m}

1. Divide row r by $\bar{a}_{r k}$.
2. $\forall i \neq r$, update the i th row by adding to it $\left(-\bar{a}_{i k}\right)$ times the new r th row.
3. Update row 0 by adding to it \bar{c}_{k} times the new r th row.

Updating the Simplex Tableau

1. Divide row r by $\bar{a}_{r k}$.
2. $\forall i \neq r$, update the i th row by adding to it $\left(-\bar{a}_{i k}\right)$ times the new r th row.
3. Update row 0 by adding to it \bar{c}_{k} times the new r th row.

Basic Variable	x_{B}						x_{N}				RHS
	z	$x_{B_{1} \ldots}$	$x_{B_{r}}$	\ldots	$x_{B_{m}}$	\cdots	x_{j}.	\cdots	x_{k}	\cdots	Solution
z		$0 \ldots$	$\frac{\bar{b}_{r}}{\overline{a_{r k}}}$	\cdots	0		$\bar{c}_{j}-\frac{\bar{u}_{r j}}{\bar{a}_{r k}} \bar{c}_{k}$...	0		$\bar{b}_{o}-\frac{\bar{b}_{r}}{\bar{a}_{r k}} \bar{c}_{k}$
x_{81}	0	1 ...	$\frac{\bar{a}_{1 k}}{\bar{a}_{r k}}$	\ldots	0	\cdots	$\bar{a}_{y}-\frac{\bar{a}_{r j}}{\bar{a}_{r k}} \bar{a}_{1 k}$	\cdots	.	O ...	$\bar{b}_{1}-\frac{\bar{b}_{r}}{\bar{a}_{e k}} \bar{a}_{1 k}$
\vdots		.	\vdots		!		仡		-	!	-
x_{k}	0	$0 \ldots$	$\frac{1}{\bar{a}_{r k}}$	\cdots	0		$\frac{\bar{a}_{r j}}{\bar{a}_{r k}}$. 1	1 ...	$\frac{\bar{b}_{r}}{\bar{a}_{r k}}$
\vdots		\vdots	\vdots		\vdots		\vdots			!	,
$x_{B_{m m}}$		$0 \ldots$	$\frac{\bar{a}_{r t k}}{\bar{a}_{r k}}$...	1		$\bar{a}_{m j}-\frac{\bar{a}_{r j}}{\bar{a}_{r k}} \bar{a}_{m k}$			$0 \ldots$	$\bar{b}_{m}-\frac{\bar{b}_{\mathrm{r}}}{\bar{a}_{r k}} \bar{a}_{m k}$

Optimality Test: An optimal solution is found if there is no adjacent basic feasible solution that can improve the objective value. (That is, all reduced costs for nonbasic variables are positive.

Find initial basic feasible solution

Construct phase-I problem:
Example

$$
(L P) \begin{cases}\max & z=4 x_{1}+3 x_{2} \tag{5}\\ \text { s.t. } & x_{1}+x_{2} \leq 6 \\ & 2 x_{1}+x_{2} \leq 8 \\ & -2 x_{1}+x_{2} \geq 2 \\ x_{1}, x_{2} \geq 0 & \end{cases}
$$

1) Convert each constraint so RHS is nonnegative. Then do the following: <-form: add nonnegative slack variable
$=$-form: add nonegative artificial variable (basic variables for a stating basis)
\geq-form: add nonnegative slack variable and nonnegative artificial variable

Find initial basic feasible solution

Construct phase-I problem:

Example

$$
(L P) \begin{cases}\max & z=4 x_{1}+3 x_{2} \tag{6}\\ \text { s.t. } & x_{1}+x_{2}+s_{1}=6 \\ & 2 x_{1}+x_{2}+s_{2}=8 \\ & -2 x_{1}+x_{2}+s_{3}+x^{a}=2 \\ x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, x^{a} \geq 0 & \end{cases}
$$

1) Convert each constraint so RHS is nonnegative. Then do the following: <-form: add nonnegative slack variable
$=$-form: add nonegative artificial variable (basic variables for a stating basis)
\geq-form: add nonnegative slack variable and nonnegative artificial variable

Find initial basic feasible solution

Construct phase-I problem:
Example

$$
(L P) \begin{cases}\max & z=4 x_{1}+3 x_{2} \tag{7}\\ \text { s.t. } & x_{1}+x_{2}+s_{1}=6 \\ & 2 x_{1}+x_{2}+s_{2}=8 \\ & -2 x_{1}+x_{2}+s_{3}+x^{a}=2 \\ x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, x^{a} \geq 0 & \end{cases}
$$

2) Solve a phase I problem by minimizing the sum of artificial variables using the same set of constraints.

Find initial basic feasible solution

Construct phase-I problem:
Example

$$
\text { (Phase l) } \begin{cases}\min & z=x^{a} \tag{8}\\ \text { s.t. } & x_{1}+x_{2}+s_{1}=6 \\ & 2 x_{1}+x_{2}+s_{2}=8 \\ & -2 x_{1}+x_{2}+s_{3}+x^{a}=2 \\ x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, x^{a} \geq 0 & \end{cases}
$$

2) Solve a phase I problem by minimizing the sum of artificial variables using the same set of constraints.

Find initial basic feasible solution

Basic Variable	$-z^{a}$	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	x^{a}	RHS
$-z^{a}$	1	0	0	0	0	0	1	0
s_{1}	0	1	1	1	0	0	0	6
s_{2}	0	2	1	0	1	0	0	8
x^{a}	0	-2	1	0	0	-1	1	2

Find initial basic feasible solution

Basic Variable	$-z^{a}$	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	x^{a}	RHS
$-z^{a}$	1	0	0	0	0	0	1	0
s_{1}	0	1	1	1	0	0	0	6
s_{2}	0	2	1	0	1	0	0	8
x^{a}	0	-2	1	0	0	-1	1	2

x^{a} basic variable. Reduced cost should be 0 .
\Downarrow

Basic Variable	$-z^{a}$	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	x^{a}	RHS
$-z^{a}$	1	2	-1	0	0	1	0	-2
s_{1}	0	1	1	1	0	0	0	6
s_{2}	0	2	1	0	1	0	0	8
x^{a}	0	-2	1	0	0	-1	1	2

Find initial basic feasible solution

Basic Variable	$-z^{a}$	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	x^{a}	RHS
$-z^{a}$	1	2	-1	0	0	1	0	-2
s_{1}	0	1	1	1	0	0	0	6
s_{2}	0	2	1	0	1	0	0	8
x^{a}	0	-2	1	0	0	-1	1	2

x_{2} entering variable, x^{a} leaving variable

\Downarrow								
Basic Variable	$-z^{a}$	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	x^{a}	RHS
$-z^{a}$	1	0	0	0	0	0	1	0
s_{1}	0	3	0	1	0	1	-1	4
s_{2}	0	4	0	0	1	1	-1	6
x_{2}	0	-2	1	0	0	-1	1	2

Find initial basic feasible solution

Basic Variable	$-z^{a}$	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	x^{a}	RHS
$-z^{a}$	1	0	0	0	0	0	1	0
s_{1}	0	3	0	1	0	1	-1	4
s_{2}	0	4	0	0	1	1	-1	6
x_{2}	0	-2	1	0	0	-1	1	2

x^{a} no longer in basis. Have basic feasible solution for original problem.
\Downarrow

Basic Variable	z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	RHS
z	1	-4	-3	0	0	0	0
s_{1}	0	3	0	1	0	1	4
s_{2}	0	4	0	0	1	1	6
x_{2}	0	-2	1	0	0	-1	2

Find initial basic feasible solution

Basic Variable	z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	RHS
z	1	-4	-3	0	0	0	0
s_{1}	0	3	0	1	0	1	4
s_{2}	0	4	0	0	1	1	6
x_{2}	0	-2	1	0	0	-1	2

Negative constants in row 0 for basic variable \Longrightarrow not in canonical form (coefficient of basic variable x_{2} is negative).
\Downarrow

Basic Variable	z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	RHS
z	1	-10	0	0	0	-3	6
s_{1}	0	3	0	1	0	1	4
s_{2}	0	4	0	0	1	1	6
x_{2}	0	-2	1	0	0	-1	2

Find initial basic feasible solution

Basic Variable	z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	RHS
z	1	-10	0	0	0	-3	6
s_{1}	0	3	0	1	0	1	4
s_{2}	0	4	0	0	1	1	6
x_{2}	0	-2	1	0	0	-1	2

x_{1} entering variable and s_{1} leaving variable.
No negative coefficients in row 0 . Optimal! \Downarrow

Basic Variable	z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	RHS
z	1	0	0	$10 / 3$	0	$1 / 3$	$58 / 3$
x_{1}	0	1	0	$1 / 3$	0	$1 / 3$	$4 / 3$
s_{2}	0	0	0	$-4 / 3$	1	$-1 / 3$	$2 / 3$
x_{2}	0	0	1	$2 / 3$	0	$-1 / 3$	$14 / 3$

9.5 Geometric interpretation of the simplex method

$$
\begin{aligned}
x_{1}+x_{2} & \leq 6 \\
2 x_{1}+x_{2} & \leq 8
\end{aligned}
$$

The system has six basic solutions displayed below:

| | Basic Solution | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | \cdot | 3 | 4 | 5 | 6 |
| Nonbasic | $x_{1}=0$, | $x_{1}=0$, | $x_{1}=0$, | $x_{2}=0$, | $x_{2}=0$, | $x_{3}=0$, |
| variables \mathbf{x}_{N} | $x_{2}=0$ | $x_{3}=0$ | $x_{4}=0$ | $x_{3}=0$ | $x_{4}=0$ | $x_{4}=0$ |
| Basic variables | $x_{3}=6$, | $x_{2}=6$, | $x_{2}=8$, | $x_{1}=6$, | $x_{1}=4$, | $x_{1}=2$, |
| $\mathbf{x}_{\mathbf{B}}$ | $x_{4}=8$ | $x_{4}=2$ | $x_{3}=-2$ | $x_{4}=-4$ | $x_{3}=2$ | $x_{2}=4$ |

9.5 Geometric interpretation of the simplex method

Example of a degenerate system

$$
\begin{aligned}
x_{1}+x_{2} & \leq 6 \\
2 x_{1}+x_{2} & \leq 8(12) \\
x_{1} & \leq 4
\end{aligned}
$$

Degenerate solutions!
Basic Solution Same-solution, different basis

9.5 Geometric interpretation of the simplex method

> Identifying an Extreme Ray in a Simplex Tableau

Extreme ray

$$
\mathbf{x}=\mathbf{x}_{0}+\mathbf{d} \lambda, \quad \lambda \geq 0
$$

where \mathbf{x}_{0} is the root or vertex and \mathbf{d} is the extreme direction.

9.5 Geometric interpretation of the simplex method

Example

$$
(L P) \begin{cases}\max & z=4 x_{1}+3 x_{2} \\ \text { s.t. } & -x_{1}+x_{2} \leq 4 \\ & x_{1}-2 x_{2} \leq 2 \\ & x_{1}, x_{2} \geq 0\end{cases}
$$

> Extreme ray
> $\binom{2}{0}+\lambda\binom{2}{1}, \quad \lambda \geq 0$
9.5 Geometric interpretation of the simplex method
x_{1} entering variable, x_{4} leaving variable.

Basic Variable	z	x_{1}	x_{2}	x_{3}	x_{4}	RHS
z	1	-4	-3	0	0	0
x_{3}	0	-1	1	1	0	4
x_{4}	0	1	-2	0	1	2

Basic Variable	z	x_{1}	x_{2}	x_{3}	x_{4}	RHS
z	1	0	-11	0	4	8
x_{3}	0	0	-1	1	1	6
x_{1}	0	1	-2	0	1	2

9.5 Geometric interpretation of the simplex method
x_{1} entering variable, x_{4} leaving variable.

Basic Variable	z	x_{1}	x_{2}	x_{3}	x_{4}	RHS
z	1	-4	-3	0	0	0
x_{3}	0	-1	1	1	0	4
x_{4}	0	1	-2	0	1	2

Unbounded!

Basic Variable	z	x_{1}	x_{2}	x_{3}	x_{4}	RHS
z	1	0	-11	0	4	8
x_{3}	0	0	-1	1	1	6
x_{1}	0	1	-2	0	1	2

9.5 Geometric interpretation of the simplex method

Simplex tableau reveals that current basic feasible solutions is

$$
\mathbf{x}=(2,0,6,0)^{T}=\mathbf{x}_{0}
$$

The pivot column is

$$
\overline{\mathrm{a}}_{2}=\binom{-1}{-2}
$$

To ensure feasiblility

$$
\left(\begin{array}{l}
2 \\
0 \\
6 \\
0
\end{array}\right)-\left(\begin{array}{c}
-2 \\
0 \\
-1 \\
0
\end{array}\right) x_{2} \geq\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right), x_{2} \geq 0
$$

The extreme direction is $\mathbf{d}=(2,0,1,0)^{T}$

9.5 Geometric interpretation of the simplex method

General description (maximization problem):

Have basic feasible solution with $\bar{c}_{k}<0$ and $\overline{a_{i k}} \leq 0 \forall i$ for some nonbasic variable x_{k} (i.e. unbounded solution).
Also $\mathbf{x}_{\mathbf{B}}=\overline{\mathbf{b}}-\overline{\mathbf{a}}_{k} x_{k}$
Coefficient of entering variable x_{k} is 1 , so $\mathbf{x}_{\mathbf{N}}=\mathbf{e}_{k}$
This yields

$$
\mathbf{x}=\binom{\mathbf{x}_{\mathbf{B}}}{\mathbf{x}_{\mathbf{N}}}=\binom{\overline{\mathbf{b}}-\overline{\mathbf{a}}_{k} x_{k}}{\mathbf{e}_{k}} x_{k}=\binom{\overline{\mathbf{b}}}{\overline{\mathbf{0}}}+\binom{\overline{\mathbf{a}}_{k}}{\mathbf{e}_{k}} x_{k}
$$

The extreme ray is now given by:

$$
\mathbf{x}=\mathbf{x}_{0}+\mathbf{d} \lambda, \quad \lambda \geq 0
$$

where $\mathbf{x}_{0}=\binom{\overline{\mathbf{b}}}{\overline{\mathbf{0}}}, \mathbf{d}=\binom{\overline{\mathbf{a}}_{k}}{\mathbf{e}_{k}}$ and $\lambda=x_{k}$

9.6 The Simplex Method for upper bounded variables

Have variables with upper and lower bound.

$$
x_{j} \geq l_{j}, \quad x_{j} \leq u_{j}
$$

The lower bound can be handled by a simple variable substitution:

$$
x_{j}^{\prime}=x_{j}-l_{j}, \quad x_{j}^{\prime} \geq 0
$$

Upper bounds are slightly more tricky.

9.6 The Simplex Method for upper bounded variables

Upper bounded variable: basic concept
Allow an upper bounded variable to be nonbasic if $x_{j}=0$ (as usual) or $x_{j}=u_{j}$.
Using the following strategy.
Change variable to \bar{x}_{j} defined by the relationship

$$
x_{j}+\bar{x}_{j}=u_{j} \quad \Rightarrow \bar{x}_{j}=u_{j}-x_{j}
$$

Note! If $x_{j}=0, \bar{x}_{j}=u_{j}$ and vice versa.

9.6 The Simplex Method for upper bounded variables

Suppose solving a maximization problem using the simplex method. An entering variable is chosen as usual. The method for choosing a leaving variable is altered. Have three cases:
Case 1: x_{k} cannot exceed the minimum ratio $\theta=\min _{i}\left\{\frac{\bar{b}_{i}}{\bar{a}_{i k}}, \bar{a}_{i k}>0\right\}$ as usual.
Case 2: x_{k} cannot exceed the amount by which will cause one or more current basic feasible variables to exceed its upper bound. (Denote amount by $\left.\theta^{\prime}=\min _{i}\left\{\frac{u_{i}-\bar{b}_{i}}{-\overline{\mathrm{a}}_{i k}}, \quad \bar{a}_{i k}<0\right\}\right)$
Case 3: x_{k} cannot exceed its upper bound u_{k}.

9.6 The Simplex Method for upper bounded variables

Denote $\Delta=\min \left\{\theta, \theta^{\prime}, u_{k}\right\}$

If $\Delta=\theta$: then determina leaving variable x_{k} and perform ordinary pivoting. If $\Delta=\theta^{\prime}$: then replace leaving variable $x_{B_{r}}$ with $u_{B_{r}}-\bar{x}_{B_{r}}$ in row r and the "label" for $x_{B_{r}}$ with $\bar{x}_{B_{r}}$ and perform ordinary pivoting. If $\Delta=u_{k}$: then replace the entering variable x_{k} with $u_{k}-\bar{x}_{k}$ in each row of the tableau, and x_{k} with \bar{x}_{k} in the "label" row. Go to step one and do an optimality test.
9.6 The Simplex Method for upper bounded variables - Example

$$
(L P) \begin{cases}\max & z=4 x_{1}+3 x_{2} \\ \text { s.t. } & x_{1}+x_{2} \leq 6 \\ & 2 x_{1}+x_{2} \leq 8 \\ & x_{1} \geq 1 \\ & 1 \leq x_{2} \leq 3\end{cases}
$$

$$
(L P) \begin{cases}\max & z=4 x_{1}^{\prime}+3 x_{2}^{\prime}+7 \\ \text { s.t. } & x_{1}^{\prime}+x_{2}^{\prime}+s_{1}=4 \\ & 2 x_{1}^{\prime}+x_{2}^{\prime}+s_{2}=5 \\ & x_{2}^{\prime} \leq 2 \\ & x_{1}^{\prime}, x_{2}^{\prime} \geq 0\end{cases}
$$

Using $x_{1}^{\prime}=x_{1}-1$ and $x_{2}^{\prime}=x_{2}-1$.
9.6 The Simplex Method for upper bounded variables - Example

Let $x_{2}^{\prime}+\bar{x}_{2}^{\prime}=2$. starting base is s_{1}, s_{2}. Initial tableau is:

Basic Variable	z^{*}	x_{1}^{\prime}	x_{2}^{\prime}	s_{1}	s_{2}	RHS
z	1	-4	-3	0	0	7
s_{1}	0	1	1	1	0	4
s_{2}	0	2	1	0	1	5

Not optimal! x_{1}^{\prime} is entering variable. θ^{\prime} does not exist since $\bar{a}_{11}, \bar{a}_{21} \geq 0$.

$$
\theta=\min \left\{\frac{4}{1}, \frac{5}{2}\right\}=2.5
$$

s_{2} leaving variable
9.6 The Simplex Method for upper bounded variables - Example

Basic Variable	z	x_{1}^{\prime}	x_{2}^{\prime}	s_{1}	s_{2}	RHS
z	1	0	-1	0	2	17
s_{1}	0	0	0.5	1	-0.5	1.5
x_{1}^{\prime}	0	1	0.5	0	0.5	2.5

Not optimal! x_{2}^{\prime} entering variable. Still haven't any θ^{\prime}. Since $x_{2} \leq 2$, $\Delta=\min \left\{\theta=3, u_{2}^{\prime}=2\right\}$. Replace x_{2}^{\prime} with $2-\bar{x}_{2}^{\prime}$.
9.6 The Simplex Method for upper bounded variables - Example

Basic Variable	z	x_{1}^{\prime}	$x^{\prime} x_{2}^{\prime}$	s_{1}	s_{2}	RHS
z	1	0	1	0	2	19
s_{1}	0	0	-0.5	1	-0.5	0.5
x_{1}^{\prime}	0	1	-0.5	0	0.5	1.5

Optimal!

