9.1 Linear Programs in canonical form

LP in standard form:

$$(LP) \begin{cases} \max \quad z = \sum_{j} c_{j} x_{j} \\ s.t. \quad \sum_{j} a_{ij} x_{j} \leq b_{i} \quad \forall i = 1, \dots, m \\ x_{j} \geq 0 \quad \forall j = 1, \dots, n \end{cases}$$
where $b_{i} \in \mathbb{R}$, $\forall i = 1, \dots, m$

But the Simplex method works only on systems of equations!

Introduce nonnegative slack variables s_i for each constraint i and convert the standard form into a system of equations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

9.1 Linear Programs in canonical form

New LP formulation:

s.t.
$$z - \sum_j c_j x_j = 0$$
 (1b)

$$(LP) \left\{ \sum_{j} a_{ij} x_{j} + s_{i} = b_{i} \quad \forall i = 1, \dots, m \right.$$
 (1c)

$$x_j \ge 0 \quad \forall j = 1, \dots, n$$
 (1d)

$$s_i \geq 0 \quad \forall i = 1, \dots, m$$
 (1e)

where $b_i \in \mathbb{R}$, $\forall i = 1, ..., m$. This is also called *canonical form*.

Solving a LP may be viewed as performing the following three tasks

- 1. Find solutions to the augumented system of linear equations in 1b and 1c.
- 2. Use the nonnegative conditions (1d and 1e) to indicate and maintain the feasibility of a solution.
- 3. Maximize the objective function, which is rewritten as equation 1a.

Definitions

Given that a system Ax = b, where the numbers of solutions are infinite, and rank(A) = m (m < n), a unique solution can be obtained by setting any n - m variables to 0 and solving for the remaining system of m variables in m equations. Such a solution, if it exists, is called a *basic solution*. The variables that are set to 0 are called *nonbasic variables*, denoted by x_N . The variables that are solved are called *basic variables*, denoted by x_B . A basic solution that contains all nonnegative values is called a *basic feasible solution*. A basic solution that contains any negative component is called a *basic infeasible solution*. The $m \times n$ coefficient matrix associated with a give set of basic variables is called a *basis* not a basis matrix, and is denoted as **B**. The number of basic solutions possible in a system of m equations in n variables is calculated by

$$C_m^n = \frac{n!}{m!(n-m)!}$$

$$(LP) \begin{cases} \max & \mathbf{c_B}^\mathsf{T} \mathbf{x_B} + \mathbf{c_N}^\mathsf{T} \mathbf{x_N} \\ s.t. & \mathbf{B} \mathbf{x_B} + \mathbf{N} \mathbf{x_N} = \mathbf{b} \\ & \mathbf{x_B}, \mathbf{x_N} \ge \mathbf{0} \end{cases}$$
(2)

Example:

Consider

$$x_1 + x_2 + x_3 = 6$$
 (3)
 $2x_1 + x_2 + x_4 = 8$ (4)

The system has six basic solutions displayed below:

and the second second			Basic	Solution		1.10
	 1,1 	• 2	3	4	5	6
Nonbasic variables x _N	$ \begin{array}{c} x_1 = 0, \\ x_2 = 0 \end{array} $	$ \begin{array}{l} x_1 = 0, \\ x_3 = 0 \end{array} $	$\begin{array}{c} x_1 = 0, \\ x_4 = 0 \end{array}$	$x_2 = 0, x_3 = 0$	$\begin{array}{c} x_2 = 0, \\ x_4 = 0 \end{array}$	$x_3 = 0$ $x_4 = 0$
Basic variables x _B	$x_3 = 6, x_4 = 8$	$x_2 = 6, x_4 = 2$	$x_2 = 8, x_3 = -2$	$x_1 = 6,$ $x_4 = -4$ asible!	$x_1 = 4, \\ x_3 = 2$	$ \begin{array}{c} x_1 = 2 \\ x_2 = 4 \end{array} $
				< 0		

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Definitions:

A nonbasic variable is called an *entering variable* if it is selected to become basic in the next basis. Its associated coefficient column is called a *pivot column*. A basic variable is called a *leaving variable* if it's selected to become nonbasic in the next basis. Its associated coefficient row is called a *pivot row*. The element that intersects a pivot column and a pivot row is called a *pivot* or *pivot element*. A *pivoting operation* is a sequence of elementary row operations that makes the pivot element 1 and all other elements 0 in the pivot column. Two basic feasible solution is said to be *adjacent* if the set of their basic variables differ by only one basic variable.

Have constraint matrix:

$$Bx_B + Nx_N = b$$

By performing row operations we obtain:

$$\mathbf{I}\mathbf{x}_{\mathsf{B}} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{\mathsf{N}} = \mathbf{B}^{-1}\mathbf{b} \ \Rightarrow \ \mathbf{x}_{\mathsf{B}} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{\mathsf{N}}$$

Substituting into $z = c_B^T x_B + c_N^T x_N$ we have

$$z = (\mathbf{c_B}^T \mathbf{B}^{-1} \mathbf{N} - \mathbf{c_N}^T) \mathbf{x_N}$$

Reduced space and reduced costs

The subspace that contains only the nonbasic variables is referred to a *reduced space*. The components of the objective row in a reduced space are called *reduced costs*, denoted by \bar{c} :

$$\mathbf{\bar{c}}^{\mathsf{T}} = (\mathbf{\bar{c}}_{\mathsf{B}}^{\mathsf{T}}, \mathbf{\bar{c}}_{\mathsf{N}}^{\mathsf{T}}) = (\mathbf{0}^{\mathsf{T}}, \mathbf{c_{\mathsf{B}}}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{N} - \mathbf{c_{\mathsf{N}}}^{\mathsf{T}})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

9.3 The Simplex Method

The Simplex method consists of three steps:

- 1. Initialization: Find an initial basic solution that is feasible.
- 2. Iteration: Find a basic solution that is better, adjacent, and feasible.
- 3. *Optimality test:* Test if the current solution is optimal. If not, repeat step 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

2. Iteration: Find a basic solution that is better, adjacent, and feasible.

- 1. determining the entering variable A new basic solution will be *better* if an entering variable is properly chosen.
- 2. determining the leaving variable A new basic solution will be *feasible* if a leaving variable is properly chosen.
- 3. pivoting on the pivot element for exchange of variables and updating the data in the simplex tableau.

How do we chose?

2. Iteration: Find a basic solution that is better, adjacent, and feasible.

Basic			х _в					- 1		XN				RHS
Variable	Z	X_B	 X_B	,	XB_m				x_j		X_k		S	olution
Z	1	0	 0		0	1			\bar{c}_j		\overline{c}_k			\bar{b}_o
X_{B_1}	0	1	0	1.5	0	0.00	11	1.1	āij		\bar{a}_{1k}	 1	12.1	\bar{b}_1
1	:	:	÷		2				÷.		:			:
X_{B_r}	0	0	 1		0				\bar{a}_{rj}		\bar{a}_{rk}			\bar{b}_r
1	÷	÷	÷		1				6.		:			1
XBm	0	0	 0		1				āmj		\bar{a}_{mk}			\bar{b}_m

Pick an entering variable $x_k = \{x_j \in \mathbf{x}_N : \min_j \bar{c}_j, \bar{c}_j < 0\}$ with most negative reduced cost. \rightarrow will improve the solution most.

$$\mathbf{\bar{c}}^{\mathsf{T}} = (\mathbf{\bar{c}}_{\mathsf{B}}^{\mathsf{T}}, \mathbf{\bar{c}}_{\mathsf{N}}^{\mathsf{T}}) = (\mathbf{0}^{\mathsf{T}}, {\mathbf{c}_{\mathsf{B}}}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{N} - {\mathbf{c}_{\mathsf{N}}}^{\mathsf{T}})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

2. Iteration: Find a basic solution that is better, adjacent, and feasible.

Basic				х _в						XN		1.01			RHS
Variable	Z	X_B		XB	, · · ·	X_{B_m}			 x_j		X_k			S	olution
z	1	0		0		0			 \bar{c}_j		\overline{c}_k				\bar{b}_o
X_{B_1}	0	1	a.b	0	251	0	1000	Ŀ.	 \bar{a}_{1j}		\bar{a}_{1k}		1	11 -	\bar{b}_1
	:	÷		÷		1			÷		:				1
X_{B_r}	0	0		1		0			 \bar{a}_{rj}		\bar{a}_{rk}				\bar{b}_r
i and	3	÷		÷		1			8.		:				:
x_{B_m}	0	0		0		1			 ām		\bar{a}_{mk}				\bar{b}_m

Pick an entering variable $x_k = \{x_j \in \mathbf{x}_{\mathbf{N}} : \min_j \bar{c}_j, \bar{c}_j < 0\}$ with most negative reduced cost. \rightarrow will improve the solution most Pick a leaving variable $x_{B_r} = \{x_{B_i} \in \mathbf{x}_{\mathbf{B}} : \min_i \frac{\bar{b}_i}{\bar{a}_{ik}}, \bar{a}_{ik} > 0\}$ Why? Explained in the next slide

Basic				х _в					x _N			RHS
Variable	Z	X_B		XB	,	X_{B_m}			<i>x_j</i>	X_k	 S	olution
z	1	0		0		0			$\bar{c}_j \ldots$	\overline{c}_k		\bar{b}_o
X_{B_1}	0	1	àda	0	a.6.1	0	ann là	1.1	\bar{a}_{1j}	\bar{a}_{1k}	 · 12 ·	\bar{b}_1
:		1		1		1			Ξ.	:		3
X _B ,	0	0		1		0			ā _{rj}	\bar{a}_{rk}		\bar{b}_r
£	÷	÷		÷		1				:		1
XBm	0	0		0		1			\bar{a}_{mj}	\bar{a}_{mk}		\bar{b}_m

When increasing x_k from 0:

$$z + ar{c}_k x_k = ar{b}_0 \Rightarrow z = ar{b}_0 - ar{c}_k x_k$$

and $x_{B_i} + ar{a}_{ik} x_k = ar{b}_i$ or $x_{B_i} = ar{b}_i - ar{a}_{ik} x_k$ $orall i$

Want new solution to remain feasible.

$$x_{B_i} = \bar{b}_i - \bar{a}_{ik} x_k \ge 0 \ \forall i$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Basic			х _в					XN		1.1			RHS
Variable	Z	X_B	 XB	,	XB_m		 x_j		X_k			S	olution
z	1	0	 0		0		 \bar{c}_j		\overline{c}_k				\bar{b}_o
X_{B_1}	0	1	0		0	 1.1	 āij		\bar{a}_{1k}		1	12.1	\bar{b}_1
:	÷	÷	÷		1		÷		:				1
X_{B_r}	0	0	 1		0		 \bar{a}_{rj}		\bar{a}_{rk}				\bar{b}_r
1	÷	÷	÷		1		÷.,		:				1.1
X_{B_m}	0	0	 0		1		 ām		\bar{a}_{mk}				\bar{b}_m

$$x_{B_i} = ar{b}_i - ar{a}_{ik} x_k \geq 0 \,\, orall i$$

 $\overline{\underline{a}}_{ik} < 0$: then x_{B_i} increases as x_k increases $\overline{\overline{a}}_{ik} > 0$: then x_{B_i} decreases as x_k increases

To satisfy nonnegativity x_k is increased until x_{B_i} drops to zero. The first basic variable dropping to zero is

$$x_{B_r} = \{x_{B_i} \in \mathbf{x}_{\mathbf{B}} : \min_i \frac{b_i}{\bar{\mathbf{a}}_{ik}}, \bar{\mathbf{a}}_{ik} > 0\}$$

Updating the Simplex Tableau

Basic			х _в				1.1		XN		1.5		RHS
Variable	Z	X_B	 X_B	,	X_{B_m}			X_j		X_k		5	olution
z	1	0	 0		0			\bar{c}_j		\overline{c}_k			\bar{b}_o
X_{B_1}	0	1	0	100	0	and b	1.1	\bar{a}_{1j}		\bar{a}_{1k}		č - 11-	\bar{b}_1
	:	:	÷		1			Ξ.		:			1
X_{B_r}	0	0	 1		0			\bar{a}_{rj}		\bar{a}_{rk}			\bar{b}_r
1	:	÷	÷		1			8.		:			1
XBm	0	0	 0		1			\bar{a}_m	· · · ·	\bar{a}_{mk}			\bar{b}_m

- 1. Divide row r by \bar{a}_{rk} .
- 2. $\forall i \neq r$, update the *i*th row by adding to it $(-\bar{a}_{ik})$ times the new *r*th row.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. Update row 0 by adding to it \bar{c}_k times the new *r*th row.

Updating the Simplex Tableau

- 1. Divide row r by \bar{a}_{rk} .
- 2. $\forall i \neq r$, update the *i*th row by adding to it $(-\bar{a}_{ik})$ times the new *r*th row.
- 3. Update row 0 by adding to it \bar{c}_k times the new *r*th row.

Basic			x _B		x	N	RHS
Variable	Z	χ_B	 X_{B_r}	 X_{B_m}	 x_j	$\ldots x_k \ldots$	Solution
z	1	0	 $\frac{\bar{b}_r}{\bar{a}_{rk}}$	 0	 $\bar{c}_j = \frac{\bar{a}_{rj}}{\bar{a}_{rk}} \bar{c}_k$	0	$\bar{b}_o - \frac{\bar{b}_r}{\bar{a}_{rk}} \bar{c}_k$
<i>XB</i> ₁	0	1	 $\frac{\overline{a}_{1k}}{\overline{a}_{rk}}$	 0	 $\bar{a}_{1j} - \frac{\bar{a}_{rj}}{\bar{a}_{rk}}\bar{a}_1$	<i>k</i> 0	$\bar{b}_1 - \frac{\bar{b}_r}{\bar{a}_{rk}} \bar{a}_{1k}$
:	3	:	:	:	5 E 5	:	:
x_k	0	0	 $\frac{1}{\bar{a}_{rk}}$	 0	 $\frac{\overline{a}_{rj}}{\overline{a}_{rk}}$	1	$\frac{\overline{b}_r}{\overline{a}_{rk}}$
:	:	:	Ì.	÷		1	1
x_{B_m}	0	0	 $\frac{\overline{a}_{mk}}{\overline{a}_{rk}}$	 1	 $\bar{a}_{mj} - \frac{\bar{a}_{rj}}{\bar{a}_{rk}} \bar{a}_{rk}$	mk 0	$\bar{b}_m - \frac{\bar{b}_r}{\bar{a}_{rk}} \bar{a}_m$

Optimality Test: An optimal solution is found if there is no adjacent basic feasible solution that can improve the objective value. (That is, all reduced costs for nonbasic variables are positive.

Construct phase-I problem:

Example

$$(LP) \begin{cases} \max & z = 4x_1 + 3x_2 \\ s.t. & x_1 + x_2 \le 6 \\ & 2x_1 + x_2 \le 8 \\ & -2x_1 + x_2 \ge 2 \\ x_1, x_2 \ge 0 \end{cases}$$
(5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1) Convert each constraint so RHS is nonnegative. Then do the following: \leq -form: add nonnegative slack variable

=-form: add nonegative artificial variable (basic variables for a stating basis)

 \geq -form: add nonnegative slack variable and nonnegative artificial variable

Construct phase-I problem:

Example

$$(LP) \begin{cases} \max & z = 4x_1 + 3x_2 \\ s.t. & x_1 + x_2 + s_1 = 6 \\ & 2x_1 + x_2 + s_2 = 8 \\ & -2x_1 + x_2 + s_3 + x^a = 2 \\ x_1, x_2, s_1, s_2, s_3, x^a \ge 0 \end{cases}$$
(6)

1) Convert each constraint so RHS is nonnegative. Then do the following: \leq -form: add nonnegative slack variable

=-form: add nonegative artificial variable (basic variables for a stating basis) >-form: add nonnegative slack variable and nonnegative artificial variable

Construct phase-I problem:

Example

$$(LP) \begin{cases} \max & z = 4x_1 + 3x_2 \\ s.t. & x_1 + x_2 + s_1 = 6 \\ & 2x_1 + x_2 + s_2 = 8 \\ & -2x_1 + x_2 + s_3 + x^a = 2 \\ x_1, x_2, s_1, s_2, s_3, x^a \ge 0 \end{cases}$$
(7)

(ロ)、(型)、(E)、(E)、 E) の(の)

2) Solve a phase I problem by minimizing the sum of artificial variables using the same set of constraints.

Construct phase-I problem:

Example

$$(Phase I) \begin{cases} \min & z = x^{a} \\ s.t. & x_{1} + x_{2} + s_{1} = 6 \\ & 2x_{1} + x_{2} + s_{2} = 8 \\ & -2x_{1} + x_{2} + s_{3} + x^{a} = 2 \\ x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, x^{a} \ge 0 \end{cases}$$
(8)

(ロ)、(型)、(E)、(E)、 E) の(の)

2) Solve a phase I problem by minimizing the sum of artificial variables using the same set of constraints.

Basic Variable	$-z^{a}$	x_1	x_2	s_1	s_2	\$3	$x^{\prime\prime}$	RHS
$-z^{a}$	1	0	0	0	0	0	1	0
s ₁	0	1	1	1	0	0	0	6
S2	0	2	1	0	1	0	0	8
x^{a}	0	$^{-2}$	1	0	0	-1	1	2

Basic Variable	$-z^{a}$	x_1	x_2	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	x^{a}	RHS
$-z^{a}$	1	0	0	0	0	0	1	0
s ₁	0	1	1	1	0	0	0	6
S2	0	2	1	0	1	0	0	8
x^{a}	0	$^{-2}$	1	0	0	-1	1	2

 x^a basic variable. Reduced cost should be 0.

↓

Basic Variable	$-z^{a}$	x_1	x_2	s_1	<i>s</i> ₂	<i>s</i> ₃	x^{a}	RHS
$-z^{a}$	1	2	-1	0	0	1	0	-2
s ₁	0	1	1	1	0	0	0	6
S2	0	2	1	0	1	0	0	8
<i>x</i> "	0	$^{-2}$	1	0	0	$^{-1}$	1	2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Basic Variable	$-z^{a}$	x_1	x_2	s_1	<i>s</i> ₂	<i>s</i> ₃	x^{a}	RHS
$-z^{a}$	1	2	-1	0	0	1	0	-2
s ₁	0	1	1	1	0	0	0	6
S2	0	2	1	0	1	0	0	8
x^{a}	0	-2	1	0	0	$^{-1}$	1	2

 x_2 entering variable, x^a leaving variable

	- 1
	_ ∖

Basic Variable	$-z^{\prime\prime}$	x_1	x_2	s_1	s_2	s_3	$x^{\prime\prime}$	RHS
$-z^{a}$	1	0	0	0	0	0	1	0
s ₁	0	3	0	1	0	1	-1	4
S2	0	4	0	0	1	1	-1	6
<i>x</i> ₂	0	$^{-2}$	1	0	0	-1	1	2

Basic Variable	-z''	x_1	x_2	s_1	s_2	s_3	$x^{\prime\prime}$	RHS
$-z^{a}$	1	0	0	0	0	0	1	0
s ₁	0	3	0	1	0	1	-1	4
S2	0	4	0	0	1	1	-1	6
x_2	0	$^{-2}$	1	0	0	-1	1	2

 x^a no longer in basis. Have basic feasible solution for original problem. ${\displaystyle \Downarrow}$

Basic Variable	Z	x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	RHS
z	1	-4	-3	0	0	0	0
<i>s</i> ₁	0	3	0	1	0	1	4
S2	0	4	0	0	1	1	6
<i>x</i> ₂	0	$^{-2}$	1	0	0	-1	2

(ロ)、(型)、(E)、(E)、 E) の(の)

Basic Variable	Z	,	x_1	X_2	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
z	1		-4	-3	0	0	0	0
<i>s</i> ₁	0		3	0	1	0	1	4
S2	0		4	0	0	1	1	6
X2	0		$^{-2}$	1	0	0	-1	2

Negative constants in row 0 for basic variable \implies not in canonical form (coefficient of basic variable x_2 is negative). \Downarrow

Basic Variable	z	x_1	<i>x</i> ₂ ·	s_1	s_2	\$3	RHS
z	1	-10	0	0	0	-3	6
<i>s</i> ₁	0	3	0	1	0	1	4
S2	0	4	0	0	1	1	6
<i>x</i> ₂	0	-2	1	0	0	-1	2

Basic Variable	z	x_1	<i>x</i> ₂ ·	<i>s</i> ₁	s_2	\$3	RHS
z	1	-10	0	0	0	-3	6
<i>s</i> ₁	0	3	0	1	0	1	4
S2	0	4	0	0	1	1	6
<i>x</i> ₂	0	-2	1	0	0	-1	2

 x_1 entering variable and s_1 leaving variable. No negative coefficients in row 0. Optimal! \downarrow

Basic Variable	z	x_1	x_2	<i>s</i> ₁	<i>s</i> ₂	\$3	RHS
z	1	0	0	10/3	0	1/3	58/3
<i>x</i> ₁	0	1	0	1/3	0	1/3	4/3
S2	0	0	0	-4/3	1	-1/3	2/3
<i>x</i> ₂	0	0	1	2/3	0	-1/3	14/3

 $x_1 + x_2 \le 6$ (9) $2x_1 + x_2 \le 8$ (10)

The system has six basic solutions displayed below:

			Basic	Solution		1.11
	1	• 2	3	4	5	6
Nonbasic variables x _N	$\begin{array}{c} x_1 = 0, \\ x_2 = 0 \end{array}$	$ \begin{array}{l} x_1 = 0, \\ x_3 = 0 \end{array} $	$ \begin{array}{c} x_1 = 0, \\ x_4 = 0 \end{array} $	$x_2 = 0, x_3 = 0$	$\begin{array}{c} x_2 = 0, \\ x_4 = 0 \end{array}$	$\begin{array}{c} x_3 = 0, \\ x_4 = 0 \end{array}$
Basic variables x _B	$x_3 = 6, x_4 = 8$	$x_2 = 6, \\ x_4 = 2$	$x_2 = 8, x_3 = -2$	$x_1 = 6, \\ x_4 = -4$	$x_1 = 4, \\ x_3 = 2$	$x_1 = 2, \\ x_2 = 4$

Example of a degenerate system

_							Dege	nerate	solution	1S!
				1.	Basic Sol	ution Sa	mo sol	ution	differen	t haeic
	1	2	3	4	5	6	7	8	9	10
x _N	$x_1 = 0, \\ x_2 = 0$	$x_1 = 0, \\ s_1 = 0$	$x_1 = 0, \\ s_2 = 0$	$ \begin{array}{c} x_1 = 0, \\ s_3 = 0 \end{array} $	$x_2 = 0, \\ s_1 = 0$	$x_2 = 0, s_2 = 0$	$x_2 = 0, \\ s_3 = 0$	$s_1 = 0, \\ s_2 = 0$	$s_1 = 0, \\ s_3 = 0$	$s_2 = 0, \\ s_3 = 0$
х _в	$s_1 = 6, s_2 = 8, s_3 = 4$	$x_2 = 6, s_2 = 2, s_3 = 4$	$x_2 = 8, s_1 = -2, s_3 = 4$	No solution	$x_1 = 6,$ $s_2 = -4,$ $s_3 = -2$	$x_1 = 2,$ $s_1 = 4,$ $s_3 = -2$	$x_1 = 4, s_1 = 2, s_2 = 0$	$x_1 = 2, x_2 = 4, s_3 = 2$	$x_1 = 4, x_2 = 2, s_2 = -2$	$x_1 = 4, x_2 = 0, s_1 = 2$

Identifying an Extreme Ray in a Simplex Tableau Extreme ray

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{d}\lambda, \ \lambda \ge \mathbf{0},$$

(ロ)、(型)、(E)、(E)、 E) の(の)

where \mathbf{x}_0 is the *root* or *vertex* and **d** is the *extreme direction*.

Example

$$(LP) \begin{cases} \max & z = 4x_1 + 3x_2 \\ s.t. & -x_1 + x_2 \le 4 \\ & x_1 - 2x_2 \le 2 \\ & x_1, x_2 \ge 0 \end{cases}$$

Extreme ray ${2 \choose 0} + \lambda {2 \choose 1}, \ \lambda \ge 0$

Basic Variable	Z	x_1	x_2	<i>x</i> ₃	X_4	RHS
z	1	-4	-3	0	0	0
X3	0	-1	1	1	0	4
X_4	0	1	$^{-2}$	0	1	2
Basic Variable	Ζ.,	<i>x</i> ₁	X2	<i>x</i> ₃	<i>X</i> ₄	RHS
2	1	0	-11	0	4	8
z X3	1	0	-11 -1	0	4	8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

x_1 entering variable, x_4 leaving variable.

Basic Variable	Z	x_1	x_2	<i>x</i> ₃	X_4	RHS
2	1	-4	-3	0	0	0
X3	0	-1	1	1	0	4
X4	0	1	$^{-2}$	0	1	2
			Unbound	ded!		
Basic Variable	Ξ.	x_1	X2	<i>x</i> ₃	X_4	RHS
z	1	0	-11	0	4	8
x ₃	0	0	-1	1	1	6
N	0	1	-2	0	1	2

x_1 entering variable, x_4 leaving variable.

Simplex tableau reveals that current basic feasible solutions is

$$\mathbf{x} = (2, 0, 6, 0)^T = \mathbf{x}_0$$

The pivot column is

$$\bar{a}_2 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

To ensure feasiblility

$$egin{pmatrix} 2 \ 0 \ 6 \ 0 \end{pmatrix} - egin{pmatrix} -2 \ 0 \ -1 \ 0 \end{pmatrix} x_2 \geq egin{pmatrix} 0 \ 0 \ 0 \ 0 \ 0 \end{pmatrix}, \ x_2 \geq 0 \ \end{pmatrix}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

The extreme direction is $\mathbf{d} = (2, 0, 1, 0)^T$

General description (maximization problem):

Have basic feasible solution with $\bar{c}_k < 0$ and $\bar{a_{ik}} \le 0 \forall i$ for some nonbasic variable x_k (i.e. unbounded solution). Also $\mathbf{x}_{\mathbf{B}} = \bar{\mathbf{b}} - \bar{\mathbf{a}}_k x_k$ Coefficient of entering variable x_k is 1, so $\mathbf{x}_{\mathbf{N}} = \mathbf{e}_k$ This yields

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{pmatrix} = \begin{pmatrix} \mathbf{\bar{b}} - \mathbf{\bar{a}}_k x_k \\ \mathbf{e}_k \end{pmatrix} x_k = \begin{pmatrix} \mathbf{\bar{b}} \\ \mathbf{\bar{0}} \end{pmatrix} + \begin{pmatrix} \mathbf{\bar{a}}_k \\ \mathbf{e}_k \end{pmatrix} x_k$$

The extreme ray is now given by:

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{d}\lambda, \ \lambda \ge 0$$

where $\mathbf{x}_0 = \begin{pmatrix} \bar{\mathbf{b}} \\ \bar{\mathbf{0}} \end{pmatrix}$, $\mathbf{d} = \begin{pmatrix} \bar{\mathbf{a}}_k \\ \mathbf{e}_k \end{pmatrix}$ and $\lambda = x_k$

Have variables with upper and lower bound.

$$x_j \geq l_j, \quad x_j \leq u_j$$

The lower bound can be handled by a simple variable substitution:

$$x_j' = x_j - I_j, \quad x_j' \ge 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Upper bounds are slightly more tricky.

Upper bounded variable: basic concept Allow an upper bounded variable to be nonbasic if $x_j = 0$ (as usual) or $x_j = u_j$. Using the following strategy. Change variable to \bar{x}_j defined by the relationship

 $x_j + \bar{x}_j = u_j \quad \Rightarrow \bar{x}_j = u_j - x_j$

Note! If $x_j = 0$, $\bar{x}_j = u_j$ and vice versa.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose solving a maximization problem using the simplex method. An entering variable is chosen as usual. The method for choosing a leaving variable is altered. Have three cases:

Case 1: x_k cannot exceed the minimum ratio $\theta = \min_i \{\frac{\bar{b}_i}{\bar{a}_{ik}}, \ \bar{a}_{ik} > 0\}$ as usual.

Case 2: x_k cannot exceed the amount by which will cause one or more current basic feasible variables to exceed its upper bound. (Denote amount by $\theta' = \min_i \{ \frac{u_i - \tilde{b}_i}{-\tilde{a}_{ik}}, \quad \tilde{a}_{ik} < 0 \}$)

Case 3: x_k cannot exceed its upper bound u_k .

Denote $\Delta = \min\{\theta, \theta', u_k\}$

If $\Delta = \theta$: then determina leaving variable x_k and perform ordinary pivoting. If $\Delta = \theta'$: then replace leaving variable x_{B_r} with $u_{B_r} - \bar{x}_{B_r}$ in row r and the "label" for x_{B_r} with \bar{x}_{B_r} and perform ordinary pivoting.

If $\Delta = u_k$: then replace the entering variable x_k with $u_k - \bar{x}_k$ in each row of the tableau, and x_k with \bar{x}_k in the "label" row. Go to step one and do an optimality test.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$(LP) \begin{cases} \max & z = 4x_1 + 3x_2 \\ s.t. & x_1 + x_2 \le 6 \\ & 2x_1 + x_2 \le 8 \\ & x_1 \ge 1 \\ & 1 \le x_2 \le 3 \end{cases} \qquad (LP) \begin{cases} \max & z = 4x_1' + 3x_2' + 7 \\ s.t. & x_1' + x_2' + s_1 = 4 \\ & 2x_1' + x_2' + s_2 = 5 \\ & x_2' \le 2 \\ & x_1', x_2' \ge 0 \end{cases}$$
Using $x_1' = x_1 - 1$ and $x_2' = x_2 - 1$.

<□ > < @ > < E > < E > E のQ @

Let x'_2 +	$-\bar{x}_{2}'=2$. starting	base	is <i>s</i> 1,	s ₂ . Initial	tableau is:
--------------	-------------------	------------	------	----------------	--------------------------	-------------

Basic Variable	\mathbb{C}^{n}	z`	x'_1	x'_2	<i>s</i> ₁	<i>s</i> ₂	RHS
Ζ		1	-4	-3	0	0	7
<i>s</i> ₁		0	1	1	1	0	4
<i>s</i> ₂	1	0	2	1	0	1	5

Not optimal! x'_1 is entering variable. θ' does not exist since $\bar{a}_{11}, \bar{a}_{21} \ge 0$.

$$\theta = \min\{\frac{4}{1}, \frac{5}{2}\} = 2.5$$

s₂ leaving variable

Basic Variable	Ζ	x'_1	x'_2	<i>s</i> ₁	<i>s</i> ₂	RHS
z bulkdong (L.)	1	0	-1	0	2	17
<i>S</i> ₁	0	0	0.5	1	-0.5	1.5
x'_1	0	1	0.5	0	0.5	2.5

(日) (日) (日) (日) (日) (日) (日) (日)

Not optimal! x'_2 entering variable. Still haven't any θ' . Since $x_2 \le 2$, $\Delta = \min\{\theta = 3, u'_2 = 2\}$. Replace x'_2 with $2 - \bar{x}'_2$.

Basic Variable	Z	x'_1	x'2	s_1	<i>s</i> ₂	RHS
z	1	0	1	0	2	19
<i>s</i> ₁	0	0	-0.5	1	-0.5	0.5
x'_1	0	1	-0.5	0	0.5	1.5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Optimal!