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POLYNOMIAL COMPLEXITY ISSUES

@ Discuss fundamental computational complexity issues for algorithms
for solving linear programming problems.

”

e f (n) denotes " the total number of elementary operations required
by the algorithm to solve the problem of size n”.

o f(n) =0 (n*) 37 > 0: f(n) < 7n*: Polynomial-time
(theoretically efficient).

o f(n) =0 (k") < 3T >0: f(n) < 7k": exponential growth
(bad!). e.g.: simplex algorithm.

@ There exist theoretically efficient algorithms for LP problems:

o Khachian (no practical value).
o Karmarkar (promising).
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POLYNOMIAL COMPLEXITY ISSUES

Consider the LP optimization problem:

minimize z(x) = cx
s.to Ax=0b
R">x>0

Data: A€ R™" ¢ e R"; b€ R™ with m,n> 2.

e size: (m,n, L), where L is the input length: the number of binary
bits required to record all the data of the problem (here log = log,):

L={1+ [log(1+m)]} + {1+ [log(1+ n)]}

+2_ {1+ [log(L+IgNT}+>_ > {1+ [log(1 +|;])]}
+Z{1+ [log(1 + |bi])] }
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POLYNOMIAL COMPLEXITY ISSUES

We are only required to determine a function g (m, n, L) in terms of

(m, n, L) such that for some sufficiently large constant 7 > 0, we have
o f(n,m,L) <7g(m,n,L). ie, O(g(m,n,L)).

Example: For algorithm actually involving a maximum of

f (n,m) = 6m*n+ 15mn+ 12m is O (m?, n).
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We are only required to determine a function g (m, n, L) in terms of

(m, n, L) such that for some sufficiently large constant 7 > 0, we have
o f(n,m,L) <7g(m,n,L). ie, O(g(m,n,L)).

Example: For algorithm actually involving a maximum of

f (n,m) =6m?n+ 15mn + 12m is © (m?, n).

Decision Problem

Optimization Problem

Given ¢, b and A (of the appropriate
dimensions) and given rational
s.to Ax<b number K, does there exist a

x>0 rational vector x such that Ax = b,
B x>0, and ex < K?

maximize z(x) = cx

Béatrice Byukusenge
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We are only required to determine a function g (m, n, L) in terms of

(m, n, L) such that for some sufficiently large constant 7 > 0, we have
o f(n,m,L) <7g(m,n,L). ie, O(g(m,n,L)).

Example: For algorithm actually involving a maximum of

f (n,m) = 6m*n+ 15mn+ 12m is O (m?, n).

Decision Problem

Optimization Problem

Given ¢, b and A (of the appropriate
dimensions) and given rational
s.to Ax<b number K, does there exist a

x>0 rational vector x such that Ax = b,
B x>0, and ex < K?

maximize z(x) = cx

polynomial-time algorithms for optimization problems < those for decision
problems.
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COMPUTATIONAL COMPLEXITY OF THE SIMPLEX ALGOR

Dantzig introduces the simplex algorithm.

@ intuition-based reaction: the algorithm would not prove to be very
efficient.

@ surprisingly: in practice, this method performes exceedingly well.

Theoretically, the fact is that the algorithm is entrapped in the potentially
combinatorial aspect of having to examine up to (for n > m):

n n\m .
( ) > <—> vertices.
m m

@ Hence the plausibility of a potential exponential order of effort for
some problems.
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COMPUTATIONAL COMPLEXITY OF THE SIMPLEX ALGOR

Example: 1971 Klee-Minty problems: Feasible region is a suitable
distortion of the n-dimensional hypercube in R” which has 2" vertices.

Transformedd Problem (0 = 1/¢)

Problem (¢ € (0,1/2))

n
Maximize E Yj
Maximize x, j=1

s.to 0<x<1 s.to y1 <1
eXj1 < xS 1—exi i1 ,
-1
(for j=2,...,n) Yi+2) <t
k=1
xi>0,;j=1,...,n.

(for j=2,...,n)
yi=0,j=1,...,n

where y1 = x1, y; = (xj —exj_1) /&' L for j=2,...,n.

*

@ 2" — 1 iterations to visit all the 2" vertices.
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COMPUTATIONAL COMPLEXITY OF THE SIMPLEX ALGOR
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Figure 8.1. Illustration of the Klee—Minty type polytopes for n=2 and n=3.
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KARMARKAR’S PROJECTIVE ALGORITHM

In 1984 Karmarkar (AT&T Bell Laboratories) proposed a new
polynomial-time algorithm for LP problems. This algorithm addresses LP
problems of the following form:

Minimize z = cx
s.to Ax=0
Ix=1 (LP-K)
x>0

where A € R™*7 with m,n > 2, ¢, A integers and 1 is a row vector of n

ones with the following two assumptions:
T . .
o (A1): xo=(%,...,1)" is feasible.

o (A)): z¥=0.
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KARMARKAR’S PROJECTIVE ALGORITHM

Any general LP problem can be (polynomially) cast in this form through
the use of artificial variables, an artificial bounding constraint, and
through variable redefinitions.

e Remark: Under assumptions (A1) and (A;), Problem (LP — K) is
feasible and bounded, and hence, has an optimum.
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o Feasible region: K = {Ax =0} N{S:{x: Ix=1, x > 0}}

Xy A 71 A

(0,0, 1] (0,0, 1)

(0, 0,0)

Figure 8.2. Projective transformation of the feasible region.
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KARMARKAR’S PROJECTIVE ALGORITHM

Summary of Karmarkar’s Algorithm

o INITIALIZATION

Compute »=1/jn(n-1), L=[1+]ﬂg(]+lc‘j mu“ﬂng”dmmﬂxm, and select

a=(n-1)/3n Let x, =(1/#.....1/n)" and put k= 0.

Béatrice Byukusenge



KARMARKAR’S PROJECTIVE ALGORITHM

o MAIN STEP

If ex;, < 2%, use the optimal rounding routine to determine an optimal solution,

and stop. (Practically, since 3k may be very small, one may terminate when
cx; is less than some other desired tolerance.) Otherwise, define

, 1Y
Dk =dlag{xk1,...,xﬁm}, Yo =(—,..¢,—] R

n n
P =[A]l}k} and c=cD;
and compute
c
Ynew = Yo —@r—, where cp = [I— P’(PP’)_lP]Ef.
Ies|

Hence, obtain X;,; =(D;y ey )/(1DLY¥ ey, ). Increment k by one and repeat the
Main Step.
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KARMARKAR’S PROJECTIVE ALGORITHM

e OPTIMAL ROUNDING ROUTINE

Starting with x;, determine an extreme point solution X for Problem (8.4) with

X <exg < e using the earlier purification scheme. Terminate with X as an
optimal solution to Problem (8.4).
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KARMARKAR’S PROJECTIVE ALGORITHM

Thank you for your attention!
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