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Abstract

The variational solution to the Zaremba problem for divergent linear
second order elliptic equation with measurable coefficients is considered.
The problem is set in a local Lipschitz graph domain. An estimate in
L2+δ, δ > 0, for the gradient of a solution is obtained. An example of the
problem with the Dirichlet data supported by a fractal set of zero (n −

1)-dimensional measure and non-zero p-capacity, p > 1, is constructed.
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1 Introduction

The Zaremba boundary value problem for elliptic equations is of interest
both from purely mathematical and applied points of view. It appears in
elasticity theory of bodies with partially fasten boundaries, in modelling of
conductivity of corroded electrical contacts, in biological problems connected
with permeability of perforated membranes, in percolation problems etc. One
of applications is the Zaremba problem with rapidly alternating boundary
conditions (see, for instance, [26], [27] and the references in this monograph).

For the Laplace equation, the Zaremba problem in a three-dimensional
bounded domain with a smooth boundary and inhomogeneous Dirichlet and
Neumann conditions was first considered in [1], where the classical solvability
of the problem was established by methods of potential theory. Study of prop-
erties of solutions to the Zaremba problem for second-order elliptic equations
with variable regular coefficients goes back to [2]. In particular, it is shown in
[2] that at the junction of the Dirichlet and Neumann data, the smoothness
of the solutions is lost. For divergent second-order uniformly elliptic equations
with measurable coefficients, integral and pointwise estimates for solutions
of the Zaremba problem under fairly general assumptions about the domain
boundary are treated in [3] (see also [4] and [5]).

The question of higher integrability of the gradient of solutions to elliptic
equations is classical (see, for instance, [6], [7], [8], [9], [10], [11] et al, where
this phenomenon was treated).

The Lp-integrability, p > 2, of the gradient of a solution to the Zaremba
problem, was studied in [12]. The authors of [12] deal with the Poisson equation
in a square with frequent change of the Dirichlet and Neumann boundary
conditions. Such estimates are useful in the homogenization theory; these esti-
mates improve the rate of convergence of solutions to the given problem with
small parameter to solutions of the homogenized (limit) problem (see [13] for
a similar problem in a domain perforated along the boundary).

Some results of the present paper were announced in [14].
The present paper is devoted to the Zaremba problem for an elliptic

equation in a bounded Lipschitz graph domain D ∈ R
n, with the operator

Lu := div(a(x)∇u). (1)

Here the matrix a(x) = {aij(x)} has measurable components and satisfies
aij = aji and

α−1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ α|ξ|2 for almost all x ∈ D and for all ξ ∈ R
n (2)

with some α > 1. Before formulating the Zaremba problem, we define the
Sobolev space of functions W 1

2 (D,F ), where F ⊂ ∂D is a closed set, as a
completion of functions infinitely differentiable in the closure of D and equal
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to zero in a neighborhood of F , by norm

‖ u ‖W 1
2
(D,F )=

( ∫

D

v2 dx+

∫

D

|∇v|2 dx
)1/2

.

A priori, the functions v ∈ W 1
2 (D,F ) are assumed to satisfy the inequality

∫

D

v2 dx ≤ C

∫

D

|∇v|2 dx. (3)

We consider a variational statement of the classical Zaremba problem

Lu = l in D, u = 0 on F,
∂u

∂ν
= 0 on G, (4)

where G = ∂D\F , and ∂u
∂ν =

n∑
i,j=1

aij
∂u
∂xj

νi is the outward conormal derivative

of the function u, and l is a linear functional on the space W 1
2 (D,F ).

A variational solution to problem (4) is a function u ∈ W 1
2 (D,F ) subject

the equality ∫

D

a∇u · ∇ϕdx = −l(ϕ), (5)

where ϕ ∈ W 1
2 (D,F ) is an arbitrary function.

By (3), the space W 1
2 (D,F ) can be endowed with a norm containing only

the gradient. Then each element from the Sobolev space can be put into a
one-to-one isometric correspondence with its gradient, that is, an element from
(L2(D))n. Using the Hahn-Banach theorem, as, for example, in section 1.1.15
from the monograph [15], on the form of a functional in Sobolev spaces, one
can show that the functional l can be written as

l(ϕ) = −
n∑

i=1

∫

D

fiϕxi dx, (6)

where fi ∈ L2(D). Hence, (5) can be rewritten in the form

∫

D

a∇u · ∇ϕdx =

∫

D

f · ∇ϕdx. (7)

The Riesz representation Theorem combined with inequality (3) for functions
v ∈ W 1

2 (D,F ) implies the unique solvability of problem (7).
Let us discuss the inequality (3). For this aim we need the notion of p-

capacity. Given a compact set K ⊂ R
n, the capacity Cp(K), with 1 ≤ p < n,
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is defined by

Cp(K) = inf

{ ∫

Rn

|∇ϕ|p dx : ϕ ∈ C∞
0 (Rn), ϕ ≥ 1 on K

}
. (8)

Denoting by Qd an open cube with edge length d and faces parallel to the
coordinate axes, assuming that the Lipschitz domain D has diameter d and
D ⊂ Qd. Next, we need the notion of the capacity Cp(K,Q2d) of the compact
set K ⊂ Qd with respect to the cube Q2d, which is defined by

Cp(K,Q2d) = inf

{ ∫

Q2d

|∇ϕ|p dx : ϕ ∈ C∞
0 (Q2d), ϕ ≥ 1 on K

}
. (9)

Due to Maz’ya (see [15]) for the functions v ∈ W 1
2 (D,F ) the inequality (3)

holds if and only if C2(F ) > 0 for n > 2 and C2(F,Q2d) > 0 for n = 2.

2 Gradient estimate

Let x0 ∈ R
n and let Bx0

r stand for an open n-dimensional ball of radius r,
centered at x0. We choose p = 2n/(n+2) for n > 2 and p = 3/2 for n = 2. Let
us assume the following condition to be valid: for an arbitrary point x0 ∈ F
the inequality

Cp(F ∩B
x0

r ) ≥ c0r
n−p (10)

holds for r ≤ r0, where r0 is some positive constant. Here the positive constant
c0 is independent of x0 and r.

We assume that for every point x0 ∈ ∂D there exists an open cube Q
centered at x0 whose faces are parallel to coordinate axes, the edge length
does not depend on x0, and in some Cartesian coordinate system with origin
x0 the set Q ∩ ∂D is the graph of a Lipschitz function xn = g(x1, . . . , xn−1)
with a Lipschitz constant independent of x0. The edge length of such cubes is
assumed to be 2R0, and the Lipschitz constant of the corresponding functions
g is denoted by L. Without loss of generality we suppose that the set Q ∩D
is located above the graph of the function g.

Let us now formulate the main assertion, assuming that the constant r0
from condition (10) does not exceed the constant R0 involved in the definition
of the Lipschitz domain.

Theorem 1 If f ∈
(
L2+δ0(D)

)n
, where δ0 > 0, then there are positive constants

δ(n, δ0) < δ0 and C such that for solution of problem (4) the following estimate holds:∫

D

|∇u|2+δdx ≤ C

∫

D

|f |2+δ dx, (11)

where C depends only on δ0, space dimension n, ellipticity constant α from (2), c0
from (10), and also constants L and R0 involved in the definition of the Lipschitz

property of the domain D.
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Remark 1 Denote by mesn−1(E) the (n− 1)-dimensional Lebesque measure of the
set E ⊂ ∂D. Instead of condition (10) one can use

mesn−1(F ∩B
x0

r ) ≥ c0r
n−1. (12)

We show that condition (29) implies (10). Let us use the S.L. Sobolev–V.P. Il’in
inequality (see [16])

‖u‖Lq(Rn−1) ≤ K(n, p)‖∇u‖Lp(Rn), q =
p(n− 1)

n− p
,

where u is an arbitrary function from C∞
0 (Rn). Setting u = 1 on a compact set S

and minimizing the right hand side, we arrive at

(mesn−1(S))
n−p
n−1 ≤ K(n, p)Cp(S). (13)

Hence, (10) holds.
The example, that condition (29) does not generally follow from (10) is given at

the beginning of section 3.

Proof The proof of the Theorem is based on the inner and near-boundary estimates
of the gradient of solutions to problem (4). First, the higher integrability of the
gradient of the solution to problem (4) is obtained for a solution in a neighborhood
of the boundary of the domain D.

Setting QR0
= {x : |xi| < R0, i = 1, . . . , n} and using the definition of a

Lipschitz domain, for an arbitrary boundary point x0 ∈ ∂D consider a local Cartesian
coordinate system with the origin at x0 such that the part of the boundary ∂D falling
into the QR0

cube is given in this coordinate system by the equation xn = g(x′),
where x′ = (x1, . . . , xn−1), and g is a Lipschitz function with the Lipschitz exponent
L. It is assumed that the region DR0

= QR0
∩D is located on the set of those points

where xn > g(x′). Next, we introduce a new coordinate system in QR0
by performing

a non-degenerate transformation of variables

y′ = x′, yn = xn − g(x′) (14)

It is clear that the part of the boundary QR0
∩ ∂D is transformed into a piece of

the hyperplane

PR0
= {y : |yi| < R0, i = 1, . . . , n− 1, yn = 0}

For what follows, we note that the domain Q̃R0
contains the cube

KR0
= {y : |yi| < (1 +

√
n− 1L)−1R0, i = 1, . . . , n}. (15)

Indeed, if y ∈ Q̃R0
and |yi| < δR0 for some δ ∈ (0, 1) and i = 1, . . . , n− 1 , then

yn ∈ (−R0 − g(y′), R0 − g(y′)),

and since the function g is Lipschitz and g(0) = 0, then |g(y′)| ≤ L|y′| <√
n− 1LδR0. Hence,

(−R0(1−
√
n− 1Lδ), R0(1−

√
n− 1Lδ)) ⊂ (−R0 − g(y′), R0 − g(y′)).

Choosing here δ = 1
1+

√
n−1L

, we arrive at KR0
⊂ Q̃R0

.

In the semicube K+
R0

= KR0
∩{y : yn > 0} contained in the image of the domain

D ∩QR0
, problem (4) takes the form

L̃u = l̃ in K+
R0

, u = 0 on F̃R0
,

∂u

∂ν̃
= 0 on G̃R0

. (16)
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We keep the original notation for its solution. Here

L̃u := div(b(y)∇u) (17)

is uniformly elliptic operator with symmetric matrix b(y) = {bij(y)}, satisfying the
condition

β−1|ξ|2 ≤
n∑

i,j=1

bij(x)ξiξj ≤ β|ξ|2 for almost all y ∈ K+
R0

and for all ξ ∈ R
n, (18)

where the constant β depends only on α, which appear in (2), and the Lipschitz
constant L of g. The vector function f in (6), becomes f̃ defined by the formulae

f̃(y) = (f̃1(y), . . . , f̃n(y)), where f̃i(y) = fi(y
′, yn + g(y′)) as i = 1, . . . , n− 1,

f̃n(y) =
n−1∑

i=1

∂g(y′)
∂yi

fi(y
′, yn + g(y′)) + fn(y

′, yn + g(y′)).

(19)

The sets F̃R0
and G̃R0

from (16) are such that F̃R0
= F̃ ∩ PR0

∩ KR0
and G̃R0

=

G̃ ∩ PR0
∩ KR0

, where F̃ , G̃ are the images of the sets F ∩ QR0
and G ∩ QR0

respectively, and ∂u
∂ν̃ means the outer conormal derivative of the function u associated

with operator (17) .
We extend the function u satisfying (16), evenly with respect to the hyperplane

{y : yn = 0}. The continued function, for which we again retain the previous
notation, will satisfy the following relation:

L̃1u = lh in KR0
\ F̃R0

, u = 0 on F̃R0
. (20)

Here
L̃1u := div(c(y)∇u),

positive definite matrix c = {cij (y)} is such that the elements cjn(y) = cjn(y)
for j 6= n are odd extensions of the elements of the matrices bjn(y) from (17),
and all other elements of cij(y) are even extensions of bij(y). The components of
the vector-function h = (h1, . . . , hn) in (20), appearing in the representation of the
corresponding functional lh, are determined by similar relations: its the components
hi(y) for i = 1, . . . , n− 1 are even extensions of the components f̃i(y) from (16), and

hn(y) are odd extension f̃n(y). It is clear that the function u ∈ W 1
2 (KR0

) from (20)
satisfies the integral relation (see (7))

∫

KR0

c(y)∇u · ∇ϕdy =

∫

KR0

h · ∇ϕdy (21)

for all functions ϕ ∈ W 1
2 (KR0

, F̃R0
). Denote by Qy0

R an open cube centered at the
point y0 with edges of length 2R that are parallel to the coordinate axes. It is assumed
below that

y0 ∈ KR0/2 \ ∂KR0/2, where R ≤ 1

2
dist(y0, ∂KR0/2) (22)

and introduce a notation

−
∫

Q
y0
R

f dx =
1

|Qy0

R |

∫

Q
y0
R

f dx,

where |Qy0

R | stands for the n-dimensional Lebesque measure of the cube Qy0

R .
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First, consider the case when Qy0

3R/2
⊂ KR0

\ F̃R0
and put the test function

ϕ = (u− λ)η2 in (21), where

λ = −
∫

Q
y0
3R/2

u, dy,

and the cut-off function η ∈ C∞
0 (Qy0

3R/2
) satisfies 0 < η ≤ 1, η = 1 in Qy0

R and |∇η| ≤
CR−1. As a result, by (21), the Cauchy inequality, and the ellipticity condition (18),
we arrive at the Caccioppoli-type inequality (see [17])

∫

Q
y0
R

|∇u|2 dy ≤ C(n, α, L)

(
R−2

∫

Q
y0
3R/2

(u− λ)2 dy +

∫

Q
y0
3R/2

|h|2 dy
)
. (23)

Further, assuming, that p = 3/2 for n = 2 and p = 2n/(n + 2) for n > 2, from
the Poincaré–Sobolev inequality

(
−
∫

Q
y0
3R/2

(u− λ)2 dx

)1/2

≤ C(n)R

(
−
∫

Q
y0
3R/2

|∇u|p dx
)1/p

together with (23) we derive
(

−
∫

Q
y0
R

|∇u|2 dy
)1/2

≤ C(n, α, L)

( (
−
∫

Q
y0
2R

|∇u|p dy
)1/p

+

(
−
∫

Q
y0
2R

|h|2 dy
)1/2)

. (24)

Let us now consider the case when Qy0

3R/2
∩ F̃R0

6= ∅. Choosing a test function

ϕ = uη2 in the integral identity (21), we arrive at (23) with λ = 0, i.e.
∫

Q
y0
R

|∇u|2 dy ≤ C(n, α, L)

(
R−2

∫

Q
y0
2R

u2 dy +

∫

Q
y0
2R

|h|2 dy
)
. (25)

Let us estimate the first integral on the right-hand side of (25). Since Qy0

3R/2
∩

F̃R0
6= ∅, it follows that there is a point z0 ∈ Qy0

3R/2
∩ F̃R0

such that Q
z0
R/2 ⊂

Q
y0

2R. Denote by z ∈ F ∩ QR0
the inverse image of z0 under transformation (14).

Note that the inverse image of the closed cube Q
z0
R/2 contains the closed ball B

z
cR,

where c = c(L, n) > 0. By (10), the inequality Cp(F ∩ B
z
cR) ≥ C(L, n, c0)R

n−p

holds. From here and from the definition of the capacity given in (8), it follows that

Cp(F̃R0
∩Q2R) ≥ C(L, n, c0)R

n−p. Therefore, due to Maz’ya (see [15, §14.1.2])
(

−
∫

Q
y0
2R

u2 dy

)1/2

≤ C(n, p, L, c0)R

(
−
∫

Q
y0
2R

|∇u|p dy
)1/p

. (26)

Remark 2 If condition (29) is satisfied, then by the estimate of Proposition 4 in [15,
§13.1.1]) we again arrive at estimate (26). Thus, from (25) we obtain the required
inequality (24).

In further analysis we use the generalized Gehring Lemma (see [18], [19], and
also [20, Chapter VII]).
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Proposition 2 (Generalized Gehring Lemma) Let (22) and estimate (24) with h ∈
L2+δ0(KR0

) hold. Then,
∫

KR0/4

|u|2+δ dy ≤ C(n, α, δ0, c0, L, R0)

∫

KR0/2

|h|2+δ dy, (27)

where δ = δ(n, p, δ0) is a positive constant.

From estimate (26), which is valid for all cubes Qy0

R , Proposition 2, and from
(15), we get (27) for h ∈ L2+δ0(KR0

), δ0 > 0. Since the function u is even with
respect to the hyperplane {y : yn = 0}, inequality (27) can be rewritten in the form

∫

K+

R0/4

|u|2+δ dy ≤ C(n, α, δ0, c0, L,R0)

∫

K+

R0/2

|f̃ |2+δ dy. (28)

Make the transformation inverse to (14). We see that the inverse image of the
semicube K+

R0/2
is contained in the set DR0

, and the inverse image of the semicube

K+
R0/4

contains the set DθR0
, where θ = θ(n,L) > 0. By (19) and (28) we have

∫

DθR0

|u|2+δ dx ≤ C(n, α, δ0, c0, L, R0)

∫

DR0

|f |2+δ dx.

Passing here to the Cartesian coordinate system with the origin at the point x0 ∈ ∂D,
we obtain ∫

D∩Q
x0
θR0

|u|2+δ dx ≤ C(n, α, δ0, c0, L, R0)

∫

D∩Q
x0
R0

|f |2+δ dx.

Since x0 ∈ ∂D is an arbitrary boundary point and the boundary of ∂D is compact,
it follows that there exists a finite covering of ∂D by the cubes centered in ti ∈ ∂D,
i = 1, . . . N such that the closed set

Dθ1R0
= {x ∈ D : dist(x, ∂D) ≤ θ1R0}, θ1 = θ1(n,L) > 0,

is contained in the union of sets D ∩Qti
θR0

, where ti ∈ ∂D. Therefore, summing up
the inequalities

∫

D∩Q
ti
θR0

|u|2+δ dx ≤ C(n, α, δ0, c0, L, R0)

∫

D∩Q
ti
R0

|f |2+δ dx,

we get the estimate
∫

Dθ1R0

|u|2+δ dx ≤ C(n, α, δ0, c0, L,R0)

∫

D

|f |2+δ dx.

The inner estimate ∫

D\Dθ1R0

|u|2+δ dx ≤ C(n, α, δ0, R0)

∫

D

|f |2+δ dx

is well known and essentially follows from [7]. Finally, combining the last two inequal-
ities, we arrive at (11). The proof is complete. �
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Remark 3 Denote by mesn−1(E) the (n− 1)-dimensional Lebesque measure of the
set E ⊂ ∂D. Instead of condition (10) one can use

mesn−1(F ∩B
x0

r ) ≥ c0r
n−1. (29)

We show that condition (29) implies (10). Let us use the S.L. Sobolev–V.P. Il’in
inequality (see [16])

‖u‖Lq(Rn−1) ≤ K(n, p)‖∇u‖Lp(Rn), q =
p(n− 1)

n− p
,

where u is an arbitrary function from C∞
0 (Rn). Setting u = 1 on a compact set S

and minimizing the right hand side, we arrive at

(mesn−1(S))
n−p
n−1 ≤ K(n, p)Cp(S). (30)

Hence, (10) holds.

3 Example of the set F

In this section we give an examples of the set F with zero (n− 1)-dimensional
measure, satisfying condition (29). For simplicity, we restrict ourselves to the
planar case, although the same arguments work for the n-dimensional case.

We introduce several auxiliary function spaces. For p ≥ 1 and 0 < l ≤ 1, we
define the Besov space Bl

p as the completion of the set C∞
0 (Rn) in the norm

( ∫

Rn

∫

Rn

|ϕ(x+ y)− 2ϕ(x) + ϕ(x − y)|p|y|−n−pl dx dy

)1/p

+ ‖ ϕ ‖Lp(Rn) .

For 1 < p < ∞ and l > 0, we also introduce the Risz potential spaces hl
p

and the Bessel potential spaces H l
p as the completion of ϕ ∈ C∞

0 (Rn) in the
norms

‖ ϕ ‖hl
p
=‖ (−∆)l/2ϕ ‖Lp(Rn), ‖ ϕ ‖Hl

p
=‖ (−∆+ 1)l/2ϕ ‖Lp(Rn) .

Here ∆ is the Laplacian and

(−∆)l/2 = F−1|ξ|lF, (−∆+ 1)l/2 = F−1(1 + |ξ|2)l/2F,

where Fϕ(ξ) is the inverse Fourier transform

Fϕ(ξ) =
1

(
√
2π)n

∫

Rn

eix·ξϕ(x) dx.

It is well known (see Corollary 1 of Theorem 1 [15, Ch.10]), that

C1(n, p) ‖ ∇ϕ ‖Lp(Rn)≤‖ (−∆)1/2ϕ ‖Lp(Rn)≤ C2(n, p) ‖ ∇ϕ ‖Lp(Rn) (31)
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for any function ϕ ∈ C∞
0 (Rn).

For each function space Sl
p = H l

p, or Sl
p = Bl

p, or Sl
p = hl

p, we define the
capacity of the compact set K ⊂ R

n by

cap (K,Sl
p) = inf{‖ u ‖p

Sl
p
: ϕ ∈ C∞

0 (Rn), ϕ ≥ 1 on K}.

We are interested only in the case when 0 < l ≤ 1. The following relations
between different capacities are known.
(i) If diam(K) ≤ 1 and pl < n, then (see [21])

cap (K,H l
p) ∼ cap (K,hl

p). (32)

(ii) If 1 < p < ∞, then (see Proposition 4.4.4 in [22])

cap (K,H l
p) ∼ cap (K,Bl

p). (33)

(iii) If K ⊂ R
n and 1 < p < ∞, then (see [23])

cap (K,Bl
p(R

n)) ∼ cap (K,H l+1/p
p (Rn+1)). (34)

If K ⊂ R
n, diam(K) ≤ 1 and pl < n, then formulae (32)–(34) imply

cap (K,hl
p(R

n+1)) ∼ cap (K,H l−1/p
p (Rn)). (35)

Taking in (35) n = 1, l = 1 and 1 < p < 2, we get

cap (K,h1
p(R

2)) ∼ cap (K,H1−1/p
p (R1)).

Note that condition (31) leads to

cap (K,h1
p(R

2)) ∼ Cp(K),

where Cp(K) is the defined capacity (8) of the compact K. Hence,

Cp(K) ∼ cap (K,H1−1/p
p (R1)). (36)

Let {lj} be a decreasing sequence of positive numbers such that 2lj+1 < lj
(j = 1, 2, . . . ) and let ∆1 be a closed interval with length l1 ≤ 1, located
on the Ox1 axis. Denote by E1 the subset of ∆1, which is the union of two
closed intervals ∆2 and ∆3 with length l2 and which contains both ends of
the interval ∆1. Thus, we remove from the interval ∆1 the interval of length
l1 − 2l2 centered in the middle of ∆1. Next, we repeat the procedure with the
intervals ∆2 and ∆3 (here the role of l2 passes to l3) and thus obtain four
closed intervals with length l3. Let their union be denoted by E2 and so on.

We put F =
∞⋂
j=1

Ej (see Figure 1).
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Fig. 1 Construction of a Cantor set.

It follows from the result of [24] (see also [25]) that the statements

cap (F,H1−1/p
p (R1)) > 0

and ∞∑

j=1

2
j

1−p l
2−p
1−p

j < ∞ (37)

are equivalent. Thus, under the condition (37), we have

Cp(F ) > 0. (38)

We are interested in the case when p = 3/2 and the condition (37) becomes

∞∑

j=1

4−jl
− 1

4

j < ∞.

If we put lj = a−j+1, where a > 2, and, hence, 2ll+1 < lj , then we arrive at
the condition ∞∑

j=1

(
1

4
a1/4

)j

a−1/4 < ∞.

In particular, if a = 3, then this series converges and we arrive at the
classical Cantor set F .
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One-dimensional Lebesgue measure of F is equal to zero. Indeed, on the
j-th step we have 2j−1 intervals of the length 3−j , i.e. the sum of the lengths
of the removed intervals equals to

1

2

∞∑

j=1

(2
3

)j

= 1.

Besides, by (38) we have
C3/2(F ) > 0. (39)

It remains to show that for an arbitrary point x0 ∈ F for r ≤ r0 the inequality

C3/2(F ∩B
x0

r ) ≥ c0r
1/2, (40)

where Bx0
r is an open circle of radius r centered at x0 and the positive constant

c0 is independent of x0 and r.
Let us recall the definition of the capacity of the set F x0

r = F ∩B
x0

r :

C3/2(F
x0

r ) = inf

{ ∫

R2

|∇ϕ|3/2 dx : ϕ ∈ C∞
0 (R2), ϕ ≥ 1 on F x0

r

}
. (41)

It is clear that the set F x0
r is the intersection of F with the interval centered

at the point x0 of length r. If r ≤ r0 ≤ 1/3, then there is a natural number k0
such that 3−k0−1 < r ≤ 3−k0 . Clearly, x0 ∈ F belongs to the interval Ik0

of
length 3−k0−2. Since Ik0

∩ F ⊂ F x0
r , it follows

C3/2(F
x0

r ) ≥ C3/2(Ik0
∩ F ). (42)

Performing now in (41) the homothety transformation

y = (x− x0)/r + x0, where r = 3−k0−2, (43)

using (42), we arrive at the inequality

C3/2(F
x0

r ) ≥ 3−(k0+2)/2C3/2(F̃0) ≥ 3−1/2r1/2C3/2(F̃0), (44)

where F̃0 stands for the image of the set Ik0
∩F . It remains to note that under

(43) the set F̃0 is a shift of the Cantor set F along the axis Ox1.
By (39) and (44), the required relation (40) holds with constant c0 = 3−1/2

and r0 = 1/3.
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