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Introduction

There is a wide range of applications in physics and structural mechanics
involving domains with singular perturbations of the boundary. Examples
include perforated domains and bodies with defects of different types. Accu-
rate direct numerical treatment of such problems is challenging. As alterna-
tive means of efficient solution one can use asymptotic approximations.

A comprehensive asymptotic theory of boundary value problems in sin-
gularly perturbed domains was developed during last three decades (see the
monographs by Bakhvalov, Panasenko [1], II'in [8], Kozlov, Maz’ya, Movchan
[25], Maz’ya, Nazarov, Plamenevskii [24] and the bibliography therein). This
theory includes a general methodology of asymptotic analysis of solutions to
boundary value problems, eigenvalues of the corresponding operators, and
other set functions, such as energy, capacity and stress intensity factors.

In the present book, we deal with the analysis of Green’s functions and
matrices, i.e. kernels of the integral operators representing solutions to elliptic
boundary value problems. The exposition is based on the recent work by
Maz’ya and Movchan [17, 16, 18, 13, 19] and Maz’ya, Movchan, Nieves [20,
21, 22, 23].

The first results on asymptotic approximations of Green’s kernels G, (x,y)
for certain classical boundary value problems under small variations of a
domain are due to Hadamard [6], who considered regular perturbations of
a planar domain with smooth boundary. In connection with our work, it is
appropriate to mention that asymptotic approximations in [6] are not uniform
with respect to the position of x and y.

The main focus of the present text is on asymptotics of Green’s functions
and tensors for the Laplace and Lamé operators in domains with singularly
perturbed boundaries. The novel feature of these asymptotic approximations
is their uniformity with respect to the independent variables.

The book consists of three parts.

The derivation and analysis of the uniform asymptotics of Green’s kernels
in singularly perturbed domains for the Laplace operator is the main focus
of Part 1.



To give an impression of such approximations we show the following typical
example. Let G.(x,y) be Green’s function of the Dirichlet problem for the
operator —A in a two-dimensional domain (2. with a small Jordan inclusion
F. = {x:e1x € F} (see Fig. 1). We find the asymptotic approximation of
G, in the form

Xy b ¢ y 1 X—y
Gs(x7y) = G(an) +g(g7g) +g(g7oo) +g(00,g)+ %log‘ erp |
27 1 x| x >
—— X ( G(x,0) + — log — — g(—,
log(aﬁFRQ_l)((w o Lg% o)

1 y y
<(G03)+ gtog M- 4. D)) + 060,
where G and g are Green’s functions of ‘model’ interior and exterior Dirichlet
problems in ‘limit’ domains 2 and R?\ F', independent of €; 7r and Ry, are
the inner and outer conformal radii of F' and {2, respectively, as defined in
Appendix G of [27]. We emphasize that the estimate of the error term in the
above asymptotic formula is uniform with respect to x and y.

Fig. 1 A domain (2. containing a small hole F.

Furthermore, we obtain uniform asymptotics of Green’s kernels for mixed
boundary value problems in domains containing a small hole or a rigid in-
clusion. We address the Neumann condition on the hole and the Dirichlet
condition on the exterior boundary, as well as the Neumann condition on
the exterior boundary and Dirichlet condition on the defect. We also de-
rive uniform asymptotics of the Neumann function in the perforated domain.
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Then, the asymptotic approximations of Green’s kernels are constructed in
a domain with several small inclusions.

Other examples of asymptotic approximations of Green’s functions in sin-
gularly perturbed domains include a domain with the singular perturbation
of the exterior smooth boundary, a truncated cone and a thin cylindrical
body.

Part 2 is focused on the uniform asymptotic approximations of Green’s
tensors for linear elasticity in domains with small defects. We obtain uniform
asymptotics of Green’s tensor in a planar domain and a three-dimensional
body containing a small rigid inclusion. This is followed by the construction
of uniform asymptotics for Green’s tensors in domains with multiple rigid
inclusions. Here, instead of the capacitary potential used in approximations
of Green’s functions for clamped perforated domains in Part 1, we introduce
the matrix of the elastic capacity and study its properties. It will also be
shown that this matrix plays an important role in the asymptotic algorithm.

Once the uniform asymptotic approximations for Green’s tensor in a do-
main with multiple small inclusions has been obtained, we consider the
asymptotics of Green’s tensor in a planar body containing a single small
void and furthermore extend this analysis to the case when the body con-
tains several voids. Since the traction conditions are set on the boundary of
small defects, we use the dipole fields of linear elasticity in the description of
the boundary layer fields.

In Part 3, we consider the case when the perforated geometries contain
many holes or voids and introduce a novel method of meso-scale asymptotic
approximations. First, we deal with asymptotics of solutions to Dirichlet
problems for the Poisson equation —Au = f in a three-dimensional body
with many perforations. An example of the formal asymptotic representation
for the solution of such a boundary value problem is

N
u(x) ~ vy () + Y- 05 (PV(3x) — dm cap(FO) H(x,09)).  (0.1)

where

e vy is the solution of the same equation in a domain {2 without inclusions,
e PU) is the harmonic capacitary potential of the inclusion F(),

e cap(F 1)) is the harmonic capacity of F\),

e H is the regular part of Green’s function G of (2.

The coefficients C; satisfy a certain algebraic system, which includes the
information about the positions, size and shapes of inclusions.

Furthermore, the text includes meso-scale approximations of Green’s func-
tion for the Dirichlet problem in a multiply perforated body in R3:



N
GN(X7 y) = G(X7 y) - Z {h(j)(x7 y) - P(J) (y)H(Xa O(]))
j=1
—PO(x)H(OY, y) + 47 cap(FY))H(x,00))H(OV), y)
N
+H(OW, W) 17U (x Zc T (x)TY) (y )} +O(ed™2).

Here, d is another small parameter characterising the minimum distance be-
tween each inclusion,

T (y) = PO (y) — 47 cap(F)H(OW),y),

and again the entries of the matrix C = (Cij)%zl are solutions of a certain
algebraic system containing information about the inclusions.

This book is addressed to mathematicians, physicists and engineers who
are interested in asymptotic analysis and numerical computations for solu-
tions to partial differential equations. The required background includes a
basic theory of partial differential equations and elements of functional anal-
ysis.

Acknowledgements. The authors would like to thank the University of Liv-
erpool for providing excellent academic facilities throughout the duration of
the project, which has led to this book. The support of the UK Engineer-
ing and Physical Sciences Research Council via the grant EP/F005563/1 is
gratefully acknowledged.



Part 1

Green’s functions in singularly
perturbed domains






Chapter 1

Uniform asymptotic formulae for
Green’s functions for the Laplacian in
domains with small perforations

We derive here uniform asymptotic formulae for Green’s functions of the
Dirichlet problem for the operator —A in n-dimensional domains with small
holes, first for n > 2 and then for n = 2. We also show that these formulae
can be simplified under certain constraints on the independent variables.

Now, we list several notations adopted here and throughout the text of
the book. Let £2 be a domain in R?, n > 2, with compact closure 2 and
boundary 0§2. By F we denote a compact set of positive harmonic capacity
in R™; its complement is F'¢ = R™\ F. We suppose that both {2 and F' contain
the origin O as an interior point. Without loss of generality, it is assumed
that the minimum distance between O and the points of 02 is equal to 1.
Also, the maximum distance between O and the points of 0F¢ will be taken
as 1. We introduce the set F. = {x : e7'x € F'}, where ¢ is a small positive
parameter, and the open set 2. = 2\ F.. The notation B, stands for the
open ball centered at O with radius p.

Here, Green’s function for the operator —A in (2., will be denoted by
G¢. In the sequel, along with x and y, we use the scaled variables & =
e~ !'x and n = ly. By Const we always mean different positive constants
depending only on n. Finally, the notation f = O(g) is equivalent to the
inequality |f| < Const g.

1.1 Green’s function for a multi-dimensional domain
with a small hole

We assume here that n > 2. Let G and g denote Green’s functions of the
Dirichlet problem for the operator —A in the sets 2 and F¢ = R™ \ F. We
make use of the regular parts of G and g, respectively:

H(x,y) = (n—2)7 " x -y - G(x,y), (1.1)



8

and
h(gm) = (n=2)7S" 7T g —n*" — g(&m), (12)
where |S"71| denotes the (n — 1)-dimensional measure of the unit sphere
St
By P(&) we mean the equilibrium potential of F' defined as a unique so-
lution of the following Dirichlet problem in F°

A¢P(€) =0 in F°, (1.3)
P(&) =1 on JdF¢, (1.4)
P(€) =0 as [€] - oc, (1.5)

where the boundary condition (9.10) is interpreted in the sense of the Sobolev
space H'.
The following auxiliary assertion is classical.

Lemma 1.1.1 (i) The potential P satisfies the estimate

0< P(§) < min{l, |5|2*”}. (1.6)
(i) If |&| > 2, then
Cap(F) -n 1-n
P(€) - WEP < Const |&| (1.7)

Proof. (i) Inequalities (1.6) follow from the maximum principle for vari-
ational solutions of Laplace’s equation.

(44) Inequality (1.7) results from the expansion of P in spherical harmonics.
O

Lemma 1.1.2 For allm € F°¢ and for € with |€| > 2 the estimate holds:
[h(&,m) — P(n)(n —2)71|S"7H[7HE*™"| < Const [¢]' " P(n).  (1.8)

Proof. By (1.2), h satisfies the Dirichlet problem

Ach(€,m) = 0, &mer”, (1.9)
h(gm) = (n—=2)7[S" T HE —ml* ",

£€0F°and n € F°, (1.10)

h(&,n) — 0 as || — oo and n € F°. (1.11)

We fix n € F°. By the series expansion of g in spherical harmonics,

Cn)
(’I’L _ 2)|Sn—1||£|n—2

IEI"’Q(Q(ﬁ,n) - ) —0 as |§] — oo. (1.12)
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We apply Green’s formula to the functions g(€,m) and 1 — P(&) restricted
to the domain By \ F, where Br = {£ : [€] < R} is the ball of a sufficiently
large radius R. Taking into account that P(£) = 1 and ¢(&,m) = 0 when
& € 9(F°) we deduce

| Vesten) Ver©de = Pa-1- [ (1-P@) o€ mise (113
Br\F 8Bn ol¢|
and
[ Vesem) VeP@dg = [ gempeP@dse (1)
Br\F 9Bg 0l€|
Hence,

1- )~ [ . (g@,n)afglmo . P(E))afag(&n))d% (1.15)

It follows from (1.12) that

1—P(n)=— lim 0 Cn)

olel dse = C(n).
R Jop, O€] (n—2)[S"—1|[&|n2 13 (n)

Let |€] > 2. Then for n € 9F°
[h(&.m)—(n=2)" [S" T THEP T P(m)] = (n—2) 7 [S" T [g—m* T —[€]P "

< Const |n||¢]*™™ < Const €] ™. (1.16)

In the above estimate, we used the assumption of the maximum distance
between the origin and the points of dF° being equal to 1. From (1.16) and
the maximum principle for functions harmonic in 7, we deduce

h(em) — (0= 2)[5") " €l P(m)| < Const [§]'~" P(n).

for all n € F°¢ and |€] > 2. O
Our main result concerning the uniform approximation of Green’s function
G, in the multi-dimensional case is given by

Theorem 1.1.1 Green’s function G.(x,y) admits the representation
Ge(x,y) =G(xy)+e"glex,e7y) = ((n=2)[S" Y x —y|" ) ~!
+H(0, y)P(e™'x) +H(x,0)P(s"'y) — H(0,0)P(~'x) P(¢"'y)
"2 cap(F) H(x, 0/H(0,y) + 0"~ (min{|x|, [y[} +£)*™"), (1.17)
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uniformly with respect to x,y € (2.. Here, H and h are regular parts of Green’s
functions G and g, respectively (see (1.1), (1.2)), and P is the equilibrium
potential of F'.

Before presenting a proof of this theorem, we give a plausible formal ar-
gument leading to (1.17).
Let G, be represented in the form

Celey) = ((n=2)15" ) heyP - Heley) —he(xy), (L18)
where H. and h. are solutions of the Dirichlet problems
AHe(x,y) =0, xy€fl,
Holxy) = ((n-2)s" ) -y xe 00, ye .
He.(x,y) =0, x€IJFS, y€ (2.
and
Azhe(x,y) =0, Xy € {2,
he(x,y) = ((n - 2)|sn*1|)_1|x —yP, x€OFS, ye ., (1.19)
he(x,y) =0, x€002,y € (2.

By (1.18), it suffices to find asymptotic formulae for H. and he.

Function H.. Obviously, H.(x,y) — H(x,y) is harmonic in (2., and
He(x,y) — H(x,y) = 0 for x € 92. On the other hand, for x € 9F¢ the
leading part of H.(x,y) — H(x,y) is equal to the function —H(0,y). This
function can be extended onto F€, harmonically in x, as —H(0,y)P (s~ 'x),
whose leading-order part is equal to —&"~2cap(F) H(x, 0)H(0,y) for x € 812
Hence,

He(x,y) = H(x,y) ~ =H(0,y)P(c"'x)
+ " 2cap(F) H(x,0)H(0,y) for all x,y € §2.. (1.20)
Function h.. By definitions (1.2) and (1.19) of h and h.,

he(x,y) — €2 "h(e 'x,e"'y) = 0 for x € OFF.
Furthermore, by Lemma 1.1.2

hs (X7 Y) - 627”}2’(671)(7 gily)

-1
~ —((n - 2)|s"—1|) x[2"P(e"ly) for x € HS2.

The harmonic function in x € {2, with the Dirichlet data
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~(n—2)15™) " pPEy)

on 92, is —H(x,0) P(¢~ly), and it is asymptotically equal to —H (0, 0) P(¢~1y)
on OFF, which is not necessarily small. The harmonic in x extension of
H(0,0)P(s~1y) onto F¢ is given by H(0,0)P(e~ty)P(¢~1x). Since this func-
tion is small for x € 92, one may assume the asymptotic representation

he(x,y) —€* "h(e"'x,e7y) + H(x,0)P(ey)
~ H(0,0)P(s 'x)P(cy) for all x,y € .. (1.21)

Substituting (1.20) and (1.21) into (1.18), we deduce

Gelxy) ~ (=257 ) =y P MO y) — b e y)

+H(0,y)P(e ™ x) + H(x,0)P(ey) — H(0,0)P(e'x)P(cty)
—E"_2cap(F) H(x,0)H(0,y),

which is equivalent to

G:(x,y) ~G(xy)+ 62 "gleTix, e y) = ((n=2)|S" ) THx — [P
+H(0,y)P(e™'x) + H(x,0)P(e ™ y) — H(0,0)P(c~'x)P(c""y)
—&""2cap(F) H(x,0)H(0,y).

Now, we give a rigorous proof of (1.17).
Proof of Theorem 1.1.1.

The remainder r.(x,y) in (1.17) is a solution of the boundary value prob-
lem

Agre(x,y) = 0, x,y € £, (1.22)

TE(Xv y) = H(X, Y) - H(O’ Y)
—(H(x,0) = H(0,0))P(c"'y)
+e"2cap(F) H(x,0)H(0,y), x € IFS, y € 0., (1.23)

re(x,y) = € 7"h(e7 x, e y) = H(0,y)P ( 'x)
— H(x,0)P(e"y) +H(0,0)P(e'x)P(e"ly)
+e" 2cap(F) H(x,0)H(0,y), x € 02, y € 2.. (1.24)

The functions H(x,0) and H(0,y) are harmonic in 2 and are bounded by
Const on 0f2. Hence, they are bounded by Const for x € 0F¢, y € (2. and
for x € 812, y € £, respectively. The terms " 2cap(F)H(x,0)H(0,y) in
the right-hand sides of (1.23) and (1.24) are bounded by Const £"~2.
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By definition (6.85), V,H(x,y) is bounded by Const uniformly with re-
spect to y € {2 for every x € Bj;. Hence, by (1.23) and the inequalities
0< P(x) <1,

[H(x,y) = H(0,y) — (H(x,0) — H(0,0)) P(e""y)|
< Const ¢ sup |V, H(z,y)| < Const e,
zE B,

for x € OFF, y € (2.. Thus, the following estimate holds when x € JF¢ and
y € §2
|re(x,¥)| < Const € sup |V, H(z,y)| < Const ¢. (1.25)
zE B,
Next, we estimate |r.(x,y)| for x € 92 and y € (2.. By Lemma 1.1.1, the
equilibrium potential P(¢~!x) satisfies the inequalities

n—2

< P(e'x) < st —————— 1.2
0 < P(e”'x) < Const W2 (1.26)
for x € (2., and
e"2cap(F)
P(e'x) —
R R T = i
n—1
< Const (s/\x|) < Const e" !, (1.27)

for x € 0f2. Now, (1.27) and the definition of H(x,y) imply
le"2cap(F)H (x,0)H(0,y) — H(0,y)P(s 'x)| < Const e" . (1.28)
Also, we have the estimate

|52_"h(5_1x7 s_ly) — H(x, O)P(E_ly)\

P(e'y)
(= 2)[5" 1 fx/e "2

=2 (e x, e y) —

< Const |x|' " P(e'y)

n—1

< Const ————,
(ly|+e)n2

x €082, y € (), (1.29)

which follows from the definition (6.85) of H(x,y) and the estimates (6.142)
and (1.26). Combining (1.26), (1.28) and (1.29) we obtain from (1.24) that
the trace of the function x — |r.(x,y)| on 92 does not exceed

n—1

Const ———.
(Iyl+e)m=2

for y € £2.. Using this and (1.25), we deduce by the maximum principle that
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Ire (x,¥)| < Const{sP(g) + (}’f:;;Q}’

for all x,y € £2.. Taking into account (1.26), we arrive at

€n71

r-(X,y)| < Const -
Ire(x )l Gain{x, [y} + o) 2

(1.30)

The proof is complete. O

1.2 Green’s function for the Dirichlet problem in a
planar domain with a small hole

In this section, we find an asymptotic approximation of G. in the two-
dimensional case. We shall see that this approximation has new features in
comparison with that in Theorem 1.1.1.

The notations (2., {2, F, F, introduced in Introduction, will be used here.
As before, we assume that the minimum distance from the origin to 0f2 and
the maximum distance between the origin and the points of JF¢ are equal
to 1.

Green’s function G(x,y) for the unperturbed domain (2 has the form

G(x,y) = (2m) og [x —y|™ — H(x,y), (1.31)

where H is its regular part satisfying
AH(x,y) =0, x,y € {2, (1.32)
H(x,y) = (2m) tlog|x —y|™, x€an, yecn. (1.33)

The scaled coordinates £ = e 'x and 7 = e~ 'y will be used as in the

multi-dimensional case. Similar to Section 5.3, g(&¢, 1) and h(&€,n) are Green’s
function and its regular part in F°:

Aeg(§,m) +0(6—m) =0, §&neFe, (1.34)
g(&m) =0, £€OF, neF°, (1.35)
g(&,m) is bounded as €] — 0o and i € F°, (1.36)
and
h(&m) = (2r) Mlog|€ —n|~" —g(&m). (1.37)

We introduce a function ¢ by
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((n) = |§1\im 9(&m), (1.38)
and the constant
(oo = mlligloo{C(n) — (2m) "' log|nl}. (1.39)

Lemma 1.2.1 Let |€| > 2. Then the regular part h(€,m) of Green’s function
g in F°¢ admits the asymptotic representation

h(&,m) = —(2m) " log €] — ¢(nm) + O(€[ ™), (1.40)

which is uniform with respect to n € F°.

Proof: Following the inversion transformation, we use the variables:

g =1&7%, ' =n"n,
and the identity
& —nl " &lnl =& —n'| 7"

Then, the boundary values of h(€,n), as € € F°,n € F¢, can be expressed
in the form

h(&m) =9(& n') — (2r) " log|€[Inl, (1.41)

where $(¢',n'), & € 9(F¢), is the boundary value of the regular part of
Green’s function in the bounded transformed set (£¢)’. Namely, the function
9(¢',m’) is defined as a solution of the Dirichlet problem

AeH(E ') =0, &.n' e (F, (1.42)
9(&, ') = (2n) toglg' —n'|7h, €& € a(F°). (1.43)
It follows from (1.41) that the harmonic extension of h(€,7) is
h(&m) = 9(&",n') — (2m) " log|€|ln|, &mn e F°. (1.44)
Since (€', 1) is smooth in (F¢) x (F¢)', we deduce
h(&,m) = H(0,7") — (2m) " log [€]|n| + O(I€']), (1.45)

for [¢'| < 1/2 and for all n’ € (F¢)’. Also, by (1.44) and the definition of
h(&,m),

9(& ') =—g(&mn) + (2m) " log [¢||n| — (2m) ' log |€ — n). (1.46)

Then, applying (1.38) and taking the limit in (1.46), as [¢'| — 0, we arrive at
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|&|—o0

H(0,1") = =C(n) + (2m) ™ Jimlog(J¢ - n| €] + (2m) " log In|
= (2m)~" log|n| = ¢(n).
Further substitution of $(0,n’) into (1.45) leads to

h(&,m) = —(2m) " log €] — ((n) + O(I€]7),

for |€] > 2 and for all n € F°. The proof is complete .
1.2.1 Asymptotic approxrimation of the equilibrium

potential

The equilibrium potential P-(x) is introduced as a solution of the following
Dirichlet problem in (2.

AP.(x) =0, x€ {2, (1.47)
P.(x) =0, x €091, (1.48)
P.(x) =1, x € JF¢. (1.49)

Lemma 1.2.2 The asymptotic approzimation of P.(x) is given by the for-
mula

7G(Xﬂ0) + C(?) B %IOg ‘);7' - Coo
ilog€+ H(0,0) — (o

where (s 1s defined by (1.39), and p. is the remainder term such that

P.(x) = + pe(x), (1.50)

Ip(x)| < Const e(loge) ™"

uniformly with respect to x € (2.

Proof. Direct substitution of (6.179) into (6.271)—(6.178) yields the Dirich-
let problem for the remainder term p.

Ap.(x) = 0, x € f2, (1.51)

g = S0 o x) o
pelx) = 5=loge + H(0,0) — (oo

H(x,0) + 2 loge — (s
po(x) = 1— 1(X ) Fagloge =60 L ppe, (1.53)
ﬁlogcf"‘H(0,0)—Coo

. x€dn,  (152)

Using (1.39) and the expansion of ((£) in spherical harmonics, we deduce

C(e™x) — (2m) " log(e ™ [x]) = G = O(e),
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as |x| € 992, and hence the right-hand side in (6.201) is O(e(loge)~1). Since
H(x,0) is smooth in (2, we have

H(x,0) — H(0,0) = O(e),

as x € OFF, and therefore the right-hand side in (6.202) is also O(e(loge)~1).
Applying the maximum principle, we arrive at the result of Lemma. [J

Remark. For the case when {2 is a Jordan domain and F' is the closure
of a Jordan domain, we can adopt the notions of [27]: the inner conformal
radius rp of F, with respect to O, and the outer conformal radius Ry, of (2,
with respect to O, are defined as

rr = exp(—271(w), Ro = exp(—27H(0,0)),

respectively. In this case, the equilibrium potential P.(x) can be represented
in the form

~G(x,0) + ((¥) — = log 2L

& e

P.(x) = + pe(x).

1 ETR
27 log Ro

1.2.2 Uniform asymptotic approximation

Theorem 1.2.1 Green’s function G, for the operator —A in 2, C R? admits
the representation

Ge(x,y) = G(x,y) +g(e'x,e7"y) + (2m) "' log(e ™' x — y)

((2m)1oge + ¢(%) = Coo + H(x,0)) (2m) " loge + ¢(¥) = oo + H(0,y))

" (2m) Tloge + H(0,0) — (o

—((e7x) — C(e7ty) + (oo + O(e), (1.54)
which is uniform with respect to (x,y) € 2. x (2.

Proof. Let

Ge(x,y) = (2m) M log[x — y| ™! — Ho(x,y) — he(x,y), (1.55)

where H. and h. are defined as solutions of the Dirichlet problems

AxHE(X>Y) =0, x,y€ 957 (156)
Ho(x,y) = (27) logx —y| !, x €092, y € 0., (1.57)
H.(x,y)=0, x€0F., y € (X, (1.58)

and
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Azhe(x,y) =0, x,y € 2, (1.59)
he(x,y) =0, x€ 082, y € (2, (1.60)
he(x,y) = (2n) og|x —y|™!, x€IF., y € .. (1.61)

The function H. is represented in the form
H.(x,y) = C(y,loge)G(x,0) + H(x,y) + Re(x,y, loge), (1.62)

where C(y,loge) is to be determined, G and H are defined by (2.4)—(6.264),
and the third term R, satisfies the boundary value problem

A R (x,y,loge) =0, x, y€ (2, (1.63)
R.(x,y,loge) =0, x€ 02, y € (2, (1.64)
RE(va’log E) = _CG(X7O) - H(X’ Y)a x € OF;, ye 12, (165)

and it is approximated by a function R(¢~!x,y,loge) defined in scaled coor-
dinates in such a way that

A¢R(€,y,loge) = 0, €€ F°, (1.66)
R(&,y,loge) = C(2m) ' (log €| + loge)

+CH(0,0) — H(0,y), &€ OF°, (1.67)

R(&,y,loge) — 0 as |€] — oo, (1.68)

where y € (2. The solution of the above problem has the form

R(&,y,loge) = —C{(2m) " log|€|™ +((§)}
+C{(27) ' loge + H(0,0)} — H(0,y),  (1.69)

with ¢ defined by (1.38).
The condition (6.213) is satisfied provided

H(0
C(y,loge) = (1,y) . (1.70)
H(0,0) + 5-loge — (o
Combining (6.194), (6.195), and (1.62), we deduce
H.(oy) = ~HOYP() + Hooy) + Hulxy),  (L7)
where H, is the remainder term, such that
A Ho(x,y) =0, x,y €, (1.72)
H.(x,y) =0, x€dR, ye ., (1.73)

H.(x,y)=H(0,y) - H(x,y), x€dF., y € §2, (1.74)



18

where the modulus of the right-hand side in (1.74) is estimated by Const ¢,
uniformly with respect to x € 9F¢ and y € (2.. The maximum principle leads
to the estimate |ﬁ(x, v)| < Const ¢, which is uniform for x,y € (2.

The approzimation of h. (see (6.205)—(6.207)) also involves the equilib-
rium potential P. from Section 1.2.1. The harmonic function h. satisfies the
homogeneous Dirichlet condition on 92, and the boundary condition on 0Ff
is rewritten as

he(x,y) = —(27) tlog(e 'x —y|) — (2m) " tloge, x € OFS,y € £2..
Hence h.(x,y) is sought in the form
he(x,y) = h(= "%, y) — (2m) g + BV (xy),  (1.75)
where the harmonic function BQ) vanishes when x € 0F¢, y € (2., and

) (x,y) = (27) " tloge — h(e 'x,e7ly), x €N,y € .. (1.76)

€

Representing the right-hand side in (1.76) according to Lemma 1.2.1, we
obtain R
WY (x,y) = (2m) M log x| + (7 'y) + O(e),

uniformly for x € 912,y € (2.. Using the equilibrium potential P. and the
definition (6.85) of H(x,y), we write A as

Bgl)(& y) = _H(Xv 0) + C(E_1Y)<1 - PE(X)) + BgZ) (X’ Y)v (177)

where iL?) is a harmonic function, which is O(e) for all x € 902,y € (2, and

satisfies ~
h2 (x,y) = H(x,0) = H(0,0) + O(e),

for all x € OF¢,y € (2. Hence,
h? (x,y) = H(0,0)P.(x) + O(e), (1.78)

uniformly with respect to x,y € (2.
Combining (1.75), (6.3.1) and (6.4.1), we deduce

he(x,y) = h(="'x,2y) — (27) " loge — H(x,0)
+C(e7y)(1 = Po(x)) + H(0,0)P-(x) + O(e),  (1.79)
uniformly with respect to x,y € (2.

Furthermore, it follows from (1.55), (1.71) and (1.79) that Green’s function
G- admits the representation
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G(x,y)= (2m) 'loglx—y|™' — H(x,y) — h(e 'x,e7y)
+(2m) " loge — ¢(n) + H(x,0)
—P.(x)(H(0,0) — H(0,y) — ¢(e'y)) + O(e),  (1.80)

which is uniform with respect to x,y € {2..
By Lemma 1.2.2, (1.80) takes the form

Ge(x,y) =(2m) "log|x —y|™' — H(x,y) — h(e 'x,e"'y)
H(0,0) — H(x,0) — ¢(¢'x))(H(0,0) = H(0,y) — ¢(ey))
= loge + H(0,0) — (o
+ (27) tloge + H(x,0) + H(0,y) — H(0,0) + O(¢). (1.81)

+

Also with the use of Lemma 1.2.2, for all x,y € {2, the above formula can
be written as

Ge(x,y) = (2m) Mloglx —y|™' = H(x,y) — h(e"'x,e7y)
+((27) M oge + H(0,0) — Goo)(1 — P(x))(1 — Pa(y))
+(27)tloge + H(x,0) + H(0,y) — H(0,0) + O(e)
= (2m) Mloglx —y|' — H(x,y) — h(e"'x,e7ly)
((2m) oge + H(0,0) — Coo) Po(x) Po(y)
—((e7'%) = ¢(e7Y) + G0 + O(e), (1.82)

which is equivalent to (6.203). The proof is complete. [J

1.3 Corollaries

The asymptotic formulae of sections 2 and 3 can be simplified under con-
straints on positions of the points x,y within (2.

Corollary 1.3.1 (a) Let x and 'y be points of 2. C R™, n > 2, such that
min{|x|, |y|} > 2e. (1.83)
Then

G.(x,y) = G(x,y) —e" 2cap(F) G(x,0)G(0,y)
gn—t
+O((IXHyD"—?min{|x|,|y|})- (1.84)

(b) If max{|x|,|y|} < 1/2, then

-1

Ge(x,y) = "g(e " 'x,e7ly)
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—H(0,0)(P(e™'x) = 1)(P(e™'y) — 1) + O(max{[x|, [y}). (1.85)
Both (1.84) and (1.85) are uniform with respect to € and (x,y) € 2. X (2.
Proof.
(a) The formula (1.17) is equivalent to
G. gx y) =G(x,y) —62 "h(e 'x, e y) (1.86)
+H(0,y)P(e™ %) + H(x,0)P(e™"y) — H(0,0)P(s~'x) P(e""y)
n=20q X er”!
" Peapl) M OH09) + O G sy )

By Lemmas 1.1.1 and 1.1.2

n—2 F) 5"_1
Pe™'x) = < cap( . 1.
(e7°x) (n — 2)[Sn—1||x|n~2 +O(|x|n71) (1.87)
and
B B B P(e_ly) an—l
2-n 1 1,y — 1
ety = gt * O =) (8)

_ e 2cap(F) gn1
~ ((n=2)|5m =12 x| 2[y[n—2 - O<(|X||y\)’“2 min{|x|, |Y|})'

Direct substitution of (1.88) and (1.87) into (1.86) leads to

n2cap(F
G:(x,y) = G(xy) - (n— 2)2|€S”‘1QIT?(<I")‘2|.‘>’I"‘2
n*2(ja H(07y) H(X’O)
+e P(F)((n_2)|5n—1||x‘n—2 (n—2)|S"1||y|"—2
Enfl
H(x,o)H(my)) + 0((|X\|y\)n—2 min{]x|, Iyl})

= Glxy) — " 2eap(F)((n— )7} xP " — H(x,0))

< (=27 sy - HO.y))

n—1

£
()

which is equivalent to (1.84).
(b) Since H(x,y) is smooth in the vicinity of (O, O) formula (1.17) can
be presented in the form

Ge(x,y) = & "gle 'x,e7y) — H(0,0)
+(H (0, )+0(|Y|))P( 'x) + (H(0,0) + O(x])) P(e"'y)
—H(0,0)P(e"'x)P(c"y) + O(max{|x|, [y[}),
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which is equivalent to (1.85). The proof is complete. O
Asymptotic formulae, similar to (1.84), are also presented in [28].
Next, we give an analogue of Corollary 1.3.1 for the planar case.

Corollary 1.3.2 (a) Let x and y be points of 2. C R? subject to (1.83).
Then

G(x,0)G(0,y) N ( 5

G (x, =G(x,y) + _
() = Gyt T H(0.0) — e O\ (v}

). (1.89)

(b) If max{|x|, ly|} < 1/2, then

Ge(x,y) = gl 'x,e71y)
C(e'x)¢(ey)
%logerH(0,0) — (oo

+ O(max{|x|, |y|}), (1.90)
Both (1.89) and (1.90) are uniform with respect to € and (X,y) € 2. X (2.
Proof. (a) Formula (6.203) can be written as

Ge(x,y) = (2m) 'log |x —y| ™' — H(x,y) — h(&,n)
(G(x,0) — ¢(&) + 5= 10g [€] + (o) (G(0,y) — ¢(n) + 5= log |n| + ()

* 5= loge + H(0,0) — (o
—¢(&) = (M) + (oo + O(e). (1.91)
It follows from Lemma 1.2.1 and definition (1.38) that
h(&,m) = —(2m) " log €] — ¢(n) + O(e/|x]), (1.92)
and
¢(€) = (2m) "' log €] + oo + O(e/[x]). (1.93)

Direct substitution of (1.92) and (1.93) into (1.91) yields

Ge(x,y) = (2m) Mlog|x —y|™' — H(x,y)
+(—G(X7 0) + O(e/|x]))(=G(0,y) + O(¢/lyl))
+loge + H(0,0) — (oo

+ O(e)1.94)

and hence we arrive at (1.89).
(b) When max{|x|, |y|} < 1/2, (6.203) is presented in the form:

GE(Xay) = g(Eilxaeily) - H(va)

(H(0,0) — H(x,0) — ¢(e~'x))(H(0,0) — H(0,y) — ¢(c"'y))

+
5=loge + H(0,0) — (o

+H(x,0)+ H(0,y) — H(0,0) + O(e)
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(compare with (1.82)). Since H(x,y) is smooth in a vicinity of (O, O), we
obtain

IS (=¢e™%) + O(Ix])(=¢(e"'y) + O(ly])
Gs(xay) - g(E 1X15 1y) + ilogf‘f' H(0,0) _ Coo
+O(max{[x], |y[})

= gle7'x,e7ly)

C(e7"x)¢(e™y) + O(Jyllog([x|/€)) + O (x| log(ly|/¢))
Lloge + H(0,0) — (oo
+O0(max{|x/, [y[}),

+

which implies (1.90). O



Chapter 2

Mixed and Neumann boundary
conditions for domains with small
holes and inclusions. Uniform
asymptotics of Green’s kernels.

In this chapter, we derive and justify asymptotic approximations of Green’s
kernels for singularly perturbed domains whose boundary, or some part of it,
supports the Neumann boundary condition. We also derive simpler asymp-
totic formulae, which become efficient when certain constraints are imposed
on the independent variables.

Sections 2.1 and 2.2 deal with the Dirichlet-Neumann problems in two-
dimensional domains with small holes, inclusions or cracks. Section 2.3 gives
the uniform approximation of Green’s function for the Neumann problem in
the domain of the same type. Finally, in Section 2.4 we formulate similar
asymptotic approximations of Green’s kernels in three-dimensional domains
with small holes or small inclusions.

2.1 Mixed boundary value problem in a planar domain
with a small hole or a crack

Let {2 be a bounded domain in R?, which contains the origin O, and let F be a
compact set in R?, O € F. We suppose that the boundary 942 is smooth. This
constraint is not essential and can be considerably weakened. We assume,
without loss of generality, that diam F' = 1/2, and that dist(O, 9f2) = 1. We
also introduce the set F. = {x : e7'x € F}, with ¢ being a small positive
parameter. The boundary OF is required to be piecewise smooth, with the
angle openings from the side of R? \ F belonging to (0,27]. In the case of a
crack, OF and OF; are treated as two-sided. We assume that 2, = 2\ F; is
connected, and in the sequel we refer to it as a domain with a small hole (or
possibly a small crack).

Let G,gN) denote Green’s function of the operator —A, with the Neumann
data on JF; and the Dirichlet data on 9f2. In other words, GgN) is a solution
of the problem

23
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A,CM(x,y)+6(x—y) =0, x,y€ 2, (2.1)
GM(x,y) =0, x€02, y€ 0,
(N)
85; (x,y) =0, x€0F;, y € (2. (2.3)

Here and elsewhere the Neumann condition is understood in the variational
sense.

In this section, we construct an asymptotic approximation of GgN)(x7 Y)s
uniform with respect to x and y in {2..

2.1.1 Special solutions of model problems

While constructing the asymptotic approximation of GéN), we use the vari-
ational solutions G(x,y), D(e71x),((¢7'x) and N(s71x,e71y) of certain
model problems in the limit domains 2 and R? \ F. It is standard that all
solutions, introduced in this subsection, exist and are unique. We describe
these solutions.

1. Let G be Green’s function for the Dirichlet problem in (2:
G(x,y) = (2m) og[x —y[™! — H(x,y), (2.4)

where H is the regular part of G, i.e. a unique solution of the Dirichlet

problem
AH(x,y) =0, x,y € 02, (2.5)

H(x,y)=(2m) tlog|x —y|™", x€an, yen. (2.6)

2. We introduce the scaled coordinates & = ¢ 'x and n = ¢ 'y. The

notation ( is used for a unique special solution of the Dirichlet problem:

AC(€) =0 in R*\F, (2.7)
C(€) =0 for &€ OF, (2.8)
(&) = (2m) " og|€] + Coo + O(E] 1), as [€] — o0, (2.9)

where (. is constant.
Also, it can be shown that ( is the limit of Green’s function G of the
exterior Dirichlet problem in R? \ F

C(n) = lim G(&n), (2.10)

|§]—o0

where
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AG(Em) +6(E—m) =0, EneER\F, (2.11)
G(&,m) =0, £€OF, neR2\F, (2.12)
G(&,m) is bounded as |§| — oo and n € R?\ F. (2.13)

Representation (2.10) follows from Green’s formula applied to ¢ and G.
Here and elsewhere Bp = {X € R?: |X| < R}. We derive

((n) = — lim ((§)AcG(&,m)dE

R—o0 Br\F
9¢(&)

= i b 17
Jim en (G(&m) Jie]

2G(&,m)
€|

= (2m) ! Rlim G(&, )€l dSe = G(oo,m), (2.14)
—JI§|=R

G )dse

which yields (2.10).
3. Let N'(&,7m) be the Neumann function in R? \ F defined by
N(&mn) = (2m) ' log|€ —n|™" — hn (&, m), (2.15)

where hy is the regular part of N subject to

Achn(€m) =0, &meR*\F,  (2.16)
1 0
——(1 —nl™! F R?\ F 2.1
27r8n§(0g|£ n™), £€OF, neR\F,  (2.17)
hn(€m) —0, as[é| — oo, neR*\F.  (2.18)

Ohn

Tng(g’n) =

We note that the Neumann function A" used here, is symmetric. This
follows from Green’s formula applied to U(X) := N (X, &) and V(X) :=
N (x,m), where & and i are arbitrary fixed points in R? \ F. We have

Um) - V(e) = Jim | y {V(X)AZU(X) - U(X)AXV(X)}dX

0 0
- U(X)—aIXI

— — lim (47r2R)_1/|X|_R{(log|X—n|_1+O(R_1))(W—FO(R_?))

= lim (V(X)

7o Jxier ax V%) V(X)}dSx

R—oo

X-(X-n)

~(log X — ¢ + O(R™) (S5 =

+ O(R*)) }de —0.

Thus,
0=U(m) - V() =Nn&) - N(En).
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4. The vector of dipole fields D(&) = (D1(£),D2(£))T is a solution of the

exterior Neumann problem

AD(¢) = 0 in R*\ F, (2.19)
%(E) =n; for £€0F, j=1,2, (2.20)
Di(&) — 0 as €] = o0, j=1,2, (2.21)

were nq,ny are components of the unit normal on JF.

2.1.2 The dipole matrix P

The dipole fields Dj,j = 1,2, defined in (2.19)-(2.21), allow for the asymp-
totic representation (see, for example, [27])

2
D) = 3= > 5k +0(¢l ), (222)

k=1

where |€] > 2, and P = (ij)?,kzl is the dipole matrix.
The symmetry of P can be verified as follows. Let Br be a disk of suffi-

ciently large radius R, centered at the origin. We apply Green’s formula to
& —D;(€) and D (&) in Br \ F, and deduce

e 9Pk(E) AP
[ {62028 — puie) P - mye s
- [ &-Denras, -
OF n

where 9/0n is the normal derivative in the direction of the interior normal
with respect to F. In the limit, as R — oo, the integral in the left-hand side
of (2.23) tends to —Py;, whereas the integral in the right-hand side becomes

Ok 9Dy ()
[ o %tas+ [ o0 as
= §;pmeas(F) + VD;(§) - VDi(§) dE,

R2\F

where meas(F') stands for the two-dimensional Lebesgue measure of the set
F'. Thus, the representation for components of the dipole matrix takes the
form

Pyj = —0jpmeas(F) — /Rz\F VD; (&) - VDk(§) d§, (2.24)
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which implies that the dipole matriz P for the hole F is symmetric and
negative definite.

2.1.3 Pointwise estimate of a solution to the exterior
Neumann problem

In this subsection, we make use of the function spaces Ly(R? \ F), W, (R \

F) and Wpfl/ P(OF). The first of them is the space of distributions whose
gradients belong to Ly(R? \ F'). The second one is the usual Sobolev’s space
consisting of functions in L,(R? \ F) with distributional first derivatives in
L,(R?\ F). Finally, W, “/?(0F) stands for the dual of the space of traces on
OF of functions in Wpl, (RZ\ F), p+p =pp'.

The following pointwise estimate will be used repeatedly in the sequel.

Lemma 2.1.1 Let U € Li(R?\ F) be a solution of the exterior Neumann
problem

AU(E) =0, £E€R?*\F, (2.25)
T =vle). £ (2.20)
U — 0 as |€] — oo, (2.27)

where 8/0n is the normal derivative on OF, outward with respect to R? \ F,
and ¢ € Lo (OF),

0(&)dse = 0. (2.28)
OF
We also assume that o
_— = 2.2

| U@ 5 ©dsc =0, (229)

where ¢ is the same as in (2.10). Then
sup {([§|+ DIV} < CllelLaiory, (2.30)

EER\F

where C' is a constant depending on OF.

Proof. Let B, denote the disk of radius 7 centered at O and let W3 (B, \ F)
be the space of restrictions of functions in W3 (R*\ F) to B, \ F. By the W
local coercivity result [26], U € W) (B \ F) for any p € (1,4), and

10l sam < C(I6ly-srmom + Wllamam).  (231)

The first term in the right-hand side of (2.31) satisfies
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Il -1 0y < Clellzcom- (2.32)

It follows from (2.25) and (2.26) that

IV sy = [ V©p€)dS < Wliaom Il uor. (239
Note that by Sobolev’s trace theorem

10Ul or) < CllUllwz(B\F) (2.34)

for any ¢ < oo (see, for instance, Theorem 1.4.5 in [12]). It follows from our
assumptions on F' that

28 < oo, (2:33)

where 0(€) is the distance from &€ € OF to the nearest angle vertex on OF.
Hence ac(

[ v©%Eas| < i, en (236)
oF

for any ¢ > 2. This inequality, together with (2.34), shows that the left-hand
side in (2.36) is a semi-norm, continuous in W21 (B2 \ F). Besides,

¢ 1

Now, Sobolev’s equivalent normalizations theorem (see Section 1.1.15 in [12])
implies that the norm in W3 (Bs \ F) is equivalent to the norm

v
VUl +| [ V@5 ©as]

Combining this fact with (2.34) and using (2.29), we arrive at
Ul Ly0r) < ClIVUI Ly@2\F)- (2.37)
Then, (2.33) and (2.37) yield
VUl o) + 1UllLoor) < Cllellaor)- (2.38)
By (2.34), the norm in W3 (B3 \ F) is equivalent to the norm

VU L,Bs\F) + 1U| Lo (07)-

Hence
10l amar < CIVUlaeam + 10 acom ) (2.39)
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which, together with (2.38), gives
10Ul La(Bs\F) < CllollLo(or)- (2.40)
Substituting estimates (2.32) and (2.40) into (2.31), we arrive at
1Ullwz\F) < CliollL.or)- (2.41)

Recalling that W (B \ F) is embedded into C(B; \ F) for p > 2, by another
Sobolev’s theorem (see Theorem 1.4.5 in [12]), we obtain

sup |U| < Cll¢llL.(or)- (2.42)
Bo\F

Since U(€) — 0 as [€] — oo ( see (2.28) and (2.29)), we have the Poisson’s
formula

1 o U(l,@l) ! i0
which, together with (2.42), implies for || > 1 that
(1 + [ENIT©)] < € max [U(€)] < Cligl L. or)- (2.44)
£€0B,

Applying (2.42) once more, we complete the proof. O

2.1.4 Asymptotic properties of the regular part of the
Neumann function in R? \ F

Lemma 2.1.1 proved in the previous section enables one to describe the
asymptotic behaviour of the function hy defined in (6.221)—(6.224).
Lemma 2.1.2 The solution hy(€,m) of problem (6.221)—(6.224) satisfies the

estimate
D(n) -¢

W S Const (1 + ‘77‘)71|£|72 (245)

hN(fﬂ?) -

as |€] > 2 and n € R?\ F.

Proof. The leading-order approximation of the harmonic function hy (&, n),
as |€] — oo, is sought in the form

(2m) 7 HE[ TP (Cr& + Cabo).

Applying Green’s formula in Br \ F to hy(€,m) and D;(€) — &;, and taking
the limit, as R — oo, we obtain
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d(D;(§) — &)

lim h ,
pm ‘x‘:R{ ~(&m)

Gl s

~ [ D9 - )™ S Mase, (2.46)
OF n

where 9/0n is the normal derivative in the direction of the inward normal
with respect to F'. As R — oo, the the left-hand side of (2.46) becomes

. (C1&1 + Caa)E;
L R Sy - L2

1 2m
=—— lim (C1cos0 + Cysin@)R™1¢;d0 = —C;. (2.47)
T R—+o0 0
Taking into account the definition of the dipole fields D; (see (2.19)—(2.21))
and the definition of the regular part hy of Neumann’s function (see (6.221)—
(6.224)) in R?\ F, we can reduce the integral Z in the right-hand side of (2.46)

to the form ) 5
7= 5-{ [ (o€ (sl =)
~loglé — [ 5Dy (6))ase
+/8F (nj log|€ —n|™" - é“jal(log € — nl’l))dss} (2.48)

The second integral in (2.48) equals zero. Applying Green’s formula to the
first integral in (2.48) we obtain

1 0
2 /. (Pa@g - (togle —nl)
0
—log|g —nl " 5D (€))Se = ~D; (). (2.49)

Hence, it follows from (2.47)—(2.49) that
Cj=D;(n), j=1,2. (2.50)
We note that the function

v (6,m) + D) Vel logle] ™) (251)

is harmonic in R? \ F, both in & and n, and it vanishes at infinity. Using
(2.20) and (6.222), we obtain
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5 (&) + D) el omlel )

0 1 _
—ainnhN(&n)'i‘n'vﬁ(%lOgEl )

= —n- V{5 loa(lglle —n )}

- g (- oe ) e

as n € OF and |€] > 2. We also note that

0 1
h (€, V(1 *1>dS —0.
| o (htm) + D) - Ve ol ) s,
Consider the problem (2.25)—(2.27) in the formulation of Lemma 2.1.1, where
the variable & is replaced by 7, the differentiation is taken with respect to
components of 1, and the function U is changed for (2.51), with fixed &. In
this case, the right-hand side ¢ in (2.26) is replaced by

0 1 -1
G N E7) - V(5 Tog €I

Then using (2.52) and applying Lemma 2.1.1, we obtain (6.228). O
Using the notion of the dipole matrix, from (5.6) and Lemma 2.1.2 we
derive the following asymptotic representation of hy.

Corollary 2.1.1 Let [£] > 2, and |n| > 2. Then

h jkfj”]k |§|+‘7l‘ . .
-5 Z e+ OUerme) (2:53)

2.1.5 Mazximum modulus estimate for solutions to the
mixed problem in (2., with the Neumann data on
OF,

In the sequel, when estimating the remainder term in the asymptotic repre-
sentation of G¢(x,y), we use the following assertion.

Lemma 2.1.3 Let u be a function in C(£2.) such that Vu is square integrable
in a neighbourhood of OF.. Also, let u be a solution of the mized boundary
value problem
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Au(x) =0, x€ 2,
u(x) = ¢lx), x €00,
ou

8—n(x) = 1.(x), x € IF;,

where ¢ € C(012), . € Loo(0F;), and

Ye(x)ds = 0.
OF,

(2.57)

Then there exists a positive constant C, independent of € and such that

lulc@.) < lellcoa) + eCllvellL. @r.)-
Proof. (a) We introduce the inverse operator
N:Y—o
for the boundary value problem

Av(€) =0, £ €R?\ F,

ov

Go(€) = v(e), €€ oF.

v(€) — 0, as €] — oo,
where ¢ € Lo (OF), and
¥(€)dse = 0.
OF

1

In the scaled coordinates & = ¢~ "x, the operator 9. is defined by

(mswe)(x) = (m¢)(€)a

where 9. (x) = e tp(e71x).
(b) We look for the solution u of (2.54)—(2.57) in the form

u=V(x)+ W(x),
where V' = M1, and the function W satisfies the problem
AW (x) =0, x € (2,

ow
on
W(x) = ¢p(x) — V(x), x€ 9.

(x) =0, xe€dF.,

By Lemma 2.1.1, we have

(2.58)

(2.59)

(2.60)
(2.61)
(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)
(2.68)
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max |V = max | Neve] < eCllve 1. om. (2.69)

= =

Hence, as follows from (2.68) and (2.69)

Hal%X|W\ < lelleweao) +eCllvellL . or.ys (2.70)

and by the weak maximum principle for variational solutions (see, for exam-
ple, [3], pages 215-216) of (2.66)—(2.68) we obtain

I%aX|W\ < lelleao) + ClivellL. or.)- (2.71)

The result follows from (2.69), (2.71) combined with (2.65). O

2.1.6 Approximation of Green’s function GgN)

The required approximation of GQN) is given in the next Theorem.

Theorem 2.1.1 Green’s function GgN)(x, y) for the boundary value problem
(6.218)—(6.220), with the Neumann data on OF. and the Dirichlet data on 012,
has the asymptotic representation

G (x,y) = G(x,y) + N(e7"'x,e7y) + (2m) " log(e ™ x — )

+eD(e'x) - V. H(0,y) +eD(e'y) - V, H(x,0) + 7:(x,y), (2.72)

where
|7 (x,y)| < Const 2 (2.73)

uniformly with respect to x,y € 2.. Here, G, N', D and H are the same as
in Section 2.1.1.

Proof. We begin with the formal argument leading to (6.87). First, we
note that

N 'x,e7ly) + (27) Mlog(e Hx — y|) = —hn(e7'x,e7ty),
and then represent C{(g]\])(x7 y) in the form
G (x,y) = G(x,y) = hw(e %67 hy) + pe(x,y). (2.74)

By the direct substitution of (2.74) into (6.218)—(6.220) and using Lemma
2.1.2, we deduce that p.(x,y) satisfies the boundary value problem
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Appe(x,y) =0, x,y € £2,

pe(x,y) = hn(e7'x,e7y)

- iD(X) X1 0(e?), forx €9,y € 0., (2.75)

or \e/) |x[?
and
Ope 0
8TLI (Xa y) - aan(Xa y)

=n-V.H(0,y)+O(e), forx € dF.,y € 2.. (2.76)

Hence, by (2.5), (6.264) and (2.19)—(2.21), the leading-order approximation
of pe is

eD(e7'x) -V, H(0,y) +eD(cy) - V,H(x,0),
which, together with (2.74), leads to (6.87).

Now, we prove the remainder estimate (2.73). The direct substitution of
(6.87) into (6.218)—(6.220) yields the boundary value problem for r.:

Apre(x,y) = 0, for x,y € (2, (2.77)
r-(x,y) = hn(e 'x,e7y)
—eD(e'x) - V,H(0,y) — eD(ey) - V,H(x,0), (2.78)
for x € 912, y € (2.,

Or-y) v Hxy) - ai (D(slx> Vo H Uw))

ong

T (D(sly) -V, H(x, 0)), (2.79)

for x € F;, y € {2..

We note that every term in the right-hand side of (6.232) has zero average

on JF,, and hence
/ Ir-(ey) 45 (2.80)
OF. ony

It follows from Lemma 2.1.2 that
|hn (e 'x,e7y) —eD(ey) - V, H(x,0)| < Const &2, (2.81)

uniformly with respect to x € 92 and y € (2.. Since |D(£)| < Const [€]71,
as |€] — oo, and V,H(0,y) is smooth on (2., we deduce

leD(e'x) - V,H(0,y)| < Const &2 (2.82)

uniformly with respect to x € 92 and y € (2. By (6.233) and (6.234), the
modulus of the right-hand side in (6.231) is bounded by Const 2, uniformly
inx €9 andy € (2.



35

It also follows from the definition of the dipole fields D;(£),j = 1,2, and
the smoothness of the function H(x,y) for all x € 9F., y € {2, that

’n-VIH(x,y)—s 9

- (D(e_lx) : va(o,y))‘ < Comste,  (2.83)

and

0 (’D(E_ly) - VyH(x, O))‘ < Const ¢, (2.84)
n.’t

‘Ea
uniformly with respect to x € OF., y € {2.. These estimates imply that the
modulus of the right-hand side in (6.232) is bounded by Const €, uniformly
inx € dF, andy € 2.

Using the estimates on 0F. and 9{2, just obtained, together with the or-
thogonality condition (2.80), we deduce that the right-hand sides of problem
(2.77)—(6.232) satisfy the conditions of Lemma 2.1.3. Applying Lemma 2.1.3,
we obtain that ||r.|[,_(o.) is dominated by Const €2, which completes the

proof. OJ

2.1.7 Simpler asymptotic formulae for Green’s
function GgN)

Here we formulate two corollaries of Theorem 2.1.1. They contain simpler
asymptotic formulae, which are efficient for the cases when both x and y are
distant from F. or both x and y are sufficiently close to F-.

Corollary 2.1.2 Let min{|x|, |[y|} > 2¢. Then the asymptotic formula holds

e2 xT vy

GgN)(X,Y) = G(X,Y) - RW W

52 XT yT
+ %{vaxﬂ(o,y) + W’PVyH(x,O)}
+20(x[7* + ly[7?), (2.85)

where H is the regular part of Green’s function G in {2, and P is the dipole
matrix for F, as defined in (5.6).

Proof. Using (5.21) for the regular part hy of the Neumann function in
R?\ F, together with the asymptotic representation (5.6) of the dipole fields
D; in R?\ F, we obtain
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+ ly|
GV (x,y) = G(x,y) Pkt (83L| )
47T2 Z x| |Y\2 1x|?[y]?

2

1 o Tk oH yr OH
*5m 2 AP, 09+ gy, 040)

J,k=1

+ 20(x|"2 + |y|_2)} L O(2). (2.86)

Combining the remainder terms and adopting the matrix representation in-
volving the dipole matrix P, we arrive at (2.85). O

The formula (2.85) becomes efficient when both x and y are sufficiently
distant from the small hole F.. Compared to (6.87), formula (2.85) does not
involve special solutions of model problems in R? \ F, while the influence of
the hole F' is seen through the dipole matrix P.

Corollary 2.1.3 The following asymptotic formula for Green’s function
a) of the boundary value problem (6.218)—(6.220) holds:

GgN) (x,y) = (2m) tlog|x —y|™' — hn(e"'x,e7ty) — H(0,0)
— (x—¢eD(e"'x)) - V. H(0,y) — (y —eD(ey)) - V, H(x,0)
+ 0 + x2 + |y, (2.87)

for x,y € §2.. (Needless to say, €* in the remainder can be omitted if the
interior of F' is non-empty and contains the origin.)

Proof. Using the Taylor expansion of H(x,y) in a neighbourhood of the
origin, we obtain

M (x,y) = *H(Ovo)*x VH(0,y) =y - VyH(x,0) + O(|x* + |y[*)
+ N(e'x,e7y) — (2n) "t loge
+ eD(e'x) - V. H(0,y)
+ eD(=ly) - Ty H(x,0) + O(=2). (2.83)

By substituting
N(etx,e7ty) = (2m)tlog|x —y| ™t + (2n) tloge — hy (e 'x,e 7 ty)

into (2.88) and rearranging the terms, we arrive at (2.87). O
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2.2 Mixed boundary value problem with the Dirichlet
condition on OF,

In the present section, the meaning of the notations §2, F' and F., already
used in Section 2.1, will be slightly altered. Hopefully, this will not lead to
any confusion. Let {2 be a bounded domain with smooth boundary, and let F'
stand for an arbitrary compact set in R? of positive logarithmic capacity [10].
As in Section 2.1, it is assumed that diam F' = 1/2, and that dist(O, 0(2) = 1.
We also set F. = {x:e7'x € F}.

We consider the mixed boundary value problem in a two-dimensional do-
main 2. = 2\ F., with the Dirichlet data on dF, and the Neumann data on
012.

Green’s function GéD) of this problem is a weak solution of

A,GP)(x,y)+8(x—y)=0, x,y€ 2, (2.89)
G (x,y) =0, x€dF., y€ 1, (2.90)

(D)
8;;2 (x,y) =0, x€08, y€ (2. (2.91)

Before deriving an asymptotic approximation of GéD)(x, y), uniform with
respect to x,y € (2., we outline the properties of solutions of auxiliary model
problems in limit domains.

2.2.1 Special solutions of model problems

1. Let N(x,y) be the Neumann function in {2, i.e.

AN(x,y)+d(x—y) =0, x,y € 2, (2.92)
0 (N(x y) + (27) " log |x\) =0, x€dR, yeR (2.93)
anx ) b ) b
and 5
N log |x|ds, = 0. 2.94
[ Nxy) g, loslxlds, = 0 (2.94)

Condition (2.94) implies the symmetry of N(x,y). In fact, let U(x) = N(x,z)
and V(x) = N(x,y), where z and y are fixed points in (2. Then applying
Green’s formula to U and V' and using (2.92)-(2.94) we deduce

Uly) - V(z) = / (VAU ()~ U(x) A,V (x)) dx
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1 0 0
=55 |, (UG5, -(oglx) = V(x5 (log x]))as,

1 o 9
_ %{ g N(x,2)5,~(log [x|)dS. - /{m N(x,y) 5, ~(log |x\)d5’w} —0,

where 9/0n, is the normal derivative in the direction of the outward normal
on 0f2. Hence N(y,z) = N(z,y).
The regular part of the Neumann function is defined by

R(x,y) = (2m) tlog [x —y|[™' = N(x,y). (2.95)

Note that 9
R(0.y) = ~(20) 2 [ log x| log xlds.. (2.96)
a0n 6n

which is verified by applying Green’s formula to R(x,y) and (27)~!log |x]|
as follows:

ROY) = o /Q R(x,y) A (log [x])dx

1

0 0
= (R(X7 Y)%(log|x|) — log |X|87WR(X’Y))C$31, (2.97)

where 0/0n,, is the normal derivative in the outward direction on 9f2. Taking
into account (2.93), (2.94) and (2.95), we can write (2.97) in the form

1 _, 0 0 _
RO0.5) = 15 [ (toglx—yI™" 510z x) ~log x| 5 (og [x—y| ")) ds.

1 0
+% /(‘).Q 10g|x|8n95 (N(x,y))dss. (2.98)

The first integral in (2.98) is equal to zero, while the second integral in (2.98)
is reduced to (2.96) because of the boundary condition (2.93).

As in Section 2.1, the notations & and 1 will be used for the scaled coor-
dinates £ = e~!x and n = ¢~ ly. The corresponding limit domain is R? \ F.

2. Green’s function G(&,n) for the Dirichlet problem in R?\ F is a unique
solution to the problem (2.11)—(2.13). The regular part h(€,n) of Green’s
function G(&,m) is

h(&,m) = (2m) " log|€ —n|~" — G(&,m). (2.99)

3. Here and in the sequel, D(&) denotes a vector function, whose compo-
nents D;, j = 1,2, satisfy the model problems
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AD;(¢) =0, £€€R?\ F, (2.100)
D;(&) =&, &€ 0F, (2.101)
D;(€) is bounded as [§] — oo. (2.102)

We use the notations D3° = hm|£\—>oo D;(¢) and D> = (D$°, D°)T.
Application of Green’s formula to D; and the function ¢, defined in (5.8)-
(5.10), gives

* = —/ Q#d&. (2.103)
oF n

Here and in other derivations of this section, d/0n on OF is the normal
derivative in the direction of the inward normal with respect to F.

We also find an additional connection between D; and ¢ by analyzing the
asymptotic formula (compare with (5.10))

(&) = (2m) " log [€] + (oo + Z Crgff +O0(|€]72), |€] — oo, (2.104)

and showing that
ap = —Dp°. (2.105)

Let us apply Green’s formula to &; and ¢:

| &% ®as— [ {@“—@—qs)%}ds
9¢;

= ‘z%ii“oo/g R{ i a\s\ (€) 51g) y5¢

. Oékikﬁj
— 11m 3
T R—oo Jjg|= R,C < [¢]

dSe = a;. (2.106)

Then formulae (2.106) and (2.103) lead to (2.105).

2.2.2 Asymptotic property of the regular part of
Green’s function in R? \ F

Asymptotic representation at infinity for the regular part of Green’s function
in R?\ F is given by the following Lemma.

Lemma 2.2.1 The regular part (2.99) of G satisfies the estimate

2
h(.m) = (2m) log €+l — 5 >0 A

=1

n)§; ‘ < Const

TR (2.107)
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as [&] > 2, and n € R?\ F.

Proof. Let
1 2
B(&m) = h(g.m) — (2m) " log |€] ™"+ C(n) — 5 mP
j=1
‘We have
A,B8(&m) =0, neR*\F,
and 1 £ | |2 ¢
_ b My _ s
(e m) == tog (1 - |w*ﬁw) 2m[€[?
1 .
=g {nf - 25 ot} (2109

as n € JF. By (5.8)—(5.10) and Green’s formula

= [ sem%Mas,
oF Ty

which together with (2.108) and (2.35) implies

1B(€,00)| < C |€]72.

Hence the maximum principle gives (2.107). O

2.2.3 Mazximum modulus estimate for solutions to the
mixed problem in (2., with the Dirichlet data on
OF,

Lemma 2.2.2 Let u be a function in C(£2.) such that Vu is square integrable
in a neighbourhood of 352. Let u be a solution of the mixed problem

Au(x) =0, xe€ (2, (2.109)
g—Z(x) =(x), x€ 9, (2.110)
u(x) = pe(x), x€IFy, (2.111)

where ¢ € C(952), p. € C(OF.), and

Y(x)ds = 0. (2.112)

o1

Then there exists a positive constant C such that
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lullee.) < lleellcor) + Cllvlcoo)- (2.113)
Proof. (a) First, we introduce the inverse operator
No:Y —w (2.114)

for the interior Neumann problem in {2

Aw(x) =0, x€ £, (2.115)
ow
%(X) =(x), x €91, (2.116)
with ¢ € C(0(2) and
(x)dS; =0 and / w(x)g(log x[)dS, = 0. (2.117)
on o0 on

Applying Green’s formula to w(x) and N(x,y) in {2 we obtain

wi) = [ (Noey)oi) + 5o,

3 0(x) 5, (log \x|))dSl..

Then the unique solution of (2.115)—(2.117) is given by

w(x) = [ N(xy)P(y)dsSy, (2.118)
o8

and
mﬁa><i|w| < ClYllcon)- (2.119)

(b) The solution w of (2.109)—(2.111) is sought in the form
u(x) = w(x) + v(x), (2.120)

where w = MNpe is defined by (2.118), whereas the second term v satisfies
the problem

Av(x) =0, x€ 2, (2.121)

g—Z(x) =0, x€d91, (2.122)

v(x) = pe(x) —w(x), x € IF.. (2.123)

According to the estimate (2.119) and the maximum principle for variational

solutions of (2.121)—(2.123) (see, for example, [3]) we have

mﬁax|v| < leelle@r) + CllYllcoo)- (2.124)

€
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Finally, using the representation (2.120), together with the estimates (2.119)
and (2.124), we obtain the result (2.113). This completes the proof. [J

2.2.4 Approximation of Green’s function GgD)

We give a uniform asymptotic formula for Green’s function solving the prob-
lem (2.89)-(2.91).

Theorem 2.2.1 Green’s function G&D)(x, y) for problem (2.89)-(2.91) ad-
mits the asymptotic representation

G (x,y) = G(e'x,e7y) + N(x,y) — (2m) " log |x — y| = + R(0,0)

+eD(ety) - V,R(x,0) +eD(e'x) - VL R(0,y) + 7-(x,¥), (2.125)

where G, N, R, D are defined in (2.11)—(2.13), (2.92)-(2.94), (2.95), (2.100)—
(2.102), and
Ire(x,y)| < Const €2,

which is uniform with respect to x,y € (2..

Proof. First, we describe the formal argument leading to (9.8). Let
pe(x,y) = GP)(x,y) — G(e~'x,eLy). This function satisfies the problem

Aape(x,y) =0, x,y € £, (2.126)
pe(x,y) =0 when x € 9F;, y € (2, (2.127)
and
pe 0 1 . L
pr(oy) =~ (g loslx —y| T —hex e TYy)) (2128)
o /1 .
= o (5 lorlx ¥t - Nixy)
o /1 L
+8nx (% log |x| + h(e™ x,€ y)),

where x € 92, y € (2.. Here h(€,7n) is the regular part of Green’s function
G in R?\ F. Taking into account (2.95), we deduce that

pe(x,y) = —R(x,y) + R(0,0) + Re(x,y), (2.129)

where R(x,y) is the regular part of the Neumann function N(x,y) in {2, and
R. is harmonic in (2. and satisfies the boundary conditions
OR. 0

1
(x,y) = %(% log |X|—|—h(€_1x,a_1y)) as x € 002, y € {2, (2.130)
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R-(x,y) =x-V,R(0,y) +O(¢?) as x € OF., y € .. (2.131)

The asymptotics of h(&, ) given by Lemma 2.2.1, can be used in evaluation
of the right-hand side in (2.130).
The boundary condition (2.131) can be written as

Re(x,y) —eD(§) - V. R(0,y) = O(¢?),

for x € OF;, y € 2. In turn, the boundary condition (2.130) is reduced to

S {Rux.y) — D) Ty R(x,0)} = O),

when x € 92, y € (2. Hence, representation (2.129) of p. can be updated
to the form

pe(x,y) = —R(x,y) + R(0,0) (2.132)
+ eD(€) - V.R(0,y) +eD(n) - V,R(x,0) + RY (x,y),

where the principal part of Rgl)(x,y) compensates for the leading term of
the discrepancy €2€ -V, (D(n) - V,R(x,0)) ’x:O brought by the term eD(n) -
VyR(x,0) into the boundary condition (2.127) on OF.. This leads to the
required formula (9.8).

For the remainder r.(x,y) in the asymptotic formula (9.8), we verify by
the direct substitution that

Aare(x,y) =0, x,y € {2, (2.133)
and that the boundary condition (2.90) implies
re(x,y) = R(0,y) = R(0,0) + x - V, R(0,y)

—eD(x/e) - V,R(0,y) + O(e?) = O(e?) as x € dw., y € £, (2.134)

where D(x/e) = ¢ 1x for x € w,, and formula (2.96) was used to state that
R(0,y) is independent of y. In turn, the second boundary condition (2.91),
together with formula (2.107), yields

Ore o 0 -1 -1 _i -1
. XY) = 5 - (h(€ x,e7y) = 5 log|x| )
—eD(e7y) - i(v R(x 0)) + O(e%)
Ong \ Y ’
2 9] x;
_ -1y 9 J
N E;DJ(E y)anx (27r|x|2)
—eD(e7y) - 0 ( 3 = 2
y) o VyR(x,0)) +O(e*) = O(¢7),(2.135)
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asx € 012, y € (2.
It can also be verified that f(,m %rs(x, y)dS, = 0. Indeed,

— irg(x7 y)dS; = / 9

L 1 Ix —y|
1 1

—1
802 anm 902 anx {g(E X)€ y) + Og

27 x|

+eD(e7y) - V, R(x,0) + eD(e'x) - V. R(0, y)}dSI

¢ [ Dy vy (Cm) Moglx -yl - Nexy))|

o Ong }dSQE

y=0
€ 0

X
o 2 an 87’Lm

{DEy) E }as. =o.

Using (2.134), (2.135), together with Lemma 2.2.2, we complete the proof.
]

2.2.5 Simpler asymptotic representation of Green’s
function GgD)

Two corollaries, which will be formulated here, follow from Theorem 2.2.1.
They include simplified asymptotic formulae for the Green’s function, which
are efficient for the cases when both x and y are distant from F. or both x
and y are sufficiently close to Fr.

Corollary 2.2.1 Let min{|x|, |y|} > 2¢. Then the asymptotic formula (9.8)
1s simplified to the form

G (x,y) = N(x,y) - (2m) "' loge + (oo + R(0,0)
-1 R s LD -2 -2
+ (2m) " log((x/[y[) — 5D - (xlx| 2+ yly|™?)
+ eD> . (VmR(O,y) —|—VyR(X,O)) (2.136)
+ O x|yl ™),
where R is the regular part of Neumann’s function N in (2.

Proof. Estimate (2.107) can be written in the form

h(&m) = (2m) M log(|€&lm]) " — ¢

2
€ o Tj Y 2 —1 —1
+ — E D: (—j —|——> + 0 . 2.137

27 j=1 T [y[? (k™) ( )

Using (2.99), (9.8) and (2.137) we obtain
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x]y|
Ix -yl

1 1
G (x,y) = —5-loge+ o log + oo

= 27 (e + ) Oy

2 4 %2
Jj=1
+ N(x,y) — (2m) " Hog|x — y|™* + R(0,0)
+ eD>. (VyR(x,O) + sz(o,y)) (2.138)

+ 20(jx|[7" + [y[7h).

Rearranging the terms in (2.138) and taking into account that the remainder
terms in the above formula are O(e?|x|~t|y|~1), we arrive at (2.136). OJ
Formula (2.136) is efficient when both x and y are sufficiently distant from
F..
The next corollary of Theorem 2.2.1 gives the representation of GgD),
which is effective for the case when both x and y are sufficiently close to F-.

Corollary 2.2.2 The following asymptotic formula for Green’s function
el of the boundary value problem (2.89)—(2.91) holds

GgD)(Xv y) = g(g_lxag_IY) - (X - ED(&‘_lX)) : VIR(OﬂY)
— (y —eD(e'y)) - V4 R(x,0) (2.139)
+ O(Ix]* + |y|* + €%,

for x,y € 92.. (The term % in the remainder can be omitted if the interior
of F is nonempty and contains the origin.)

Proof: Using the Taylor expansion of R(x,y) in a neighbourhood of the
origin we reduce the formula (9.8) to the form

GP(x,y) = G(e 'x,e71y) = R(x,y) + R(0,0)
+ eD(e'y) - V,R(x,0) + eD(e 'x) - V. R(0,y) + O(£?)
=G(e'x,e7y) (2.140)
= x-VoR(0,y) —y - VyR(x,0) + O(|x[* + [y|*)
+ eD(e'y) - V,R(x,0) +eD(e 'x) - V. R(0,y) + O(e?).

By rearranging the terms in the above formula, we arrive at (2.139). O
2.3 The Neumann function for a planar domain with a
small hole or crack

It is noted that in the previous sections, boundary conditions of the Dirichlet
type were set at a part of the boundary of {2.. Now, we consider the case
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when 02, is subject to the Neumann boundary conditions. Here, the set F
is the same as in Section 2.1.

The Neumann function N.(x,y) for 2. C R? is defined as a solution of
the boundary value problem

A Ne(x,y) +0(x—y) =0, x,y €2, (2.141)
0
ong

(Ne(x7 y) + (2m) "t log x|> =0, x€00, ye€ (2, (2.142)

ON,
ong

(x,y) =0, x€IF., y € (.. (2.143)

In addition, we require the orthogonality condition, which provides the sym-
metry of N.(x,y)
0
N.(x,y)=— log |x|dS, = 0. (2.144)
0N 871

The regular part R.(x,y) of the Neumann function is defined by

1 _
Re(xay) = %log |X_Y| '— NE(X’Y)'

2.3.1 Special solutions of model problems

As in the previous sections, we consider two limit domains independent of the
small parameter e: the domain {2 (with no hole), and the unbounded domain
R2\ F that represents scaled exterior of the small hole. As always, the scaled
coordinates £ = e 'x and n = ¢!y will be used.

The Neumann function N(x,y) of {2 is defined by (2.92)—(2.94), and the
regular part R(x,y) of N(x,y) is the same as in (2.95).

We shall use the vector function D already defined in Section 2.1.

Another model field to be used is the Neumann function NV'(¢,n) in R?\ F,
as in (2.15), whose regular part hy satisfies the problem (6.221)—(6.224).

2.3.2 Maximum modulus estimate for solutions to the
Neumann problem in (2.

First, we formulate and prove the auxiliary Lemma required for the forth-
coming estimate of the remainder term in the approximation of N..

Lemma 2.3.1 Let u be a function in C(£2.) such that Vu is square integrable
in a neighbourhood 082.. Also, let u be a solution of the Neumann boundary
value problem
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Au(x) =0, x€ ., (2.145)
)
%(x) = P(x), x €0, (2.146)
B
So(X) = pa(x). x€IE, (2.147)

where ¢ € C(912), ¢. € Loo(0F:), and

/ ©0e(x)ds =0 and / P(x)ds = 0. (2.148)
OF.

[210)

We also assume that
1o}
|| 05 (108 xl)ds| < const (oo + ellecluiory ). (2149

Then there exists a positive constant C, independent of € and such that

lullco.y < C{II¥llcoa) +elleellL.@r) }- (2.150)

Proof. (a) We use the operators 9 and 9y, of model problems (2.60)—
(2.62) and (2.115)—(2.117) introduced in Sections 2.1 and 2.2.

(b) We begin with the case of the homogeneous boundary condition on
012, i.e.

Aui(x) =0, x€ (2, (2.151)
(’)ul

Z = 1
5o(x) =0, xcon, (2.152)
%(x) = ¢.(x), x€0F., (2.153)

where the right-hand side ¢, is such that

/ Ye(x)ds = 0.
dF.

The operator 91, is defined as in (2.64), so that

(Mepe)(x) = (Np)(£),

1 1 1

where € = e 'x and ¢.(x) = e (e 1x).
The solution u; is sought in the form

0
w = Nege = No (5= (Nego)an ), (2.154)

where g. is an unknown function such that
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/ g(§)ds¢ = 0.
OF

By Lemma 2.1.1, we have

Mg (€)| < Cellgllr.. or) (2.155)

and
H%ax|‘ﬂ€gs| < C€||ge||LOQ(6F)- (2.156)

It follows from (2.154) that é%ul(x) = 0 when x € 942, and on the bound-
ary OF. we have

Ve = ge + Sege, (2.157)
where

o) )
Sege = —%(mg(%(mage)ag)) on OF.. (2.158)

Taking into account Lemma 2.1.1 and the definitions of 91, and M., as in
(2.114) and (2.59), (2.64), we deduce that

max |V(Nege)| < const &ge|z.. o),

and
1529l o7,y < const €2(|gzllL(oF.)-

Owing to the smallness of the norm of the operator S, we can write

I9:ll 2. 9.y < const [Joc|ln_(ar.)-

Following (2.118), (2.119), (2.154) and (2.156) we deduce (2.149) and

max |u1| < const ellp:||r(oF.)- (2.159)
7]

€

(c) Next, we consider the problem (2.145)—(2.148) with the homogeneous
data on Jw.. The corresponding solution wuy is written in the form

uz = Ny + v, (2.160)

where the harmonic function v satisfies zero boundary condition on 0f2,
whereas the condition (2.153) is replaced by

0 0

57000 = —5- (Ney) (x). x € OF,

and by part (b)
mﬁaX|U| < const [[¢[lcn)-

€

The function v and hence uy satisfy (2.149).
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Following (2.118), (2.119) and (2.160) we deduce

r%ax|uz| < const [[¢]|cian)- (2.161)

=

Combining estimates (2.159) and (2.161) we complete the proof. O

2.3.3 Asymptotic approximation of N,

Now we state the theorem, which gives a uniform asymptotic formula for the
Neumann function N,.

Theorem 2.3.1 The Neumann function N.(x,y) of the domain 2. defined
in (6.238)—(2.144) satisfies

Ne(x,y) = N(x,y) — hy(e 'x,e7y)

+eD(e7'x) - VL. R(0,y)

+eD (e ty) - V,R(x,0) + 7-(x,y), (2.162)
where

Ire(x,y)| < Const €2 (2.163)

uniformly with respect to x,y € (2.

Proof. We begin with a formal argument leading to the approximation
(6.253). Consider the first three terms in the right-hand side of (6.253) and
let

rD(x,y) = N.(x,y) — N(x,¥) + hn(€,m) — D) - V,R(0,y). (2.164)

The function rgl) is harmonic in (2., and the direct substitution into the

boundary conditions (6.239) and (6.240) gives

orth o 1 _ d L
(x,y) = —87(510%|X—Y| 1)+8n (hn(e7'x,e7y))

ony
0
+n-V,R(0,y) — o D(e'x) - V,R(0,y) + O(e)
— O(e), forx €9F., y € ., (2.165)

and
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orl) T
g (0¥) = 5o (b (e x,e7y) + O()
=eD(ey) - 8fz V,R(x,0) + O(?),
forx € 012, y € (2.. (2.166)

Thus, rﬁl) can be approximated as
rM(x,y) = eD(ey) - V,R(x,0) + O(?),

and together with the representation (2.164), this leads to the required for-
mula (6.253).

Finally, the direct substitution of (6.253) into (6.238)—(6.240) yields that
the remainder term r.(x,y) satisfies the problem (2.145)—(2.148), with

< Const &2
){fel%\w(xwh onst €

and

1y 1y <
Jax |pe(e7 x,e7y)| < Const ¢

for all y € £2.. Then the estimate (2.163) follows from Lemma 2.3.1. O

2.3.4 Simpler asymptotic representation of Neumann’s
function N,

Two corollaries, formulated in this section, follow from Theorem 2.3.1. They
include asymptotic formulae for the Neumann’s function, which are efficient
when either both x and y are distant from F. or both x and y are sufficiently
close to F.

Corollary 2.3.1 Let min{|x|, |y|} > 2¢. Then

2 xT T
N:(x,y) ZN(X,Y)—WW P

82 T T

+ TS PVLROY) + Lo PYR 0 (2167)

2m L |x|? ly|2
+ 20(x72 + ly|7?),

where R is the regular part of Neumann’s function N in {2, and P is the
dipole matriz for F, as defined in (5.6).

Proof. The proof is similar to that of Corollary 2.1.2, and it uses formula
(5.21) for the regular part hy of the Neumann function in R? \ F, together
with the asymptotic representation (5.6) of the dipole fields D; in R2\ F.O
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Next, we state a proposition similar to Corollaries 3 and 5 formulated

earlier for Green’s functions GgD) and GéN).

Corollary 2.3.2 Neumann’s function N, defined by (6.238)—(2.144), satis-
fies the asymptotic formula

N.(x,y) = (2m) tlog|x —y|~! = R(0,0) — hy (e 'x,ety) (2.168)
- <x - z—:D(aflx)) V,R(0,y) — (y - E’D(e’ly)> -V, R(x,0)
+ O(Ix[> + [y * +¢7),

forx,y € 02.. (As in Corollaries 2 and 4, €2 in the remainder can be omitted
if the interior of F is nonempty and contains the origin. )

Proof. The proof is similar to that of Corollary 2.1.3, and it employs
the linear approximation of the regular part R of Neumann’s function in a
neighbourhood of the origin. O]

Although, the formulation of Corollary 2.3.2 is valid for all x,y € (2,
the asymptotic formula (2.168) becomes effective when both x and y are
sufficiently close to F..

2.4 Asymptotic approximations of Green’s kernels for
mixed and Neumann’s problems in three dimensions

This section includes asymptotic formulae for Green’s kernels GgD),GgN)
and N, in 2. C R3. The special solutions of model problems differ from
the corresponding solutions used for the two-dimensional case. The uniform
asymptotic formulae of Green’s kernels are accompanied by simpler repre-
sentations, which are efficient when certain constraints are imposed on the
independent variables.

2.4.1 Special solutions of model problems in limit
domains

Here, we describe the functions G, G, N, N, defined in the limit domains and
used for the approximation of Green’s kernels.

1. The notation G is used for Green’s function of the Dirichlet problem
in 2 C R3:
G(x,y) = (4n|x —y|) "' = H(x,y). (2.169)
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Here H is the regular part of G, and it is a unique solution of the Dirichlet
problem
AH(x,y) =0, x,y €1, (2.170)

H(x,y) = (dr|x—y|)™!, x€an, yen. (2.171)

2. Green’s function G for the Dirichlet problem in R3\ F is defined as a
unique solution of the problem

AGEn) +6(E—m) =0, &neR’\F, (2.172)
G(&m) =0, £E€IF, neR’\ F, (2.173)
G(&m) — 0 as [¢] — oo and n € R*\ F. (2.174)

Here F' is a compact set of positive harmonic capacity.
The regular part h of Green’s function G is

h(g,m) = (dnl€ —n|)~" — G(&n). (2.175)

3. The components of the vector field D(§) = (D1 (§), D2(&), D3(€)) (com-
pare with (2.100)—(2.102)), for & € R\ F, satisfy the problem

AD;(€) = 0, £€R’\F, (2.176)
D;(§) = &, §€0F, (2.177)
Dj(§) — 0, as [§] — oo (2.178)

We shall use the matrix 7 = (Z‘k)?,k:l of coefficients in the asymptotic
representation of D; at infinity

1 3
=L ‘ €|3 £ o(lel ). (2.179)
k=1

The symmetry of 7 is verified by applying Green’s formula in By \ F' to
& — D;(§) and Dy (§) and taking the limit R — co. We have

/63R {(fj - Dj(ﬁ))agr;f) - Dk(ﬁ)(fé - 813)|];$(|£))}d5
9D; (&)

452 nj)ds =0, (2.180)

+ Dk(é)(

OF

where 0/0n is the normal derivative in the direction of the interior normal
with respect to F.. As R — oo, the first integral Z(0Bg) in the left-hand side
of (2.180) gives
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. o ODu(€) &
A 708 = i |, {65~ D)
3
_ ,E/a S TibetydS = ~Ti. (2.181)

B, q=1

The second integral Z(OF) in the left-hand side of (2.180) becomes

_ , 9D;(&)
T(OF) = — /8 Gnyds + /a Dule) s

= djx meas3(F) + VDy(€)-VD;(€)dE,  (2.182)
R3\F

where measz(F') is the three-dimensional Lebesgue measure of F. Using

(2.181) and (2.182) we deduce

Tyj = 0;1, measy(F) + . VDy(€) - VD;(€)dE, (2.183)

which implies that 7 is symmetric and positive definite.

4. The Neumann function N(x,y) in 2 C R?® and its regular part are
defined as follows

AN(x,y)+d6(x—y) =0, x,y € 2CR?, (2.184)
0 (N(x y) - (47r)*1\x|*1) =0, x€d, yen (2.185)
anw ) ) 9 9
and 9
1 _
/arz N(x,y)anx |x|~"ds, =0, (2.186)

where the last condition (2.94) implies the symmetry of N(x,y). The regular
part of the Neumann function in three dimensions is defined by

R(x,y) = (4m)"'x —y|7" = N(x,). (2.187)

5. In this section, the notation N(£,7n) will be used for the Neumann
function in R3 \ F, where F is a compact closure of a domain with a smooth
boundary, and A is defined by

N(En) =@m)HE—n"" —hn(€n), (2.188)

where hy is the regular part of N subject to
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Achy(€,m) =0, &EneR*\F,  (2.189)

0 -1 3

hn(€,m) =0, as|¢ —oo, neR*\ F.  (2.191)

Ohpn _ 1
Tng(fﬂl) =

The smoothness assumption on JF here and in the sequel is introduced for
the simplicity of proofs and can be considerably weakened. In particular, the
case of a piece-wise smooth planar crack can be included.

We note that the Neumann function N just defined is symmetric, i.e.
N(&mn) =N(n,§).

6. The definition of the dipole vector field D(&) = (D1(€),D2(€), Ds(€))
is similar to (2.19)—(2.21), with £ € R? \ F. The components of the three-
dimensional dipole matrix P = (’Pj;g)?,kzl appear in the asymptotic repre-
sentation of D;(&) at infinity

3

D)= 37 3 i + OUEl ™) (2.192)

k=1

Similar to Section 2.1.2, it can be proved the the dipole matriz P for the hole
F is symmetric and negative definite.

2.4.2 Approximations of Green’s kernels

The following assertions hold for uniform asymptotic approximations in
three-dimensional domains with small holes (or cracks) or inclusions.

Theorem 2.4.1 Green’s function G§N>(x7 y) for the mized problem with the
Neumann data on OF. and the Dirichlet data on 02, has the asymptotic
representation

GgN)()g y)=Gx,y)+ 5_1N(E_1X,5_1y) — (47r)_1|x — y|71

+D(e'x) - Vo H(0,y) + eD(ey) - V, H(x,0) + r.(x,y),  (2.193)

where D is the three-dimensional dipole vector function in R*\ F, and N is
the Neumann function in R3 \ F, vanishing at infinity. Here

|r-(x,y)| < Const &? (2.194)

uniformly with respect to x,y € (2.

The proof follows the same algorithm as in Theorem 2.1.1.
Now we give the analogues of Corollaries 2 and 3 formulated earlier in
Section 2.1.7.
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Corollary 2.4.1 Let min{|x|,|y|} > 2e. Then the asymptotic formula
(2.193) is simplified to the form

G (x,y) = G(x,y)
e (x yT
E{Xi )“FW'PV H(X 0)}
e xT
o 2 3PL3
(4m)? [x[* " |y
+ O + (x| + lyDIxI Pyl ™), (2.195)

where H is the regular part of Green’s function G in {2, and P is the dipole
matrix for F, as defined in (2.192).

The next assertion is similar to Corollary 2.1.3 of Section 2.1.7.

Corollary 2.4.2 The following asymptotic formula for Green’s function
G holds

CWM(x,y) = e "N (e 'x, e ty) — H(0,0)
— (x—eD(e 'x)) - V. H(0,y) — (y —eD(c"'y)) - V, H(x,0)
+ O + X + Iy ), (2.196)

for x,y € .. (As in Corollary 2.1.3, €2 in the remainder can be omitted if
the interior of F' is nonempty and contains the origin. )

In turn, for the case when the Neumann and Dirichlet boundary conditions
are set on 0f2 and JF, respectively, the modified version of formula (9.8) is
given by

Theorem 2.4.2 The Green’s function GgD) (x,y) for the mized problem with
the Dirichlet data on OF. and the Neumann data on 02, admits the asymp-
totic representation

G (x,y) =e7'G(e  x,e7ly) + N(x,y) — (4m) "' x — y[~! + R(0,0)

+eD(ey) - V,R(x,0) + eD(e'x) - VL R(0,y) + re(x,y), (2.197)
where

re(x,y)| < Const %,

which is uniform with respect to x,y € (2.

The proof is similar to that of Theorem 2.2.1. We note that unlike the two-
dimensional case, in three dimensions no orthogonality condition is required
to ensure the decay of the solution of the exterior Dirichlet problem in R3\ F.

The analogues of Corollaries 4 and 5 are formulated as follows.
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Corollary 2.4.3 Let min{|x|, |y|} > 2¢. Then the asymptotic formula (2.197)
is simplified to the form

GP)(x,y) = N(x,y) + R(0,0)

3 T T
+ Z?{;?TVIR(OJ) n |??Tvyza(x,o)}
e X _y
S Am2xPT yP
+ 0 + (x| + ly])Ix|ly| %), (2.198)

where R is the regular part of Neumann’s function N in 2, and T is the
matriz of coefficients in (2.179).

The next assertion is similar to Corollary 2.2.2 of Section 2.2.5.

Corollary 2.4.4 The following asymptotic formula for Green’s function
G”) holds

GgD)(x,y) = e 'G(e x, e y)
— (x—eD(e7'x)) - VoR(0,y) — (y —eD(¢ " 'y)) - V, R(x,0)
+ 0 + x> + [y ), (2.199)

for x,y € .. (The term % in the remainder can be omitted if the interior
of F is nonempty and contains the origin. )

Finally, we consider the Neumann function N.(x,y) for £2. C R3. Here,
0. = 2\ F., and F. is the small hole with a smooth boundary. We define
N, as a solution of the following boundary value problem

AzNE(Xay) + 6(X - Y) =0, x,y € {2, (2'200)

0
ong

(Ng(x,y) - (47r)_1x|_1) =0, x€00, y€ {2, (2.201)

ON,
ong

(x,y)=0, x€0F., y €.  (2.202)

In addition, we require the orthogonality condition, which provides the sym-
metry of N.(x,y)

9\ 1 —
o N (x, y)%|x| ds; = 0. (2.203)

The asymptotic approximation of N, is given by
Theorem 2.4.3 The Neumann function N.(x,y) for the domain (2, defined
in (2.200)—(2.203) satisfies the asymptotic formula
N.(x,y) = N(x,y)—e hy(e'x,e7ty) +eD(e %) - VL R(0,y)
+eD(e'y) - V,R(x,0) + 7-(x,y), (2.204)
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where
Ire(x,y)| < Const €2 (2.205)

uniformly with respect to x,y € (2. Here D is the three-dimensional dipole
vector function in R3\ F, and hy is the regular part of the Neumann function
N in R3\ F, vanishing at infinity. The Neumann function N in 2 and its
reqular part R are the same as in (2.184)—(2.187).

The proof follows the same algorithm as in Theorem 2.3.1.
At last, we formulate the analogues of Corollaries 6 and 7 for the Neumann
problem in (2..

Corollary 2.4.5 Let min{|x|,|y|} > 2e¢. Then N.(x,y) is approzimated in
the form

B xT _yT

N.(xy) = Nxy) = s o P
(x,y) (x,¥) (4m)2 xP " Jy]?
e xT y”

+ 0@ + (x| + Iy DIxI P ly|7?),

where R is the reqular part of Neumann’s function in {2, and P is the dipole
matriz for F, as defined in (2.192).

When both x and y are sufficiently close to F. the asymptotic approxi-
mation of IV, is given in the next assertion.

Corollary 2.4.6 Neumann’s function N, satisfies the asymptotic formula
Ne(x,y) = e7'N (e 'x,e71y) — R(0,0)
— (x —eD(e7'x)) - Vo R(0,y) — (y — eD(¢'y)) - V, R(x,0)
+ 0(* + x2 + |y|?), (2.207)

forx,y € .. The term €2 in the remainder can be omitted if the interior of
F' is nonempty and contains the origin.






Chapter 3

Green’s tensor for the Dirichlet
boundary value problem in a domain
with several inclusions

Here we focus on Green’s kernels of the operator —A for the case of the
domain containing multiple inclusions. The uniform asymptotic approxima-
tions, obtained here, can serve for the evaluation of Green’s function for
anti-plane shear in a domain with several inclusions. Formal asymptotic con-
struction has been accompanied by the error estimates for the remainder
term.

3.1 Domain of definition and the governing equations
for the case of multiple inclusions

Let £ defined as in 6.1.1. By w), j = 1,..., N, we denote domains in
R”, n = 2,3, with smooth boundary dw) and compact closure @7); its
complement being Co) = R’L\@(j). We shall assume that w©), j=1,.... N
contains the origin O as an interior point. We introduce the sets W) = {x:
e~ (x — 0U)) € wl}, where € is a small positive parameter and OU) being
the centre of wéj). Also we have the open set 2, = 2\ Uj (Déj). It is also
assumed that the minimum distance between the O) and the points of 912
and 8w§k), 1<k <N,k # j,isequal to 1. In addition the maximum distance
between O and the points of dw) will be taken as 1.

The main object of our study in Sections 3.2 and 3.3 is Green’s function
for —A in 2, C R2?, and we denote this function by G.. The function G. is
a solution of

_AxGE(Xv y) = 6(X - Y) , X,y €82, (31)

Ge(x,y) =0, x€dN.,yec .. (3.2)

In the sequel, along with x and y, we shall use scaled variables §; =
e~ (x — 0U)) and n; = Yy - 0U), j=1,...,N.

59



60

By const we always mean different positive constants which are indepen-
dent of €. The notation f = O(g) for a scalar function f is equivalent to the
inequality |f| < const g. Whenever we write f = O(g) for a matrix (vector)
function f, we mean a matrix (vector) f whose components are O(g).

3.2 Green’s function for the case of anti-plane shear for
a domain with several inclusions

Let G(x,y) and g(j)(ﬁj, n;) denote Green’s function for the operator —A in
the domains 2 and C@@), j = 1,..., N, respectively. The function G is a
solution the following problem

Gx,y)=0, x€d,yef, (3.4)

and the functions ¢U) solve

—A¢ gV (&;m;) = 0(&;—my) . &;my € Co (3:5)
g(j)(éj,nj) =0, §;¢€ 80@0)7”;‘ e CaV (3.6)
g(j)(ﬁj,nj) is bounded as |§;| — o0 ,m; € CoW) (3.7

We represent G(x,y) as
G(x,y) = —(2m) ' og|x —y| - H(x,y) , (3-8)

and g(j)(ﬁj,ng‘) forj=1,...,N as

g (&;,m;) = —(2m) logle; —m,l — KD (€;.m;) (3.9)

where H and h) are the regular parts of G and ¢U), respectively, and the
first term in the right-hand sides of (3.8) and (3.9) is the fundamental solution
of the operator —A.

We introduce the function ¢ as

(W (n;) = i g9 (&;m;) (3.10)
and the constant
Q) = mli‘m {¢Y(n;) - (2m) tlog |n,|} (3.11)
§1T7°

forj=1,...,N.
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3.2.1 Estimates for the functions h(9) and ¢\ in the
unbounded domain

In this subsection we state two results related to the functions h¥) and ¢,
j=1,...,N, which will be used in the algorithm for the asymptotic expan-
sion of the function G,.

The proof of the following lemma can be found in the Maz’ya, Movchan
[17].

Lemma 3.2.1 For [§;[ > 2 and n; € CwY) the following estimate holds
W9 (&5,m;) = —(2m) " og [€;] — ¢ (m;) + O(1&,171) (3.12)
forj=1,...,N.

The proof of the next lemma follows from the asymptotic expansion of solu-
tions to a general elliptic boundary value problem, by Kondratiev and Oleinik
[9].

Lemma 3.2.2 For |£j| > 2, the following representation for ¢9) holds

CO(E;) = (2m)log g | + ¢ +O(lg; 17 (3.13)

forj=1,...,N.

3.2.2 The equilibrium potential

Let Pa(j )(x) be the equilibrium potential corresponding to the j** inclusion
with centre OU). The function PV )(x) is defined as a solution of

APY(x) =0, xe€ 2, (3.14)
PY(x)=0, xedf, (3.15)
PO (x) =3, x€dwP i=1,....,N. (3.16)

where d;; is the Kronecker delta.
We give a uniform approximation of the function Péj ), by considering the
vector P.(x) = {Pg(j)(x) P

Theorem 3.2.1 The asymptotic approximation of P.(x) is given by the for-
mula,

P = ( ding (0} =) SG0 + 5.0 (3.17)

1<j<N



62

where o) = (2m) " loge+H(OU), O(j))—Cc(xJ;), M = {(1-6;,;)G(OF) 0W)) {C\szl,
S(x) = {-G(x,09)) + C(j)(éj) — (2m) " log€;] — ¢ 1, and the vector
pe(x) is the remainder term such that

[pe(x)| < conste|loge|™*, (3.18)

uniformly with respect to x € (2..
Prior to the proof of Theorem 3.2.1 we shall show that the leading order

term of the functions E(j ) are solutions of a certain algebraic system.

Lemma 3.2.3 The leading order part ’Pg(j) of the functions Pg(j) are solutions

of
( diag {a)} — sm) P.(x) = S(x), (3.19)
1<G<N
where P, = {Péj)}j»v:l,
Proof. We represent pY )(x) in the form

~G(x,00) 4 ¢O)(¢,) - (2r) ' log¢,] — (¥

P00 = RO 1< <N,
(27)~lloge + H(OW,0@) — ¢
(3.20)
where the function RY )(x) satisfies
ARV (x) =0, x€ ., (3.21)
j - ()
R(j)( )= — C(])(ﬁj) — (27) " tlog 1€, — = A <80 (3.22)
) (2m)~lloge + H(OW,00)) — ¢’ ’
: 2m)loge + H(x,00) — ¢ _
Rgﬂ)( )=1- (2m) oge + (X,O ) ¢ Ok x € 6w§]) 7 (323)
(2m)~lloge + H(OW K OW) — (5
RY)(x) = G(x,09) — ¢O(g)) + (2m)Hlog ¢,] + ¢¥)
€ B )

(2m)~'loge + H(OW),00) — ¢
xedw® 1<k<N,k#j. (3.24)

The boundary condition (3.23) is equivalent to

H(x,00)) — H(OU), o(j))
(27)~lloge + H(OW), 00) — ¢’

RY(x) = — x € dwl) | (3.25)

SO jo)(x) = O(e|loge|™!) for x € wd). Using the asymptotic approxima-
tion of C(j)(ﬁj) given in Lemma 3.2.2, we have from (3.22) that jo)(x) =
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O(elloge|™t) for x € 812. Then from (3.24), also using Lemma 3.2.2 and the
fact G(x, 0U)) is smooth in £2., we have

G(O(k), o(j))

RV (x) = - ‘ o T
(2m)~lloge + H(OW),00)) — ¢Y

O(ellogel™"),  (3.26)

for x € 0w, 1 <k <N,k #j.
Then we may write Réj)(x), using the equilibrium potential Pg(k), k # 3,
as
2 ki GOM,00) P (x)

RV (x) = ——=1=8 ————— e (%), (3.27)
(27)~tloge + H(OW,0)) — ¢

where pgj ) (x) is the remainder term.
Now combining (3.27) with (3.20), we obtain the following

P ) = (= Glox.09) 4 O - (20) " log g - €2

N
£ Y GO0 P ) (@) +px) (329
102N

where agj) is as in the formulation of Theorem 3.2.1, and pgj)(x) is a function
which is harmonic in (2. and is O(e|loge|™!) for x € 92 and x € w,
1 < j < N. Therefore by the maximum principle pgj)(x) = O(e|loge|™1) for

x € (2.
Then, (3.28) gives us the following system of algebraic equations in terms
of the functions Pg(j ), whose solution will give us the approximation of the

functions E(j ) ,

(lgiigN{agj)} — zm) P.(x) = 8(x) + R, , (3.29)

where P.(x) = {Ps(j )(x) ;V:l, S and 9 are as in the formulation of Theorem
3.2.1, and R, = {aéj)pgj) 9’21. The leading order part of (3.29) is equivalent

to (3.19).

Let o
== ( diag {aW)} — mt) : (3.30)

1<j<N

and Zy;, 4,5 = 1,..., N denote the components of this matrix. Multiplying
both sides of (3.29) by =, we have

P.(x) = ES(x) + pe , (3.31)
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where p. = ZR. is the remainder. We shall now estimate the remainder in
(3.31).

The proof of Theorem 3.2.1 is given via estimation of the remainder term
Pe. For the estimate of the norm of the vector p.(x) in (3.17), we shall need an
estimate the entries 5j; of the matrix =, which is contained in the following
Lemma.

Lemma 3.2.4 For the matriz Z = [5]),_,, we have

= _ [O(loge|™)  fori=j,
O((loge)™)  fori#j .

Zij =
Proof. Since M is a symmetric matrix, it follows from (3.30) that = is also
symmetric. We have

Z = (det(E7H))tadj(=), (3.32)

where det(Z~!) is the determinant of the N x N matrix Z~! and adj(Z~1!)
—~_1 —_—

is the adjoint of the matrix Z~!. Let the matrix of cofactors for Z~! be
denoted by C with entries

Cij=(-1)"MTy, i,j=1,...,N,

where T;; are the corresponding minors of 1.

First, we consider T;; when ¢ = j. In this case we shall need to compute
the determinant of an (N — 1) x (N — 1) matrix, with N — 1 terms each
of O(]loge|) along the diagonal, and with off-diagonal components of O(1).
Thus T;; for i = j is then is O(|loge|N~1).

Next consider T35, when ¢ # j, so that we compute the determinant of an
(N —1) x (N — 1) matrix, containing N — 2 components of O(|loge|) and all
other components of O(1). Then Tj;, for i # j is O(|log |V ~2). Therefore

o O(JlogelN=1)  fori=7j,
Y O(|logelN72) fori# .

Since det(=~!) is O(|loge|") we complete the proof of the Lemma.
Now, we finalize the proof of Theorem 3.2.1

Proof of Theorem 3.2.1. The asymptotic approximation of the vector P
admits the representation given in (3.31) as a consequence of Lemma 3.2.3,

with the remainder term given by p. = Z9R., where R, = {aéj)pgj)}év:l. In
the proof of Lemma 3.2.3, it was shown that péj) = O(e|loge|~1) and noting

ol = O(|logel), we have by the preceding Lemma, the remainder term
pe has the vector norm |p.| = O(e|loge|™!). The proof of Theorem 3.2.1 is
complete. 0
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3.2.3 A uniform asymptotic approximation of Green’s
function for —A in a 2-dimensional domain with
several small inclusions

Now we may approach the approximation of Green’s matrix G. for the Lapla-
cian in a planar domain with several inclusions.

Theorem 3.2.2 Green’s function for the operator —A in 2. C R? admits
the representation

N

G.(x,y) = G(x,y) + > _ gV (&, n;) + N(2m) " log(e ' |x — y])
j=1

+

WE

{00 PD (y) PO (x) = D(E)) = D (y) + O}

<.
Il
A

G0, 0V)PW(y) PV (x) +0(),  (3.33)

-

Il
-

#
1<k

[

J

IA o
IA

N
uniformly with respect to (x,y) € 2. X (2.

Proof. For this we propose that G. may be given as
N .
GE(X7 y) = _(277)_1 log ‘X - Y| - HE(X7 y) - Z h’gj)(xa Y) ) (334)
j=1

where it suffices to seek the approximation of the functions H.(x,y) and
hY )(x, y), which are solutions of the problems

AcH (x,y)=0, x,y€ 2, (3.35)
H.(x,y) = —(2m) tlog|x —y|, x€0R,yc€, (3.36)
H.(x,y)=0, xcdw¥ ye 1<j<N, (3.37)
and
AchP (x,y) =0, xy€, (3.38)
) (x,y) =0, xcanyecn,, (3.39)
) (x,y) = —(2n) tlog|x —y|, xeduye 2., (3.40)
RO (x,y) =0, xcdw® yecR. 1<k<N,k#j. (3.41)
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The approximation of H.(x,y)

Let H.(x,y) be given by
H.(x,y) = —H(OY,y)PY) (x) + H(x,y) + V(x,y) , (3.42)

where the index j is fixed (it is not the index of summation) and V(x,y)
satisfies
xy)=0, xyeflk,

( (
Vix,y)=0, x€dfR,yef, (
V(x,y)=H(OWY y)-H(x,y), xecdw yen., (3.45
V(ix,y)=—-H(x,y), xcdw® yec k#j,1<k<N. (

Since wm 1 < j < N, are small inclusions and H is a smooth function in
2, we may expand H about the centres of the inclusions. Namely, for the
boundary condition (3.45) we have

V(x,y) = HOY,y) - H(x,y) =0(e) , x€duye R, (347)
and from (3.46)

V(va) = _H(X7 y) = _H(O(k)aY) + O(E) ’
xedw® ye 2 k#j,1<k<N. (3.48)

We therefore write the function V(x,y) as
Z H(O™,y) P (x) + 9:(x,y) , (3.49)
1<I<:<N

where $). is the remainder term. Substituting (3.49) into (3.42) we have

N
H.(x,y) = =Y H(OY.y)PY(x) + H(x,y) + 9:(x,) , (3.50)

j=1
where 9.(x,y) satisfies

A (x,y) =0, x,y€, (3.51)

Ne(x,y) =0, x€dNyec 2, (3.52)

f.)e(xa Y) = H(O(])7y) _H(X7 y)
=0(), xcdwP ye 1<j<N, (3.53)
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and therefore by the maximum principle H.(x,y) = O(e), uniformly with
respect to x,y € (2.

The approximation of hgj)(x,y)

We begin by writing the boundary condition (3.40) on Bwéj ) as

h) (x,y) = —(2m) ' loge — (2m) log(e ! x —y]), x € )y € ..

) (3.54)
We seek hgj)(x, y) in the form
h9)(x,y) = —(2m) " loge + hV) (&, m;) + X (x,y) | (3.55)
where the remainder ng ) satisfies
AXng)(Xa Y) = O Y Xay 6 'QE 9 (356)
Xg]) (X,y) = (27T)_1 IOgE - hU)(E_p"]) 9 X € 897}’ S QE ) (357>
X‘gj)(x,y):()7 xeawéj),ye ., (3.58)
X (x,y) = (2m) Moge—hD(g;,m;), x€dwM ye 2 1<k<N,k#j.
(3.59)

From Lemma 3.2.1, we may write boundary conditions (3.57) and (3.59) as

X9 (x,y) = (2m) Hog|x — OV |+ (W (n,) + O(e), x €0,y € R,
(3.60)

X9 (x,y) = (2m) Hog|x — OY)| + ¢ (n;) + O(e) ,
forxcow® ye 2. 1<k<N.,k#j. (3.61)

Then we represent ng ) as

X (x,y) = —H(x,09) + (1= PP (x))¢V(n;) + 1 (x,y),  (3.62)

where hgj) (x,y) satisfies
AP (x,y) =0, x,y€R, (3.63)
WY (x,y) =0(e), x€dye ., (3.64)
b (x,y) = H(x,0V), xeouly e, (3.65)

[)gj)(x,y) = fG(x,O(j)) +0(), x¢€ 8w§k),y €., 1<k<N ., k+#j.
(3.66)
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From the fact that G(x,00)) and its regular part are smooth functions in
(2., we expand these functions about the centres of the small inclusions in
such a way that boundary conditions (3.65) and (3.66) become

b9 (x,y) = HOY,0U)) +0(), x€dwye 0., (3.67)

h9) (x,y) = —~G(O® 09 +0(e), xcdw ye 2 1<k<N,k#j.
| (3.68)
Then the héj)(x, y) is given by

h (x,y) = HOV, 0 PO (x) = 3 GO, 0U)PV(x) +Ofe) .

k#j
1<k<N

(3.69)
Placing (3.62) and (3.69) into (3.55), we obtain the following approximation

of h‘gj)(x7 y)
h(x,y) = —(2m) " loge + hY)(¢;,n;) — H(x,0Y))
+(1 = PP (x))¢Y) (n;) + HOY),09)PY)(x)
= > GOW,09)PH (x)+0(e) , (3.70)
k#j
1<k<N

which is uniform with respect to x,y € {2..

Combined formula

Now substituting (3.50), (3.70) into (3.34) we obtain
N .
Ge(x,y) = G(x,y) + Y g9 (&;,m;) + N(2m) " log(|x — y|)
j=1

+ 320 = PO)(H(OD,00) — (W(n)) - H(OD,y))

M=

<.
Il
—

(H(x,09) + H(OY,y) — H(OY),01))

+
WE

<.
Il
—

G(OW, 0 PH) (x) + O(e) . (3.71)

Mz
M

<.
I
—

Using the following relation obtained from the approximation of pY )(X) (see
(3.28)),
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(H(OY,0) = (D (n;) - HOW, y))(al)!
=1-PPy)+ @) > GOW,09)PM(y) + Ol loge (9.72)
147N

and substituting into (3.71), we have

N
Ge(x,y) = G(x,y) + Zg(j)(sj,nj) + N(2m) Hog|x — y|
N "
+> a1 - PY (x))(1 - P9 (y))

N
+Z(H(x,0(j)) + H(OW y)— H(OW 0W))

N
+>_ Y GOW, 0PN (y)+ PP(x)
—PB(y) P (x)} + O(e) - (3.73)

Then, expanding the fourth term on the right-hand side of (3.73) and using
(3.72), we have

> a0 - P - )

(H(X, O(])) + H(O(])a Y) - H(O(J)v O(])))

[
M- -

<.
I
—

(CY(E;) + ¢ (n,) - ¢Y) — N(2r)tloge

Mz

Jj=1

N

-> GO, 0 {PM (y) + PP (x)}
J=1 k#j

1 k<N
N
+> aP PO (y) PO (x) + O(e) . (3.74)

Jj=1

Substitution of (3.74) in (3.73) leads to the formula (3.33). The proof is
complete.
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3.3 Simplified asymptotic formulae of the anti-plane
shear Green’s function subject to constraints on the
independent variables

Analogous to Section 6.5, we now show how the asymptotic formula for G.
(see (3.33)), simplifies under restrictions on the points x and y. We again
consider two cases, the first being the situation when the points x,y are
sufficiently far away from each of the inclusions, the second is when the
points are within a small neighborhood of a particular inclusion.

Corollary 3.3.1 a) Let x,y € 2. C R? such that

min{|x — OY)|, |y — OW |} > 2¢ for all j =1,...,N. (3.75)
Then
N .
Ge(x,y) = Gx,y)+ > ZimG(y,0")G(x,0")
1,m=1

N
+0 <Z€(min{|x — 0 |y — 0<i>|})1> . (3.76)
i=1
where 5 = [Eij}zz,jzh is given by (3.30).
b) If max{|x — O™ |y — O™} < 1/2, then

GE(X’y) = g(m) (Sm’nm) + (agn)>_1<(m) (nm)c(m) <€m)
+ > (@) Gy, 09)G(x, 01)
1L

+O0(max{[x — 0™, |y — 0™|}) (3.77)

where o) = (2m)~tloge + H(OW OW)) — .
Both (3.76) and (3.77) are uniform with respect to (x,y) € £2¢ X (2.

Proof. a) From (3.33), G. may be written as
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N

GE(X7 y) = G(X7y) - Z h(J) (5]7 T]])
=1
N J
+Y {aD PV () PO ) = Dg) ~ D) + L'}
j=1

> GO%,00)PYy)POx) +0(E) . (37

'MZ

Il
-

J

|/\m

k#
1§N

Owing to Lemma 3.2.2, we have the estimate for the function ¢?)
<(j)(£j) = (27T)_1 log |fj‘ + <c(>g>) + O(|£j‘_1) ) (3.79)

and, as a result of condition (3.75), along with the estimate for h(9) given in
Lemma 3.2.1 we obtain

h(j)(fjmj) = *(27071 log ‘€J| - C(j)(nj) + O(|€j|71)

—(2m) " logl€;| — (2m) "t log|m;| — ¢
+0(g(min{|x — OY)|, |y — 0W|})~1) . (3.80)

Using the latter estimates in (3.78), yields

N
Ge(x,y) = G(x,y) + > _ al) PY(y) PV (x)
j=1

N
=Y. D GOW,0M)PM(y) P (x)

1\7
+O( Y e(min{x ~ O], [y — 0O T) . (3.8

The two summands in (3.81) may be written as

N N
Zagj)ps(j) PY(x Z Z G(O® 0V PH (yv)PY) (x)
=t =t 1<k<N
= PT(x) diag {aY}P.(y) — PT(x)MP.(y)
1<j<N
= PI(x)=""P(y), (3.82)

where P. = {PY)}N
(3.30).

M = {(1—-3;5)G(OP), O(Jl))},[gfj=17 and = is given by

J=D
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From Theorem 3.2.1,
P.(x) = 28(x) + O(e|loge| ™), (3.83)

where S(x) = {~G(x,0D) + ¢)(¢;) — (2m)~ 1log|£ | — ¢}, which by
Lemma 3.2.2, S(x) = {-G(x,00)) + O(|¢ |_ Y j=1- Then, combining this
with (3.83) in (3.82), we may write (3.82) as

a(J)P J) P(J)
j=1 j=1

G(O®,0) P (x) PN (y)

'MZ
Mz

|/\m

ki
151\/

ZimG(y, 0™)G(x,0)

1

(0] (Z g(min{|x — O], |y — O(i)|})_1> , (3.84)

%

I
iM=

where Sy, i,m = 1,..., N are the entries of =. Next, substituting (3.84)
into (3.81), we arrive at (3.76).

b) Using the following expression

Z ol (1= PO (x))(1 = PO(y))
=Za?){l—ng‘)(xH(aS)rl > G0™,00)PM(x)}
j=1 k#j
1<k<N
{l_p(ﬂ)( )+ (@) 3 GoY,00) POy )}
1]
1<I<N
N
+>° > GO®, 0 {PY ) PM ) + PNy (x)  (3:85)
J=1 k#j
1<k<N
PP (x) = PP (y) = (@)1 Y 601, 00) PO (y) PP ()}
1<2n

along with identity (3.72) and the definition of G' and ¢\, j # m, in (3.73)
we have
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Ge(x,y) = 9" Emom) — Hx,y) = > BD(&;,m) + (N —1)(2m) ' loge

J#m
1<G<N
N
#3271 (H(©OD,00) - (D) - H(y,0))
j=1
x(H(OW),00)) — (W (g;) - H(x,0)))

N
+ 3 (H(x,09) + H(y,09)) - H(OY,0))

= Y (@)7G00, 00 PO (y)PP )} +06) . (386)

Since max{|x — O], |y — O™ |} < 1/2, we may expand H(x,y) about
(0™ 0(™)), this together with estimates (3.79), (3.80) for j # m leads to

Ge(x,y) = 9" (s 1) + Z {(27) Vlog(e~|x — 0D|ly — 0D|) 4 ¢0)}

1<]<N

+(a§m))_1(—é(m) (M) + O(ly = O™ ) (—¢"™(&,,) + O(]x — O™)]))
# 3 (ol ol + 6y 00l + Gx, 0)

1<]<N
+ Z N4+ H(y,0W) — H(OW, 0W))

1<]<N
£ Y G 0N PO y) PP (x)

J=1 k#j

1<k<N

= Y (@)7G(0D, 09 PO (y) PP ()}

l#j

1<ISN

+O(max{|x — 0|, [y — O™[}) . (3.87)

Simplifying the second summand in (3.87), we have
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Ge(x,y) = (m)(Em,an( &) ()¢ (E,)

+ Z (a9 1G(y, 09)G(x,01))
1<]<N
LY o 0N { P (y)PM (x)
Jj=1 k#j
1<k<N
_ Z )16 (00, 00 PO (y) Pk >(x)}
1<l<N

+O(max{[x — 0|, [y - 0™[}),,

and since Pg(j)(x) is O(e|loge|™t) for j # m, we arrive at (3.77).



Chapter 4

Numerical simulations based on the
asymptotic approximations

Throughout this chapter, we shall implement the asymptotic formulae in
numerical simulations. The objective here is to investigate the accuracy of the
asymptotic formulae obtained in Chapter 3 for the two dimensional Green’s
kernels. We will compare the formulae, by considering the regular part H,
of the function or tensor G, for both the operators —A and the isotropic
Lamé operator, with a solution produced by the method of finite elements in
FEMLAB.

We begin with the Green’s function for the Laplacian in a domain with
multiple inclusions in Section 4.1. Subsection 4.1.1, describes the numerical
settings for the case of a planar circular domain with circular inclusions, where
we will be concerned with two particular configurations for the numerical
experiments. The first is that of a disk with a relatively large number of
inclusions in Subsection 4.1.2, the second situation is when the inclusions are
allowed to become relatively large and we consider this in Subsection 4.1.3.
We then analyse the error between the asymptotic formula and the solution
given in FEMLAB for both these cases.

4.1 Asymptotic formulae versus numerical solution for
the operator — A

In the present section, for the case of when (2. is a planar circular domain
with several circular inclusions, we shall compare the asymptotic formula for
the regular part H. of the function G. for the operator —A, with a solution
produced by the method of finite elements in FEMLAB.

The aim of this section is to illustrate through two examples

i) that the asymptotic formulae can produce a solution to the problem,
even when the finite element package cannot, and

75
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ii) that we are able to take the inclusions in our example configurations to
be rather large (by increasing €) and still obtain a good accuracy by the
asymptotic formulae.

4.1.1 Domain and the asymptotic approxrimation

Let 2 C R? be a disk of radius R and let O™, ..., OW) be interior points
of £2. We introduce the sets ng ) as disks of positive harmonic capacity in R?
each with centres OUY) and small radii p) for j =1,..., N, and we have the
set 2. = 2\ Uwéj). The function H. is a solution of the problem

AxHe(x,y) =0, x,y€ 2, (4.1)
Ho(x,y) = —(2n) tlog|x —y|, x€d,yc .. (4.2)

The regular part H. of Green’s function G, for —A in the domain {2 is given
by

N
He(x,y) = )= gD (x -0y —0W)
=1
N
—(2m)"'Nlog|x — y| — Z {a(j)Péj)(y)PE(j)(x)
j=1

~(2m)1og(pP (jx ~ OV ly - 0P|~}

+Z 3" G(0W, 00 PW (y)PY(x) + O(e) . (4.3)

J=1 k#j
1<k<N

which is uniform with respect to (x,y) € 2. x £2.. We will use the leading
order part of this approximation for our calculations.
Here ¢ = m/d is the small parameter, with m being the maximum radius

of all the disks ng ) and

d:min{lg}glN{dist( oW ,00)},  min {dlst(o@ oMMy, (4.4)
T 17£k

the function H is the regular part of Green’s function G for the domain {2

1 R R?
H(x,y) = —log [ — y
) =5 °g<y|x—y|)’ y=5pY

g is the Green’s function for the set wéj)7 j=1,...,N, given by



T

. . (1)y2
1[Iy = 0D |x -0V — L5y,

) (x_0U) y_0U (y - 09)|
¢V (x—0) y—0W) = o log
m

pUx —yl

The function ,Pg(j ) is the leading part of the approximation of the function
PY | j=1,...,N which is a solution of

APD(x) =0, xef., (4.5)
PY(x) =0, xe€dn, (4.6)
PD(x) = 0k, x€dw® k=1,... N. (4.7)
Let P, = {Pg(j)}j-v:l, then the entries Pa(j) are obtained from
) —1
P.(x) = ( diag {9} — zm) S(x), (4.8)
1<j<N

where o) = (27) ! log p0)+H (O, 00)), M = ((1-51)G(OM), 0N, .
with

1
G(va) = 7§10g |X7Y| 7H(Xay) )

and § = {SW}L, with entries being given by SW(x) = —G(x,00)).

The formula (4.3) can be written via solutions of model problems in do-
mains independent of the small parameter.

Let the sets w@ = {e71(x — 0W) : x € Wi}, j = 1,..., N with radii
r@) = e71p0)  and denote there complements by Caol) = R2 \ w@) =
1,...,N.

We will assume that all of w¥) contain the origin and that the maximum
distance between the O and dw() is equal to d.

In the following we use the scaled variables §; = e H(x —0U)) and n; =
e~y —0W). The Green’s functions for the sets w), j =1,..., N are given
by

: 1 In;11€; — 1] o (r0)?
G (gm) = — log [ LS — 51 - . 19
g (gj’nj) 2 o8 (r(ﬂ)|§j _"7j| M |77j|2 A (49)
We introduce the functions ¢\) by
C(j)(nj) = Iﬁhm g(j)(Ejanj) ) (4.10)
and the constants
Q= lim {¢Y(n;)—(2r) " log|n,l}, (4.11)

|"7]- |—o0
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for j =1,..., N. For the domain (2. described above

1

Dy — L Iyl G _ Lo
¢ (nj)_27r10g<r(j))’ Y= zwlogr ) (4.12)

We may then rewrite (4.3), incorporating the small parameter ¢ with the use
of (4.9), (4.10) and (4.12) as follows

N
He(x,y) = H(x,y) = Y g9 (&,m;) — (2m) ' Nlog(e~'|x — y|)

Jj=1

M=

{a0PO PV (x) = (D(g) = ¢V () + 2}

<.
Il
—

G(O®,0D)P® (y)PW (x) + O(e),  (4.13)

+
] =

<.
Il
_

k£
1<k<N

where o) = (27)~1loge + (27)logr@) + H(OW), 0W).

4.1.2 Example: A configuration with a large number of
small inclusions

For our first illustrative example, we shall plot the regular part H. of Green’s
function G..

We produced the surface plot of the asymptotic solution for H., on a
mesh consisting of 752448 elements, (see Figure 4). On this mesh, FEMLAB
was unable to produce an accurate numerical solution, but the asymptotic
formula is still efficient for this case.

The numerical settings are as follows. Let {2 be the disk of radius R = 70,
centered at the origin. We consider the situation when we have N = 50
small disks, whose radii in scaled coordinates do not exceed 10.0449, and
our small parameter ¢ = 0.0498. The location of the point force is given by
y = (—20,15).

For a mesh containing 188112 elements, we produced a surface plot of the
asymptotic formula for H. given in (4.13) and the numerical solution given in
FEMLAB by the method of finite elements, and the corresponding diagrams
are shown in Fig 2 a), b).

We compared both the asymptotic representation for the regular part of
G. and the numerical solution produced in FEMLAB on this mesh, by taking
the absolute difference between the two (see Figure 3 a)) and then the relative
error (see Figure 3 b)). From both of these figures it can be seen that the
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a) b)

Fig. 2 a) Numerical solution produced in FEMLAB on a mesh containing 188112 elements,
b) Computation based on the asymptotic formula for He, when y = (—20,15) and ¢ =
0.0498.

Absolute error Relative error
x10”
025
45
E
35 02
e
25 015
21
157
1 01
05”
07 T T 0.05

Fig. 3 a) Absolute error and b) relative error between numerical solution and the com-
putations produced by the asymptotic formula for H., when € = 0.0498 and the mesh
contains 188112 elements. All the spikes occur on the boundaries of the inclusions. Maxi-
mum absolute error is 0.1162, maximum relative error is 0.2995, which is attained on the
boundary of the inclusion with centre (-20, 4), near the point (-20, 15) where the force is
applied.
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asymptotic formula gives a good approximation to the numerical solution
produced in FEMLAB.

The critical case when FEMLAB failed but the asymptotic formula still
produced an accurate solution is shown in Figure 4.

T
0

50 \(//%/;50 0.7

-100

Fig. 4 The computation based on the asymptotic formula for the regular part H. of
Green’s function on the refined mesh, when y = (—20,15) and ¢ = 0.0498 and the mesh
contains 752448 elements.

4.1.83 Example: A configuration with inclusions of
relatively large size

In this example, we shall once again take the asymptotic formula for the
regular part H. of the function G, and compare this with numerical solutions
produced in FEMLAB, for a configuration with few inclusions, and we shall
experiment with our parameter €. We show that we are able to consider a
configuration where the inclusions are rather large (by increasing €) and our
asymptotic formula for H, still gives a good approximation to the numerical
solution.

Let {2 now be a disk of radius 150, and we consider the case when we have
5 inclusions wéj), j=1,...,5, with centres O(Y) = (44, 66), O = (90, 34),
0®) = (-36,-68), O™ = (68,-26), O®) = (—14,0), and whose radii in
scaled coordinates do not exceed 53.7919. The position of the point force is
y = (—25,70).

In Table 1, we present data showing how the error between the numerical
solution given in FEMLAB and the asymptotic formula for the regular part of
Green’s function H. changes as we decrease €. Here m denotes the maximum
radius of the inclusions and A,,,, and R,,., are absolute and relative error,
respectively.
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| m | £ | Amaz | Rmaa
40 10.7436| 0.1219 0.1991
36 (0.6692| 0.09741 0.157
32 |0.5949| 0.07637 | 0.1216
28 (0.5205| 0.05845 | 0.09204
24 10.4462| 0.04335 | 0.06752
20 (0.3718| 0.0308 0.04749
16 [{0.2974| 0.0206 0.03156
12 |0.2231| 0.01298 0.02

8 10.1487| 0.007266 | 0.0111
4 10.0744( 0.001395 | 0.004503
2

1

0.0372|0.0006608| 0.001991
0.0186| 0.002993 (0.0009269
0.5 {0.0093|0.0003156(0.0004448
0.25|0.0046|0.0001515(0.0002171

Table 1 Maximum absolute and relative error corresponding to various values of € and
when y = (—25, 70).

We also have for the situation when ¢ = 0.7436 the surface plot of the
asymptotic formula for the regular part of Green’s function and the relative
error between the numerical solution and the asymptotic formula; we note
that inclusions are rather large in this case (see Figures 5 a) and b)). It can be
seen from Figure 5 b) that although the maximum relative error is larger near
where the point force is applied (Ryq: = 0.1991), the asymptotic formula
still gives a good match with the numerical solution everywhere else.

Asymptotic formula Relative error

P o~ ~ — 018

/ DI BN
ey i} N
ol K Ty 2 S )

0.16
N Ty §% 055 g,
] — — .
02 , —_— F ot
; 06
0.15 L
. i 017
07
075 00° -
il e -0.8 0 o
k0 I g
Tl . 100
o 50 ’ -
T

I g
e //wa/-ﬁa
A0 T

a)

Fig. 5 a) Computations produced by the asymptotic formula for Hc, b) The relative error
between the numerical solution and the asymptotic formula for the case when y = (—25, 70)
and € = 0.7436.

04
067
087
4
\V\\
100

The plot of € against R4, on a logarithmic scale is shown in Figure 6.
It can be seen from this that for small € the graph is appears to be linear
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and from this we can conclude the numerical evaluation of the relative error
Ry paz 1s consistent with the theoretical prediction of formula (4.13).

log(maxrelativeerror)
\
&
&
T
.

s 4

-85 L L L L L L

log(maxradius/d)

Fig. 6 Plot of log(e) against log Rmaez when y = (—25,70).



Chapter 5

Other examples of asymptotic
approximations of Green’s functions in
singularly perturbed domains

The structure of this chapter can be described as follows. Sections 5.1 and
5.2 give several results for asymptotic approximations of Green’s kernels in
domains with singularly perturbed smooth or conical exterior boundaries.
Section 5.3 presents a detailed analysis of Green’s function of the Dirichlet-
Neumann problem in a long cylindrical body. We introduce the notion of
a capacitary potential and its asymptotic approximation in the elongated
domain and construct an asymptotic approximation of Green’s function in
the long rod in Sections 5.3.2 and 5.3.3.

5.1 Perturbation of a smooth exterior boundary

Consider an example of a bounded domain 2= in R3, as shown in Fig. 7. Let
v- denote the perturbed small part of the boundary, and [ be a flat part of
the boundary surrounding ., while I'~ is the remaining unperturbed part
of the exterior surface.

Green’s function for the Dirichlet-Neumann boundary value problem in

£2_ is introduced as a solution of the following boundary value problem

AG.(x,y)+d(x—y) =0, x,y€ 2,
Ge(x,y) =0, x€v, U,y € 02,
0G,

ong

(x,y)=0, x€l, ye 2.

To construct an asymptotic approximation of G, one also needs model
limit domains shown in Fig. 7: the unperturbed limit domain 2~ and the
unbounded domain D~ corresponding to boundary layers near the perturbed
boundary. Let G- and gp- be Green’s functions of the corresponding mixed
boundary value problems in 2~ and D~. By H,- we denote the regular part
of Gg-. The capacitary potential is introduced as a function P,-, harmonic
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OO .
D \/_\/
y
Q" _
r
(a) ()

Fig. 7 (a) Unperturbed domain £27; (b) Unbounded model domain D~ .

in D~, which satisfies the homogeneous Neumann condition on (0D~) \ v~
equals to 1 on v~ , and decays at infinity. Then the asymptotic approximation
for G, takes the form

~—

+Hgo-(0,y)Py- (') + Ho- (x,0) Py~ (7 'y)

—Hg-(0,0)P,- (e 'x)P,- (¢ 'y) + O(e). (5.1)

Ge(x,y) = Go-(x,y) +e 'gp- (7 'x,e7y) — (dn|x —y|) "
x )

~—

For the particular example of the domain in Fig. 7, one can make a mirror
reflection across the flat part [ of the boundary, so that the extended set rep-
resents a domain with a small hole. Then the method of images enables one
to employ the formula (6.85) and to deduce the asymptotic approximation
(5.1). Indeed, other shapes of the perturbed exterior boundaries can be con-
sidered: in particular, this may include the case of a domain with a perturbed
conical surface outlined below.

5.2 Green’s function for the Dirichlet-Neumann
problem in a truncated cone

Consider an example involving a three-dimensional domain shown in Fig.
8(a). Let K be an infinite cone {x : |x| > 0, |x|"'x € =}, where Z is a sub-
domain of the unit sphere S; such that S; \ = has a positive two-dimensional
harmonic capacity. The notations w and {2 are used for subdomains of K sepa-
rated from the vertex of K and from infinity by surfaces v and I', respectively.
(see Figs. 9 and 8(b)). By 2. we denote a domain involving a “small trun-
cation” of the conical part of the boundary, i.e. 2. = {x € 2 : e 1x € w},
where ¢ stands for a small positive parameter. The conical surface is denoted
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by [, whereas 7. = {x : e !x € v} stands for the part of surface near the

vertex of the truncated cone, as shown in Fig. 8(a).

) >

(a) (b)

Fig. 8 (a) A domain with a singularly perturbed conical boundary. (b) A limit unper-
turbed domain.

Let G, and G, be Green’s functions for the Dirichlet-Neumann problem
for —A in 2. and the Neumann problem in K, respectively:

AGe(x,y) +o(x—y) =0, x,y € (2, (5.2)
X xy) =0, xel yeo, (59
G.(x,y) =0, x€ .U, ye€ . (5.4)

and

Achone(va)+6(X_Y) = Oa vaEKv

aGCO’I’LE _
on, (x,y) = 0,

xel, yeK,

Geone(x,y) — 0, [x| =00, y € K.

Also the notations G is used for Green’s function of the Dirichlet-Neumann
problems for —A in {2, that is G(X,¥) = Geone(X,y) — K(x,¥y), where the
harmonic function K(x,y) is a solution of the boundary value problem

AK(x,y) =0, x,y € £,
oK
on

K(x,y) = Geone(x,y), x€ 'y € 2.

(x,y) =0, x€l, ye
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We note that

K(0.y) = (sly) ™ — G(0.), and K(x.0) = (s|x|) " — G(x,0),

where s is the area of C'()S].

To describe the model fields in the unbounded domain w, we use the
scaled coordinates € = ¢~ !x, n = e~ 1n. Let P(£) be a relative capacitary
potential of -, which solves the boundary value problem

AP) =0, £cw,
PE) =1, &€,

on

Fig. 9 Scaled region in the vicinity of the perturbed boundary.

Green’s function ¢(&,n) for the unbounded domain w is represented as

9g(&,m) = Geone(&,m) — k(€,m), where k(€,m) is a solution of the model
problem

Aé“(fﬂ?) =0, 5777 € w,

H(Eﬂ?) = Gcone(&an)v E € New,
Ok
ang(éan) _07 5517"766‘)

k(& m) — 0 as |{| —oo,n Ew.

Then the required Green’s function G¢(x,y), solving the problem (6.149)—
(6.153), is approximated by the uniform asymptotic formula

Gs(x7y) = G(Xay) + gilg(gilxa gily) - GCOW«E(X?y)

+K(0,y)P(e'x) + K(x,0)P(c " 'y)
—K(0,0)P(ety)P(e 7 x) + O(e"),
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where A is a positive exponent depending on the cone opening.

In the following section we present a new result including uniform asymp-
totic approximations of Green’s functions for a mixed boundary value prob-
lem for the Laplacian in an elongated domain. Dirichlet boundary conditions
are set at the end regions of this domain, whereas the Neumann boundary
condition are prescribed on the lateral surface.

5.3 The Dirichlet-Neumann problem in a long rod

Let C be the infinite cylinder {(x',z,) : %' € w, x, € R}, where w is
a bounded domain in R® ! with smooth boundary; here n > 2. Also let
C?* denote Lipschitz subdomains of C' separated from 4oo by surfaces 7+,
respectively.
Let us introduce a positive number M and the vector M = (O’, M), where
O’ is the origin of R"7!. It is assumed that the ratio (diam w)/M is small.
A long rod C)y is defined as follows

Cu={x:(x-M)eCt, (x+M)eC},

the lateral surface of the rod is denoted by I, as shown in Fig. 13.

Cm

Fig. 10 A long rod C)s and associated unbounded model domains.
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Let Gps(x,y) denote the fundamental solution for —A in the domain C)py
subject to zero Neumann condition on the lateral surface I" and zero Dirichlet
conditions on the end parts 4+ of the boundary of the long rod:

AJL‘G]\/I(Xa Y) + (5(X - Y) = 07 X,y € OM;
0G
ong
Gu(x,y) =0, x€7", y€Cu.

(X,y):O, XEF,yGCM,

In order to obtain an approximation of Gj; we also introduce several model
problems independent of the cylinder length M.
By G (x,y) we denote Green’s function of the Neumann problem in C

A Go(x,y)+d(x—y)=0, x,y €C,

0G5
ong

Go(x,y) = _(2|w‘)_1|xn - yn| + O(exp(—alz, — ynl)) as |zn| — oo,

(x,y)=0, xel,yeC,

where « is a positive constant, and |w]| is the (n — 1)-dimensional measure of
w.

Similarly, G and G~ stand for the fundamental solutions for —A in the
domains C*, with the homogeneous boundary conditions defined as follows

AGH(xE,yF) +o(x* —y*) =0, x*,y*eCF,
GE(xT,yF) =0, xT eyt y*t e,
0G=

on

and it is also assumed that G*(x*,y*) are bounded as ¥ — Foo.

(xi7yi) =0, xTel,yt eC?,

5.3.1 Capacitary potential

The capacitary potential Py is defined as a solution of the Dirichlet-Neumann
boundary value problem in C);:

AP]VI(X) =0, xe€ CM, (55)
0Py,
an (X) - 0) X e Fa (56)

Py(x) =1, x€~~ and Py(x)=0, xevyT. (5.7)
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We shall also use the solutions (* of the homogeneous Dirichelt-Neumann
problems in semi-infinite domains C*, as follows:

ACt(xF) =0, xeCF, (5.8)
b +
g—n(xi) =0, xT e, (5.9)
(F(x*) =0, xeq, (5.10)
and
(F(xF) = Fay + (% + Olexp(—alay ) as |a;| — oo, (5.11)

where a is a positive constant, x* = (x/,z,, F M) are local coordinates at
the ends of the long rod Oy, and (£ are constant terms that depend on the
geometry of the cross-section w and the end parts 4+ of the boundary of the
long rod.

Theorem 5.3.1 The following asymptotic formula, uniform with respect to

x € Cyy, for the capacitary potential Pyy(x) holds:

_ Mta,+ 0 - (xT)+ T (x)
2M + (% + (=

P (x) + O(exp(—aM)).  (5.12)

Here, the functions ¢*, variables x* and the constants (L are the same as
in (5.8)—(5.11), « is a positive constant.

To prove this statement we use the direct substitution of (5.12) into (5.6)—
(5.7), which shows that the remainder term is a harmonic function satisfying
homogeneous Neumann boundary conditions on the lateral surface of the
rod and is exponentially small at the end parts y& of the boundary. Then it
remains to apply the estimate similar to Lemma 1.3 of Section 1.5 in [25].

5.3.2 Asymptotic approximation of Green’s function

Let H*(x*,y*) be functions defined in semi-infinite domains C*, and as-
sume that they also satisfy the Dirichlet-Neumann boundary value problems

A H* (x*,yF) =0, x*,y* e C*, (5.13)
OH*
S5y =0, xF el yt e, (5.14)

H*(x*,y%) = Goo(x,y) + 2w|) T ¢E(y*), xenr®, yEeC*, (5.15)

and
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H*(x*,y*) -0 as 27 — Foo. (5.16)
The asymptotic approximation is given by the following statement.

Theorem 5.3.2 Green’s function G(x,y) is approzimated by the asymp-
totic formula, uniform with respect to x,y € Cyy

GM(X7 Y) = GOO(X7 Y) - H+(X+ay+) - Hﬁ(xiayi)

,mﬂ(l

(G~ P~ Puy) + 7

3 1] + O(exp(—aM)), (5.17)

where Apr = 2M + (& + (., and « is a positive constant.

In the text below we present a formal argument that leads to the asymp-
totic formula (6.4.1).
Let

GM(Xv Y) = GOO(X7 Y) - H]T/[(Xv y) - H]\_4(X7Y)’ (518)

where the functions H Ajﬁ[ are defined as solutions of the boundary value prob-
lems
AzH]:\t/[(xvy) = 07 X,y € CMv

OHZE,

on
Hy(x,y) = Goo(x,y), x€77,y €Cuy,

HJ%I(X7y):O’ XG’Y:‘:, YEOM

(X,y):(), XEF,yGCM,

We note that the sum ), Hlj\f[ is symmetric, i.e.

Hy (x,y) + Hy(x,y) = Hy, (y,x) + Hy, (y, x).

The functions H f{ can be approximated by the formulae

Hiy(x,y) = H* (x*,y%) — ﬁmyﬂ
~Pu ) (H (¥ —s0.y*) = ¢ ) + 1
and X
i) = H(x.y7) = g (y)
a0 (H 6 o0y ™) = € 07)) + 1

with exponentially small remainder terms hij. Applying Green’s formula to
the functions H* and ¢* in the domains C*, respectively, we deduce that
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/ 1

H_(X_ >+Oovy_) = _M{C_(y_) - <M+Yn + CSO)}v

and
1

Ht(xt — +y — _
(X Y Ooﬂy ) 2|w|

{CT™) = (M —yn + ()}
The condition (5.11) yields

lim  H™(y~',+0c0,y”) =0,
Yn —+00
and )
lim Ht(y't, —oo,y")=0.

yi——oo

If A = 2M + ¢& + ¢, then the following identity holds

Hyy(x,y) + Hy(x,y) = H (x*,y") + H™ (x",y")

A /1 1 A
(g Puto) (5 - Puv) - o (5.19)

Combining the formulae (5.18) and (5.19) we deduce (6.4.1).

The direct substitution of (6.4.1) into (5.14), (5.15) shows that the remain-

der term is a harmonic function satisfying homogeneous Neumann boundary
conditions on the lateral surface of the rod, and it is exponentially small at
the end parts ¥ of the boundary. Applying the estimate similar to Lemma
1.3 of Section 1.5 in [25] we complete the proof.
Ezxample of Green’s functions in model domains. In some cases, Green’s
functions for model problems required for the above asymptotic approxi-
mation can be constructed in a simple form. As an illustration, we suggest
an example involving a long rectangular strip. In this case, the function
Goo(x,y) is the Neumann function for the Laplacian in the infinite strip
T ={(x1,22) : —00 < 1 < 00, |x2| < 1/2}, given in the form

1 [ - .
Goolx,¥) = 5 [ Glhma, ) exp(—ik(as — o))k

where

. _ cosh(k(zz + y2)) + cosh(k) cosh(k(zz — y2))
G(k,22,92) = 2k sinh(k)

_ { (2k)~tsinh(k(z2 — y2)), T2 > ¥y
—(2k) " sinh(k(z2 — y2)), T2 < Yo

Assuming that the end regions of the rectangular domain are ”flat”, i.e. they
are located on the vertical straight lines 1 = £ M, we can construct Green’s
functions G+ for semi-infinite strips as follows:
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Gi(xivyi) = GOO(Xi7yI:’y§E) - GOO(Xia _yfvygt)'

These model fields are readily applicable in the asymptotic formula of The-
orem 5.3.2.

5.3.3 Green’s function G); versus Green’s functions
for unbounded domains

The result of Section 5.3.2 together with definitions of functions G, and G*
lead to the following

Theorem 5.3.3 The Green’s function G (x,y) and the functions GF, Guo
are related by the asymptotic formula

Gu(x,y) = ZGi ) — Goo(x,y) MZ(C* )+ )

2&1 (5~ Puto) (2~ Puty)) + jl +O(exp(—al))  (5.20)

where « is a positive constant independent of M.

Corollary 5.3.1 The formula (7.2.1) allows for an equivalent representa-
tion involving the model fields ¢(* defined as solutions of the boundary value
problems (5.8)—(5.11):

Gunlo.y) = 3 G, ¥4)~Cooly)+ {2 23 (C6e+¢0) §
(\wm)‘l( SHEE )T ) GB2)
% (o = 3(CE = 2+ - <*<y*>) + O(exp(—al)),
where « is a positive constant independent of M.

The above formulae can be simplified if we introduce additional constraints
on the positions of the points x and y within Cj;.

When the points x and y are ”far away” from the ends v+ of the long rod
the quantities H* become exponentially small, and hence we arrive to the
following

Corollary 5.3.2 When min{(x+M)/M, (x£M)/M} > Const, the Green’s
function Gy is approximated by the formula

Gar(x,y) ~ Gool,y) = (wl2ar) ™ (w0 = 3(C5 = ¢2)) (0 — 1(C5 — )
Anr

TR

(5.22)
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as M — oo.

Another simplified formula for the Green’s function can be written for the
case when the points x and y are sufficiently close to one of the ends of the
rod.

Corollary 5.3.3 Assume that the points x and y are close to the left end
~~ of the long rod Cyy, i.e. max{x+ M,y + M} < Const. Then the function
Gy is approzimated by the formula

G~ (x,+00,y )G (x~,y ', +00)
Ans

Guxy)~G (x,y) - |l , (5:23)

as M — oo.

Similar approximation is valid near the other end % of the long rod.

5.3.4 The Dirichlet-Neumann problem in a thin rod

By rescaling, the above results can be used to find an asymptotic approxi-
mation for Green’s function G(¢) in a thin rod rather than the long rod. Let
a thin domain be defined by

C.={x:elx—a)eCt, el (x+a)ecC},

where the notations C* are the same as in the beginning of Section 5.3 (see
Fig. 13), 2a is the length of the rod, and now ¢ is a positive small parameter.
As above, it is assumed that Green’s function is subject to zero Neumann
condition on the cylindrical part of C. and zero Dirichlet condition on the
remaining part of 9C..

Theorem 5.3.4 The following asymptotic formula for G (x,y), uniform
with respect to x,y € (2., holds

GO y) =G x—a) ey —a) + G (e x+a) s (y +a)

—Goolex,e7y)
—e2lel o+ oGk I (G H G — ) H ) - =)
y+a

(P (e - )+ =) — ¢ (

e|w] 3 €

)

()20t (o4 ¢ -2 3 (e xFa) + Gy Fa)

+
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+O(exp(~/2)) |

where B is a positive constant independent of €.

(5.24)



Part 11

Green’s tensors for vector elasticity in
bodies with small defects






Chapter 6

Green’s tensor for the Dirichlet
boundary value problem in a domain
with a single inclusion

We consider an elastic domain containing a single small inclusion. The
columns of Green’s tensor correspond to the displacement vectors produced
by unit point forces aligned with the coordinate axes. Governing equations
and main definitions are given in Section 6.1. Here, we also discuss an appli-
cation of this tensor, concerning Green’s representation for a particular class
of problems in elasticity for a domain with a small inclusion. Section 6.2,
includes the result on the estimates for the maximum modulus of solutions
to the homogeneous Lamé system in a domain containing a small inclusion.
In Section 6.3, for such a domain, we derive the uniform approximation of
Green’s tensor in a three-dimensional domain. For the case of a planar singu-
larly perturbed domain we construct the corresponding Green’s tensor for the
Lamé operator, in Section 6.4. Section 6.5 contains corollaries, which show
that under certain constraints on the independent variables, the asymptotic
formulae for Green’s matrices can be simplified.

6.1 Green’s representation for vector elasticity

Let 2. C R®, n = 2,3 be a domain containing a small inclusion or void
dependent upon a small parameter €. As a simple example, consider the
following problem posed in 2.

pAxu(x) + (A + p)Vx(Vx - u(x)) + f(x) = 0 ,x € (2 (6.1)
ux)=0, x€df, (6.2)

where O is the zero vector in R", u(x) = (u1(x),...,u,(x))?, and f =
(fi(x),..., fn(x))T and the components of f are assumed to be smooth. Then

suppose G, is the Green’s tensor of the Lamé operator, which solves

pALGe(%,Y) + A+ 1) Vx(Vx-Ge(x,¥)) +0(x—y) I, = 0L, ,x,y € 2. (6.3)

97
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G.(x,y)=0I,, x€0f.,yc€ . (6.4)

where I, is the n x n identity matrix. Then the solution of (6.1) and (6.2),
can be computed using this Green’s tensor in the following way. By applying
Betti’s formula to the tensor G, and vector function u, we immediately obtain

u(x) = /Q G.(x,y)E(y) dy . (6.5)

We note that a similar formula can be obtained for the case of the mixed
problem considered in Chapter 8. for the case of when in problems (6.1)—
(6.4), we have the Dirichlet boundary condition replaced by homogenous
displacement conditions on the exterior domain and traction conditions on
the small inclusions.

6.1.1 Geometry and matrix differential operators

We now give several notations adopted in the following text. Let {2 be a
bounded domain in R™, n = 2,3, with compact closure {2 and smooth bound-
ary 0f2. By w we denote a domain in R™ with smooth boundary dw and
compact closure w; its complement being Cw = R™\w. We shall assume that
both {2 and w contain the origin O as an interior point. It is also assumed
that the minimum distance between O and the points of 92 is equal to 1.
In addition the maximum distance between O and the points of dCw will be
taken as 1. We introduce the set w. = {x : e7'x € w}, where ¢ is a small
positive parameter, and the open set (2. = 2\&.. The notation B, stands
for the open ball centered at O with radius p.

In the sequel, along with x and y, we shall use scaled variables & = e 'x
and e = e ly.

By const we always mean different positive constants independent of e.
The notation f = O(g) is equivalent to the inequality |f| < constg. Also
whenever we write O(g) in a matrix or vector relation we mean a matrix or
vector whose entries are O(g).

Let o(u) = [0i;(u)]} ;= represent the Cauchy stress tensor, which for an
isotropic solid with displacements u = {uy}}_, has entries of the form

Oij (u) = Aéijup,p + u(ui,j + uj,i) , (6.6)

here and elsewhere in the text, the repeated indices are regarded as the
indices of summation, and ¢*(u) = o;;(u)n; are the tractions computed for
displacements u, where n; is the 4" component of the unit outward normal.

Also e(u) = [e;;(u)] denotes the strain tensor, whose entries are given
by

n
i,j=1

eij(u) =27 u; +uy,) (6.7)
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for n =2, 3.

Let T,(0x) be the differential operator of tractions and u(x) a vector
function with k-components. The tractions of this vector function on the
boundary are defined by

T, (0x)u(x) = T (8 )u(x) + - - - + np, T® (8 )u(x) | (6.8)

where n = (nq,...,ng) is the unit-outward normal. In the two dimensional
case

Wa [ A+21)01 A0s @)q \_ [ 102 po
T (ax)< wdy oy )T @)= e (v 2ma, ) 0 (69

and in three dimensions we have

A+ 2#)81 ADo AO3 0o 12,1 0
TW (0y) = pdy  pdy 0 |, TP (@) = | A (A +2u)ds N5 |
103 0 wpdh 0 uO3 02

pds 0 por
T@) = 0 pds  pds : (6.10)
)\81 )\62 ()\+2,U,)83

where 0x = 0/0%, 0; = 0/0x;.
We shall study the Green’s tensor G, for the Lamé operator, which is
denoted by L(0x) = [Li;j(0x)]}'j=1, n = 2,3, whose entries are given by

- 2w+ > (1= 8in)02,  fori=j
Lig(0) = { (A + 1), forizj,  (611)

where 6;,, is the Kronecker delta.
The tensor G. is a solution of the following problem in 2. C R", n = 2,3,

L(0x)Ge(x,y) + 6(x —y)I, =0I,, x,y €, (6.12)

G.(x,y) =0I,, x€9f,y¢€ 2, (6.13)

where I,,, n X n identity matrix.
An important property of Green’s tensor is the following symmetry relation

G:(x,y) = GZ(y,x), forx,y € 2., x#y. (6.14)

Betti’s identities. Let u(x) = {u;(x)}?; and v(x) = {v;(x)}?_, be real
vector functions on a domain 2 C R™, n = 2,3. Then Betti’s first identity
can be written as

/Q u(x)-L(0x)v(x)dx = — /!2 Trace(o(u)e(v)) dx+/ u(x)- Ty, (0x)v(x) dSx ,

o8
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which is a direct consequence of integration by parts. By interchanging u and
v in the above relation, and subtracting we can obtain Betti’s second identity

Q{U(X) - L(0x)v(x) = v (%) - L(0x)u(x)} dx
= {u(x) - T, (0x)v(x) — v(x) - T, (Ox)u(x) } dSx .
a1

The differential operators and Betti’s identities introduced above can also
be given an equivalent representation as we will now see. This form will useful
when dealing with the uniform asymptotics of Green’s tensor in a domain
with voids (see Chapter 8).

We discuss the case of 2-dimensions first. Let D(€) be the matrix function

(& 0 2712
D(§) = ( 0 & 2_1/2£1> (6.15)

and C be the 3 x 3 symmetric constant matrix:

A+2u A 0
C= A A+2p 0 . (6.16)
0 0 2u

Then the operator L(0x), using the above matrix differential operator (6.15)
and matrix of elastic constants (6.16), can be written as

We also write the differential operator of tractions T, (0x) in this way
T (0x) = D(n)CD(8)" ,

where n is the unit outward normal to the boundary at which this operator
is considered.
We set
S(u) = (011 (u), 022(u), 2 *015(u)"

which is known as the vector of stress, and by vector of strain we mean
E(u) = (e11(u), e22(u), 2" 2e15(u))” .
Under these notations, we have the relations
S(u) = CD(0x) u(x) and E =D(dy) u(x) .

Then the Betti identities take the form
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/Qu(x)TD((?x)CD(ax)Tv(x) dx
= —/ E(u)TS(v) dx—|—/ u(x)"D(n)CD(9x) T v(x) dSx ,
9] o

and
/Q{u(x)TD(Bx)CD(Bx)TV(X) —v(x)TD(05)CD(9x) u(x) }dx

= 8Q{u(x)TD(n)CD(8x)TV(X) —v(x)"D(n)CD(0,) u(x)}dSy .

6.2 Estimates for the maximum modulus of solutions of
elasticity problems in domains with small inclusions

In order to obtain the estimates for the remainders in the representations
for G, in Sections 6.3 and 6.4, we need an auxiliary result concerning an
estimate for the maximum modulus of solutions for Lamé system in domains
with small inclusions. In what follows we shall formulate and prove such a
result.

Let u be the displacement vector which satisfies the Dirichlet boundary
value problem in the domain 2. C R",

L(0x)u(x):=pAux)+ A+ p)V(V-ux)=0, xef2, (6.17)

(x), x€Iw, (6.18)

(x) = ¢,
P(x), x€00, (6.19)

u(x)

x), and we assume

where dx = 9/0x, O is the zero vector, ¢_(x) = @(e~
that ¢, and 1 are continuous vector functions.

In this section, we prove the following.

Lemma 6.2.1 There exists a unique solution u € C(£2.) of problem (6.17) —
(6.19) which satisfies the estimate

max lu(x)| < const max{[|e.[lc@w.) » [¥llc@e)} - (6.20)
We consider the cases when the dimension n is equal to 3 or 2.

The proof of the theorem involves auxiliary statements related to model
domains 2 and Co = R™"\@.
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6.2.1 The maximum principle in (2

Let u solve the Dirichlet boundary value problem in {2

L(Ox)ux) =0, xei?, (6.21)
ux) =¥(x), x€9nN, (6.22)

where 1 is continuous on 0f2.

The following assertion is essentially due to Fichera [?], who proved its
analogue for the 3-dimensional case. The same argument works for the case
of a planar domain and is even simpler.

Lemma 6.2.2 (Fichera’s maximum principle, see [?]) There exists a unique

solution u € C(£2) of problem (6.21), (6.22). This solution satisfies the esti-
mate

lulleiay < Aelldllcon) (6.23)

where Ag is a constant coefficient.

6.2.2 The maximum principle in Co

Let w be a domain containing the origin with compact closure and smooth
boundary dw. Without loss of generality we assume that diam w = 1. Let
v(£€) be a solution of the Dirichlet boundary value problem in the unbounded
domain Cw:

L(&S) v(E) = 0, teCo, (6.24)
v(§) = @&, €€iw, (6.25)
|[v| = 0 as |€] — oo, (6.26)

when n = 3.
For the two-dimensional case (n = 2), the formulation (6.24)—(6.26) has
to be supplied with the orthogonality conditions for the right-hand side ¢:

/aw (&) T (9¢) AV(€)ds =0, j=1,2, (6.27)

which guarantees the decay of the solution v at infinity. The vector functions
AU are solutions of the model problem

L (ag) A (g) =0, ¢eCw, (6.28)
AV () =0, ¢ecalw, (6.29)
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AV () ~ 4D (£,0) as [ — o0, (6.30)

where v(9) are the columns of the fundamental solution ~ for the Lamé op-
erator in an infinite plane and T,, denotes the matrix differential operator of
tractions

(oo [ 011(AD)ng + 015(AD)n,
T, (3€> AV (&) = <0'12(/1(j))n2 + 029 (A )y

where n = (n1,n2) is the unit outward normal on dw. We shall also use the
notation N for the 2 x 2 matrix function:

N(E) = {1, (9¢)AD (€), T, (9) A2 ()} . (6.31)

Lemma 6.2.3 There exists a unique solution in C(R™\w) of the problem
(6.24) — (6.26) ((6.24)—(6.27) for n = 2). This solution satisfies the estimate

sup {|€[|u(&)[} < Acallello@w) - (6.32)
Ecco

Proof. By Lemma 6.2.2 there exists a unique solution U € C(Bs\w) of the
Dirichlet problem

L(0g)U(€) =0 in By\w, (6.33)
U()=0 ondB;, (6.34)
U§) =€) ondw, (6.35)

where Bj is the ball of radius 3 centered at the origin.
This solution satisfies the estimate

[Ulle(za\w) < Allello@w) - (6.36)

It suffices to prove the lemma assuming that ¢ is smooth, with the general
case being settled by approximation. Owing to the classical elliptic theory
and smoothness of both dw and ¢, there exists a unique variational solution
v e C(R"\w).
Let
w=v—nU, (6.37)

where 7 € C§°(B3) and 7 = 1 on Bs. The vector function nU is extended by
zero outside Bs. Obviously,

Trpow = O, (6.38)

and
w=0(¢") as|fl — 0. (6.39)

Furthermore,

L(ag)w = —[L(ag),n] U y (6.40)
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so that L(a‘s)w € C§°(R™\@) and supp L(Bg)w C B3\ Bs. By Betti’s formula
and Korn’s inequality we obtain

1/2
[Wllw; (B;\0) < const / |U|? dx . (6.41)
Bg\Bz
This along with (6.36) gives
Wl L, (Ba\B, s) < const lellc@w) - (6.42)
By the local regularity estimate for solutions of L(@g)w = O we have
IwllcB,,.) < const [[¢llcow) - (6.43)
This and (6.36), (6.37) imply

IVllc@B,,.) < const [[¢llcow) - (6.44)

Applying Fichera’s maximum principle (see Lemma 6.2.2) for the domain
B7/4\(j¢) we find
IVlle(s,, 0w < const [@llc@w) - (6.45)

Let 7 € C§°(B7/4), and 7 = 1 on Bj/4. Then

—L(@g)((l —7)v):=f, (6.46)
where -
fe C°(R") and  supp £ C Br/s\Bs)s - (6.47)
We have
(1-7)v=086xf, (6.48)

where & is the fundamental solution of the Lamé operator.
Now, (6.48) implies directly that

€l[1 = 7(©)I[v(&)] < const [Vl 1,5, 15, 1) (6.49)

in the 3-dimensional case. For n = 2, we notice that the condition that (1—7)v
vanishes at infinity results in the self-balanced condition for f. Therefore, the
logarithmic and homogeneous of order zero terms in the asymptotics of &
disappear. Referring to (6.45) we obtain for £ € R”\B7/4

€l[v(&)] < const [lelloow) » (6.50)

and using (6.45) once more we complete the proof of (6.32).
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6.2.3 The operator notations

We introduce the operators Py, and Pog in such a way that the solutions u,
v of problems (6.21), (6.22) and (6.24)—(6.26) are represented in the form

u=Po(), v=Pez(p). (6.51)

The notation Peg(v)(€) = Pea,. (¢)(x) will also be used.
In the case of n = 2, we will also need the approximation P, of the capac-
itary potential:

Pe = G(Xa O)D(log 5)
+Pea. (I2 — Tra,.G(x,0)D(loge))
—Po(TrpoPog. (I — Tra,.G(x,0)D(loge))) ,

where G is the Green’s tensor in {2, D(loge) is the 2 x 2 matrix defined by

D— 1 (K2 loge — (35 + H22(0, O) (s — H12(0,0) )

K (1 — H21(0,0) Kyloge — (ff + H11(0, O)

(6.52)
with

Kl = (K2 10g6 — Ci)f + H11(O, O)) (KQ IOgE - ng -+ HQQ(O, O))

_(H12(O7 O) - CiXQD)(H21(Oa O) - Cgf) ) (653)
A+ 3u

S e 6.54
7 drp(N + 2u) (6:54)

and H = [Hij]ij:l is the regular part of Green’s tensor for the domain (2,

(=T = ‘&1‘11'1 {1(e,0) +9(&e)}, (6.55)

where g is Green’s tensor for the unbounded domain C'@.
By direct substitution, we can verify that

L(0x)Pe(x) = 01z, x€ 2, (6.56)
Pe(x) = 0, x€080, (6.57)
P.(x) = I +0(), x€Ow. (6.58)

The proof of Lemma 6.2.1 for n = 2

First, consider the case when the homogeneous boundary condition is set on
012, so that
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L(Ox)ux) =0, xe€f., (6.59)
u(x) = p.(x), xE€ dwe, (6.60)
ux) =0, xe€dfn. (6.61)

We are looking for the solution in the form

u = Pog, (ge - Ag) + P:Ag
—Pq(TronPea. (g8e — Ag)) , (6.62)

where g.(x) = g(¢7!'x) is an unknown vector function and the constant

vector Ag is determined by

Ag= | MW (&)a€)dSg (6.63)

here the matrix 9 is the same as in (6.31). We note that
/ 1M dSx < C', (6.64)
Owe

where C' is independent of € and ||| is the norm of the matrix N.
Evaluating the trace of (6.62) on dw. we obtain

P =8 +5:8 (6.65)
where the operator S; is defined by

Ssge = Tl”awa (WS - Ig)Ag
—Trow. Po(TronPos. (g8 — Ag)) -

By (6.63), (6.64) and (6.58)
ITrow. (Pe = I2) Agllc(ow.) < const f|gellc(ow.) - (6.66)
Lemma 6.2.3 implies
x| [Poo. (8 — Ag)(x)| < const ¢ [[g:[lc(ow.) » (6.67)

for all x € (2..
Combining (6.66) and (6.67) we conclude

1Sellc(ow.y—c(ow.) < const € . (6.68)

It follows from (6.65) that g. = (I + S.)"'¢p., and then we deduce

||g8HC((9w5) < const ||Sog||C(8wg) :
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Due to (6.67) and Lemma 6.2.2 we obtain

max [u] < const [|geflc(aw.) < const [l@c]lcw.) - (6.69)

€

Second, we consider the case of the inhomogeneous boundary condition on
on

L(Ox)ux) =0, xef., (6.70)
ulx) = ¢x), xe€ifn, (6.71)
ux) =0, x€dw,. (6.72)
The solution is sought in the form
u=Pop+v, (6.73)

where the second term v is defined as a solution of the problem, which is
similar to (6.59)—(6.61), with the boundary condition on dw. being replaced
by

v(x) = = (Trg,. Po¥)(x), X € dw; .

According to the result of first part of the proof (6.69), we have
max |v| < const rg1aX|TT3wEP91/J\
2 We
const ||| ca0) - (6.74)

It follows from Lemma 6.2.2 that

IN

max |Pos| < const []lcqan - (6.75)

Combining (6.73), (6.74) and (6.75) we deduce

H}Zax\u| < const [|9]|can) -

=

This completes the proof for the case n = 2.

The proof of Lemma 6.2.1 for n = 3

First, we address the formulation (6.59)—(6.61), where (2. is a domain in R3,
and the inhomogeneous boundary condition is specified on Jw.
The solution is sought in the form

u = Pcg g8 — Po(TronPcs.8:) » (6.76)
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with g. = g(e¢~!x) being an unknown function. Evaluating the trace of (6.76)
on Jw. we obtain

Y. =8+ Sege s
where S.g. = —Trp.. Po(TronPog, 8 ).

Since ||TroePce.8:llcon) < const €||lg:|lc(ow.) it follows from Lemma
6.2.2 that

15zl ¢ (0uw.)—C(0w.) < const e .
Hence
B = (I—’_SE)_lLPs )

and the following estimate holds

lg:llc(ow.) < const [l¢.|lc@w.) -

Applying Lemmas 6.2.2 and 6.2.3 we conclude

mas ful < const gz oo < const @ llcoun

The case when an inhomogeneous boundary condition is set on {2 is treated
similarly to the proof of Subsection 6.2.3.
The proof of the theorem is complete. O

6.3 Green’s tensor for a 3-dimensional domain with a
small inclusion

This part of the paper presents a uniform asymptotic approximation of the
Green’s tensor G.(x,y) in a three-dimensional domain with a small inclu-
sion, as described in Section 6.1.1 (see (6.12) and (6.13)). Before formulating
the asymptotic representation, we list model domains and associated model
problems required for the asymptotic algorithm.

6.3.1 Green’s matrices for model domains in three
dimensions

Let G(x,y) = [GV(x,y),GP(x,y),GP(x,y)] and g(&,n) = [¢"V(&,m),
g (€&,m), g (€,m)] denote Green’s tensors in the sets 2 and Cw = R3\w,
respectively, for the Lamé operator given by (6.11) for the case of three
dimensions. The tensor G solves the following problem

L(0x)G(x,y)+0(x—y)ls=0I3, x,y€?, (6.77)
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Gx,y)=0I3, x€d,ye, (6.78)

and the tensor g is solution of

L(0g)g(&;m) +6(§ —m) I3 =03, §mneCo, (6.79)
g(§;m) =0, £€0Cw,nelCuw, (6.80)
g(§m) —0I; as [§] —o0. (6.81)

From the formulation (6.77), (6.78), we have that G satisfies the symmetry
relation

Gx,y)=G"(y,x) xye2x#y, (6.82)
and in the unbounded domain Cw the Green’s function g satisfies
9&mn) =9" (&), &neCo,&#n. (6.83)

We represent G(x,y) and g(&,7n) as
Gx,y) =I'(xy) - H(xy), (6.84)

and
g(&m) =T(&mn) —h(&mn), (6.85)

where I'(x,y) = [[3;(x,y)], 4, = 1,2,3, is the fundamental solution of the
Lamé operator in three dimensions, whose entries are given by

L%, y) = (8mp(A+2p) x — y ) 7 (A4 ) (i — yi) (x; — ;) [x — y| 7> (6.86)

+(A+3u)di5)
and H, h are the regular parts of G, g respectively.

6.3.2 The elastic capacitary potential matriz

By P(¢) = [P (€), PP (€), P®)(£)], we mean the elastic capacitary poten-
tial matrix of the set w, whose columns satisfy

L(@S)P(j)(g) =0 inCw, (6.87)
PY(¢) =€)  ondCw, (6.88)
P(j)(E) -0 as [ — o0, (6.89)

for j = 1,2,3, where e) is a basis vector, whose j*" entry is equal to 1, and
all other entries are zero.
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Lemma 6.3.1 The columns PY), j =1,2,3, of the elastic capacitary poten-
tial satisfy the inequality

sup {¢][P9)(€)[} < const . (6.90)
eCw

Proof. The proof follows directly from the maximum principle for unbounded
domains (cf. Lemma 6.2.3).

In the sequel, we will need the following lemma, which is a reformulation
of that by Kondratiev and Oleinik, in [9] (p. 78).

Lemma 6.3.2 Suppose the columns u9) (€) of the matriz w(€) are solutions

of
L(9g)uV(§) =0, inCw,

and that [u9) (€)| < const (1 + [€])*, k >0, for j =1,2,3.
Then for |&] > 2

u? (&) = 2 (&) + T'(€,0)CD + O(|€]2) (6.91)

where 9]9)(5) = {@;j’k)(ﬁ) 3. @fj’k)(ﬁ) are polynomials of order not
greater than k, CU) = {ij)}?:l, where Ci(]) are constants.

6.3.2.1 Properties of the elastic capacity matrix

Let B = [By], i,j = 1,2,3, be a constant matrix that we shall call the
elastic capacity matrix of the set w. In the present subsection, we will discuss
some properties of the elastic capacity matrix. The aim of this subsection is
to show that upper and lower elastic capacity (obtained from the maximum
and minimum eigenvalues of B, respectively) are equivalent to electrostatic
capacity.

Throughout we will need the following Lemma related to the asymptotic
behaviour of P.

Lemma 6.3.3 If |£| > 2, then for PY) the following estimate holds
|PY(&) = Bi; ') (€,0)| < const [¢]72, (6.92)

for j = 1,2,3, where I'D are columns of the fundamental solution for the
Lamé operator and B;; are entries of the elastic capacity matriz B of the set
w.

Proof. By Lemma 6.3.1, it is sufficient to take P(¢) = O(|€|~!), then from
Lemma 6.3.2, for |£] > 2 the columns P (&) can be written in the following
way

PY(€) =1(€,0)CY +0(l¢)7?) . (6.93)
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Then taking C¥) = BU) we obtain (9.10).

We also use the electrostatic potential P of the set w, with electrostatic
capacity cap w, as a solution of the problem

AgP(E) =0, E€C, (6.94)
PE) =1, £€ow, (6.95)
PE) — 0 as [€ —o0. (6.96)

The electrostatic energy for a scalar function v in a domain T C R"™ is
defined as

E(u,T) = /T |Vu|? dx . (6.97)

It is well known that for the function P, we have for the energy functional £
in Cw
E(P,Cw) = / |VP|? d§ = cap w . (6.98)
Co
In contrast, the elastic energy functional for a vector u in the domain T'
is given by

Su,T) =21 /T ei; (Worg; (u) dx | (6.99)

also we define the elastic energy matrix E = [Ej;]7,_; for a matrix A in the
domain T" with entries

Eij(Aa T) = 271 / est(A(i))Ust(A(j)) dx 5 (6100)

T

where A® | i =1,2,3 are the columns of the matrix A. Clearly, t_he diagonal
entries F11, Fs2 and Fs33 give the elastic energy for the vectors A(”, i1=1,2,3
respectively.

We shall show that the elastic energy matrix can be represented in terms of
the elastic capacity matrix B of the set w, by considering the entries of elastic
energy matrix for the matrix function P, defined as a solution of (6.87)—(9.9).

Lemma 6.3.4 i) For the elastic capacitary potential P, we have
E(P(¢),Cw)=2"'B, (6.101)

where B is the elastic capacity matriz of the set w and i) the matriz B is
symmetric.

Proof. i) We take a ball Bg = {£ : |€| < R} with sufficiently large radius R.
We consider the component Ejj of the elastic energy matrix in the domain
Bp\@ as follows
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Pu(P).Ba\@) = 27 [ L elPO @) (PO de
=21 /B(BR\W) PO (€) - T,(9¢) P™ (¢) dSg (6.102)

where we have used Betti’s formula and the fact that the columns of P satisfy
the homogeneous Lamé equation. Noting the boundary condition (9.8), the
preceding equation may be written as

Ew(P©) 5@ = 27 { [ PO€)- T, (0P E) dsg

OBRr

+/8w e -Tn(aE)P“f)(g) dSE} . (6.103)

Applying Betti’s formula once more to the vectors e) and P®*)(¢) in the
domain Br\@, we have

Ew(P©) 5@ = 27 { [ PO€)- T, (0) P e ds

Br

_/ e ~Tn(8£)P<k)(€) ng} , (6.104)
dBr

which holds for all R. Using the asymptotic representation for P given in
Lemma 6.3.3, we pass to the limit as R — oo, yielding

Ej,(P(€),Cw) = 27" lim By, (') (€, 0))ny, dSg
R—o0 aBR

=2"'Bj, (6.105)

where (6.105) has been obtained via Betti’s formula applied to the vectors
e and I'")(¢,0) in Bg. Thus we have proved relation (6.101).

i1) Now we prove the symmetry of the matrix B. Again using Lemma 6.3.3,
we take the limit in (6.103) as R — oo, then comparing to (6.105), we have

/ e - T,(9¢)PP(€) dSg = By - (6.106)
Ow

Then, interchanging the indices k and j, and subtracting the result from
(6.106) gives

Bji = Byj = | {eV T, (9g)P™ (&) — ™ - T,,(9¢) PV (€)} dSg . (6.107)
ow
Recalling that on dw we have PU) (&) = el?), for j = 1,2,3, we see that the

right-hand side is the result of application of the Betti formula to vectors
PU)(¢) and P®¥)(¢) in Cw. Namely in (6.107) we have
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Bjx—By; = /C {PY()-L(9g) P®) (€)—PW(£)-L(9¢ ) PV (€)} dE . (6.108)

Since the columns of P are solutions to the homogeneous Lamé equation the
right-hand side in (6.108) is zero and

Bj, = By; ,
i.e. the elastic capacity matrix B is symmetric.

Next we prove that the elastic capacity matrix B represents a tensor.

Lemma 6.3.5 The elastic capacity matriz is a Cartesian tensor of rank 2.

Proof. Let | = [lmk]?n,kzl be a arbitrary matrix of rotation and consider
the matrix 9 with columns P = 1,,,P*) where P¥) k = 1,2,3, are
columns of the elastic capacitary potential. By definition of the vectors P*),
the vector functions PB("™ solve the problem

L(9g)B"™(€) =0 inCw, (6.109)
P (&) = (1TH™  on 90w, (6.110)
PM(E) -0 as €] — 0. (6.111)

In a similar way to the proof of Lemma 6.3.3, the asymptotic representation
for ™) in the neighborhood of infinity, is given as

B(€) =I'(€, 0B +0(l¢]7?), (6.112)

where 8™ m = 1,2, 3 are the columns of the elastic capacity matrix of the
set w in the rotated system, and for this we have

Ern(P(€), C0) = 27" By (6.113)

as in Lemma 6.3.4.
Also, by definition of P the following representation holds

PO (€) = L' (€,0)BW +0(1€]72) (6.114)

obtained by using Lemma 6.3.3 for the columns of P.

Considering the entry FE,,, of the elastic energy matrix in the domain
Bpr\@ and using the representation (6.114) and the same procedure as used
in the proof of (6.101), we obtain that

Emn(B(€),Co) =2 gluk Byk - (6.115)

Comparing (6.113), (6.115) we deduce that the elastic capacity matrix is a
Cartesian tensor of rank 2.
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6.3.2.2 Upper and lower elastic capacity versus electrostatic
capacity

Let S denote set of vector functions u, such that

L(@g)u(ﬁ) =0 inCw, (6.116)
ul¢)=c ondCw, (6.117)
u¢ -0 as g — 0, (6.118)

and for |£| > 2 has the asymptotic representation
u(§) = I'(§,0)Bc+O(¢|7?), (6.119)

where ¢ = {¢;}3_, is a constant vector with |c| = 1.
We define the lower elastic capacity, of the set Cw, to be

cap , w= lllrelg &(u,Cw) , (6.120)
c,|c|=1

and upper elastic capacity as

melastw = sup 5([1,0(;}) . (6121)
i,

The following Lemma shows that upper and lower elastic capacity are
equivalent to electrostatic capacity.

Lemma 6.3.6 For the upper and lower capacities the following inequalities
hold

@elastw < k2 cap w, (6122)
< cap (6.123)

kicap w cap W,

where k1 = 27 and ko = 271 (A + 2u). (From which it follows

melastw < k3 cap (6124)

7elastw ’
where ks = ka/k1.)

In order that we prove the preceding Lemma, we shall need the following
auxiliary inequality

Lemma 6.3.7 For any vector function v in Cl, constant on dw, the elastic
energy functional & satisfies the inequality

k:1/ ||vVH2d5§£(v,cw)gk2/ [Vv|? de€ . (6.125)
Cw Cw
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Proof. We take an arbitrary vector function v such that v|; = b, where b
is a constant vector, and consider the elastic energy for this in the domain

Cw

E(v,Cw) = 2_1/ eij(v)oij(v)d€ . (6.126)
Cw
We may rewrite this in the following way
28 (v,Cw) = u/ [ Vv|* d€ + (/\+u)/ (V-v)%de . (6.127)
Cw Cw

Extending v by b over the domain w, we have using Parseval’s identity and
the Schwarz inequality,

[ @vpde= [ 1F@ P < [ wEE@P = [ ovitde,
Cw R3 R3 Cw
(6.128)
where F is the Fourier transform and v = (v, v2, v3) is the Fourier transform
variable.
Thus using (6.128) in (6.127) we deduce that

E(v,C0) <271\ + 2u)/ Vv de . (6.129)
Co
Tt is clear from (6.127) that

&(v,Cw) > 2’1u/_ IVv|? dé . (6.130)

Co

Hence from (6.129) and (6.130) we have

2,1M/ ||VvH2d€§@‘”(v,OCu)§2’1()\—|—2u)/ IVvI2de . (6.131)
Cw Cw

Now we are in a position to prove Lemma 6.3.6.

Proof of Lemma 6.3.6. We first take u € S, and consider the elastic energy
for this vector function in the domain Bgr\@. Repeating the same procedure
as in the proof (6.101) we obtain for the vector u, that

&(u,0w) =27!(c, Bc) . (6.132)

Let a be an eigenvalue of the matrix B and c the corresponding eigenvector,
i.e.

Bc=ac, wherelc|=1. (6.133)

From (6.133), we obtain that o = (c, Bc), this means that for (6.132), we
have
&(u,Cw) =2""ta. (6.134)
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Moreover, by the definition of upper and lower elastic capacity (6.121),
(6.120) we have that upper and lower elastic capacity are the maximum,
minimum eigenvalues, respectively, of the elastic capacity matrix 271 B.

We shall obtain the inequality (6.122) first. Let the vector u® be sought
in the form u") = P(¢)c where P is the electrostatic potential. Considering
the right-hand side of (6.125) for u") in C@, we obtain

3
/c— ||Vu(1)|\2d£:Z/Cic?|v73|2d§:capw, (6.135)
w j:1 w

since the function P minimises the electrostatic energy functional and |c| = 1.
Applying now the upper inequality of (6.125) of Lemma 6.3.7 to the vector
function u™ we have

E(u,00) < &Y, Co) < kycapw, ues. (6.136)

Then taking the supremum on the left hand side with respect to c, with
|c| = 1, we arrive at
@elastw < k2 cap w, (6137)

which is (6.122) proved.

Next, we take a vector function u(® € S, with boundary condition u(® =
c¢® on C@ that minimises the elastic energy in u and c. Applying the lower
inequality of (6.125) to u(®, we have

ky / [Vu® |2 d¢ < cap tast - (6.138)
Co ———=clas

However the vector u(® is not a minimizer of the Dirichlet integral (we have
seen that u(?) is such a vector). Thus

trepw =k [ VaORdg <k [ [Va®dg < cap,y, 0 (6130)
completing the proof of (6.123).

Combining inequalities (6.122) and (6.123), we arrive at the proof of
(6.124). O

Hence from Lemma 6.3.6 we have the elastic capacity and the electrostatic
capacity are equivalent.
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6.3.3 Asymptotic estimates for the regular part h of

Green’s tensor in an unbounded domain

We now give an auxiliary result concerning an asymptotic estimate for the
tensor h, which we shall make use of in the algorithm for the case of 3-
dimensional elasticity.

Lemma 6.3.8 For alln € Co and & with €] > 2 the estimate holds
[h7(&,m) — (&, 0)PT) ()] < const[¢]72[n| ™" , (6.140)
where j = 1,2, 3.

Proof. From the definition of (&€, n) in (6.85), the columns of h(&, n) satisfy

L(9g)hV(€m) =0 €meCw, (6.141)
h)(€m) =T (€ n), €edCwandne Co, (6.142)
h)(gm) — O as | — ocoandne Cw, (6.143)

for j =1,2,3.

From Lemma 6.3.2, we see that ¢(9 (&, 7), i = 1,2, 3 for &€ with sufficiently
large modulus, can be approximated by a linear combination of columns of
the fundamental solution as follows

€16 (€m) — Cu(mI9(g,0)) B2 0 (6.144)

We now apply Betti’s formula to the vectors g*) (€, 7) and e — P! (¢),
k,l =1,2,3, in the domain Br\@ where Br = {£ : |€| < R} is a ball with
sufficiently large radius R. Recalling P\Y) (&) = e) and ¢(®)(¢,) = O when
& € 0Cw, we have

/ ei; (9™ (&,m))os; (PO (£)) de
Br\w

= Pkl('r]) - 5kl - /33 ((51'1 — Pi (5))0'”(9(16) (E,n))n] dS€ s (6145)
and
/ eij (9™ (& m)oi(PU(€)de = | gin(&,m)ai; (P (€)n; dS
Br\@ OBRr
(6.146)
for k,1=1,2,3.

Then from (6.145), (6.146) we have
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b= Pulm) = = [ {(6u= Pul€)osla® & m)m,
g (€ )y (PO (€)n; | dS - (6.147)

Using the asymptotic representation for g given in (6.144) and that for P
given in Lemma 6.3.3, we take the limit in (6.147) as R — oo and obtain

Skt — Pu(n) = — lim Cri(n)o; (I (€, 0))n; dSg . (6.148)

R—o0 OBr

Computing the above integral, by applying integration by parts to e and
I'")(&,0) in Bg, yields

k1 — Pra(n) = Cuie(n) , (6.149)
or equivalently in the form of matrices
Iy — PT(n) = C(n). (6.150)
Let |€| > 2. Then for n € 0Cw

W9 (&,m) — (&, 0)PTD ()| = |hY) (¢,m) — ' (€, 0)]
=Y (g,m) — 'Y (g, 0)| < const |n||€| 2 < const |¢[7,  (6.151)

here we have used that for n € 9Cw, |n| < 1. By Lemma 6.2.3 for functions
satisfying the Lamé equation in 1, we have from (6.151) that

(W9 (&,m) — T(€,0)PT ()| < const €| ||, (6.152)

for n € Cw and |€| > 2.

6.3.4 A uniform asymptotic formula for Green’s
function G, in three dimensions

Now we present the main result concerning the uniform approximation of
Green’s tensor G. in the case of 3-dimensions.

Theorem 6.3.1 Green’s tensor G.(x,y) for the Lamé operator in 2. C R?
admits the representation

G-(x,y) = G(x,y) + ¢ 'ge 'x,e7'y) = I'(x,y) + P(e 'x)H(O,y)
+H(x, O)PT(sfly) — P(E*IX)H(O, O)PT(afly)
—eH(x,0)BH(O,y) + O(e*(min{|x/|, |y|}) ") , (6.153)
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uniformly with respect to x, y € (2.

Proof. As in Maz’ya, Movchan [17], we first present a formal argument con-
cerning the structure of G¢(x,y), then give a rigorous proof of the remainder
estimate.

Formal argument

Let G. be represented in the form
Ge(x,y) =I'(x,y) = He(x,y) — he(x,y) , (6.154)

where the columns of H.(x,y) = | E(j)(x, v)l, he(x,y) = [hgj)(x, v), j =
1,2, 3, satisfy the Dirichlet problems

LO)HY (x,y) =0, x,y€ 2,

Ha(ﬂ)(x’y):F(J)(x,y), xeaﬂ,y€~057
HY9)(x,y) =0, x€dw.,yE€ 2,

and 4
L(ax)hgj)(xa Y) =0 , XY € QE 5

W (x,y) = TP (x,y), x€duw,ye€ ., (6.155)
M) (x,y) =0, x€dN,yc .

From (6.154), it is enough to approximate the columns of H. and h., to
obtain the asymptotic formula for G..

Approximation of H.(x,y)

Consider H.(x,y) — H(x,y), which satisfies the homogeneous Lamé equa-
tion and has zero boundary value when x € 92,y € {2.. When x € OJwe,
the leading part of H.(x,y) — H(x,y) is given by —H(O,y). We extend
—H(0O,y) onto Co. to a tensor that satisfies the homogeneous Lamé equa-
tion in variable x, in the form —P(e~'x)H(O,y), whose leading order part
is —eI'(x,0)BH(O,y) for x € 002,y € §2.. Thus

He(x,y) - H(x,y) = —P(e"'x)H(O,y) + ¢H(x,0)BH(O,y)
+9:(x,y), xy€fk, (6.156)

where $.(x,y) is the remainder term produced by this approximation.
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Approximation of h.(x,y)

Using the definition of h and (6.155) of h., we have
he(x,y) —e th(e'x,e7y) =0  for x € dw, . (6.157)
Then from Lemma 6.3.8, we have
he(x,y) — e 'h(e™ x,e7y) = =I'(x,0)P(n) + O(*(Ix[*ly) ™),

for x € 912,y € (.. The tensor that satisfies the homogeneous Lamé equation
in x and has boundary data I'(x, Q)P (n) when x € 012 is

H(x,0)P"(n) .
Thus, we have
hs(xa y) - gilh(gilxa Eily) = 7H(X7 O)PT(U) + XE(Xa Y) )

where y.(x,y) is the remainder. For x € dw., x.(x,y) = H(x,0)PT(n).
Since the components of H(x, Q) are smooth for x, y € 2, we may approx-
imate the latter by H(O, Q)P (n). However this matrix is not necessarily
small. Making an extension of H(O, O)P7(n) to a matrix which satisfies the
homogeneous Lamé equation for x € C'w,, and is small for x € 912,y € (2,
we have

X-(x,y) = P(e"'x)H(0,0)P" (7 'y) + h-(x,y) ,
where h.(x,y) is the new remainder. Hence we may now assume the asymp-
totic representation
he(x,y) —e *h(e 'x,e7ly) = —H(x,0)PT (e y)
+P(s7'x)H(0,0)PT (s 1y)
+b=(x,y) , (6.158)

~—

for x,y € f2..

Combined formula

Combining (6.156) and (6.158) in (6.154), yields

G:(x,y) = I'(x,y) — H(x,y) + P(e"'x)H(O,y)
—eH(x,0)BH(O,y) — e 'h(e'x,e7 y)
+H(x,0)PT (e 'y) — P(e7'x)H(0,0)PT (e y)
+R-(x,y) , (6.159)
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where R.(x,y) is the sum of the remainders 9.(x,y) and h.(x,y), which we
shall estimate. Recalling the definition of G and g from (6.84) and (6.85), the
preceding expression is equivalent to

G.(x,y) = G(x,y) +e lgeIx,e7y) - I'(x,y)
+P(e 'x)H(O,y) + H(x,0)PT (¢ y)
—P(e7'x)H(0,0)PT(¢7'y) — cH(x,0)BH(O,Yy)
+R.(x,y) . (6.160)

Next we give a rigorous proof of (6.153).

Proof of Theorem 6.3.1
The columns of R.(x,y) solve the problem

L(0x)RY (x,y) =0 x,y € 2, (6.161)

RY(x,y) = e 'hD(e7'x,e7ly) — H(x,0)PT0) (e 71y)
—P(e"'x)HY)(0,y) + P(c"'x)H(0,0)P"W (e y)
+eH(x,0)BHY(0,y), xecanyec ., (6.162)

RY (x,y) = HY (x,y) — HY)(0,y) — H(x,0)P"V)(c""y)
+H(0,0)P"0) (e 1y) + cH(x,0)BHY(0,y)
X € Owg,y € (2 . (6.163)

Both HU)(x,0) and HY) (0, y) are columns of H (see (6.84)), and HV)(x, O)
is bounded on 0f2. They are also bounded for x € dw., y € 2. The com-
ponents of the term e H(x, 0)BH) (0, y) are bounded by const ¢ in (6.162)
and (6.163). Since the components of H(x,y) are smooth for x,y € {2 and
by Lemma 6.3.1 the entries of the tensor P(£) are bounded, from (6.163) we
have

|H(j)(X7 y)_H(J)(Ovy)_(H(Xa 0)_H(07 O))PT(])(U)| S const & ) (6164)
for x € dw,,y € {2.. Thus when x € Jw. and y € (2.
|IRY) (x,y)| < const ¢,

for j =1,2,3. ‘
Next we estimate |R§J)(x7 v)| when x € 902,y € {2.. By Lemma 6.3.1, the
columns of capacitary potential satisfy the following inequality
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|PW(e7x)| < comst e|x|™t, j=1,2,3, forxe (. (6.165)
Now, (9.10) of Lemma 6.3.3 and the definition of H(x,y) imply

|eH (x,0)BHY(0,y) - P("'x)HY(0,y)|
= |(I'(e"'x,0)B — P(c'x))HY(0,y)| < const €2,  (6.166)
for x € 992, y € {2.. We also have, using Lemma 6.3.8 and (6.165), the
following estimate
le thD (e71x, e ty) — H(x,0)PTW) (e ty)|
= e (e x, e ly) = (€, 0)PTW (e )|
const e%[x| " 2|y|™' < const ?ly|”t, x€ 0,y € 2., (6.167)

A

where we have used the estimate (9.13) and for x € 92, |x| > 1. Combining
(6.165), (6.166) and (6.167) in (6.162) we obtain

|IRY)(x,y)| < const 2|y|~!  for x € N,y € 2., (6.168)

for j =1,2,3.
Therefore, by Lemma 6.2.1, we have

|RY)(x,y)| < const max {2x|7" ey}, (6.169)
for j =1,2,3, and x,y € {2.. Thus,
|RY (x,y)| < const £2(min{|x], ly|}) " . (6.170)

The proof is complete.

6.4 Green’s tensor for a planar domain with a small
inclusion

Now we present the uniform approximation of the tensor G.(x,y) for the
case of a planar domain with a small inclusion, formulated in Section 6.1.1.
We once again introduce model domains and governing equations needed for
the study related to this case.
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6.4.1 Green’s kernels for model domains in two
dimensions

Let G(x,y) = [GW(x,y), GP(x,y)] and g(&,n) = [¢") (&, 1), 9® (&, m)] de-
note Green’s tensor in the bounded domain 2 and Ciw = R?\w, respectively,
for the Lamé operator given by (6.11) in two dimensions. The tensor G is a
solution the following problem

L(0x)G(x,y)+d(x—y)[2 =0, x,y€, (6.171)

Gx,y)=0L, xe€d,ye?, (6.172)

and the tensor g solves

L(0¢)g(&,m) +0(§ —m)la =0I2, §mnelCw, (6.173)
9(&n)=0I, £€dCuv,nelu, (6.174)
|9 (&,m)] is bounded as |¢] — 0o ,n € Cw for j =1,2. (6.175)

We have from (6.171), (6.172), that G has the following symmetry property
Glxy)=G"(y,x) xy€ex#y, (6.176)
and from (6.173)—(6.173) the Green’s function g satisfies

g&m) =9"(m¢&), &yecCut#n. (6.177)

We represent G(x,y) as
G(x,y) =v(xy) - H(x,y), (6.178)

and g(§,m) as

9(&m) =~(&mn) —h(&mn), (6.179)
where H and h are the regular parts of G and g respectively, and v(x,y) =
[755 (x, y)]ijzl, is the fundamental solution of the Lamé operator in two di-
mensions, with components

Yi5(%,y) = Ka(—log |x — y|di;
FA+ )N +3p) " (@ — yi) (m5 — yj)[x — y|72) . (6.180)

for i,j = 1,2, where
A+ 3u

i (6.181)

2

We introduce the tensor ¢ as
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C(n) = ‘sl‘im g(&mn), (6.182)
and the constant matrix
= ml‘igloo{é(n) +7(n,0)}, (6.183)

where it will be shown that (*° is a symmetric matrix.

6.4.2 Auxiliary properties of the regular part h of
Green’s tensor for an unbounded planar domain
and the tensor ¢

In the present subsection, we shall formulate and prove an asymptotic rep-
resentation for the regular part h of Green’s tensor g, in the unbounded
domain. For this we shall need the following Lemma which is the two dimen-
sional analogue of Lemma 6.3.2, and is a reformulation of that by Kondratiev
and Oleinik [9] (p. 78).

Lemma 6.4.1 Suppose the columns u9) (€) of the matriz u(€) are solutions

of
L(9g)u(€) =0, inCw,

and that [u9) (€)| < const (1 + [€])*, k >0, for j =1,2.
Then for |&€] > 2 the representation holds

ud (&) = 29 (&) +7(£,0)0D + 0(¢| ), (6.184)

where 3”,9)(5) = {@Z-(j’k)(ﬁ) 2 ﬂfj’k)(ﬁ) are polynomials of order not

=1
greater than k, CV) = {CZ-(J) ?_,, where CZ-(J) are constants.
We now formulate a result related to the approximation of the regular part
of Green’s tensor g needed for our algorithm.

Lemma 6.4.2 Let €| > 2, n € Cw. Then the columns of the regular part
hU)(€,m) of Green’s tensor in Cw admit the asymptotic representation

h (& m) =~+9(£,0) = ¢V () + o€ ™) . (6.185)

Proof. By definition of g (cf. (6.173)—(6.175)), the columns ) of the regular
part satisfy .
L(@9g)h(€&m) =0, €nelo, (6.186)

W (&) =79 (&m), €€dCownelw, (6.187)

with the following condition at infinity
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R (&,m) ~ 7D (€,0) = (D (n), as|¢|—oo,meCu,  (6.188)
for j =1,2.
Setting UW) (&,n) = hU)(&,m) — ~9) (€, O), we have that UY) solves
LUV (€m) =0, &neCw, (6.189)
U9 (g, n) =79 (&n) -7 (£,0), £€dConeCow,  (6.190)
and by (6.182)
UD(g,n) ~~CD(n), as ¢ —oco,neCu. (6.191)

Consulting Lemma 6.4.1, we see that for |£] > 2 the following representa-
tion for U holds

U9 (&,m) = K9 +~(¢,0)CY +0(¢[ ) . (6.192)

where KU) and C) are vector functions of n only.

Then, in order that condition (6.191) be satisfied we must take KU) =
—¢U)(n) and CYW) = O. Thus, recalling the definition of UY), we obtain
(6.185).

We also have the following asymptotic representation of the tensor (.

Lemma 6.4.3 For |&| > 2, the following representation for (), j = 1,2,
holds _ ‘ _
(V&) = =&, 0) + ¢ +O(l¢[ ) - (6.193)

Proof. By the definition of ¢(£), the columns () (€) are solutions of

L(9g)V(€) =0, €eCa, (6.194)
(Vg =0, ¢eacw, (6.195)
(V&) ~ (& 0)+¢ > as €] — o0, (6.196)

for j = 1,2, where ¢(>) are the columns of (* and the preceding boundary
value problem is consistent with (6.182), (6.183).

Setting UU) = ¢U)(€) +~U)(£,0), and in the same way as in the proof of
the previous lemma, we deduce (6.193).

We also have the following property of the matrix function (.
Lemma 6.4.4 The tensor ((n) is symmetric.
Proof. We begin by applying the Betti formula to the vectors —¢(¥)(¢) and

g(&,m) (noting that ¢*)(¢) is a solution of the homogeneous Lamé equa-
tion), in the domain Br(O)\@ for sufficiently large R, so that we obtain
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-/ VM) Lo &) de

= [ M) Ta@g)e €
O(Br\@)
+9 V(&) Tu(8g)¢™M(€)} dSg . (6.197)

Now using the definition of g and the fact that ¢(*)(¢) = O and gV (&,17) = O
on JCw, we have from the preceding equation

Ge(m) = | {=C"(€) - Tu(9g)g™ (& m) + 9V (&) - Tu(9)¢™ (€)} dSg

OBRr
(6.198)
which holds for all sufficiently large R. Using the asymptotic representation
for ¢U) and that for h()), j = 1,2, given in Lemmas 6.4.2 and 6.4.3, respec-
tively, we take the limit in (6.198) as R tends to infinity and obtain

Cuk(n) = — Jim ¢ (n) - Tu(0g)y™ (€, 0) dSg . (6.199)
— JOBg

Computing the above integral, by applying Betti’s formula to the vectors
C(l)(n) and ’y(k) (67 O) in BR) gives

Gr(m) = Cu(n) - (6.200)
Hence from (6.200) we have the tensor ((n) is symmetric.

It also follows from this Lemma and the definition of the constant matrix
¢, (cf. (6.183)), that this matrix is also symmetric.

6.4.3 A uniform asymptotic approximation of an
elastic capacitary potential matrix

Let P.(x) = | él)(x), 5(2)(3()] denote the elastic capacitary potential of the

set w., whose columns are a solution of the following problem

L(0x)PY(x) =0, xe€ ., (6.201)
PY(x)=0, xedf, (6.202)
PY(x)=e) | xedw., (6.203)

for j =1,2.

Lemma 6.4.5 The asymptotic approximation of P.(x) is given by the for-
mula
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P:(x) = (G(%,0) = ((§) =7(£,0) +¢*)D +p(x) (6.204)

where D is the matriz given by (6.52) — (6.54) and p(x) = [p™M)(x),p? (x)]
is such that _
IpY)(x)| < conste|loge|™', j=1,2, (6.205)

uniformly with respect to x € (2..

Proof. Let ¢ — 0, then 2. — 2\{O}. In this limit domain, it is suitable

to approximate the columns Ps(j )(x) of the elastic capacitary potential, by
V) (x), which solves the boundary value problem

L(9x)VD(x) + Dijo(x)e =0, x€ 2, (6.206)

Vi(x)=0, xecan, (6.207)
for j = 1,2. Let V1) (x) be sought in the form

VW (x) = D1;GV(x,0) + Dy; G (x,0) ,j =1,2. (6.208)

The representation of V) (x) by (6.208) does not satisfy the boundary con-
ditions on Qw.. Therefore, we construct a boundary layer M (j)(ﬁ), which is

a solution of ,
L(@E)M(”(g) =0, ¢£eCo, (6.209)

MU (€) = e — D;;GW(x,0) — D3;GP(x,0), £cdw, (6.210)
M9 (¢) - O as €] — oo, (6.211)

for j =1,2.
Since w, is a small inclusion, we may rewrite the boundary condition (6.210)
for M) (&) by considering G (x,0), j = 1,2 as follows. Using

GV (x,0) =79 (x,0) - HV(x,0), j=1.2, (6.212)

where 719 is the j** column of v = {7i;}?_; and the fact the components of
HU)(x,0) are smooth functions for x, y € £2, on dw. we may expand these
about O, to give

GY(x,0) = —K;logeel) +4)(¢,0) — HY(0,0)
+0(), j=12, (6.213)

where K> is the constant given in (6.181).
Then using (6.213) we have from (6.210)
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MU)(g) = ) + Dy (K2 logee® — A1 (g 0) + H(l)(070))

+Do; (K2 logee® — (g, 0) + H?(0, 0))
+0(e) (6.214)

for £ € Ow.
The vectors (V) (&) satisfy (6.194)—(6.196). Setting

T@ (&) =D (&) + 7Y (€,0) — ¢ [ j=1,2, (6.215)

we have that 1) (&) satisfies

L(9g)TV(§) =0, ¢elw, (6.216)
TO(g) =40 (g,0) - (=9 | gedcw, (6.217)
TV -0 as € — oo, (6.218)

for j =1,2.
Substituting the boundary condition (6.217), for Y1) (¢) on dCw, into (6.214)
we have

M(j)(é) — @ + Dy (K2 1ogee(1) _ (T(l)(E) + C(Oo’l)) + H(l)(0,0)>

+Dy; (Ko logee® — (Y2 (g) + () + H?)(0,0))
+0(e) , (6.219)

for ¢ € 9Cw. The boundary layer M) () is sought in the form
MW (¢) = —Dy; 7D (€) — Dy YD (&) + WU(g), j=1,2, (6.220)

where W) (€) is a solution of

L@dgW(¢) =0, €eCw, (6.221)
W (g) = eV 4 Dy; (Kz logee™ — ¢V 4+ g0, 0))
+Dy; (K2 logse(Q) _ C(OO,2) + H(2)(07 0)) 7 (6.222)
for £ € 0Cw, and ‘
W) -0 as |¢ — 0. (6.223)

We choose D = [D;;], i,j = 1,2 as follows,
D=[DW D®]=_4"1, (6.224)

where A = [A;;]7,_,, whose entries are given by
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Aij =Ky IOgE(Sij - 10]0 + H,»j(O, O) , 1,7=12. (6225)

Choosing D as in (6.224) we have from (6.221)-(6.223), WU (¢) = O, j =
1,2, and the form of the constant matrix D (given by (6.52)—(6.54)) has been
proved.

Combining (6.208) and (6.220) in

POX) = V() + MD(€) +p7 ().

where pU/)(x) is the remainder term, we have (6.204).

6.4.3.1 Estimating the remainder term

The remainder p(x) = [p™(x), p® (x)] satisfies

L(0x)p(x) =01, x¢€ 2, (6.226)
p(x) = (C(€) +7(§,0) —¢*)D, x€012, (6.227)
p(x) =1, — (—Kzlogelo + (*° — H(x,0)) D, x € Jw. . (6.228)

For the boundary condition on dw,, using (6.224) and (6.225)

p(x) = (H(x,0) — H(0,0))D, x€ dw, . (6.229)
Since the components of H(x,O) are smooth for x, y € 2

H(x,0)— H(0,0)=0(e), as x € Ow: .
Next we consider the matrix D. Comparing to (6.53) we have K;' =
(det A)~1, is of O((loge)™2), from which we see D = O(|loge|™!). Thus
we have the right-hand side of (6.228) is O(e|loge|™1).
Using Lemma 6.4.3, we have

((6) +7(£.0) ~(*=0(), forxedn, (6.230)

and therefore again we have the right-hand side of (6.227) is O(e|loge|™1).
Thus by the Lemma 6.2.1 we have

p(x) = O(e|loge|™") for x€ ..
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6.4.4 A uniform asymptotic formula for Green’s
tensor G. in two dimensions

We are now in a position to formulate and prove our result concerning the
uniform approximation of the tensor G. for the case of two dimensions.

Theorem 6.4.1 Green’s tensor G, for the Lamé operator in 2. C R? admits
the representation

G-(x,y) = G(x,y) +g(&n) — (&)
+P.(x) AP (y) = ¢(n) = ¢(€) +¢* + O(e) ,  (6.231)

which is uniform with respect to (x,y) € 2. x §2..
Proof. Let G be given by
GE(X’ Y) = ’Y(Xv Y) - HE(Xv Y) - hE(Xv Y) ) (6'232)

where the columns of H.(x,y) and h.(x,y) are solutions of the boundary
value problems

L(0x)HY (x,y) =0, x,ye€ ., (6.233)
HI(x,y) =7V (x,y), x€dye ., (6.234)
HY(x,y) =0, x€0w.yE€ 2, (6.235)
and
L(0)hP) (x,y) =0, x,y € 2, (6.236)
h(x,y) =0, xedRyen., (6.237)
W (x,y) =79 (x,y), x€ 0w,y € 2, (6.238)
for j =1,2.

The approximation of H.(x,y)

Let Hs(j)(x, y) be represented in the form

HY (x,y) = S1(y,log )GV (x, 0) + Sa(y, loge) G (x, 0)
+HY (x,y) + RY) (x,y,loge) (6.239)

where S;;(y,loge), ¢,j = 1,2 are to be determined. In (6.239), the term
RY )(x, y,loge) satisfies the boundary value problem

L(0x)RY)(x,y,loge) = O ,x,y € £, , (6.240)

RY(x,y,loge) =0, x€dRyc, (6.241)
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RY)(x,y,loge) = =51,G" (x,0) = 55;G®) (x,0) = HV (x,y) ,
X € Owe,y € (2, (6.242)

and is approximated by RY)(€,y,loge), which is a solution of
L(9¢)RYV(&,y.loge) =0 £ € Cw , (6.243)
RY(¢,y,loge) = Sy (Kg logee®™ — (g, 0)+ HY (O, O))
+S9; (K2 logee® — 13 (g, 0)+ HP (0, O))
—HY(0,y), ¢t€dCau, (6.244)
RW (¢, y,loge) — O as |¢] — oo, (6.245)
where y € (2.. We represent the solution of (6.243), (6.244) and (6.245) as
ROy, loge) = 51, (Kalogeel =1 (¢,0)+ HY(0,0) - ¢V(¢))
+85; (Kalogee® — 1) (¢,0) + HP(0,0) - (?(¢))
—HY(0,y). (6.246)

Now, using the boundary condition (6.196) of ((&) at infinity, in (6.246), we
deduce that in order that (6.245) be satisfied we must choose the columns of
S as follows

S(y,loge) = [SW(y,loge), S (y,loge)] = —DH(O,y) , (6.247)

where the entries of D are given by (6.52)—(6.54).
Combining (6.246), (6.247) in (6.239), we have

HY (x,y) = 81;GV(x,0) + S5;,G?(x,0)
+81; (Kzlogee™ — 11(¢,0) + HM(0,0) - (M (¢))
+52; (Kzlogee® — 4 (¢,0) + H?(0,0) - (?)(¢))
—Hg@ (0,

)+H(” (x,y) + 959 (x,y)
= —P.(x)HY(0,y) + HY (x,y) + 99 (x,y) . (6.248)

Here HY)(x,y) satisfies

L0099 (x,y) =0, xy€ ., (6.249)
99 (x,y) = HD(0,y) - H(x,y), x€dw.,ye€ 2.,  (6.250)

9 (x,y)=0, x€dR,ye, (6.251)
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where the right-hand side of the boundary condition (6.250) is O(g), uni-
formly with respect to x € Jw. and y € (2.
Using Lemma 6.2.1 we obtain 9.(x,y)= O(¢) for x,y € {2..

The approximation of h.(x,y)

Now we shall proceed to approximate h.. The columns of h.(x,y) satisfy
the homogeneous Dirichlet condition on 0f2 and for x € Jw. we rewrite the
boundary condition (6.238) as

h9(x,y) = —Kalogee) + 40 (&,m), x € dw. .y € 02 .
Let h‘gj)(x7 y) be sought in the form
W) (x,y) = —Kzloge el + 9 (&,m) + XV (x,y) , (6.252)

where the vector field ng )(x, y) satisfies

LOXY (x,y) =0, x,y€ 2, (6.253)
X (x,y) =0, x€duw.,y€e, (6.254)
X (x,y) = Kylogee?) —nU(¢,m), xedRye 2.  (6.255)

Using Lemma 6.4.2, we rewrite (6.255) as
Wixy)=—V(x0)+¢V(m) +0(), xedye . (6250)

From the definition of H(x,y) and the elastic capacitary potential we write

Y (x,y) as

X (x,y) = —HY (x,0) + (I — P-(x))¢Y (n) + b (x,y) ,x,y € 2,
(6.257)

where hgj )(x,y) satisfies the homogeneous Lamé equation; by Lemma 6.4.2
is O(e) for x € 012, y € {2, and

b9 (x,y) = H9(x,0) = HY(0,0) + O(e) , (6.258)

for x € Qw, y € (2. Therefore, using the elastic capacitary potential P.(x),
we write

b (x,y) = P.(x)HY)(0,0) + O(e) , (6.259)

which is uniform with respect to x,y € {2., by Lemma 6.2.1.
Collecting now (6.257), (6.259) in (6.252) we have
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h (x,y) = 9 (&,m) — Kaloge e
—HY(x,0) + (I — P-(x))¢\Y ()
+P.(x)HY(0,0) + O(e) . (6.260)

6.4.4.1 Combined formula

Substituting (6.248), (6.260) in (6.232) we have the columns of Green’s tensor
for the Lamé operator in the domain (2.

GY(x,y) = 7V (x,y) — HD (x,y) — hV) (&, m)
+K,logeel) + H(j)(x, 0) - C(j)(n)
—P.(x)(HY(0,0) — (V) (n) = HY(0,y)) + O(e)
=1 (x,y) - HV (x,y) = b9 (&) + Kz loge e
+(I = P-(x))(HY(0,0) — ¢V (n) — HY(0,y))
+HY(x,0) + HY(0,y) — HY(0,0) + O(e) . (6.261)

Using the relation
H(0,0) —((n) — H(O,y) = A(I; = PI(y)) + O(¢) , (6.262)
obtained from the approximation of P-, we have

GY(x,y) = 7V (x,y) = H9(x,y) = V) (&, m)
+Kslogeel) + (I — P.(x))A(eV) — PTU)(y))
+HY(x,0) + HY(0,y) — HY(0,0) + O(¢)
=Y (x,y) - HY (x,y) = hY)(&,m)
+P.(x) APV (y) = ¢ (n) — ¢V (¢)
+¢9) + 0(e) (6.263)

which is (6.231). The proof is complete.

6.5 Simplified asymptotic formulae subject to
constraints on independent variables for Green’s
tensors in domains with a single inclusion

It is now of interest to see how the asymptotic formulae obtained in The-
orems 6.3.1 and 6.4.1, simplify under constraints on the points x, y € (2,
where (2. C R™, n = 2,3. We consider two situations, the first is when these
points are outside a small neighborhood of the inclusion, the second is when
the points are in the vicinity of the inclusion.
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We now turn to the case of three dimensions.
Corollary 6.5.1 a) Let x and y be points of 2. C R3, such that
min{|x|, |y|} > 2¢. (6.264)
Then G.(x,y) admits the representation
G-(x,y) = G(x,y) — eG(x,0)BG(0,y) + O(*(|x|ly| min{|x[, [y[}) ) -
(6.265)
b) If max{|x|,|y|} < 1/2, then

Ge(x,y) = e 'g(e'x,e7y) = (I — P(7'%))H(0,0)(I3 — PT(¢"'y))
+O0(max{|x/,[y[}) - (6.266)

Both (6.265) and (6.266) are uniform with respect to X,y € (2.
Proof. a) We may rewrite (6.153) as follows

G.(x,y) = G(x,y) —e 'h(e 'x,ety)
+P(e7'x)H(O,y) + H(x,0)PT (e ty)
—P(e'x)H (O, O)PT(afly) —eH(x,0)BH(O,y)
+0 (*(min{ x|, |y[}) ") . (6.267)

From Lemma 6.3.3, we have for |x| > 2¢
P(e7'x) =eI'(x,0)B + O (x| 7?) . (6.268)

Also, by Lemma 6.3.8 we have

e e x,e7y) = e (e %, 0)PT (s y) + O (52(|x|2|y|)_1)
= e 'I'(e'x,0)BI' (¢ 'y, 0)
+0 (*(Ix|ly | min{|x|, |y[})~") (6.269)

By substitution of (6.268) and (6.269) into (6.267) we have

G.(x,y) = G(x,y) —e 'I'(e"'x,0)BIr'(¢ 'y, O)
+eI'(x,0)BH(0,y) +¢H(x,0)BI(y, O)
—eH(x,0)BH(O,y)

(e (xly | ming x|, [y[) ) (6.270)

which is equivalent to
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G.(x,y) = G(x,y) — I'(c"'x,0)BG(0,y)
+eH(x,0)BG(0,y)
+0 (*(Ix|ly| min{[x[, [y[}) ") (6.271)

and from this we obtain (6.265).
b) Since the components of H(x,y) are smooth for x, y € 2, expanding
these components about (O, O) € 2 x {2, we may rewrite (6.153) as

G.(x,y) = e 'g(e 'x,e7'y) — H(O, O)
+(H(0,0) + O([x|))P" (e 'y) + P( ') (H(0O,0) + O(ly|))
—P(s'x)H(0,0)PT (e 'y) + O(max{|x|,|y|}) , (6.272)

from which (6.266) follows.

Next we shall simplify the asymptotic formula given in (6.231) for the case
of two dimensions under the same conditions on the points x and y.

Corollary 6.5.2 a) Let X,y € 2. C R? such that
min{|x|, |y|} > 2¢ . (6.273)
Then
Ge(x,y) = G(x,y) = G(x,0)DG(0,y) + O(e(min{|x], [y[})™") . (6.274)
b) If maxc{]x], y|} < 1/2, then
G:(x,y) = g(&§,m) — ¢(§)D¢(n) + O(max{[x],[y[}) . (6.275)
Both (6.274) and (6.275) are uniform with respect to (x,y) € {2 x (2.

Proof. a) By Lemma 6.4.2,

h(€,m) = 7(€,0) —((n) +O(€[ ) - (6.276)
Also from Lemma 6.4.3,
(&) = —7(&,0) + =+ O™ - (6.277)

Substituting (6.277) into (6.204) we obtain
P.(x) = (G(x,0) 4+ O (¢|x|™")) D + O(e|loge| ") . (6.278)
Combining (6.276), (6.277) and (6.278) in (6.231), we have

Ge(x,y) = G(x,y) = (G(x,0) + O(e[x|7)) D(G(O,y) + O(ely|™))
+O0(e(min{|x|, [y[}) ™) , (6.279)
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from which we obtain (6.274).

b) Rewriting formula (6.262) in the form

P.(x) =1, — (H(0,0) = ¢(§) — H(x,0))A™" + O(e|loge|™") . (6.280)
and substituting this into (6.231) for G, we have

G:(x,y) = g(§,n) — H(x,y)
—(H(0,0) - ¢(§) — H(x,0))D(H(0,0) — ¢(n) — H(O,y))
+H(x,0) + H(O,y) — H(O,0) + O(e) . (6.281)

Using the fact that the components of H(x,y) are smooth for x, y € 2,
in the vicinity of the origin we have from (6.281)

G(x,y) =g(&mn) — (O(x]) = ¢(€))D(O(ly]) = ¢(m)) + O(max{|x/, [y[}) .
(6.282)

Since from (6.277), ((&) = O (log(e~![x|)) we have

G(x,y) = 9(&m) — C(€)D¢(n) + O(max{|x], |y[}) - (6.283)



Chapter 7

Green’s tensor in bodies with multiple
rigid inclusions

The results of the previous chapter have been extended here to the case of
elasticity equations in domains with multiple inclusions. Uniform asymptotic
approximations have been derived for Green’s tensors, taking into account
interactions between different small inclusions. Both, three-dimensional and
two-dimensional configurations have been considered.

7.1 Estimates for solutions of the homogeneous Lamé
equation in a domain with multiple inclusions

In this section, we shall discuss an estimate, analogous to that of Lemma
6.2.1, concerning the solutions of the homogeneous Lamé equation for the
Dirichlet problem, in domains with small inclusions. This estimate will aid
us in obtaining the uniformity of our remainder estimates for Green’s tensors
in elastic solids with multiple inclusions.

Let u be the displacement vector which satisfies the Dirichlet boundary
value problem in the domain 2. C R", n =2,3

L(Ox)ux)=0, xe€, (7.1)
u(x) =¥(x), xe€0N, (7.2)
ux) = eV (x), xedw¥ 1<j<N, (7.3)

where O is the zero vector, %) = P (el (x — 0W))) and we assume that
)

<p§ and ) are continuous vector functions.

Lemma 7.1.1 There exists a unique solution u € C(£.) of problem (7.1) —
(7.3) which satisfies the estimate

() )
r%ax|u(x)| < const maX{I%%XN{HcpEJ ||C(aw§”)} lleoay ) - (7.4)

=
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Proof. We first consider the proof of the present lemma for n = 3, after which
we then give details of the proof for n = 2.

The proof of Lemma 7.1.1 for three dimensions. Let ITY) and IT;, denote
the inverse operators of the Dirichlet problem in the domains C@¥) and in
{2, respectively, similar to those for the case of single inclusion given in Sub-
section 6.2.3. Also we set the operator (Héj)tpgj))(x) = (D)) (e (x —
00))), which corresponds to the inverse kernel of the Dirichlet problem in
CaY . Furthermore, let the vector functions ggj)( ) =g (e~ (x — 0W)),
be defined on (“)ng), j=1,...,N.

Using Fichera’s maximum principle (see Lemma 6.2.2 of Chapter 6), we
reduce the proof to the case of when ¥ = O in the boundary condition (7.2).

Let us look for a solution of the problem (7.1)—(7.3) in the form

N
= ZH — 1l (TraQZH(])g(])) (7'5)

Jj=1 j=1
Evaluating the trace of (7.5) on dwd) we obtain
o) =gl + W) (g g . gy, (7.6)

where

SO ED &) = T, (Y 10g®)

k£
1<k<N

N
_Trawéj)nn (Tran Zﬂg(k)ggk)) . (77)
k=1

By Lemma 6.2.3

[Tr, ol (1R g (k) < const ¢ ||g® when k # 5. (7.8)

Hc Awik)y ”cmwg’“))

According to Fichera’s maximum principle (Lemma 6.2.2, Chapter 6) and
the estimate

ITronlIMgM o0y < const & |18l o0, - (7.9)
combined with (7.8), we obtain

5% < const ¢ . (7.10)

HC’(HN 90 —C(0wd)

Hence
g.=(I+S) ., (7.11)



139

where g, = (ggl), .. .,ggN))T, Y, = (QOE:I), .. .,cpgN))T and S. is the matrix
operator whose rows are Sgl), ceey SéN), and the estimate
(4) . (k)
g ||C(awéj>) < const lrgr}caéxNHgoE ||C(8w§k)) (7.12)

holds. By (7.12) and Lemmas 6.2.2, 6.2.3 we deduce

< (4) )
n}zx|u| < const 121%)(]\, le HC(awE)) . (7.13)

The modification of the proof of Lemma 7.1.1 in two dimensions. In two

dimensions, to obtain the result analogous to Lemma 6.2.1 of Section 6.2
we use the approximations ’PE(J ) of the elastic capacitary potentials, which

produces an error O(e|loge|™!) in the boundary conditions, as stated in
Lemma 7.2.3. The representation (6.62) has to be modified to the form

N
u = Z{Héj)(gg) - AS&) + Pz-gj)A(g]&>}
j=1

N
—1Ig ( > Trooll (gl — Af;&) )) ; (7.14)

j=1

where the constant vectors A(gjg) are analogous to those in the formulae (6.62),

(6.63) of Subsection 6.2.3. Otherwise, the argument of the proof is analogous
to Subsection 6.2.3.

7.2 Green’s tensor for the Lamé operator in two
dimensional elasticity

In the subsequent sections we shall study Green’s tensor for the Lamé oper-
ator in 2. C R™, n = 2,3 which will be denoted by G.. The tensor G. is a
solution of

pAKG (%) + A+ 1) Vx(Vx - Go(x,y)) +d(x—y)l, =01,, x,y€ .,
(7.15)
G.(x,y)=0I,, x€d.,ye€ ), (7.16)

where I,, is the n x n identity matrix, and this tensor satisfies the following
symmetry relation

Ge(x,y) =Gl (y,x), xy€,x#Yy. (7.17)
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We shall once again use the notation L(0x) for the Lamé operator given by
(6.11) of Chapter 6.

We shall present an asymptotic representation for the Green’s tensor of
the Lamé operator in two dimensions, in this section, and in three dimensions
given in Section 7.3.

7.2.1 Green’s Matrix for a 2-dimensional domain with
several small inclusions

In this section, we shall consider the uniform approximation of the tensor
G:(x,y) for the case of a planar domain with multiple small inclusions (n =
2), formulated in Section 7.2. We once again introduce model domains and
governing equations needed for the study related to this case.

7.2.2 Green’s kernels for model domains in two
dimensions

Let G(X> y) = [G(l) (X7 y)7 G(z) (Xa y)] and g(J) (£j7 le) - [g(j’l)(é.ja nj)ag(j’z) (gja ”7;)]
now denote Green’s tensors for the Lamé operator in the domain {2 and
Col) = RQ\G)U), j=1,..., N, respectively. The tensor G is a solution the
following problem

L(0x)G(x,y) +0(x—y) [ =0, xy€, (7.18)
Gx,y)=0L, x€d,ye, (7.19)

and the tensors ¢\/) solve
L(9g )9 (€5m;) +0(6; —m)l2 =01, &;,m; € Ca . (7.20)
gD m;) =0L, €& €aCoV) g, e CwW (7.21)

|99 (&,m,)] is bounded as [¢;] — 00 ,m; € COW for k=1,2.  (722)

From the formulation (7.18) and (7.19), we have that G satisfies the sym-
metry relation (6.176) of Chapter 6, in the domain {2; and from (7.20)—(7.22),
for the tensor g, the following relation holds

g(j)(gjvnj) = g(j)T(njvgj)a €j7nj € Cu—j(j),gj # n;. (7.23)
We represent G(x,y) as

G(x,y)=7(xy) - H(x,y) , (7.24)
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and g(j)(fjanj) forj=1,...,N as

where H and h\9) are the regular parts of G and g), respectively, and
Y(x,y) = [ (x,y)]fjjzl, is the fundamental solution of the Lamé operator
in two dimensions with components

Yi5(x,y) = Ka(—log |x — y|di;
FA+ )N +3p) " (@ —yi) (z5 —y)lx =y 7). (7.26)

for i,j = 1,2, where
A+ 3u

= 7.27
2 Arp(N + 2u) (7.27)

We introduce the tensor () as
¢D(my) = tim gV(g;my) (7.28)

1€, =00
and the constant matrix

(oo = tim (V) +(n;, 0)} (7.29)

j

forj=1,...,N.
In Chapter 6, it was proved that the matrices ¢\9), ¢(*9) 1 < j < N,
where symmetric.

7.2.3 Auxiliary matrix functions for two dimensional
elasticity

7.2.3.1 An estimate for the regular part h(¥) of Green’s tensor for
the unbounded domain

Here we state a result concerning an asymptotic expansion of the regular
part h9) of Green’s tensor ¢/), which is consequence of Lemma 2 presented
in Kondratiev, Oleinik [9], (p. 78).

The proof of the following Lemmas, are analogues of the that for Lemmas
6.4.2 and 6.4.3 of Section 6.4, for the case of single inclusion.

Lemma 7.2.1 Let |§;| > 2. Then the regular part h(j)(éj,nj) of Green’s
matrizc g(j)(éj,nj), in CoY) admits the asymptotic representation

h)(g;,m;) =~(€,;,0) — D (n,) +0(€17h), (7.30)
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forg=1,...,N.

We also have the following asymptotic representation of the matrix function
¢

Lemma 7.2.2 For [§;]| > 2, the following representation for ¢Y) holds
¢D(&;) = —1(&;,0) + ¢ +O(lg;| ) (7.31)

forg=1,...,N.

7.2.3.2 The elastic capacitary potential

Let PY )(x) be the elastic capacitary potential corresponding to the j* in-
clusion. The matrix PV )(x) is defined as a solution of

L(0x)PY) (x) =01, x€ 0., (7.32)
PY(x)=0L, xe€dn, (7.33)

POx) =1, xedw (7.34)

PO(x) =0, x€dw® 1<k<N k#j. (7.35)

Given the above boundary value problem, we now consider the approxi-
mation of the matrix P (x).

Lemma 7.2.3 The leading order part ’Ps(j) of the asymptotic approzimation
of PE(])(X) s a solution of the following system of equations

N
PO (x)+ > PH(x)(1 - 6;)G(O",00)) D) (7.36)
k=1
= (G(x,09) — (&) ~ ~(¢;,0) + (=) DO,

where DY) = [Dfi)]ikzl has entries given by

DY) = —(KW) "M (Kyloge — 5527 + Hpa(OW),00))) | (7.37)
DY) = ~(KV) (¢ — Hiz(09),00))) (7.38)
DY) = ~(KV) (¢ — Hau (09, 00))) (7.39)
DY) = (KN (Kyloge — ¢ + Hy (09, 00))) | (7.40)

and
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KD = <K2 loge — (%9 1 H,, (09, 0<j>>)
x (K2 loge — C$37) + Hyp (0W), oU)))
—(H15(09),09)) — ¢{57)(Hz (09, 00) — ¢§27) | (7.41)
forj=1,...,N, and Ky is given by (7.27).
Proof. We represent Pg(j )(X) in the form

PY(x) = (G(x,09) ¢ (€;)—(£;, 0)+¢ ) DV +RY (x) .1 < j < N,

(7.42)
where the matrix RY )(x) satisfies
L(Ox)RY) (x) = 0I,, x€ 0., (7.43)
RO (x) = (C9(€;) +7(§;,0) = (=MD xeon,  (744)
RY)(x) = I, — (—Kg logel, — H(x,0)) + g(OOvJ')) DY | xeawl),
(7.45)
RY(x) = —(G(x,09) = (D (g;) = 7(&;,0) + (=)D,
x€dwP 1<kE<N,k#j. (7.46)
The boundary condition (7.45) is equivalent to
RY)(x) = (H(x,0Y) — HOW 0W)DW | x e dul), (7.47)
where DU) = O(|loge|~1), so R(j)( ) = O(e|loge|™1) for x € dwl
By Lemma 7.2.2
CU(&;) +7(&;,0) = () = 0(e), forx €0 . (7.48)

Then in (7.44), we have that Réj)(x) = O(e|loge|™t) for x € 912,
Next, using Lemma 7.2.2 and the fact that G(x, OU)) is smooth for x € 2.,
we have in (7.46)

forxe&usk) 1<k<NEk#j.
Then we may write Rgﬂ )( ), using the elastic capacitary potential for the
individual inclusions, as

ROx) =~ 3 POx)GOM,00)DD) 4 pi)(x) . (7.50)

k#j
1<k<N
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Combining (7.42) and (7.50) we arrive at
PO ) = (60, 01) = (E)) = 1(€;,0) + ¢

_ Z PE(’““)(X)G(O(’“),O(J))>D(])—l—p(])(x) (751)
kAj

J
1<k<N

Here p(j)(x) is a matrix satisfying the homogeneous Lamé equation, and

is O(e|loge|™!) for x € 92 and x € 0w, 1 < j < N. Therefore by
Lemma 7.1.1, p¥)(x) for 1 < j < N is O(e|loge|™") uniformly with respect
to x € f2..

The removal of the remainder term in (7.51), gives the system (7.37).

7.2.4 A uniform asymptotic formula for Green’s
tensor of Dirichlet problem of linear elasticity in
a domain with multiple inclusions

Now we may approach the approximation of Green’s matrix G, for a 2-
dimensional elastic solid with multiple inclusions.

Theorem 7.2.1 Green’s tensor for the Lamé operator in 2. C R? admits
the representation

N
Ge(x,y) = Gooy)+ 39V (& m,) = Ny(e 'x,e7y)
j=1
N J
+ 3 {PO)AV PO (y) = CD(E;) = ¢D(my) + ¢}
j=1

Y. PPx)GOV.0M)PWT(y)+0(),  (7.52)

+
1<k

1M

J

IA o
IA

N
uniformly with respect to (x,y) € 2 X {2, where
AV = Kylogel, + HOW, 0W) — ¢ = 1 <j<N. (7.53)

Proof. Let G. be sought in the form

N
GE(X7Y) = ’Y(X7Y) - HE(XaY) - Zhgj)(X’Y) ) (754)



145

where it suffices to seek the approximation of the tensors H.(x,y) and
hY (x,y), which solve the problems

L(0x)He(x,y) =0z, x,y € £, (7.55)
H.(x,y) =7(x,y), x€0f,y¢€ 2, (7.56)
H.(x,y)=0I,, xcdwP yec 1<j<N, (7.57)

and _
L(ax)hgj)(xay) = 012 ) X,y € 'QE )

(7.58)
hO)(x,y) =0, x€dR,ye ., (7.59)
h (x,y) =7(x,y), x€d.ye 2, (7.60)

W (xy) =0, x€ow yeQ 1<k<N. k#j.  (761)

The approximation of H.(x,y)

Let H.(x,y) be given by
H.(x,y) = =P (x)H(OY,y) + H(x,y) + V(x,y) , (7.62)

where the index j is fixed and V(x,y) satisfies

L0x)V(x,y) =0, xy€, (7.63)

V(x,y)=0L, x€dye ., (7.64)
V(ix,y)=HOY,y) - H(x,y), x€owl ye., (7.65)
Vix,y)=—-H(x,y), xcdw® yec. k#j,1<kE<N. (7.66)

Since wéj)7 1 < j < N, are small inclusions and H is a smooth tensor in 2

we may expand H about their centres. Namely, for the boundary condition
(7.65) we have

V(x,y) = HOW,y) - H(x,y) = O() , x€dw,ye., (167
and from (7.66)

V(x,y) = —H(x,y) = —H(O®,y) + O(e) ,
xcdw® ye k#j,1<k<N. (7.68)

Therefore, using the elastic capacitary potential of the individual inclusions,
we represent the tensor V(x,y) as
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Vix,y)=— > PPHOM y)+H.(xy) . (7.69)

k£
1<k<N

Substituting (7.69) into (7.62) we have
N . .
He(x,y) = =) PYxHOY,y) + H(xy)+9:(xy),  (7.70)
j=1
where 9.(x,y) is the remainder term satisfying
L(ax)ﬁs()g}’) =01, X,y € 12, 3 (771>
Ne(x,y) =0, xe€dyell, (7.72)
=0(), xedwP yeN 1<j<N. (7.73)

Therefore, by Lemma 7.1.1, we have 9.(x,y) = O(¢) uniformly with respect
to x and y in (2.

The approximation of hgj)(x,y)

We begin by writing the boundary condition (7.60) on Owt as
W (x,y) = —Kylogel, +v(€;,m;) , x € 0w |y € 02 . (7.74)
Thus we seek hY )(x, y) in the form
W (x,y) = —Kalogely + hY) (€, m;) + XY (x,y) (7.75)

for x,y € §2., where the remainder ng ) satisfies

L(ax)X£j)(x7Y) = 012 , XY € 'Qs ; (776)
X (x,y) = Kylogel, — b9 (&;,m;), x €0,y € 2., (7.77)
X (x,y) =06, xedwd ye, (7.78)

ng)(xv }’) = K5 10g€[2 - h(j)(Ej’nj) , X E 8w§k),y € Qg ’
1<k<N,k#j. (779

Using Lemma 7.2.1, we rewrite boundary conditions (7.77) and (7.79) as

X9 (x,y) = —v(x,09) + (D (n,)+0(e), x€0,ye R, (7.80)
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and
W (xy) = =%, 09) + (D (n;) + O(e) , (7.81)
for x € &uék)‘,y € (2,1 <k <N, k+#j. Then, using the elastic capacitary
potential, ng ) is sought in the form
X (x,y) = —H(x,09) + (I, = PY(x))¢9 (n;) + b (x,y) ,  (7.82)

where the matrix b? )(x, y) satisfies

L@ (x,y) = 0L, Xy € 2, (7.83)
h9)(x,y) = O(c), x€dR,y€ ., (7.84)
b (x,y) = Hx,0), x€dul) ye ., (7.85)
b (x,y) = ~G(x,09) + O(c), x€ 0wy e 1<k<N,k#j.
(7.86)

From the fact that G(x,00)) and its regular part are smooth in (2., in the
vicinity of the small inclusions we expand these matrices about the centres
of these inclusions, in such a way that boundary conditions (7.85) and (7.86)
become

b (x,y) = HOD,09) + 0(e), xecdwl.ye 2., (7.87)

b9 (x,y) = —G(O®, 09)+0(e), xcdw ye 2. 1<k<N k#j.
(7.88)
Then, using the elastic capacitary potential, we represent hgj )<X, y) as

h9(x,y) = PP (x)H(0Y,0) = % | PPx)GOM,00) +0(),

k£j
1<E<N

(7.89)
which is uniform for x,y € (2., by Lemma 7.1.1.
Placing (7.82) and (7.89) into (7.75), we obtain the approximation of

hgj)(x, y) in the form

h9)(x,y) = —Kzlogel, + K'Y (¢;,n;) — H(x,0Y)
+(Io = PP (x))¢V) (n;) + PP (x)H(OW), 0V))
- > PP)GOM,09)+0() . (7.90)
ket

J
1<k<N

Combined formula

Now substituting (7.70), (7.90) into (7.54) we obtain
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N
G.(x,y) = G(x,y) + > _g9(&;.m;) — Ny(x,y)

j=1

N
+Z(127P§j)(X))(H(0(” D)= ¢9(n;) — HOY,y))

+Z x,00) + HOY)y) — H(OW 0W))
+Z > PH(x)GOM,09) +0() . (7.91)
J=1 k#j

1<k<N

Using the following relation obtained from the approximation of rY) (x), (see
7.51)

(AT H(OW,0D) — (W (n;) - HOY),y))
= - POT(y) - Y (A9) G609, 00) P (y)
1N
O(e|loge|™1), (7.92)

where AU) = —(DU))~1 and substituting in (7.91) we have
N
Ga(xa Y) = G(Xv Y) + ZQ(J)(QJL) - NV(Xa Y)
j=1
+ Z — PD(x))AY (I, — PO (y))

+Z N+ HOY y)— HOW 0W)Y)

+ Z > PH(x)GO®,00)

j=1 k#j
1<k<N

N
+>_ D (b= PY)GOW, 00 PMT(y)

j=1

I/\m

e
+0(e) . (7.93)

Then, using the approximation of the elastic capacitary potential to simplify
the second summand
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N
> (I = PY(x))AD (I — PO (y))

Jj=1

N
= - (H(x,09) + HOY),y) - H(OY),00)))

N
Z(C(J (&) + C(j)(nj) — () — NKslogels

Jj=1
N
=3 > {60V, 0M)PIT(y) + PP x)GO®,09) |
Jj=1 k#j
1<k<N
N
+> PO (x)ADPDT (y) + O(e) . (7.94)
j=1

Substitution of (7.94) in (7.93) yields the formula (7.52). The proof is com-
plete.

7.3 Green’s Matrix for a 3-dimensional domain with
several small inclusions

Now that the study of the approximation of Green’s kernel for the situations
of anti-plane shear and plane strain of elasticity have been considered, we
now produce an approximation of Green’s matrix for the system of elasticity
in a 3-dimensional domain with multiple inclusions.

7.3.1 Green’s tensors for model domains in three
dimensions

Let G(X7 Y) = [G(l) (X7 Y)a G(Q) (Xa y)a G(B) (X, y)] and g(]) (Eja 77_;) = [g(jJ) (éja nj)a
g2 (&;,m;), 99 (&;,m;)] denote Green’s tensors in the sets £2 and Cwl) =

R3\(D(j), j=1,..., N, respectively, for the Lamé operator whose entries are
given by (6.11) of Chapter 6, for the case of three dimensions. In the present
section, the tensor G solves the following problem

L(0x)G(x,y) +0(x—y)[3=0I3, xy€R, (7.95)

Gx,y)=0I3, x€d,ye, (7.96)

and the tensors ¢\/) are solutions of
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L(9g )9 (&5,m;) +0(&; —ny)ls =0, &;,m; € Co) (7.97)
g9 (&;,m;) =0I3, & €dCxY) n; eV, (7.98)
g (&, m;) = 0L as  [€;] — oo,m; € Col) (7.99)

forj=1,...,N.
We represent G(x,y) and g(j)(ﬁj, n;) as

G(x,y)=I'(xy) - H(x,y), (7.100)

and _ 4
Q(J)(éj,"]j) =I'(&;m;) — h(])(éjynj) ; (7.101)
where I'(X,y) = [[mn(X,¥)]3, =1, is the fundamental solution of the Lamé

operator in three dimensions, and H, hU) are the regular parts of G, g,
j=1,..., N, respectively.

7.3.2 Auxiliary matrix functions in three dimensions

7.3.2.1 The elastic capacitary potential matrix

We denote by P(j)(Ej) = [P(j*l)(fj), P(j’Q)(fj), PU3) (€;)] the elastic capaci-
tary potential matrix of the set w), which is defined as a solution of

L(9g )PU(¢;) =015, & € CV, (7.102)
PUE) =15, & €owd, (7.103)
PUNE;) > 0I5 as  |g]— o0, (7.104)

forj=1,...,N.

Let BU) = [BUY]3_| be the elastic capacity matrix for the set w@), for
j = 1,...,N. This matrix was introduced and its properties where studied
in Chapter 6. In particular, it was shown that this matrix is symmetric.

For the proof of the following Lemma, we refer to Subsection 6.3.2, Lemmas
6.3.1 and 6.3.3.

Lemma 7.3.1 i) If|§;| > 2, then for PG i =1,23, the following estimate
holds B N
[PUD(g;) = I(€;,0)BY)| < const|¢;| ™2, (7.105)

where BYUY are the columns of the symmetric elastic capacity matriz BY) of
the set w9).

it) The columns PUD i =1,2 or3, of the elastic capacitary potential of
the set w9, j =1,..., N, satisfy the inequality
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sup {|€j||P(j’i)(£j)\} <const, j=1,...,N. (7.106)
£, cca

7.3.2.2 An estimate for the regular part h(9) of Green’s tensor in
the unbounded domain

Now we present an asymptotic expansion for the regular part h) of Green’s

tensor ¢\¥), whose proof is found in Section 6.3, Lemma 6.3.8.

Lemma 7.3.2 For allm; € CcoY) and &; with |§;] > 2, the following esti-

mate for the columns h9Y | i =1,2, or 3, of the reqular part of gU") holds
|h(j’i) (Sjﬂ?j) - F(ijo)P(j’i)T(an < const |€j|72|"7j|71 ) (7.107)

where j =1,...,N.

7.3.3 A uniform asymptotic formula for Green’s
tensor in a 3-dimensional domain with several
inclusions

Now we present the main result concerning the approximation of the matrix
G, for a 3-dimensional domain with multiple inclusions.

Theorem 7.3.1 Green’s tensor G for the Lamé operator in the domain
2. C R? admits the representation

N
G.(x,y) = G(x,y) +e ' > g (&;,n;) - NI(x,y)
j=1
N
+>_{PV()HO.y) + H(x,00) PV (n))
j=1

—P(j)(fj)H(O(j), o(j))p(j)T(nj) —eH(x, O(j))B(j)H<O(j)’ y)}

N
+ Z Z PR (£ )G(OM), 0(j))p(j)T(nj)

J=1 k#j
1<k<N
N . .

+0 | Y ®(min{lx - 0| [y —0D )~ | (7.108)
j=1

uniformly with respect to (x,y) € 2 x (2.
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Proof. For the proof of Theorem 7.3.1, we first present a formal argument of
how to obtain the leading order part of (7.108), after which we will give a
rigorous proof of the remainder estimate.

Formal argument

As in the preceding sections, we seek G, in the form

N
GE(X’ y) = F(X7Y> - HE(X7 y) - Z hgj)(X, y) ’ (7109)

j=1

where the tensors H.(x,y) and hY )(X, y) are solutions of the problems

L(0x)H:(x,y) =0I3, x,y € (2, (7.110)
H. (x,y)=I(xy), x€0,y¢€, (7.111)
H.(x,y)=0I3, xecduwV yec, 1<j<N, (7.112)

and _
L0)hY (x,y) = 0I;, x,y € Q2 ,

(7.113)

A (x,y) =0I3, xc€dye ., (7.114)

W (x,y) =I'(x,y), xedwlye 2, (7.115)

) (x,y)=0L;, xcdw ye 2 1<k<N,k#j. (7.116)

The approximation of H.(x,y)

Consider the tensor H,(x,y)— H(x,y). This satisfies the homogeneous Lamé
equation and has zero boundary data for x € 982,y € §2.. For x € 8w£j ) Yy €
2., 1 < j < N, this matrix is equal to —H(x,y), whose leading order part
is —H (O(j ),y). Then we may approximate H., using the elastic capacitary
potential, by

N
H5<XaY> - H(X7 y) = ZP(J)(gj)H(O(J)’y) + GE(X>Y) ) (7117)

where the remainder term &, on the right is a solution of the homogeneous
Lamé equation, is O(¢) for x € ol y € 2.,1<j < N and by Lemma 7.3.1
i) the leading order part of &, is
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Z&‘F(X7O(3))B(])H(O(J),y) forx € 02,y € (2, . (7.118)
J=1

Then the approximation of &.(x,y) may be given by

N
S.(x,y) = Y eH(x,09)BYH(0Y,y) + $.(x,y) , (7.119)

j=1
then upon substitution of this into (7.117) we obtain the following approxi-

mation for H,

N
Hs(xv Y) = H(X’ Y) - Z{P(J)(E'J)H(O(j),y)

j=1

—eH(x,09)BYH(OY,y)} + H.(x,y),  (7.120)

where 9.(x,y) represents the remainder given by this approximation.

7.3.3.1 The approximation of hgj)(x,y)

The matrix A ‘ .
wWUl(x,y) = hP (x,y) — e 'hU)(g;,m;) (7.121)
satisfies the homogeneous Lamé equation, is equal to 0/3 on the boundary of

the inclusion &uéj ) and

WO(x,y) = —'hY(¢;,m;), x€dR.,ye ., (7.122)

W (x,y) =—e "W (g;m;), xedw®™ ye k#j,1<k<N.
(7.123)
By Lemma 7.3.2, the boundary conditions (7.122), (7.123) are equivalent to

WU (x,y) = —I'(x,09)POIT () +O(?ly—0WV Y, x€dn,ye .,

| - | (7.124)
WU (x,y) = —I'(x,09)PUT (n.) + O(e?ly — 0|71, (7.125)
forxeﬁwék),yeﬂg,k;ﬁj,lngN.
Then the matrix W) (x,y) is sought in the form
W (x,y) = —H(x,09) PO (n;) + X (x,y) , (7.126)

where the matrix xgj ) (x,y) is a solution of the boundary value problem

L)X (x,y) = 0I5, x,y € £, (7.127)
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X (xy) =0y -0Y|™"), xecayen., (7.128)
O ey) = Hx 0PI () xcoulyen. (7120

X (x,y) = =G(x,09) PV (n;) + O(*ly — OV,
xcowM ye R, 1<k<N. k+#j. (7.130)
Since the tensor G(x,00U)) and the regular part H(x,y) of Green’s tensor

for the domain 2, have smooth components for x, y € 2., then on ang ) we

may expand these tensors about the centres of wd) (1 <j < N). Thus from
(7.129), (7.130) we obtain

XV (x,y) = HOY,09)PIT(n;) + O(?ly — OV (7.131)
for x € 8w£j),y € (2., and
(x,y) = ~GOW,00) PO () + Oy - 0D, (7132)

forxeawék),yeﬂs,1§I<:§N,k:7éj.
However, (7.131) and (7.132) are not small on the exterior boundary 9f2.

Therefore, using the elastic capacitary potential we represent ng )(x, y) as

X (x,y) = PO (&)H(OW,00) PIT (z))
- Y PY(E)GO0W. 0PI ()
kg
1<k<N
—i—hg)(x,y) ’ (7.133)

where the matrix bgj )(x, y) is the remainder term.

Collecting (7.126) and (7.133) in (7.121), we have the following approxi-
mation for the tensor hgj )
WO (x,y) = e RO (€ m,) — H(x,00) PO (1)
+P(j)(£j)H(O(j), O(j))P(j)T(nj)
— Z P(k)(gk)G(O(k)7O(j))P(j)T(nj)
k)
1<k<N

+h(x,y) - (7.134)

Combined formula

Substituting (7.120) and (7.134) in (7.109) we obtain
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N
G.(x,y) = G(x,y) +e ' > g (&;,n;) - NI(x,y)
j=1

N
+Z{ H(OY),y) + H(x,09))PW7T (5. )
j=1

—P(j)(éj)H(O(j), o(j))p(j)T(nj) —eH(x, O(j))B(j)H(O(J')7 y)}

N
+Z Z P(k)(ﬁk)G(O(k)7O(j))P(j)T(nj) + Re(x,y), (7.135)

J=1_ k#j
1<k<N

where the matrix R, represents the combination of the remainder terms .

and f)g ,j = 1,...,N, given in the approximations (7.120) and (7.134),
respectively.

We now give a rigorous proof of (7.108), including the remainder estimate.

7.3.3.2 Proof of Theorem 7.3.1

From (7.135), the columns Rék)(x, v), k = 1,2, 3 of the remainder, satisfy the
boundary value problem

L(0xy)R® (x,y) =0, x,ye ., (7.136)

N N
RO (x,y) = e 'Y Mg, m;) =Y {PY()HF (0 y)
j=1 j=1
+H(x,00))pU*) ( ;) — eH(x, O0UN)BWH® QW) y)
k)T
—PU) (€, H(0D),00)PIHT(5,))

N
-3 Y POE)GOO,00)PUNT (),

j=1_I#j
1<I<N

for x € 012,y € (2., (7.137)
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RPN (xy) = HO(x,y) = HO©O,y) +e71 3" 000 (g, m))
j#m
1<G<SN
—{H(x,0"™) = H(O™,0™)} PN (n, )
7 Z {P(j)(fj)H(k)(o(j)v y) + H(x, O(j))P(j>k)T(nj)
i#m
1<j<N
,p(j)(gj)H(O(j), O(J'))P(j’k)T(nj)}
N
+_eH(x, 09)BIHM (01, y)
j=1

— Z G(O(m),O(j))P(j’k)T(nj)
j#m
1<G<N

N
— Z Z POE)GOW, O(j))P(j*k)T(nj)

=1 1#j
l#m
1<I<KN

for x € dw™ y € 2. ,1 <m < N. (7.138)

The components of H*)(x,00)) and H*) (01, y) are bounded in 2 and
the components of H*¥)(x, 0\)) are bounded on 2. They are also bounded

for x € awé”””), y € 2., 1 <m < N. Therefore, the norms of the terms
N
ZEH(X’ O(j))B(j)H(k)(O(k),y) ,
j=1

are bounded by const ¢ in (7.138).
By Lemma 7.3.1 ii), since the entries of PU)(n;) are bounded, we have

[H® (x,y) = H®(O"™,y) — (H(x,0"™) — H(O"™), 0")) BT (n, )|

<conste, forxedw™ yeR, ,1<m<N. (7.139)

Then using the estimate given in Lemma 7.3.2 for the columns of A,
j # m, we have

S {7 O (€)= (x, OU) PUT () =GO, 0U) PUT ()

j#m
1<G<N
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< ‘ Z {G(x,o(j)) G(o(ﬂl)7O(j))}P(j,k)T(nj)’ + const Z 2y — O(j)|,1
j#m frmd
1<j<N 1<j<N
< const »_ ey -0V (7.140)
Jj#m
1<j<N

for x € &u&””, y € f2..

Finally, using the estimate for PU) of Lemma 7.3.1 i) for j # m and also
the fact that the components of H and G(O®, 0U)), j # [ are bounded in
(2, we obtain

ST {PUEHHEP (0D y) — PU(E)H(OD,0W)PUNT (1 )} = O(e)
Jj#Fm

1<G<N
(7.141)
and
N
> Y PUE)GOY,00)puk (Ze%y 071,
J=1 I#j
l#m
1<I<N
(7.142)

for x € 0wl™.,y € Q..
Thus combining the estimates (7.139)—(7.142) in (7.138), we have

|IR™) (x,y)| < const ¢, (7.143)

for x € &uém),y €2.,1<m<N.
Now we estimate the right-hand side of the boundary condition (7.137).
Using Lemma 7.3.1 i), we obtain

N

Z{P(j)(ﬁj)H(k)(O(j), y) — eH(x, O(j))B(j)H(k)(O(j), y)}

j=1

= Z {(PY)( (&) - (Ej,O)B(j))H(k)(O(j),y)}

IN

const 252|x — O(j)|*2 <const €2 ,x €02,y € 092., (7.144)

where we have used the fact that for x € 962, 1 < |x — O(j)|, 1<j<N.
From Lemma 7.3.1 i), we also have

|PU) (¢D)| < const e[x — OD)| 1. (7.145)
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Owing to Lemma 7.3.2 we have

N
Y (RO (E . my) — H(x, 09)PUHT ()}
j=1

N
= e 'Y _{nUN(E;m)) - I(€;, 0)PUMT ()}
j=1
N
< const Zs2|x - 0|2y — oWt
j=1
N
< const 252|y — 0Vt forx €N,y €. . (7.146)
j=1

Then, by (7.145) and the definition of G and its regular part H, the esti-
mates

[P (¢,)H(0D,0W)PURT (5 ))| < const ]y —OW [, (7.147)

and

[PU(E)GOD, 00 PUBT ()| < const e?ly = OV, for i #
(7.148)
for x € 012,y € (2.
Therefore, combining the estimates (7.144), (7.146)—(7.148) we have

N
|IR™) (x,y)| < const 252|y — 0|1, (7.149)

j=1

for x € 012,y € (2.
Then (7.143), (7.149) and Lemma 7.1.1 imply

N N
|IR¥) (x,y)| < const max 252|x— oW1 ,262\y —QW|!
Jj=1 Jj=1
N
< const Yy _&*(min{|x — O], [y — OW [}~ (7.150)

j=1

The proof is complete.
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7.4 Simplified asymptotic formulae for the case of a
three dimensional elastic solid with several small
inclusions

Here we show how the asymptotic formula (7.108) simplifies under certain
constraints on the independent variables.

Corollary 7.4.1 a) Let x,y € 2. C R? such that
min{|x — 09|, ly — OW|} > 2¢ for all j=1,...,N. (7.151)
Then

N
G.(x,y) =G(x,y) —£ > _G(x,09)BYG0OY),y)

j=1
+0 [ 32 (x = 09|y — 09 minf|x — 0|, [y —OW[})~" | . (7.152)
j=1

b) If max{|x — O™ |y — O™ |} < 1/2, then

Ge(x,y) = e 'g"™(&,..m,)
+0(max{|x — O™ ||y —O™|}). (7.153)

Both (7.152) and (7.153) are uniform with respect to x,y € (2.

We note that the formula (7.152) presented in part a) of the above Corol-
lary is similar to that presented in the paper by Ozawa [28] (p. 215), for the
approximate Green’s function of the eigenvalue problem for the Laplacian in
a bounded domain in R3 containing several spherical inclusions, which makes
use of the Green’s function in the unperturbed domain.

Proof. a) From (7.108), G. can be rewritten as
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N .
Gs(x7y) = G(X7y) - 5_1 th(f]ﬂ?])

Jj=1

I Z {P(j)(gj)H(O(j), y) + H(x, o(j))p(j)T(nj)
=1

—P(j)(éj)H(O(j), o(j))p(j)T(nj) —eH(x, O(j))B(j)H(O(J')7 y)}

N
+ Z Z PR (£)GOM), O(j))p(j)T(nj)

J=1  k#j
1<k<N
N . .

+0 | Y (min{lx - 0| [y —0D [}~ | . (7.154)
j=1

By Lemma 7.3.1 ), we have the following estimate for the elastic capaci-
tary potential

PO(g)) = 0(x,00)BY) + 0 (*x — 0| 2) | (7.155)
and from Lemma 7.3.2 we also have the approximation

SO (Egmy) = D, 0PI () +0 ((x = OV2ly — 00~
= el'(x, O(j))B(j)F(y, O(j))

+0 ((1x = 09l — 00 min{|x ~ OV[, ]y ~0@[})71) | (7.156)

where in (7.156) we have combined both of the above mentioned results.
In (7.154), using the (7.155) and (7.156), we have

N
G:(x,y) = G(x,y) —e Y _T'(x,09)BYT(y,0")

j=1
+ Z {EF(X, ONBWH(OW y)+eH(x,09)BY (y, 0W)
j=1

—eH(x,0Y)BWH(OW, y)}

N
+0 [ Y- (lx = 09D |ly = 09| min{|x — 0|, |y — 0D} =" | . (7.157)

j=1

Using the definition of the matrix function G given in (7.100), we may rewrite
the preceding formula as
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G.(x,y) = G(x,y) _€ZG ,01) B(J)[‘( O(J’))

+5ZG ,O0UNBUH(OW y)

N
> (x =0V |ly — 0¥ min{|x — OW|, [y —OW|})~" | , (7.158)
j=1

from which (7.152) follows.

b) Due to the condition max{|x — O], [y — O™ |} < 1/2, and since
H(x,y) has smooth components for x, y € £2, in the vicinity of (O™, Q™))
we have from (7.108)

Ge(x,y) = —H(O™,0(™) + 129’) &;m;) — (N —1DI'(x,y)

PO, HIO, 0) 1 0y -0
HH(O™,0) + O(jx ~ O™ P a,)
P, H <o<m> O P ()

+ Y {PVE)u0Y,00) + oy - 0))

J#m
1<GEN

+(H(0"™,09) + O(]x — 0™ ) PV (n))
—PO(g,)H(OV, O(j>)p<j>T(,7j)}

N
+ Z Z P®(¢,)G(OW), O(j))P(j)T(le)

J=1 k#j
1<k<N

+0(max{|x — O™, |y — 0™)}) (7.159)

Now using the estimate for the regular part hU) given in (7.156), and that
for the elastic capacitary potential (7.155) for j # m we arrive at (7.153).






Chapter 8

Green’s tensor for the mixed boundary
value problem in a domain with a
small hole

In this chapter, we derive and justify the asymptotic approximation of the
Green’s tensor for the Lamé system in the situation when the traction bound-
ary condition is prescribed on the small hole and the displacement condition
is set on the exterior boundary.

Naturally, as a result of considering the traction condition on the bound-
ary of the hole, we would expect new features to appear, when dealing with
the approximation of the Green’s tensor. One important model field discussed
here will be the Neumann tensor for the unbounded domain corresponding to
the exterior of the void. We will also see that in comparison to the Dirichlet
problem for the Lamé system, where we used the notion of the elastic capac-
itary potential of the small holes in order to construct our approximation of
Green’s tensor, we will need other auxiliary fields defined in the unbounded
domain corresponding to the hole, which are known as the dipole fields.

Following the main definitions outlined in Section 8.1 we state and prove
an estimate related to solutions of the homogeneous Lamé equation for the
Neumann problem in the unbounded domain, as described in Section 8.2.
This result will then be used, in Section 8.3, to prove an estimate for solu-
tions of the mixed problem for the Lamé equation in a domain with a single
void. We introduce, in Section 8.4, the dipole fields and their properties. This
section also contains an asymptotic estimate for the regular part of the Neu-
mann tensor in the unbounded domain at infinity. We give the main result
of this chapter, concerning the uniform asymptotic approximation of Green’s
tensor for the mixed boundary value problem, in Section 8.5. Once we obtain
our approximation, we then aim to simplify this under assumptions on the
independent spatial variables, and these results are given in Section 8.6.

163
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8.1 Definition of Green’s tensor in a domain with a
single void

The main object of our study in this chapter is Green’s tensor for the mixed
boundary value problem for the Lamé operator in the domain {2, defined as
in Chapter 6, Section 6.1.1. We will denote this tensor by G. and use the
operator notations of Section 6.1

L(0x)G:(x,y) = D(0x)CD(0x)G:(x,y) = =0(x —y) I, %y €2, (8.1)

G:(x,y) =0I,, x€0f,y € 2, (8.2)
T, (0x)Ge(x,y) = D(n)CD(0x)G.(x,y) =012, x € 0w,y € 2., (8.3)

where (2. is the domain with the small void. Here in the boundary condition
(8.3), T),(0x) is the differential operator of tractions in two dimensions (cf.
Chapter 6, (6.8), (6.9)).

8.2 An estimate for solutions of the exterior Neumann
problem for the homogeneous Lamé equation

Now we formulate and prove a result concerning the estimate for the solu-
tion of the Neumann problem for the homogeneous Lamé operator in the
unbounded domain C@. This result will be shown to be useful when con-
structing asymptotic estimates for the model fields defined in C@ involved in
the algorithm.

Lemma 8.2.1 Let u be a solution, which decays at infinity, of the exterior
Neumann problem

L(dg)u(€) =0, £€Cw,

where ¢ € Lo (0w), such that

/8 c-p(§) dSe =0, (8.4)

where ¢ is an arbitrary constant vector.
Then there exists a constant C, depending on w, such that

sup {[€[[u(é)[} < C D @l (Lo (o)) -
ecw

where D, is the diameter of w.



165

Proof. By dilation, we may assume without loss of generality that D, =
1. We note that (8.4) implies the asymptotic behaviour for u(§) and its
derivatives

7°u(€) = 0(Ig]71 1), as [€] = oo,

where o = (a1, ag) is any multi-index.
Using this and Betti’s formula, we obtain the classical identity

u(§) = (VT (9g)u)(§) — (Wu)(§) , £elw, (8.5)

where V and W are single and double layer elastic potentials, respectively,
with densities on dw. By the continuity of the single layer potential and
the jump relation for the double layer potential, one arrives at the integral
equation

27 L+ W)u(€) = (Ve)(€), £€dw. (8.6)

(This is the so-called direct method of boundary integral equations.)
Let us consider an auxiliary exterior Dirichlet problem

L(@g)v(ﬁ) =0, inCo,

v(§) =v(), ondw.
|v] is bounded as |€] — oo .

It is standard that representing v as the double layer potential Wo, one
arrives at the singular integral equation

27 L+ W)o(€) =9(€)  ondw,

which is uniquely solvable. Moreover, the inverse operator (2711, + W)~ 1 is
bounded in W;_l/p(é)w). Therefore, from (8.6), we obtain the estimate

Hu”W;*l/P(aw) S O ||V¢||W;71/p(8w) :

Since the kernel of the integral operator V has only the logarithmic singu-
larity, the estimate

IVellyi-1v5, < Cllel, oo
holds. In particular, by (8.2) and (8.2) we arrive at
[ullys 170 00y < C Il 001

which implies
allz.ow) < Cllel,ow - (8.7)
By (8.4)
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Vo)l < ClEI 1ellniow) - for [€] =2,
which in combination with (8.5) and (8.2) gives for |£| > 2

(@)l < ClEI (lellz.w) + Iz, ow))

ClEI el L, ow) (8.8)

IA A

where p € (1, 00).
Now, using the inequalities (8.7) and (8.8), by Fichera’s maximum princi-
ple (see Chapter 6, Section 6.2, Lemma 6.2.1), we have

lullz. (B:s\o) < Clullz s + lullz. ow))
< CllellL,@w

which gives the final result owing to (8.8).

8.3 An estimate for solutions to the mixed problem for
the Lamé equation in the perforated domain (2.

The following result is a consequence of Lemma 8.2.1 and Fichera’s maximum
principle (Lemma 6.2.2, Chapter 6).

Lemma 8.3.1 Let u be a vector function in 2. such that Vu is square in-
tegrable in a neighborhood of Owe.
Let u be a variational solution of the mized boundary value problem

L(ox)u(x) =0, xe€ 2, (8.9)
T (0x)u(x) = p.(x), x€dw., (8.10)
ux)=v(x), xe€din, (8.11)

where ¥ € Loo(012), ¢, € Loo(Owe), and

/ p.(x)dSx=0. (8.12)
Ow.
Then there exists a positive constant A such that
ullr. 0. < Al o0 +elecllio@o)t - (8.13)
Proof. We introduce the inverse operators
IH:y—-w and N:p—vVv,

for the boundary value problems
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LOx)w(x) =0, xe,

w(x)=9(x), x€dif,
and
L(ag)v(é) =0, €¢€Cw,

v(§) =0 as  [{[— o0,

where 1 € Lo (092) and ¢ € Lo (Ow).
Note that problem (8.14) is solvable if and only if

[ vose—o
We also need the operator N, given by

(New:)(x) = (N)(€)

Lp(e71x).

where p_(x) =&~

The case of the homogeneous displacement condition on 0f2. We start by
assuming zero boundary condition (8.11) on 942.
Let us look for a solution of the problem (8.9)—(8.12) in the form

u=N.g. — II(TrpoN.g.)

with the unknown vector function g. defined on dw. such that

/mg(eds:o,

1 1

where we use the notation g.(x) = e~ 'g(¢™'x).
Obviously, Trgpu = O. Furthermore, when x € Jw. we have

Pe = 8¢ + 5.8,

where
Se = —Trpy, T, (0x) (H (TrooNeg:)) .

Let B be a disk centered at the origin containing Ow., which doesn’t
intersect 042.

By local regularity of solutions to the homogeneous Lamé system and
Fichera’s maximum principle (Lemma 6.2.2, Chapter 6), we have

|1 T3 (0x) (I (TrooNege)) | Lo (9w.) < const [[II(TrooN.g:)llL.(B)

const || Negellz00)

INIA



168

and from this, by Lemma 8.2.1, we have

1T (0 ) (1T (Tra o Nege )|l c(0w.) < const 52||g5||c(6%) )
Hence
1Sc]l (0w )—C(0w.) < const €2,

thus the smallness of S, enables one to write
gE = (I+ SE)_IQOE
and

l8ell o (0w.) < const [lp.|lL (ow.) -

It follows from (8.3), using Lemmas 6.2.2, 8.2.1 and (8.3)

sup [u| < const ef|ge||c(ow,) < const el|@. ||c(ow,) - (8.15)

€

The case of the homogeneous traction condition on Jw.. The solution of
problem (8.9)—(8.12), is written in the form

u=Iy+v,

where the second term v is a solution of (8.9)—(8.12) with the homogeneous
boundary condition on 92 in (8.11) and the condition (8.10) is replaced by

V(X) = ~Ta(@)(TH)(x) , x € Do
According to the result (8.15) of the first part of the proof,

S})lp [v| < const el I (ow.) -

Then, using the local regularity of solutions to the homogeneous Lamé system
and Lemma 6.2.2 (Fichera’s maximum principle) we have

sup [v| < const ||| (90) -

€

Thus
sgp |u| < const ||1,bHLoo(aQ) . (8.16)

€

Combining (8.15) and (8.16) we complete the proof of (8.13).

The aim of the next two sections is to obtain a uniform asymptotic formula
for G, defined as a solution of (8.1)—(8.3). In the first section we introduce
the model tensors necessary for the representation of G., the second section
gives the main result and develops the asymptotic algorithm related to the
current problem.
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8.4 Model boundary value problems

1. The regular part H of Green’s tensor in 2. Let H(x,y) = [Hi;(x,¥)]7 j=;
denote the regular part of Green’s tensor in the domain {2, which solves

L(0x)H(x,y) =0I>, x,y€f,

H(x,y) =7(x,y), x€d,ye. (8.17)

Here, y(x,y) = [vi;(x,¥)]7 =, is the fundamental solution of the Lamé
operator in two dimensions, with entries given by

vij (%, y) = Ka(—log|x — y|d;
A+ )N+ 30) (@ — ) —yy)x —y| 72,

for 7,5 = 1,2, where K5 is given by (7.27) of Chapter 3. The tensor G is
related to H by

G(xy) =(xy) - Hxy), (8.18)

where as discussed in Chapter 6, G satisfies the symmetry relation
(6.176).

2. The Neumann tensor in Cw. We also make use of the Neumann tensor
N(&,m) = [N (€,m)]; =, in the domain Cw, and this solves the problem

L(OgIN(&,m) = —0(§—n)L>, &,
T,(0g)N(&m) =01, £ € 0w,
N(Emn) ~~v(E&n) as [€— oo,

where 11 € Cw. From the above definitions it follows that the Neumann
tensor satisfies the symmetry relation

N(Em) =NMmE)", &nelCu&#n.

Similarly to G, N is written as

N(&n) =~&mn) —hn(€mn),

where h is the regular part of A/

8.4.1 The dipole fields

By W) = {Wip(€)}2_1, p = 1,2,3 we mean the dipole fields for the void w.
These vectors comprise the columns of the 2 x 3 matrix W, which solves
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L(9g)W(E) = 0lzx3, €€Cw, (8.19)
W(E) = 0Ly, a5 €] — oo, (8.21)

where I3, is the 2 x 3 identity matrix, and D(&) is a 2 X 3 matrix given by

(& 02712
D@ = (G &5 ) (8.22)

Therefore, the right hand side of (8.20) is equal to

A+ 2p)ng Anq 21/2 iy

T,,(9¢)D(€) = D(n)C = <( NN

) ,X € Jw

(8.23)
where n = (ny, ng) is the unit outward normal to w
We note that from the problem (8.19)—(8.23), it can be shown that the
columns of the boundary condition (8.20) are self-balanced i.e. we recall that
for the resultant vector of forces on the boundary we have

/ Tn(as)w@ (§)dSg =0, (8.24)
Ow
and for the resultant moment

g {&1t2 WP (£)) — Lot (W) (5))}d55 =0, (8.25)

where p = 1,2, 3.

An estimate for the columns of W

The next result contains an estimate for the columns of W:

Lemma 8.4.1 For W®) p=1,2,3, the estimate

sup {|€|W®) (£)[} < const . (8.26)
136

holds.

Proof. Since the columns of traction boundary condition on dw for the matrix
W (see (8.20) ) are self-balanced, the above estimate (8.26) follows from
Lemma 8.2.1.
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8.4.2 The dipole matrix

The asymptotics of the dipole fields in the neighborhood of infinity can be
descibed using the dipole matrix M for the void w, which is a 3 x 3 symmetric
matrix and is an integral characteristic for the void (see Movchan et al. [?]).

In Chapter 6, we showed for the case of three dimensional elasticity that
the symmetric elastic capacity matrix B was a Cartesian tensor of rank 2 (cf.
Lemma 6.3.5), and the quantity 27! B represents the elastic energy matrix
for the capacitary potential.

We can use a Cartesian tensor of rank 4, say M, to represent the dipole
matrix. This matrix characterizes the energy increment of a field when a void
is introduced.

For let ug be an unperturbed field in the infinite plane before a void is
introduced at the origin, and consider its vector of strain

S(uo) = (611(110),622(110)7 \/5612(110))T )

where e;;(ug) are the components of the strain tensor for the vector uy.
Then, when a void is placed within the plane, we have that the increment
in the elastic energy & is characterized by

d& = ei;(ug) Mijrier(ug)
x=0

= 5 (uy)
x=0

MS(U.())
x=0

x=0

In the asymptotic representation of the elastic capacitary potential matrix
at infinity, the elastic capacity B is the coefficient near the fundamental
solution in three dimensional elasticity (cf. Lemma 6.3.3, Chapter 6). The
dipole matrix is also present in the asymptotic behaviour of the dipole fields
W®) p =1,23, in the neighborhood of infinity. The latter information is
contained in the next subsection.

8.4.3 The asymptotics of the matrix VW at infinity

In order to construct an asymptotic approximation for the dipole fields W®),
p = 1,2,3 we need the following lemma which a reformulation of that by
Kondratiev and Oleinik given in [9].

Lemma 8.4.2 Suppose the columns u9) (€) of the matriz u(€) are solutions
of
pAuD (€ + A+ p)V(V-ul?(€) =0, inCw,
and that [u") (€)| < const (14 €))%, k>0, for j =1,2.
Then for |&| > 2
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dD(€) =2 €+ Y Z§60)CV 1 0(El?),  (38.27)

0< el <1

where 9”,9)(5) = {@i(j’k)(ﬁ) 2 @»(j’k)(E) are polynomials of order not

=1’ %

greater than k, o = (oq,a2) is a multi-index, .@g = ol /(9e0 9es),
cU) = {C’i(j’a)}?zl, where C’i(j’a) are constants.

The next lemma will be used when we address the simplification of the
uniform asymptotics of Green’s tensor under constarints on the spatial vari-
ables.

Lemma 8.4.3 For || > 2, the matriz W(E) admits the representation
W(E) = (D(9¢)"7(£.0))"M + O(l€|*) .

Proof. Since the columns W) p =1,2,3 are a solutions of the Lamé equa-
tion, by Lemma 8.4.2 in Cw, they admit the following the representation

WOE) = 2(©)+ Y. Zgv(€0)CP) +0(gl ), (8:28)

0< || <1

where all items on the right hand side of the preceding equation are as in the
formulation of the previous lemma.
Next consulting the Lemma 8.4.1 we can assume W®) (&) = O(|¢|71),

p=1,2,3 for £ € Cw. Thus the terms yép) (&) and the coefficient near v are
equal to the zero vector.
Therefore we are left with the approximation

W(€) = > Zg1(€,0)0" +0(¢[ ) . (8.29)

|a]=1

for p = 1,2, 3, where the leading order term here may be rewritten in the
form given in that of (8.4.3).

8.4.4 The matrix function T

In the following, it is convenient to introduce the notation
T(¢) =D(§) -W(§). (8.30)
Therefore, the tensor v solves

L(0¢)Y(§) = 0lzx3, €€Cw, (8.31)
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T7L(6£)T(€) = OI2><3 ) 5 € Jw ) (832)

Y)~D() as [§f— o0, (8.33)
which is consistent with (8.19)—(8.23).

8.4.5 An estimate for the regular part of the Neumann
tensor in the unbounded domain

We also obtain an approximation of the regular part of the Neumann tensor
which is contained in the following lemma

Lemma 8.4.4 For |€] > 2 and n € Cw, the columns h9) of the reqular part
of the Neumann tensor in Ciw admit the representation

WO (&,m) = Wi (m)Viu(9¢)y™ (€,0) + O(1€]*In| ™) , (8.34)
forj=1,2.

Proof. Let h)(&,m), 1 = 1,2, be a column of the regular part h of the Neu-
mann tensor, and v*)(€), k = 1,2,3 a column of the matrix function v(&)
(see (8.30)—(8.33)).

Take Br(O) = {£€ : |€] < R} to be a disk with sufficiently large radius R.
We begin by applying Betti’s formula to the vectors h() (¢, 1) and v¥)(£) in
the domain Bgr\@ to obtain

0= | {nD(&n) Tu(9g)v™ (&) —v™ (&) T, (9¢)nV (€,m) dSg

OBRr

- [ v Tu(@gIh e m s (8.35)
Ow

where we have used that v(*) and h(!) are solutions of the homogeneous Lamé
equation and the boundary condition (8.32). Dealing with the last integral
in (8.35), we have by the definition of h and v, this integral is equal to

- [ 097,001 €. ase

= | (W) T @)y (& m) = V* (&) - Tu(9)y"" (€. m)} dSg

ow

= [ WP Tu@)r V(& m) 71" (&m) - Tu(9g)V ™ (€)} dSg8.36)

ow

where in moving from the second line in (8.36) to the last, we applied Betti’s
formula to the vectors v()(¢,m) and V) () in the domain w.
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The integral on the right hand side of (8.36), now applying Betti’s formula
to the vectors W) and v in the domain Bgr\@, is equivalent to

W®(©) - T (0 )y (€.m) =7V (€. m) - T (9) V™ (€)} dSe

ow
= W) = [ V&) Tu(0g)r" (€m)
(& m) - Tu(@) WM (€)} dSg . (8.37)

The last identity holds for all sufficiently large R and taking the limit as
R tends to infinity, the integral on the right hand side of (8.37) by Lemma
8.4.3 tends to zero.

Thus we have shown

/a v (&) - T (9g)hV (€, m) dSg = Wik(n) . (838)
Combining (8.38) with (8.35) we have

Wim) = [ (B0 ) Tu@)o® (€) — v ¥ (€) - T (0)hV (€, m)} dSg

OBr
(8.39)
which once again holds for all sufficiently large R.
From the definition of h (see (2)) the columns of this matrix function,
owing to Lemma 8.4.2 and in a similar way to the proof of Lemma 8.4.3, for
|€] > 2 admits an estimate of the form

WO (€,m) = Ca(m)Vus(9)7 ) (€,0) +rD (&, m) | (8.40)

where r(l)(ﬁ, n) are columns of the remainder such that its behaviour in £ is
estimated by O(]€|72), and the constant in this estimate can depend on 7.

Then, returning to (8.39) and passing to the limit as R — oo, and using
(8.40) we obtain

Wis(m) = Jim [ {(Culm)Ves(9g)7"" (. 0)) - T (9 V™ (€)

—VE(E) - (Car(m)Ves(9) T (07" (€,0))} dSg . (841)

One more application of Betti’s formula to the vectors Cs;(n) Vs (85)7(”) (&,0)
and V) (§) in By yields the relation

Wicn) = [ Via€)Culm) V1 (0g)56) de

and computing the right hand side of this gives
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Wlk(n) == sl(n)vvs(aé)vvk(o) . (842)

Then using (8.22) in (8.42) we obtain
Cr(n) = ~Wi(n) . (8.43)

Estimation of the remainder. Now we investigate the estimate of the re-
mainder produced by this approximation for A, j = 1,2.
First let us introduce the following notation

B(9¢,7(€,0)) = [T (9¢,7(€, 0)), 0P (9¢,71(€,0)), 0 (8¢, 7(€,0)] ,
(8.44)
where

B (9¢,7(€,0)) = Vi (97 V(€,0), T (9g,7(€,0)) = Var (0g)7'P (€, 0),

TP (9¢,7(€,0)) = Vi3(9)7V(€,0) + Vas (9P (6,0) . (8.45)

Then, using (8.44), (8.45) along with (8.40), (8.43) we have the representation
for the matrix h for €| > 2

h(€7 77) = _m(afaf)/(év O))WT('U) + 7“(57"7) ) (846)

where 7 is a matrix whose components are O(|€]~2).
Consider the matrix h(n, &), j = 1,2 which satisfies

L(on)h(n.€) =0y . m.€c o, (8.47)
h(n,€) = 0Iy, as |n|—o0,€€Cw, (8.49)

where the columns of the boundary condition (8.48) are self-balanced.
We recall from the symmetry relation of the Neumann tensor, that

hT(&m) = h(n.§), and set r7(&m) = h(n.§) + W(n)(B(9¢,7(§,0)))".
The problem for 7 is then

L(On)r'(&mn) =0L, méecCo, (8.50)

Tn(a'r])TT(sa "7) = Tn(a'rl){/y(nﬂ€)+W(n)(m(a£77<€v O)))T} y ME aw>£ €Cw ’
(8.51)
rT(¢,n) -0, as |n — o0, &€Cu, (8.52)

where the right hand side of condition (8.51) is also self-balanced.
Now we note that
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T (0)W(0)(V(9g, 1(€,0)))" = ~T,. ()W (1)(T(9n. (€, 0)))"
= ~Tn(9n)(§0), (8.53)

for n € dw, & € Cw.
Let |€] > 2, n € Ow, and consider a column of the condition (8.51). Using
(8.53), we estimate the modulus of this column as follows

T2 (8n)r ™9 (&, m)| = |Tu(On)y" (0, €) — Tn(9n)7 (€, 0)|
< const |n||€]™2 < const |&]7?, (8.54)

for j = 1,2, where it has been used for 7 € dw, |n| < 1. Then, by Lemma
8.2.1, we obtain that 7(¢,n) = O(]¢|~2|n|~1).

8.5 A uniform asymptotic formula for G, of the mixed
problem in a domain with a void

Now we have described the model fields and associated asymptotic estimates
for the algorithm, we will obtain a uniform asymptotics of G, for the mixed
problem. We have the theorem

Theorem 8.5.1 Green’s tensor for the mized boundary value problem of the
Lamé operator in 2. C R? admits the representation

G:(x,y) = G(x,y) + N(&n) —v(&,m) 55
8.55
+eW(E)D(9x)" H(O,y) + e(D(dy)" H(0,x))"W" (n) + O(e?)

which is uniform with respect to x,y € (2.

Proof. We deal with the proof in two parts. First we present a formal argu-
ment which will enable one to obtain the leading order term in (8.55). Second
we give a rigorous proof of the remainder in (8.55).

Formal argument

Let G, have the representation

G:(x,y) = 7(x,y) — M(x,y) , (8.56)

where it suffices to seek the approximation of the tensor M. (x,y), which is
a solution of the problem

L(ax)me(x7y) =0, x,ye€{,



M.(x,y) =v(x,y), x€INye€E, (8.57)
Tn(0x)M.(x,y) = T (0x)y(X,y), X € Qwe,y € (2 . (8.58)

The approximation of i,

Consulting the boundary condition (8.58), using scaled coordinates we have
Tn(0x)Me(x,y) = Tn(0x)7(&,m) , X € Owe,y € (2. (8.59)

In view of the boundary conditions (8.57), (8.59), we write 1. in the form
M.(x,y) = H(x,y) +hn(&n) + BV (x,y) . (8.60)

Here Rgl) is a solution of the homogeneous Lamé equation for x,y € (2.. The
displacement condition for Rgl) is given by

RY(x,y) = —hn(€,m) , for x € 902,y € Q2. ,

where the asymptotics of i in Lemma 8.4.4 allows one to replace this condi-
tion by

RO (x,y) = —¢ lim (D(9,)"(x,2)) "W (1)
+O(¥|y| ™) for x € 992,y € 1. . (8.61)
The boundary condition for R,gl) on the interior contour dw, takes the form
T, (0x) RV (x,y) = —Th(8x)H(x,y), X € duw.,y € (2. .

Then using the the Taylor expansion of H about x = O, this boundary
condition is equivalent to

T,(0x) R (x,y) = —D(n)CD(0x)"H(O,y)
+0(e), x€Owe,y € .. (8.62)

In order to correct for the discrepancies present in (8.61) and (8.62), we
consult the boundary conditions for the regular part H in (8.17) and that for

the matrix W in (8.23), and write RY in the form

RM(x,y) = eW<s>D(ax>TH(0,y>e(D(6y>TH<0,x))TWT<n>+RE(<x, y)) :
8.63
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Combined formula

Substituting (8.60) and (8.63) into (8.56) we have the following representation
for G,

GE(va) = ’Y(X7Y) _H(X’ Y) - h(fﬂ?) ( )
8.64
+eW(€)D(9x)" H(O.y) +£(D(9y)" H(0,x))" W' (n) + R-(x,y)

where R, is the remainder. Finally, from the definition of G' and N we obtain
the leading order part of (8.55).
Now we give a rigorous proof of Theorem 8.5.1.

The remainder estimate

The remainder R., present in (8.64), is a solution of the problem

L(GX)RE(Xay) =0 , X, ¥ € Qs s

RE(X’ y) = h(&a T’) - EW(E)D(ax)TH(Oa Y)
—e(D(0y)"H(0,x))"WT(n), xe€on,yec ., (865)

Tn(ax)Rs (X, y) =T, (8X)H(X7 y) - ETn(ax)W(E)D(ax)TH(Oa Y)
—eT0 (%) (D(3y) " H(0,x)) "W (n)
for x € dw,,y € 12, , (8.66)

where the boundary condition (8.66) is self-balanced.
Estimate for R.(x,y) on 0f2. Since the derivatives of the components of
H are bounded for x € 912, y € (2., by Lemma 8.4.1

EW(€)D(8x)" H(O,y)|

const e%|x|™*

<
< const €2 x € 9N,y € 92, (8.67)

where we have used for x € 912, |x| > 1.
Owing to Lemma 8.4.4 and the boundary condition (8.17) for H. one
obtains
[h(€,m) — e(D(9y)"H(0,x)"WT(n)]
= |h(€.m) + < Jim (D(2,)" (x.2)) W ()

const &?[x|2|y| ™' < const ®ly|7! ,x € 02,y € 2. . (8.68)

IN

Thus estimates (8.67), (8.68) lead to
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|R.(x,y)| < const e?, x€df,yc .. (8.69)

Estimate for R.(x,y) on Ow.. The boundary condition (8.23) for the
matrix W imply

|Tn(ax)H(xa Y) - ETn(ax)W(g)D(ax)TH(ov y)|
= |D(n)CD(9x)" H(x,y) — D(n)CD(dx)" H(O,y)| . (8.70)

Next, using the Taylor expansion we expand H about x = O to derive the
inequality

|Tn(8x)H(X7 Y) - ETn (ax)W(g)D(ax)TH(oa y)'
< conste, X € Jw.,y € (2.

Lemma 8.4.1 then gives
[€7(0,0)(D(8y ) H(0,x)) "W (3)] < const =2y " (8.71)
Then, (8.71) and (8.71) yield
[T (0x)Re(x,y)] < const e, x € dwe,y € (2. . (8.72)

By Lemma 8.3.1, (8.69), (8.72) and the fact (8.66) is self-balanced, we have
R(x,y) is O(g?).

8.6 Simplified asymptotic formulae of G. under
constraints on the independent spatial variables for
a domain with a small hole

Now that the uniform asymptotic formulae has been obtained for the entries
of G for the mixed boundary value problem, we now show how this formulae
simplifies under constraints on the points x and y.

Corollary 8.6.1 a) Let x and y be points of 2. C R? such that
min{|x|, |y|} > 2¢ . (8.73)
Then

(GY (x,y))i = Gij(x,y) = & Vi(0y)Gir (X, O) My Vi (95) G (O, y)
+52Vkl(ay)Hik’ (xv O)Mslvqs (ax)qu(Oa Y)
+O0(e*(|x|[y| min{|x/, [y[})~") . (8.74)

b) If max{|x|, |y|} < 1/2, then
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(GY(x,y))i = —Kalogediy — Hij(0,0) + (&, m) + O(max{|x|, |y[}) ,
(8.75)
where Ko = (A + 3p) (4mp(X\ + 2u)) L.
Both (8.74) and (8.75) are uniform with respect to x and'y of 2.

Proof. a) We rewrite (8.55) as

(GY(x,y)): = Gij(x,y) — hij(&n)
+eWim (€7 1%) Vim (0x) Hi,j (0, y)
+eWji(e™ ' y) Vi (9y) Hik(x, O)
—2Wim (e x)W;1(e L y) Vit (Oy ) Vs (0x) Hsx (O, O)
+0(e?) . (8.76)

Due to the constraint (8.73), from Lemma 8.4.3 we have the estimate for the
entries of W,

Wip(€) = —M;pVie;(9¢)vin (€, 0) + O(I€]7%) (8.77)

and combining the preceding estimate with that of Lemma 8.4.4, we have for
the entries of h

hij(§,m) = —eVii(0x)vik(x, O)Wji(n;) + o1& %ml™)
= "V (0x)Vik (X, O) Myt Vi (0y )755(y, O)
+O(*(Ix[|y| min{[x|, [y[})~") . (8.78)

Substitution of (8.77) and (8.78) into (8.76), yields the following

(GO (x,¥))i = Gij(x,y) — € Vit (0x) ik (X, O) Myt Vern (9y ) 755 (v, O)
_EQVlS(aX)'Yil(Xa O)Msmvkm(8X)ij(OaY)
_EQVQS (9y)7jq (¥, O) M Vit (0y) Hik (%, O)
+O(3 (x| [y | min{[x[, [y[})~") . (8.79)

Now, using the identity V;s(9x )7y (x, O) = —Vis(0y )i (x, O) and the defini-
tion of G, we may simplify (8.79) to

(ng) (x,¥))i = Gij (x,y) — 52Vkl(8y)7ik (x, O)Mlesm(ax)st(O, y)

6245 (870 (¥, O) My Vi (8y) Hir (x, O)
+O(e°(|x|[y| min{|x/, [y[})™") , (8.80)

where (8.80) is equivalent to (8.74).
b) Using the definition of G to rewrite (8.55), we have
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(GV(x,y))i = —Hij(x,y) + Nij(§,m) — Kz logedi,
+eWim (€7 1%) Vim (0x) Hi,j (0, y)
+eWii(e ™' y) Vi (8y) Hir(x, O)
—2Wim (e ')W1y ) Vit (Oy ) Vsm (0x) Hs (O, O)
+0(£?) . (8.81)

Since max{|x|,|y|} < 1/2, we may expand the tensor H(x,y), which is
smooth in 2, about the point (O, 0) € 2 X {2, to obtain

(GY)(x,y))i = =Kz logedi; — Hi;(0,0) + Nij(§,m) + O(max{|x], [y[}) -
(8.82)
The proof is complete.
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Meso scale approximations.
Asymptotic treatment of perforated
domains without homogenization.






Chapter 9

Meso-scale approximations for
solutions of Dirichlet problems

In this chapter, we address the Dirichlet problem for the Poisson equation
—Au = f in a multiply perforated domain.

The asymptotic approximations constructed here are efficient for certain
meso scale geometries, intermediate between a collection of inclusions whose
size € is comparable with the spacing parameter d and the classical situation
with € ~ const d® appearing in some classical solutions in the homogenization
theory (see, for example, [2], [11] ).

We derive the asymptotic formula for Green’s function Gy (x,y), uniform
with respect to x and y. The following is a specially simple form in the case
of 2 =R3:

1-N N
G - § ' ()
N(xay) 47T|X—y| +jilg (X7y)

+ > CyPYX)PY(y)+0(d?),
1<4,5<N, i#j

where ¢() are Green’s functions in R3*\FU) and the matrix C =
(Cij)N;=y s defined by C = (I+SD)~'S.

9.1 Main notations and formulation of the problem in
the perforated region

Let 2 be an arbitrary domain in R?, and let {OW}Y | and {FWIN | be
collections of points and disjoint compact subsets of 2 such that OU) € F),
and FU) have positive harmonic capacity. Assume that the diameter g; of
F() is small compared to the diameter of £2. We shall also use the notations

d=2"1 min |0Y - 0W| &= max e¢;. (9.1)
1#5,1<4,J<N 1SN
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It is assumed that € < ¢ d, with ¢ being a sufficiently small constant.
We require that there exists an open set w such that

N
=1 N (92)
and dist{ U F(j),aw} > 2d.
j=1

Let us introduce the complimentary domain
Qn =0\ UL PO, (9.3)

as shown in Fig. 13.

Fig. 11 Perforated domain containing many holes.

Let u denote the variational solution of the Dirichlet problem

—du(x) = f(x), x€ L, (9.4)
u(x) =0, x€ 0N, (9.5)
where f is assumed to be a smooth function with a compact support in 2,

such that diam(supp f) < C with C being an absolute constant.
We seek an asymptotic approximation of u as N — oo.
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9.2 Auxiliary problems

We collect here solutions of some boundary value problems to be used in the
asymptotic approximation of u.

9.2.1 Solution of the unperturbed problem

By vy we mean the variational solution of the Dirichlet problem

—Avg(x) = f(x), x€ 2, (9.6)
vp(x) =0, x€01, (9.7)

where f is the same smooth function as in (9.4).

9.2.2 Capacitary potentials of FU)

The harmonic capacitary potential of F() will be denoted by P\), and it is
defined as a unique variational solution of the Dirichlet problem

APY(x) =0 on R*\FU), (9.8)

PU(x) =1 for x € (R®\ FY), (9.9)

PY(x) =0(elx —0W|™ 1) as e7lx — 0] = oo. (9.10)

It is well known (see, for example, [27]), that these functions have the follow-
ing asymptotic representations:

, FU) , ) ,
PY(x) = rjli(o(j))—i—O(a cap(F9)x—0W|72) for [x—0W)| > 2. (9.11)

The harmonic capacity of the set F/) can be found by

, 1 ,
an(FO) = - | g TP @ (9.12)

9.2.3 Green’s function for the unperturbed domain

Green’s function for the unperturbed domain is denoted by G(x,y), and it
satisfies the boundary value problem
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AGx,y)+d(x—y)=0, x,y €2, (9.13)
G(x,y)=0 as x€ 082 and y € (2. (9.14)

The regular part of Green’s function is defined by

H(x,y) = (4r|x —y|)™' - G(x,y). (9.15)

9.3 Formal asymptotic algorithm

Let the solution u of (9.4), (9.5) be written as
u(x) = vs(x) + R (x), (9.16)

where vy solves the auxiliary Dirichlet problem (9.6), (9.7) in the unper-
turbed domain, whereas the function B! is harmonic in 2y and satisfies
the boundary conditions

RW(x) =0 when x € a1, (9.17)
and
RW(x) = —vp(x) = —v(0®)) + O(e) when x € J(R3\ F(®).  (9.18)

Let us approximate the function R™") in the form
RYx) ~Y ¢y (P(J)(x) — 4 cap(FD) H(x, o<ﬂ>)), (9.19)
j=1

where C; are unknown constant coefficients, and P and H are the same as
in (9.8)—(9.11) and (9.15), respectively.
By (9.11), (9.15) and (9.14), we deduce

PU)(x) — 47 cap(FY)) H(x,0Y)) = O(e cap(FW)|x — 0W|72),  (9.20)

forallx € 002, j=1,...,N.
On the boundary of a small inclusion F**) (k=1,..., N) we have

vi(0OM)) + 0(e) + Cr(1 + O(e)) (9.21)

+ Y (4 eap(FD) GOW,00)+0( cap(FV)x-0)[2)) =0,
1<j<N, j#k

for all x € A(R3\ F¥)).
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Equation (9.21) suggests that the constant coefficients Cj, j =1,..., N,
should be chosen to satisfy the system of linear algebraic equations

vp(OW) +Cp+4r Y Cjeap(FY)) G(OW, 00)) =0,  (9.22)
1<G<N, j#k

where k=1,..., N.

Then within certain constraints on the small parameters € and d (see (9.1)),
it will be shown in the sequel that the above system of algebraic equations is
solvable and that the harmonic function

R®(x) = R (x ZC (p(]) 4 cap(FW) H(x,O(j)))

is small on 92y . Further application of the maximum principle for harmonic
functions leads to an estimate of the remainder R in 2y.
Hence, the solution (9.16) takes the form

=vf(x —i—ZC ( PY(x) — 4 cap(FY)) H(X,O(j))) +RP(x), (9.23)

where C; are obtained from the algebraic system (9.22).

9.4 Algebraic system

In this section we analyse the solvability of the system (9.22), and subject to
certain constraints on € and d, derive estimates for the coeflicients C;, j =

" .T.F.h,ej\;é)llowing matrices S and D will be used here:
S = {(1 - @-,@)G(o(k),o<i>)}].V : (9.24)
ik=1
and
D = 47 diag {cap(FM), ..., cap(FN)}. (9.25)

If the matrix I 4+ SD is non-degenerate, then the components of the column
vector C = (C4,...,Cn)T are defined by

C=—-(I1+SD)'Vvy, (9.26)

where

V= (Uf(o(l)),...,vf(O(N)))T. (9.27)
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Prior to the formulation of the result on the uniform asymptotic approx-
imation of the solution to problem (9.4)-(9.5), we formulate and prove aux-
iliary statements incorporating the invertibility of the matrix I + SD and
estimates for components of the vector (9.26).

Lemma 9.4.1 If max;<;<y cap(F)) < 5d/(24r), then the matriz I+ SD
is invertible and the column vector C in (9.26) satisfies the estimate

N
anp (FW)y ¢ S (1- 24—7T max cap(F(j)))_Qanp(F(j)) (Uf(O(j)))z.

5d 1 .
j=1
(9.28)
Proof:

According to (9.26), we have (I4+ SD)C = —V . Hence

(C,DC) + (SDC,DC) = —(V;,DC). (9.29)
Obviously, the right-hand side in (9.29) does not exceed

(C,DC)Y2(V;, DV )1/2, (9.30)

Consider the second term in the left-hand side of (9.29). Using the mean
value theorem for harmonic functions we deduce

(SDC,DC) = (4r)> > G(OW,09)cap(FW)cap(FW)) C;C;
i#5,1<4,j<N

F@®
R T ( L / / G(X,Y)dXdY,
i#5,1<4,j<N [BO| B J)| B JBWG)

where BY) = {x: [x — OW]| < d}, j = 1,..., N, are non-overlapping balls
of radius d with the centers at OU) and |BY)| = 47d?/3 are the volumes of
the balls. Also, the notation By is used here for the ball of radius d with the
center at the origin.

Let =(x) be a piecewise function defined on {2 as

=(x) = { Cicap(FV) in B, j=1,...,N,
A\ 0 otherwise.

Then

(SDC,DC) </ / G(X,Y)Z(X)Z(Y)dXdY

N
Z cap( F(j) 02/
= B

G(X Y)dXdY> (9.31)
) J BG)
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The first term in the right-hand side of (9.31) is non-negative, which follows
from the relation

/ G(X,Y)Z(X)=2(Y)dXdY :/ ‘VX/ G(X,Y)Z(Y)dY “iX > 0.
J0 2 2
(9.32)

The integral
/ G(X,Y)dXdY
B JBG)

in the right-hand side of (9.31) allows for the estimate

/ GXYdXdY<—/ / dXdY
B(7) BW) By J Bg ‘X_Y|

dY dY
[ ix / / _AY
T ar { wi<x| X =Y]| d>\Y|>|X| |X*Y|}

1 1X| dSy
L i [ )
Y:|Y|=p} |X Y| x| Jevyi=p} \X—Y|}

(9.33)
Using the mean value theorem for harmonic functions we deduce
dSY 2 —1
=4mp°|X|™" when |X]| > p. (9.34)
»/{Y:|Y|—p} X Y]
On the other hand,
dSy
= 4mp when |X]| < p, (9.35)
/{Y:|Y|—p} X -Y|
which follows from the relation
0 1
/ _dS  _ _/ . __4sy
(v:Y|=p} PIX Y] (v:v|=p} O1Y[ X =Y]
1
=— Ay ———dY =4r when |X]| < p.
/{Y Yi<pp XY
It follows from (9.33), (9.34) and (9.35) that
1 X2 8mrd®
G(X,Y)dXdY < = d* — dX = : 9.36
/m @) (X, Y) _Q/Bd( 3) 15 (9:36)

Next, (9.29), (9.30), (9.31) and (9.36) lead to
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N
(SDC,DC) > dg/ / G(X,Y)E(X)Z(Y)dXdY — 22 S (cap(FU))2C?,

where v = 3Z. Then (9.29) and (9.37) imply

N

816" .
- m () § 2 F(9)
(1 d 1<Ja<XN cap( )) Cyean( )

J

< (Bemwen)

which yields

Il
_

M=

1/2
(v;(0V))) Cap(F(j))> :
1

1/2
24m
= @)y ©)
(1 7 1H§ax cap(F <J§ 1C’ cap(F ))

N 1/2
< <Z(Uf(0(j)))2cap(F(j))> . (9.38)
j=1

Thus, if maxi<j<n cap(F)) < %d, then the matrix I + SD is invertible
and the estimate (9.28) holds. The proof is complete. [J

Replacement of the inequality € < cd by the stronger constraint ¢ < cd?
leads to the statement

Lemma 9.4.2 Let the small parameters € and d, defined in (9.1), satisfy
£ < cd?, (9.39)

where ¢ is a sufficiently small absolute constant. Then the components C; of
vector C in (9.26) allow for the estimate

| <c m @))y]. .
|Ck| < ¢ max, [vg(OY))] (9.40)
Proof: Let us write the system (9.22) as

F) ‘
Cot+dr Y CjM/ G(OW, y)dy = —vp(OW),  (9.41)
r<iin e 1BIL I8,

fork=1,...,N, where BC(IJ/)4 is the ball of radius d/4 with the centre at Q).
Also let o be a piece-wise constant function such that
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(9.42)

0, x € R3\ UN_, B

. () )
U(X)_{C] cap(F\7)), x € Bj,,
d/a-

Multiplying (9.41) by cap(F*)) and writing the equations obtained in terms
of o we get

192
7(0%) + 22 cap(F ) [ o(¥)GO®), y)dy

o)
Ui<j<n, jxzr Baya

= —vf(O(k)) caup(F(k))7

which is equivalent to

192 X .
100) + 3 can(r®) [ Gly. 2)o(y)dy = cap(FH) 2 ()

3)
1<i<N Bd]/4

(9.43)
for k=1,...,N, where

#9(a) =~ (O) + 7 [ | Gly.mpoty)ay (9.44)

192
d3 5@

1<§<N, j#k Td/4
o
7Td3 U

Next, we multiply (9.43) by

2M—1
( [ G(y,z>o<y>dy> ,
Us<jen BY

1<j<N Paya

o(y) ((H(OM,y) — H(z,y))dy

(
){ LI L 71 }dy, for all z € B

' - k) — d/4°
1<j<N, j#k B((i]/)4 |y Z| |O( ) /

where M is a positive integer number. Also, taking into account that

o(0®) = ¢(z) forall z € Bg;i we write

2M—1
( Lo G(y,z>o—<y>dy> o(a)

d/a

2M
+22 cap(F ) ( i G(y,z>o<y>dy>

G)
1<i<n Bi)s

2M -1
= cap(F®)) o*) () (/ G(y,z)o(y)dy> , Z € Bé’;l.
U

o)
1<i<n Bi)s
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Since o = 0 outside the balls B((i /21, it follows that the integration of the above

equation over Bd/4 and summation with respect to k =1,..., N lead to

2M—1
/( G(y,z>o<y>dy> o(2)dz
(9] 2

2M
( / G(y,z>a<y>dy> iz
2

dz

5 fosoroe)’

shows that the first term in the left-hand side of (9.45) is non-negative. By
Holder’s inequality, the right-hand side of (9.45) does not exceed

N 1/(2M)
k k 2M
<Z_ cap(F®) [ @¥) dz>

d/4

oM\ (2M—1)/(2M)
(anp F(k) / </ G(y,z) ) dz) ,
I0)

d/4
(9.46)

and hence (9.45) yields

109 [ N 2M 1/(2M)
(anp r®) | ( / G(y,z>a<y>dy> dz>
B Q

N 1 v 1/(2M)
s(anp(F(’“>) / <<k><z>>2Mdz> . (9.47)

After the limit passage as M — oo we arrive at

d—3 sup /G(y,z) (y)dy| <c¢  max - sup |8 (z)],
® |0 SksN (k)
z€U <r<n Byja S
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and by (9.43) we deduce

10(0")] < ¢ cap(F®)) max sup [0V (z)|. (9.48)
1j<N 2€BY)
d/4

In turn, it follows from the definition (9.44) of the functions &) that

192
sup 80 (2)] < [0,(0®)] + 222 max |o(0@)] sup Gy, z)dy
(r) d3 1<q<N & Jp®
2€B, z€B, d/4
192
fnlidng (q) . (k) _
& hax [o(0)] sup > /Bj) |H(O™),y) — H(z,y)|dy

(
2B, 1<j<N, j#k’ Bija

+— max |o(09)] sup Z /
B

wd3 1<q<N .
== 2€BY) 1<<N, j#k

|z — O]
@ |y —z]|OKk) — |dy,
kA y y

which, together with (9.48), yields

ONPS (k) { ) -2 () }
#(0W)] < ¢ cap(FW) { max [0(00))| +d> max |o(OW)
If maxj<p<n cap(F®)) < ¢d?, with ¢ being a sufficiently small constant,
then referring to the definition (9.42) of the function o we deduce (9.40),
which completes the proof. (I

9.5 Meso scale uniform approximation of u

We obtain the next theorem, which is one of the principal results of the paper,
under an additional assumption on the smallness of the capacities of FU).

Theorem 9.5.1 Let the parameters e and d, introduced in (9.1), satisfy the
inequality
e<cd’? (9.49)

where ¢ is a sufficiently small absolute constant.

Then the matriz I+ SD, defined according to (9.24), (9.25), is invertible,
and the solution u(x) to the boundary value problem (9.4)—(9.5) is defined by
the asymptotic formula

N
u(x) = vf(x) + ZCj (P(j)(x) — 4 cap(F(j)) H(x, O(j))) + R(x), (9.50)

where the column vector C = (Cy,...,Cn)T is given by (9.26) and the re-
mainder R(X) is a function harmonic in 2y, which satisfies the estimate
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R&)| < C{elVoslliaw + 220 Plloglliaw ) (951)

Proof:
The harmonicity of R follows directly from (9.50).
If x € 942, then

N

N
+Y_1C510( cap(FW)[x — OW|72).
j=1

Since G(x,0)) =0 on 912, and PU) satisfies (9.11) we deduce
N
= O(e cap(FD)|Cj|[x — 0P| 72), (9.52)
Jj=1

where [x — OW)| > C d, and C is a sufficiently large constant.

If x € A(R3\ F*)) then
R(x) = —vs(0%)) + O(el| Vol L (w)
N
+47 Y Cjeap(FV)) (H(O(k), o) + 0(5))

Jj=1

[ cap(FW) £ cap(FU)
~Cr = Z . C]{|O(k) —O(])| +O(|O(k) 70(])|2)}
1<j<N, j#k

(9.53)

Noting that (9.26) can be written as the algebraic system

N
, 1
(1 _ 5. (€))) (R —
Cr + 471'; Cj(1 = 0;x) cap(F )(47r\0(k) — 00|
iz
_H(O®), O(j))) +op(0®) =0, (9.54)

which, along with (9.53) and the obvious inequality cap(F)) < &, implies

R(x) = O(e|| Vsl Lo (w)) + 47TC;€cap(F(k))H(O(k) 0k
al 4 e cap(FW))
+3 0 cap(FO)C )+ 3 O(mw D). (9.55)

i=1 1<GEN, jk

It suffices to estimate the sums
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Z € Cap(F(j))|Cj|
k) _ (2
<Nk |O() — OW)|
and ‘
3 e cap(FU)|C;|

x_O0F x € 012.

1<j<N

When ¢ < ¢ d”/* we refer to Lemma 9.4.1, and using the inequality (9.28)
we derive

v cap(F)|C;|

k) )|2
b TN |O*k) — Q)|
. 1/2 1/2
2 cap(FW) .
— N2
= ( 2 IEEGIE Y cap(FV)C;
J#k,1<j<N 1<G<N
1/2 1/2
< const d—1/2< Z cap(F(j))(vf(O(j)))2> < max gzd_BCap(F(j))>
1<j<N 1<G<N
2
€
< const e llvsllen - (9.56)
Similarly, when x € 92 we deduce
e cap(FW)|C}] 2
Y. s onp Scomst gl (9.57)

1<j<N

Combining (9.56), (9.57), (9.52) and (9.55) we complete the proof by re-
ferring to the classical maximum principle for harmonic functions. [

Under the stronger constraint (9.39) on ¢ and d, Lemma 9.4.2 and repre-
sentations (9.52), (9.53) lead to the following

Theorem 9.5.2 If the inequality (9.49) is replaced by (9.39), then the re-
mainder term from (9.50) satisfies the estimate

RG] < CelVorllnw +22d gl |- (9.58)

9.6 The energy estimate

Under the constraint (9.39) on e and d, which is stronger than (9.49), we
derive the energy estimate for the remainder R. This result is important, since
it allows for the generalization to general elliptic systems, and in particular
to elasticity where the classical maximum principle cannot be applied.
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Theorem 9.6.1 Let the parameters € and d, introduced in (9.1), satisfy the
inequality

£ <cd?, (9.59)

where ¢ is a sufficiently small absolute constant. Then the remainder R in
(9.50) satisfies the estimate

2
£
VR L,(2y) < Const @HfHLOC(QN) (9.60)

Proof.
For every k =1,..., N, we introduce the function

cap(FU)) )

x) = vp(0) —vp(0®) + 3T oy(P 760~ 150 o0

1<j<N,j#k
N .
—47 3" C; cap(FY) (H(X, 0 — H(OW, O(J)))
j=1

—47Cy, cap(FF)H(O®) 0W), (9.61)

where the coefficients C; satisfy the system (9.22).
By (9.50) and (9.61), for quasi-every x € 9(R?\ F¥)

R(x) 4 ¥,(x) = —v;(0W) — ¢y,

(7) _ .

- Y g (M — 4r cap(FOYH(O®, O(J))),

2. 00 —0U)]
1<j<N, j#k

which together with (9.22) implies
R(x)+ ¥,(x)=0

quasi-everywhere on 9(R? \ F(*)) (i.e. outside of a set with zero capacity).
The function ¥, defined by

To(x) =Y ¢ (PU‘)(X) OO (9.62)

satisfies
R(x) +¥(x) =0
quasi-everywhere on 942, which follows from (9.50) and (9.5), (9.7).
We set B,(;k) = {x: |x — O®| < p}, and define the capacitary potential
of F*) relative to Bé’;l, that is a unique variational solution of the Dirichlet
problem
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APy(x) =0, x€ B\ F®, (9.63)
Pu(x) =1, xed(R>\ F®)), (9.64)
Pu(x) =0, |x—0®|=d/a. (9.65)

Also, let a surface S; be a smooth perturbation of 32 such that
Sq C 2 and d/4 < dist(Sq,x) < d/2 for all x € 912,

In turn, the set of all points placed between the surfaces 92 and S, is denoted
by I14, and the function Py is defined as a unique variational solution of the
Dirichlet problem

APy(x) =0, x e I, (9.66)
Py(x) =1, x€ 09, (9.67)
Py(x) =0, x€ 8, (9.68)
We note that
N
R(x)+ Y Pe(x)¥(x) (9.69)
k=0

vanishes quasi-everywhere on 02y and that the Dirichlet integral of (9.69)
over {2y is finite. Therefore, by harmonicity of R

VR(X)-V(R(X)+ 3 Pk(x)gvk<x))dx:o.

2N 0<k<N

Hence

IVRIG, on) < IVRILoan) IV D Pilillzy(on),
0<k<N

which is equivalent to the estimate

N 1/2
| VR || 1,008) < (Z | V(Pp¥) HiQ(B;’jl)jL” V(Po¥y) ||%2(Hd)> .

k=1
(9.70)
In the remaining part of the proof, we obtain an upper estimate for the
right-hand side in (9.70).
The inequality (9.70) and the definition of ¥, lead to

I VR 3,20 < 2(/@1) + K@+ L0428 4 MO 4 M® N+ Q),

where
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N

KO =3I (Pulwr() = 0O 2 oo (9.71)

k=1

a 5 () CaP(F(j)) 2
=31 Y av(BrPYO - ga o)) we

k=1 1<j<N, j#k

(9.72)
N N ~
MDY = (4m)2 3 [ 3265 cap(PD) V(BB (-, 00)
k=1 j=1
~ H(0",0)))] i (9.73)
’ Lz(Bélz)), '
N 2
N :(47r)2kz_l|ck|2 (Cap(F(k))) (H(o<k> o ) |\vpk||L2(B;,;)4),
(9.74)
_ o(p iy @pFEY)
0 —IIK;NCN(P(J(P 0= o) I (9.75)

and K?, £&  M® are deﬁned by replacing Bé’z) in the definitions of
KW, 5(1) MO by B ’“) \B
We start with the sum (V). Clearly,

N ~ ~ 2
K& < OVurl3 Z/B(k) {|vpk(x)|2 x — 0W2 4 (Pk(x)) }dx
k=1 3e

N
< COIVoslli ) D& cap(F™*) (9.76)
k=1
and hence
KM < Cbd?| Vg7 - (9.77)

Furthermore, by Green’s formula and by (9.6) we deduce

Z /B(k) B<k> (Uf( )- Uf(o(k))>{ — Pu(x)f(x)

k=1
+2V Py (x) - va(x)}dx

_é /ang) [:)k(X) (Uf(x) — Uf(o(k))) {Pk(x)gr;g(x)

0Py

Hug(x) 0 (O 3t

(x )}dS (9.78)
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_ By the mean value theorem for harmonic functions and the inequality
P,(x) < P¥)(x), we have

- c
< (k)
R Py TOTI T

where B = {y : |y — x| < |x — O®)|/4}. Making use of the asymptotics
(9.11) far from O%®) we deduce

cap(F™))

VAR <€ L ompE

k k
x € B\ BEY. (9.79)

Now we turn to the estimate of (9.78). The volume integral in the right-
hand side of (9.78) does not exceed

¢ S IVttt [ {2 0
Vf||Loo(w)C — 7
=R pgng Ux—=0®)
cap(F ("))
+m||vvf||Lw(w)}dX
< Ced ™|V llp. o) {e® NS N nairn) + 2l Vos 1 |
< CE2A7?|fII7 . (om)- (9.80)

By 0 < Py(x) <1 and (9.79), the surface integral in (9.78) is dominated
by

Cd?|Vr L w) < C*d 2 IfIL . an)- (9.81)

oo (W

Combining (9.80) and (9.81) we arrive at the estimate

K@ < CLd2||fI_ (o) (9:82)

2
Lo (Bél:) )) .

Let us estimate £(Y) (see (9.72)). Obviously,

<35 jelv(aeoo - @)

k=1 \1<j<N, j#£k

Furthermore, when j # k we have

[P - D)

La(B§Y)
cap(FU))

Py (P () — S T)
Sn(vp’f)(Pj ©) 0 — 00|

)||L2(B§];)) + ||ﬁ)kvp(J)||L2(B§’;))7

which does not exceed
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od e cap(FD) (cap(FW))1/2 - 3/ cap(FO)
ok — 00U)[2 o — 02 (-
|

Hence, using Lemma 9.4.1 we deduce

N ' ’
) , (Cap(F(J)))l/Q
£V <o Z(E Z ‘Cj|m

k=1 1<G<N, j#k
N 1
4 2 (4) _—
<Ce Z{ Z Cj cap(F'Y) Z |o(k),o<j)|4}’
k=1 " 1<j<N, j#k 1<G<N, j#k

and therefore

LI < Ce®d™ 0 vy|2 (9.83)

OO(W)'

Similar steps can be followed to estimate Q in (9.75). We have

[v (BP0 - <))

|x—O(J)‘ Lo (Ia)
~ ) F(j))
< lev B (P _wl)(i_\
< H( 0)( () |X70(])|) La(IT4)
. ‘ ‘ —0W
B (vpd Ny XZ 97 ‘ :
—|—H O( +Cap( )‘X*O(J)P) LQ(Hd,)

which does not exceed
Ce cap(FD)|x — 0W |72, x e II,.

As above, we use Lemma 9.4.1 to deduce

QSCE?’< > |Oj|<cap<F”’>>1”>

iGen X O0P

; 1
3 2 ) 45-7 2
<Ce E C5 cap(F'Y) E x_ 00 < Cetd Mogllf () for x € Il
155N 155N

(9.84)

Next, we estimate £(). Integration by parts gives
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)
; ) () — _BPE)
/B(k)\B(k) V<Pk(x)(P (X) |O(’€) — O(J')‘))

~V(15k(x)(P(m) (x) — M))dx

|O) — Olm)|
= a0 P (P90 - M) (VA(x) - VP (x) ) dx
= o P00 (P00 - SR [ P) 5P
HPUI ) - ST O ) s (9.55)

When j # k and m # k, the volume integral in the right-hand side of
(9.85) is estimated as follows

()
) () — —PE) N (G p ). v pm) |
ﬂ /B o Pe(x) (PY () - \O(k)—o(j)\)(vpk(x) VP (x) ) dx
cap(F*)) cap(FU)) cap(F®))  cap(F(™)
- ‘O(k) — O(j)|2 (k) \ (k) |X7 O(k:)|2 |X7 om ‘2
Bd/4\BSE

(cap(F®)))2cap(FU))cap(F™)d < £2d cap(FYW) cap(F(™)
=Y oW 00 [0m —0ommE = “[0® —0UE |0 — 0t

dx  (9.86)

In turn, when j # k and m # k the modulus of the surface integral in the
right-hand side of (9.85) does not exceed

e cap(F)) / cap(F(™) e cap(F(™) 0P, )‘ s
)

00 — 002 x— O " jolm — o®m |

e cap(FW) cap(F (™) 5 cap(F(*)) s
0% — 00 p[o® —ompp)® "¢ o) [x— OJ2

3 cap(FU)) cap(F(™)

|0®) — 02|k — Om)|2" (9.87)
We have
‘C(Z) = Z Cmcj
1<m,j<N

€))
O)(yy . CAPEY)
% /B(k) (k) k X)(P (x) |O(k) — O(j)‘))

1<k<N, k;ﬁm ki Baja\

} (m)
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and by (9.85) , (9.86) and (9.87)

FU))cap(F(™)
Decld S lcalel Y cap(
- J k) _ i) |2 k) _ 2
1<m,j<N I<ESN, k#m,k#j 0% — 0D [0 — Otm)]

2
3 . .
=C = D [CulICjlcap(FY) cap(F™)

1<m,j<N
d3
<Y .
k) _ 2 k) _ m)|2’
ke N Tkt |Ok) — QW2 |OKk) — Om)]
and therefore
g |Con|C;|cap(FW) cap(F (™)

£® <c ﬁ (9.88)

1<m,j<N d+ |00 — O]

Let us introduce a piece-wise constant function

€)= | [Cml(cap(F(™))V/2, when x € By,
0, otherwise.

Then the inequality (9.88) leads to

(ICml(cap(Fem))1/2) (1G] (cap(F1)))1/2) o
d+]0G) — 0l

3
@) &
s oF Y

1<m j<N

3
&g
SIS T gXdY < C = €2
// d+ |X Y‘ = 8 ||§||L2(w)7

where the constant C' depends on w, and using Lemma 9.4.1 we deduce

IA

L? <c Z C? cap(FD)d* < C © gllfoLz(w) (9.89)

1<J<N

E \

To evaluate M) + M@ we apply the result of Lemma 9.4.2 and use the
same algorithm as for K(!) and K@ to deduce

MO+ M® < Cllugl]3_oyed (272 +22472) < C2d0 g3 (o)
(9.90)
Similarly, applying Lemma 9.4.2, we derive the estimate for the term A
N S CEBd_SHUfH%OC(w)' (991)

The proof is completed by the reference to (9.76), (9.82), (9.83), (9.84),
(9.89) , (9.91). O
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9.7 Meso scale approximation of Green’s function in 2y

Let Gn(x,y) be Green’s function of the Dirichlet problem for the opera-
tor —A in 2. In this section, we derive the asymptotic approximation of
Gn(x,y) and estimate the remainder term. In the asymptotic algorithm, we
will refer to the algebraic system similar to that of Section 9.4. We need here
Green’s functions g\)(x,y) of the Dirichlet problem for the operator —A in
R3\ FU) j =1,...,N. The notation h() will be used for the regular part
of ¢\, that is

h(j)(x7 y) = (47T|X - y‘)_l - g(J) (Xa y)v X,y € R3 \ F(J) (992)
According to Lemma 1.1.2, the functions h(9) allow for the following estimate:

dnx — O]

Ep(j)(y)

< - w7
< const |x70(j)\2’

WO (x,y) — (9.93)

for all y € R*\ FU) and |x — OU)| > 2¢.
The principal result of this section is

Theorem 9.7.1 Let the small parameters e and d, introduced in (9.1), sat-
isfy the inequality € < c d?, where c is a sufficiently small absolute constant.
Then

N
j=1
—PU(x)H(OW),y) + 47 cap(FY)H(x, 09)H(OY),y)
N
+H(0W, 0 7U) ()T (y) — ZCijT(i) (x)T(j)(y)} +R(x,y),
i=1
where 4 , , 4
TO)(y) = PO(y) - dn cap(FV)H(OV),y), (9.95)

with the capacitary potentials PY) and the reqular part H of Green’s function
G of 12 being the same as in Section 9.2. The matrixz C = (Cij)gjﬂ is defined

by
C=(I1+SD)!s, (9.96)

where S and D are the same as in (9.24), (9.25). The remainder R(x,y) is
a harmonic function, both in x and y, and satisfies the estimate

|R(x,y)| < const ed > (9.97)

uniformly with respect to x andy in 2.
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Prior to the proof of the theorem, we formulate an auxiliary result.

Lemma 9.7.1 Let the small parameters € and d, defined in (9.1), obey the
inequality (9.39). Then the matriz C in (9.96) satisfies the estimate

IClle~ —rn < ed™?, (9.98)
where ¢ is an absolute constant.

Proof. First, we note that
ICllan oz < const 1S ]lav_gx (9.99)

which follows from Lemma 9.4.2, where V f should be replaced by the columns
of the matrix S.
Additionally,
|S||r~r g~y < const d~3. (9.100)

To verify this estimate we introduce a vector £ = (&), [|€]| = 1, and a
function £(x) defined in {2 by

_J& in BW = {x:|x—0W|<d}, j=1,...,N,
00 = { 0 otherwise. (9.101)
Then
- E(X)E(Y)dXdY
< 6 S\A)e1)aAd Y
(SE, &) < const d /w/w e

< const d_ﬁ/ |€(X)|?dX < const d?,
which yields (9.100). Then (9.99) together with (9.100) lead to (9.98). O

Proof of Theorem 9.7.1. The harmonicity of R follows directly from (9.94).

Let us estimate the boundary values of R on 02y.

If x € 92 and y € (2, then according to the definitions of Section 9.2.3
for Green’s function of {2 and its regular part the remainder term R in (9.94)
takes the form

N j j
, PU)(y) , . cap(F1))
Rexy) = {h(”@@ V)~ T o)~ 1O (P60 - [ eg)
i=1
e : FO)
+H(09,00) TO(y) (PO () - I(:Ii(()@)l)

N . A cap(F®
CERICER ) }
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Taking into account the estimate (9.93) for h9) together with the asymptotic
representation (9.11) of PU) we obtain

2

N ePD(y N
R(x,y) = ZO(|X—O(1)|2> +3 N Ty (m) (9.102)

Jj=11:=1

for all x € 012.

Here R(x,y) is harmonic as a function of y. Next, we estimate (9.102) for
y € 0f2y.

If y,x € 012 then (9.102), (9.95) and (9.11) lead to

N e2 e
XY):;O(W 0W)|[x — <j>|2)+ZZC”O( —o<i>\2|y—0<j>|2)'

Jj=11i=1
(9.103)
Using (9.98) we can estimate the double sum from (9.103). For a fixed
x € 912, let us introduce a vector
2 N
Z)|2)i:1’

V:(ﬁ

and a function V(X) defined in {2 by

_ [ V; when X € BY),
VX) = { 0  otherwise,

where the balls BU) are the same as in (9.101). It follows from Lemma 9.7.1
that the double sum in (9.103) does not exceed

const const £*

cd9VIP < R [ vexrax < RS

The above estimate together with (9.103) imply
R(x,y) = O(2d™3|logd| + £*'d™") when x,y € 91. (9.104)

Now, we estimate (9.102) for y € (RN \ F(™)). In this case we have
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2
R(x,y) = O(m)JF > O(|y_o<j)ﬁx_o(j>|2)

1<G<N,j#m

+ ﬁ; O<|x€;(l)|2> {Cim (1 — 47 Cap(F(m))H(O(m)’ y))

VY Cij(cap(F(j))G(O(j),Y)JrO(62))}

_ 1) |2
1<G<N,j#m ly — 0]
(9.105)

We also note that according to (9.96) the coefficients C;; satisfy the system
of algebraic equations

(1= 3;m)G(O™, 00 — Cyp,

—4r Y Cij cap(FW) G(O™,01) =, (9.106)
1<j<N, j#m

for m,i = 1,..., N.. Hence, in the above formula (9.105) the expression in
curly brackets can be written as

2

Cim + O(|Cimle) +47 3" Cij(cap(FD)G(OV),y) + O 5))

_ 1) |2
1<j<N,j#m ly =0
= (1= 0;m)G(O™, 09) + O(ed™) (9.107)
2
€ N m
+ Z Cijo(m)» y € 9RN \ F™),
1<j<N,j#m

and then formulae (9.105) and (9.107) imply

R(x,y) = O (ed*“' + e logd|d? + aBd*‘*)

4

g
+ > > Cij0< ,O(j)|2|x70(i)|2)’

1IN 1< <N, j#m ly

where the estimate of the double sum is similar to (9.103). Thus, we obtain
R(x,y) = O(Ed_2 + | logd|d + £3d* + 54d‘7) = O(ed™?), (9.108)
forall x € 92 and y € O(R?*\ F"™)), m =1,...,N.

Using the estimates (9.104) and (9.108) and applying the maximum prin-
ciple for harmonic functions we deduce that

R(x,y) = O(ed™?), (9.109)



209

for all x € 02 and y € 2.

In turn, when x € (R3\ F(*)), the formula (9.94) and the definition (9.92)
of h()) lead to the expression for the remainder term on the boundary of the
inclusion

R(X7 y) = H(Xa Y) - H(O(k)7 Y)
+ Y (Wexy) - POXHODY))
1<j<N, j#k
N N
+ ZT(j)(y) (H(O(j), 0(j)) T(j)(x) — H(x, o(j)) _ ZCUT(D(X))
) ) (9.110)

Using the formulae (9.11) and (9.93) for PU) and h\) together with the
definition (9.95) of () and the definition of Section 9.2.3 of the regular part
of Green’s function of {2 we deduce that

) ) ) TU)(y) e2 +ePU)(y) )
J J j _
h9(x,y) - P (x)H(OY) y) = MJFO(W} J#k,
(9.111)
and
H(x,y)=H(OW, y)+0(e), (9.112)

for x € AR\ F®)) and y € 2y. The representations (9.95) together with
(9.110)(9.112) imply

TG (y) e2 +ePU)(y)
R(x,y) = Z } {47r|xo(j)| +O(|0(k) fo(j)‘2>
1<G<N, j#k

N
_ Z T (y) (H(O(’“), 0y — H(OW 0W)TW)(x)
j=1

N N
+3 eyt <x>> + 3" 0ETO(y))). (9.113)

Bearing in mind the asymptotic formula (9.11) for the capacitary potentials
and the definition (9.95) we deduce that for x € 9(R?\ F(*))

; (@) . .
TW(x) = cap(F) ) — 47 cap(FY)H(x,0W)) + O(

5 cap(F(j)))
o |x — O(J)‘

x — OU)2
(9.114)

52

Thus, (9.113) can be rearranged in the form
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Rxy)= > T(”(y){G(O(’“)7 0W)) — Cy;

1<j<N, j#k
—Am Y Cy cap(FY) G<o<k>,o<i>>} +RW(x,y),
1<i<N, i#k

(9.115)

where

(4) ,
ROy = 00+ 3 {O(M)wwd-lmﬂ(y)n}

L<GEN, jk
; g2 +ePU)(y)
+ 0y O(e\T(J)(y)\ T om _ou O(J')|2)
L<G<N, j#k
e cap(F®)
+ Y. O aos (9.116)
5 i (d |O*) — Q)] )

S e, T (y)0 Z I
Y arwo(En onE)

j=11<i<N, i#k

It follows from (9.96) that the coefficients C;; satisfy the system of algebraic
equations

(1-0k)G(O®),0D) ~Cy;—4r >~ €y cap(FW) G(OW,00) =0,

1<i<N, i#k
(9.117)
for k,j =1,..., N, and hence using (9.115)-(9.117), we arrive at
R(x,y) = RP(x,y) (9.118)

for all x € (R \ F®)) and y € Q.
Let us consider the case when y € 9(R?\ F(™)). Then

e cap(FY))

TU (y) = 4 cap(FY) G(OY)y) + O(W

). i #m,

and
70" (y) =1 — 47 cap(F"™) H(O™)y).

The double sum in (9.116) can be rearranged according to (9.106)
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N

F()
> ol ens ‘2) >, 10()

1<i<N, ik

_ e cap(F®) |
ap> O<m) Cim + O([Cimle)

1<i<N, i#k

j , 2
+4m Z Cij( cap(FUH)G(OY) y) + O(w))
1<G<N, jm ly |
2
c m) ol _
= ¥ Oo(gmemp){cO™, 00 +oed}
1<i<N, itk izm

4

€
+ Z Z Cij0(|o(m) — 00 ]2|0%) — O(i)|2) (9.119)

1<i<N, i#k 1<j<N,j#m
= O(?|logd|d™® 4+ 3d™* + *d™T),

for x € O(R3\ F*)), y € O(R3\ F(™)), where the estimate of the last double
sum in (9.119) is similar to (9.103). Combining (9.116), (9.118) and (9.119),
we deduce that R(x,y) = O(ed~2) for x € I(R*\ FF)), y € 9(R3\ F(™),
m,k=1,..., N. Using the symmetry of R(x,y) together with (9.108) we also
obtain that R(x,y) = O(ed=?) for x € 9(R*\ F®), k =1,...,N, y € 002.
Applying the maximum principle for harmonic functions we get

R(x,y) = O(ed™?) for x e J(R3*\ F®) k=1,....N, y € 2y. (9.120)

Finally, formulae (9.109) and (9.120) imply that R(x,y) = O(ed~2) for x €
02y and y € 2y, and then applying the maximum principle for harmonic
functions we complete the proof. (I






Chapter 10

Mixed boundary value problems in
multiply-perforated domains

In this chapter we discuss meso-scale approximations of solutions to mixed
problems for the Poisson equation for domains containing a large number of
small perforations of arbitrary shape. The Dirichlet condition is set on the
exterior boundary of the perforated body, and the Neumann conditions are
specified on the boundaries of small holes.

The asymptotic methods, presented here and in [13], can be applied to
modelling of dilute composites in problems of mechanics, electromagnetism,
heat conduction and phase transition.

Asymptotic approximations applied to solutions of boundary value prob-
lems of mixed type in domains containing many small spherical inclusions
were considered in [4]. The point interaction approximations to solutions of
diffusion problems in domains with many small spherical holes were analysed
in [5]. Modelling of multi-particle interaction in problems of phase transition
was considered in [7] where the evolution of a large number of small spherical
particles embedded into an ambient medium takes place during the last stage
of phase transformation; such a phenomenon where particles in a melt are
subjected to growth is referred to as Ostwald ripening.

The asymptotic approximations introduced in this chapter are uniform
with respect to the independent variable. The boundary layers near individ-
ual inclusions incorporate the dipole fields characterising the shape of the
inclusions and their orientation. A model algebraic problem is solved to eval-
uate the coefficients in the meso-scale asymptotic approximations.

10.1 An outline

As above, the notation {2y is used here for a domain containing small voids
FU j=1,..., N, while the unperturbed domain is denoted by 2. The small
parameters ¢ and d have the same meaning as in the earlier sections and
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characterise the small size of inclusions and the distance between inclusions,
respectively.

Our goal is to obtain an asymptotic approximation to a unique solution
uy € LY?(2y) of the problem

—Aun(x) = f(x), x€ 2N, (10.1)
un(x) =¢(x), x€dN, (10.2)
%‘TN(X):O, xedFY j=1,..., N, (10.3)

where ¢ € L'/22(002) and f(x) is a function in L>°(£2) with compact support
at a positive distance from the cloud of small perforations.

We need solutions to certain model problems in order to construct the
approximation to uy; these include

1. v as the solution of the unperturbed problem in 2 (without voids),

2. D®) as the vector function whose components are the dipole fields for
the void F*),
3. H as the regular part of Green’s function G in (2.

The approximation relies upon a certain algebraic system, incorporating
the field vy and integral characteristics associated with the small voids. We
define

0 = (Vo). (W(Om)))T)T

and & = [&;;]Y._; which is a 3N x 3N matrix with 3 x 3 block entries

4,J=

(Vo@ V) Gaw) | o0 i
S = WO ;

013 otherwise

where G is Green’s function in {2, and I3 is the 3 x 3 identity matrix. We
also use the block-diagonal matrix

Q = diag{Q™,..., @™}, (10.4)

where Q) is the so-called 3 x 3 polarization matrix for the small void F*)
(see [19] and Appendix G of [27]). The shapes of the voids F) j =1,..., N,

are constrained in such a way that the maximal and minimal eigenvalues

/\%LI, /\fizn of the matrices — Q) satisfy the inequalities
A1e? > max A9 min Agzn > Age?, (10.5)
1<j<N 1<j<N

where A; and Aj are positive and independent of €.
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One of the results, for the case when 2 = R3, H = 0, and when (10.2)
is replaced by the condition of decay of uy at infinity, can be formulated as
follows

Theorem 10.1.1 Let
e<cd,

where ¢ is a sufficiently small absolute constant. Then the solution uy(X)
admits the asymptotic representation

N
un(x) =v(x)+ Y CM.-DW(x)+ Ry(x), (10.6)
k=1

where C® = (C® M cSNT and the column vector C = (CV, P, Y,
cee Cl(N), C’2(N), C?(,N))T satisfies the invertible linear algebraic system

I+6Q)C=-6. (10.7)

The remainder Ry satisfies the energy estimate
||VRN||i2(QN) < const {Elld_u +55d_3}|\VUHQL2(Q). (10.8)

We remark that since ¢ and d are non-dimensional parameters, there is no
dimensional mismatch in the right-hand side of (10.8).

We now describe the plan of the article. In Section 10.2, we introduce the
multiply-perforated geometry and consider the above model problems. The
formal asymptotic algorithm for a cloud of small perforations in the infinite
space and the analysis of the algebraic system (10.7) are given in Sections
10.3 and 10.4. Section 10.5 presents the proof of Theorem 10.1.1. The problem
for a cloud of small perforations in a general domain is considered in Section
10.6. Finally, in Section 10.7 we give an illustrative example accompanied by
the numerical simulation and a discussion of the dilute approximation of uy
in a periodic array of identical voids.

10.2 Main notations and model boundary value
problems

Let 2 be a bounded domain in R3 with a smooth boundary 9. We shall
also consider the case when {2 = R3.
The perforated domain {2y, is given by

2N = Q\Ué»\;lF(j) s
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where FU) are small voids introduced in the previous section. Also in the
previous section we introduced the notations € and d for two small parame-
ters, characterizing the maximum of the diameters of FU) j =1,..., N, and
the minimal distance between the small voids, respectively.

In sections where we are concerned with the energy estimates of the re-
mainders produced by asymptotic approximations we frequently use the ob-
vious estimate

N < const d=3 . (10.9)

We consider the approximation of the function uy which is a variational
solution of the mixed problem (10.1)-(10.3).

Before constructing the approximation to uy, we introduce model auxil-
iary functions which the asymptotic scheme relies upon.

1. Solution v in the unperturbed domain §2. Let v € L2(£2) denote a unique
variational solution of the problem

—Av(x) =f(x), xe, (10.10)
v(x) =¢(x), x€df. (10.11)

2. Regular part of Green’s function in 2. By H we mean the regular part
of Green’s function G in {2 defined by the formula

H(x,y) = (4nfx —y|) ™' = G(x,y) . (10.12)
Then H is a variational solution of
AH(x,y) =0, x,y €,
H(x,y) = (rlx—y))™', xedRyen.

3. The dipole fields ng), i = 1,2,3, associated with the void F9) . The
vector functions DY) = {Dl@ J}3_ . which are called the dipole fields, are

=1
variational solutions of the exterior Neumann problems

ADY(x) =0, xeR*\ FU)
()
oD (x)=n" | xedFU) (10.13)
mn
DY (x) =0 x—0W|2) as |x|]— o0,

where n¥) is the unit outward normal with respect to FU). In ‘the
text below we also use the negative definite polarization matrix ol =

{Qgi) %,k:l’ as well as the following asymptotic result (see [19] and Ap-
pendix G in [27]), for every void F):

Lemma 10.2.1 For |x — QY| > 2¢, the dipole fields admit the asymp-
totic representation
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() Tm — o) 4 ()|-3

m m _ _7 - .:

D (x) 4WZ: Cimix 00 g>|3+0(€ x=OWI?) =123,
(10.14)

The shapes of the voids F9), j =1,..., N, are constrained in such a way
() W)

that the maximal and minimal eigenvalues Aoz, A,
—QU) satisfy the inequalities (10.5).

of the matrices

10.3 The formal approximation of u, for the infinite
space containing many voids

In this section we deduce formally the uniform asymptotic approximation of

N
x) + ZC(k) - D® (x
k=1

for the case £2 = R? and derive an algebraic system for the coefficients c =
{(C*3  k=1,...,N.
The function uy satisfies

UN-

—Auny(x) = f(x), x€ N, (10.15)
a”—N(x):o, x € 9FD j=1,....N, (10.16)
on

uy(x) =0, as|x|—o0. (10.17)

We begin by constructing the asymptotic representation for uy in this way

un(x) =v(x)+ Y _ CH . DW(x) + Ry(x) (10.18)
k=1

where Ry is the remainder, and v(x) satisfies
~Av(x) = f(x), x€R3,
v(x) >0 as [|x|— o0,

and D* are the dipole fields defined as solutions of problems (10.13). The
function Ry is harmonic in 25 and

Ra(x) =O(]x|™") as|x| — oc. (10.19)

Placement of (10.18) into (10.16) together with (10.13) gives the boundary
condition on 9F):
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LZ;ZV(X):—n(j)-{VU(O(j))+C(j)+O(E)+ > V(C(’“)~D(k)(x))}.
1N

Now we use (10.14), for ’D(k), k # 7, so that this boundary condition becomes

IR , , .
TnN(X) ~ —n@). {W(om) +C9 4 Y T(x, o(m)Q(k)C(k)} 7
=
1<k<N
xedFY) j=1,... N,
where .
T = . — . 10.2
3 = (295 (7 Lo (1020)

Finally, Taylor’s expansion of T'(x, 0®)) about x = OU), j # k, leads to

8;37[\’(3() ~ —n) . {VU(O(j)) +CW 4 Z T(o(j)yo(k))g(k)c(k)} 7
n .
12N

x€dFY j=1,... N.

To remove the leading order discrepancy in the above boundary condition,
we require that the vector coefficients CU) satisfy the algebraic system

vu(0W)+cW + Y 1(0W,0W)eWe® =0, forj=1,....N,

k]
1<k<N

(10.21)
where the polarization matrices Q) characterize the geometry of FU), j =
1,...,N. Upon solving the above algebraic system, the formal asymptotic
approximation of uy is complete. The next section addresses the solvability
of the system (10.21), together with estimates for the vector coefficients C'7).

10.4 Algebraic system for the coefficients in the
meso-scale approximation

The algebraic system for the coeflicients CY) can be written in the form
C+8QC=-06, (10.22)
where

C= ((C(l))T7 EEE) (C(N))T)T7 6= ((VU(O(I)))T= EER) (VU(O(N)))T)T7
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are vectors of the dimension 3N, and

1
(V2®Vw) () o ifiF#]
dnfz — —
S =[Sylhj-1: Siy= mlz = wl/ 1250 (10.23)
0I5 otherwise,
Q = diag{Q(l), . Q(N)} is negative definite. (10.24)

These are 3N x 3N matrices whose entries are 3 x 3 blocks. The notation in
(10.23) is interpreted as

1 0 [z —-0Y
Sii = {Zhr&zq(|z0(j)3>

We use the piecewise constant vector function

3
z—om} when i # j.

q,r=1

) 9@ when ><€B¢(ij/)47 j=1,...,N, ( )
Z(x) = 10.25
0, otherwise,

where BY) = {x:|x—0W| <7}

Theorem 10.4.1 Assume that A\pqas < const d°, where Apaz 5 the largest
eigenvalue of the positive definite matrix —Q and the constant is independent
of d. Then the algebraic system (10.22) is solvable and the vector coefficients
cv) satisfy the estimate

N N
> IC)TQUCW| < (1-const A’W) 23 1(Ve(09)T QW Vu(0W)).
Jj=1 j=1

43
(10.26)
We consider the scalar product of (10.22) and the vector QC:
(C,QC) +(8QC,QC) = —(6,QC). (10.27)

Prior to the proof of Theorem we formulate and prove the following identity.

Lemma 10.4.1 a) The scalar product (SQC, QC) admits the representa-
tion

(8QC,QC) = 5;564343 X Y| V- EX)(V-E(Y))dYdX

Z ‘Q(])C(J)F (10.28)
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b) The following estimate holds

|(SQC, QC)| < const d—3 Z QW2

1<G<N

where the constant in the right-hand side does not depend on d.

Remark. Using the notation N (V - Z) for the Newton’s potential acting

—

on V- 5 we can interpret the integral in (10.28) as

(N(V ' E) V- H)Lg(n@)’

since obviously V- & € W—12(R?) and M(V - E) € WH2(R3). Here and

in the sequel we use the notation (p,) for the extension of the integral

Jrs #(X)¥(X)dX onto the Cartesian product W*2(R?) x W~12(R3).
Proof of Lemma 10.4.1. a) By (10.23), (10.24), the following represen-

tation holds

j=1 (10.29)

1<k<N,k#j

Using the mean value theorem for harmonic functions we note that when

J£K
V) ()

dw.
1z — wl

z=0)

3 1
z=0W) 47r(d/4)3 /B;’;L(VZ@QVW) (|Z _Wl)

w=0

Substituting this identity into (10.29) and using definition (10.25) we see that
the inner sum on the right-hand side of (10.29) can be presented in the form

48 / 9 (Y, -0V \3
LI (O (50 iy
wd3 T0+ RABE), Y \|[Y =03/ g r=1

and further integration by parts gives
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12 & T
_ @) o0)
(8QC,QC) ,ﬁ&jﬂ(g c9) (10.30)
. T OT("]) — 3
.rli]%hr /3 ) { Y — O(J')|3v ' :(Y)}r:1dY
R \B(d/4)—7

(% -0 -0 e iew
+ YO0 (/1) r Y — 003 o Y ;

where the integral over R3\ B((é)/ 4y, 0 (10.30) is understood in the sense of
distributions. The surface integral in (10.30) can be evaluated explicitly, i.e.

) O
/ (Y, — Or )(Yq - 0q") dSy QW) = @Q(i)c(j).
Y0 |=(d/a) rg=1 5

Y - 00
(10.31)
Once again, applying the mean value theorem for harmonic functions in the
outer sum of (10.30) and using (10.31) together with the definition (10.25)
we arrive at
16
wd?

N
(8QC,QC) =-— ZQU)C(J (10.32)

3
_ 576 . _ 9 1 _
36 THOJFZ/B(J) /R B Z'—’T‘(X)TX,‘(W)V - E(Y)dYdX,

(d/4)+7 (d/4)—7 r=1

where =, are the components of the vector function = defined in (10.25).

The last integral is understood in the sense of distributions. Referring to
the definition (10.25), integrating by parts, and taking the limit as 7 — 0+
we deduce that the integral term in (10.32) can be written as

% /]R3~/]R3 - XI v-5X)(V-E(Y))dvdX  (10.33)

Using (10.32) and (10.33) we arrive at (10.28).
b) Let us introduce a piece-wise constant function

C(x) = cY | WhGHXGBEZJ/L, j=1...,N,
0, otherwise .

According to the system (10.21), V x C(x) = O, and one can use the repre-
sentation

C(x) = VIV (x) (10.34)
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where W is a scalar function with compact support, and (10.34) is understood
in the sense of distributions. We give a proof for the case when all voids are
spherical, of diameter ¢, and hence ol = —%5313, where I3 is the identity
matrix. Then according to (10.32) we have

(5QC,QQ)| < o 3 |V

wd3 &
1<j<N
365 1
AyW (Y dex‘
7rd3‘/Rg - VXW VX (|Y X|>) YW(Y)
16 , 1445
< — > 1QUCWPE + > /U VW (Y)Y
1<j<N 1<j<N Bd/4
const . ;
(4) () |2
< g 2. 1eve
1<G<N
O

Proof of Theorem 10.4.1. Consider the equation (10.27). The absolute
value of its right-hand side does not exceed

(C.—QC)"*(6.-Q6)'".
Using Lemma 1 and part b) of Lemma 2 we derive

(C,—QC) — const d~*(—QC, —QC) < (C,-QC)"/*(@,-QO)"/?,

leading to
_ const (—QC, —QC) B 172 B 1/2
(- "5 e qo )G Q0 <©.-qe) "
which implies
(1 — const )\Z;‘T )2<C, -QC) <(0,-Q0). (10.35)

The proof is complete. [ _
Assuming that the eigenvalues of the matrices —9W are strictly positive
and satisfy the inequality (10.5), we also find that Theorem 10.4.1 yields

Corollary 10.4.1 Assume that the inequalities (10.5) hold for Apma. and

Amin- Then the vector coefficients CY9) in the system (10.22) satisfy the es-
timate

> ICYP? < const d73|| V|32, (10.36)
1<j<N

where the constant depends only on the coefficients Ay and Ay in (10.5).
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Proof. According to the inequality (10.26) of Theorem 10.4.1 we deduce

; const _ ;

Amin Y |CVP < (1~ — Amaz) " Amas > IVu(0W)P. (10.37)
1<j<N 1<j<N

We note that v is harmonic in a neighbourhood of @. Applying the mean

value theorem for harmonic functions together with the Cauchy inequality

we write

. 48
V(O < v

Hence, it follows from (10.37) that

_ _ const —248 Anax
Z |C(])|2 Sd 3(1— B A7rL(L.’L') 2?% Z HVUHL2(B(J))

min

UHL (B(J) )

1<G<N 1<G<N
const 248 A
<d P ((1-—= L > 10.
<7 (0= S ) 225 ) Vol (1039
which is the required estimate (10.36). O

10.5 Energy estimate

In this section we prove the result concerning the asymptotic approximation
of uy for the perforated domain 2y = R3\U§V:1F(j). The changes in the
argument, necessary for the treatment of a general domain, will be described
in Section 10.6.

Proof of Theorem 10.1.1. a) Neumann problem for the remainder. The
remainder term Ry in (10.6) is a harmonic function in 2, which vanishes
at infinity and satisfies the boundary conditions

IR :
anN (x) = 7(VU(X) + C(J)) . Z c®) . D(k (x),
k#j
1<k<N
when x € 9FY) j=1,... N. (10.39)

Since supp f is separated from F@, j = 1,... N, and since DY), j =
., N, satisfy (10.13) we have

/W ) agTN(x)de =0,j=1,...,N. (10.40)

b) Auziliary functions. Throughout the proof we use the notation B,(,k) =
{x:|x - OW| < p}. We introduce auxiliary functions which will help us to
obtain (10.8). Let



W (x) = v(x) = v(0W) — (x —0W)) . vy(0W) + Y~ ¢V . DV (x)

1<j<N
J7#k
— Z (x—0W).T(0® o)Wl (10.41)
1<j<N
J7#k

forall x € 2 and k =1,..., N. Every function ¥, satisfies
—AV,(x) = f(x), x€y, (10.42)

and since w Nsupp f = &, we see that ¥, k= 1,..., N, are harmonic in w.
Since the coefficients CY) satisfy system (10.22), we obtain

154" ORN
on X+,

(x)=0, xedF® (10.43)

and according to (10.40) the functions ¥, have zero flux through the bound-
aries of small voids F'*)| i.e.

—_— dx=0.k=1.....N . 10.44
Lﬂw&gwx k=1, (10.44)

Next, we introduce smooth cutoff functions

WO x = x(x— 0W)/e), k=1,...,N,

equal to 1 on ng) and vanishing outside Bélg). Then by (10.43) we have

0 :
(k) — G 5=
o ('RN(X) + 1<kE<N Xe (X)Wk(x)) 0 on OFVY) j=1,...,N. (1045)

¢) Estimate of the energy integral of Ry in terms of Wy. Integrating by

parts in {25 and using the definition of xgk), we write the identity

/ VRny - V(RN + Z Xék)g/k) dx
2n 1<k<N

— RNA(RN+ 3 ngk) dx, (10.46)
QN 1<k<N

which is equivalent to

/ VR | dx +
.QN

> / VRN - V(xMw) dx
B

(k) T (k)
1<k<N Y Ba\F

= — ©)
1<;N /Bé’“)\FUc) RNA(XE &Dk) dx, (10.47)
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since R is harmonic in 2.
We preserve the notation Ry for an extension of Ry onto the union of
voids F(®) with preservation of the class W12, Such an extension can be
. (k) .
constructed by using only values of Ry on the sets Bgz) \ F () in such a way
that
IVRNII 2

< const|| VR || (10.48)

(B(k)) LQ(BS;)\FUC))'
The above fact follows by dilation x — x/e from the well-known extension
theorem for domains with Lipschitz boundaries (see Section 3 of Chapter 6

in [?]). We shall use the notation R™ for the mean value of Ry on Bé?.

The integral on the right-hand side of (10.47) can be written as
= 5 [ ReAGL ax
2N BENF®

(k) k
== X [ Ry R a 10a9)
1<k<N

In the derivation of (10.49) we have used that

oY,
A(xPw) d :/ —LdS =0 10.50
/13§’§>\F<") (XE k) X opt On ( )
according to (10.44) and the definition of ng).
Owing to (10.46) and (10.49), we can write
VRN 7200y < Z1+ 52, (10.51)
where
>/ i o VRV (), (10.52)
1<k<N Y Bz \F
and
‘ / Ry —RANE @, — 7)) dx|, (1053
1<k<N B(k)\F(M

where ¥y, is the mean value of Wy over the ball Bélz) Here, we have taken

into account that by harmonicity of Ry, (10.40) and definition of X( )

/13§§>\F<k) A(R R(k)) (k) gy — /Bg’g A(R R(k)) Wax =0,

By the Cauchy inequality, the first sum in (10.51) allows for the estimate
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1/2
21 £ ( Z ||VRN||L2 B(k>\F(k)))
1<k<N

1/2
v(xPw ‘ ) : 10.54
X(K%;NH ( k) L2(BYNF™M) ( )

Furthermore, using the inequality
> ||VRN||;(B§M\?<I@>) < [VRNIIZ2(0y)s (10.55)

1<k<N
together with (10.54), we deduce
*) 9 1/2
X < HVRNHL2(QN)( Z 1V (x¢ ka)HL?(Bé’;)\f(k))) . (10.56)
1<k<N

Similarly to (10.54), the second sum in (10.51) can be estimated as

_ 1/2
< Y (/ (RN—R(k))de>
1<k<N B
) 9 1/2
x( - (AW (7, — T))) dx) . (10.57)
3e
. L. . k
By the Poincaré inequality for the ball Bés)
(k) |2
IRy — R ||L2(B<")) < const 52”VRN”L2(B"°)) (10.58)

we obtain

1/2
Yy < const € < Z VRN, B(k)))
1<k<N

* B 9 1/2
1<;N/B(k>\p(’“> e (T wk))) dx) ’

which does not exceed

5 \1/2
const & VR z2on) (3 /W L (ACW @~ 7)) ax)
1<k<N 7 B3’ \F

(10.59)

because of (10.48). Combining (10.51)—(10.59) and dividing both sides of
(10.51) by [VRN||L2(0y) We arrive at
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o 2 1/2
(k) -
||VRN||L2(_QN) S <1<;NHV(XE (Wk wk))’ Lz(B;(g:)))

_ 1/2
+const € ( Z / . {(Wk - Llfk)Ang) + 2VX§k) . V%}Q dx) ,
1<k<N B§Y

(10.60)

which leads to

IVRN 3y < comst >7 (VR o, + €210 = Tl o) )-
1<k<N

(10.61)

Applying the Poincaré inequality (see (10.58)) for ¥ in the ball Bg:) and
using (10.61), we deduce

IVRN 720y < const > ||vu7k||iQ(Br(,c)). (10.62)
1<k<N 3¢

d) Final energy estimate. Here we prove the inequality (10.8). Using def-
inition (10.41) of ¥, k = 1,..., N, we can replace the preceding inequality
by

IVRNI72 0y < const {K+ L}, (10.63)
where
_ ) (k)y (12
K= 3 [900) = VeOM)2, Lo
1<k<N
@) .U ® ool
L= % H Z [V(C D (.))—T(O ,0)oW ¢ ”Lz(ng>)‘
1<kSN  j#k .
1<j<N
(10.64)

The estimate for K is straightforward and it follows by Taylor’s expansion
of v in the vicinity of O®*),

0?v |2
K < const €°d™®  max Y ‘ (10.65)

x€w,1<4,j<3 | Ox;0x;

Since v is harmonic in a neighbourhood of @, we obtain by the local regularity
property of harmonic functions that

K < const s‘r’d_sHVvH;(RS). (10.66)

To estimate £, we use Lemma 10.2.1 on the asymptotics of the dipole fields
together with the definition (10.20) of the matrix function 7', which lead to
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IV(cW . DY (x)) = T(0® 0V)QWCW| < const e*|CW||x — 0|~
(10.67)
for x € Bé?. Now, it follows from (10.64) and (10.67) that

cV)| 2
L < const € Z/ T(J)H) dX, (1068)

1<_7<N J#k ‘

and by the Cauchy inequality the right-hand side does not exceed

const ESZ\C@)| Z Z /m |x— J)|8

k= 11<]<N]7ék
1

const 1! Z c®)? Z Z o —0W)3

k=11<j<N,j#k
el dXdY
const — |C(p)\2// _—
d° I; wXw:|X=Y|>d} |X_Y|8

11 N
const Ed—g Z |c®) 2, (10.69)
p=1

IN

IN

IN

Since the eigenvalues of the matrix —Q satisfy the constraint (10.5), we
can apply Corollary 10.4.1 and use the estimate (10.36) for the right-hand
side of (10.69) to obtain

L < const snd_HHVvH%z(w). (10.70)

Combining (10.63), (10.66) and (10.70), we arrive at (10.8) and complete the
proof. OJ

10.6 Approximation of un for a perforated domain

Now we seek an approximation of the solution uy to the problem (10.1)—
(10.3) assuming that 2 is an arbitrary domain in R®. We first describe the
formal asymptotic algorithm and derive a system of algebraic equations, simi-
lar to (10.22), which is used for evaluation of the coefficients in the asymptotic
representation of uy.
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10.6.1 Formal asymptotic algorithm for the perforated
domain 2n

The solution uy € LY?(2x) of (10.1)—(10.3) is sought in the form

N
un(x) =v(x) + Z c® . {'D(k) (x) — Q(k)vyH(x,y)’y:O(k)} + Ry (x),
k=1

(10.71)
where in this instance v solves problem (10.10), (10.11) in Section 10.2, and
Ry is a harmonic function in {2y. Here C(k), k=1,...,N are the vector

coefficients to be determined.

Owing to the definitions of ’D(k), k=1,...,N, and H as solutions of
Problems 2 and 3 in Section 10.2, and taking into account Lemma 10.2.1 on
the asymptotics of D* we deduce that | Ry (x)| is small for x € 2.

On the boundaries F(), the substitution of (10.71) into (10.3) yields

?%(X) = —n. {Vv(o(j>) +CY +0(e) + 0P |ICY))
+ > v{e® (PP (x) - @IV Hxy)|,_ow )}
kAj

j
1<k<N

xedFY) j=1,...,N. (10.72)

Then, using the asymptotic representation (10.14) in Lemma 10.2.1 we deduce

B;EN (x) ~ —n). {Vu(o(ﬁ) o Y A, O(k>)Q<k>C<k>}7
" =
1<k<N
xedFY j=1,... N, (10.73)
where T(x,y) is defined by
T(x,y) = (Vx @ Vy)GE(x,y) , (10.74)

with G(x,y) being Green’s function for the domain (2, as defined in Section
10.2. To compensate for the leading discrepancy in the boundary conditions
(10.73), we choose the coefficients c"™ m=1,...,N, subject to the alge-
braic system

Vo) +cV+ 3 g0V oM)W e® o, j=1,...,N, (10.75)

k#j
1<k<N

where Q(k), k=1,...,N, are polarization matrices of small voids F¥)| as in
Lemma 10.2.1.
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Provided system (10.75) has been solved for the vector coefficients C'¥),
formula (10.71) leads to the formal asymptotic approximation of uy:

N
un(x) ~v(x) + S CW. {D(k)(x) ~ QO H(xy)|,_ o } (10.76)
k=1

10.6.2 Algebraic system

The system (10.75) can be written in the matrix form
C+6QC= -6, (10.77)

where

(V2@ VWGEW)| g ifi#]
& =[64]-1, 6ij = w=01 (10.78)

013 otherwise

with G(z, w) standing for Green’s function in the limit domain {2, and the
block-diagonal matrix Q being the same as in (10.4). The system (10.77)
is similar to that in Section 10.4, with the only change of the matrix S for
&. The elements of G are given via the second-order derivatives of Green’s
function in (2, as defined in (10.74). The next assertion is similar to Corollary
10.4.1.

Lemma 10.6.1 Assume that inequalities (10.5) hold for Apmaz and Apmin-
Also let v be a unique solution of problem (10.10), (10.11) in the domain f2.
Then the vector coefficients CY) in the system (10.75) satisfy the estimate

> ICDP < const d7F | Vo3 (10.79)
1<G<N

N.

)

where the constant depends on the shape of the voids F\9), j=1,..

Proof. The proof of the theorem is very similar to the one given in Section
10.4. We consider the scalar product of (10.77) and the vector QC:

(C,QC) +(6QC,QC) = —(6,QC), (10.80)

and similarly to (10.28) derive
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(6QC,QC) =482 7172 d’G/Q/QG(X,Y)(V-E(X))(V~E(Y))deX

167143 Z |Q(j)c(j) |2

1<j<N

+ Y (QU)C(”)T(VZ@@VW) (H(z,W))’zzom (Q(j)c(j))7

1<j<N w=0)
(10.81)

where the integral in the right-hand side is positive, and it is understood in
the sense of distributions, in the same way as in the proof of Lemma 10.4.1,
while the magnitude of the last sum in (10.81) is small compared to the
magnitude of the second sum.

Now, the right-hand side in (10.80) does not exceed

(C,-QC)*(@,-Qo)'*.
Following the same pattern as in the proof of Theorem 10.4.1, we deduce
(C,—QC) — const d~3(—QC, —QC) < (C,-QC)'/%(®, —Q@)1/2,
where the constant is independent of d. Furthermore, this leads to

(-QC,—QC)

(1 — const d73 C.—QC)

)(c.-QC)” < (8,-Qe) 2,
which implies

(1 — const d*SAmm)Q(c, ~QOC) < (0, -QO), (10.82)
where A4, is the largest eigenvalue of the positive definite matrix —Q. Then

using the same estimates (10.37) and (10.38) as in the proof of Corollary
10.4.1 we arrive at (10.79). O

10.6.3 Energy estimate for the remainder

Theorem 10.6.1 Let the parameters € and d satisfy the inequality
e<ecd,

where ¢ is a sufficiently small absolute constant. Then the solution un(X) of
(10.1)—(10.3) is represented by the asymptotic formula
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N
un(x) = v(x) + > CH (DM (x) - @OV Hx,y)| b+ Ru(x),
k=1 y=0
(10.83)
where C™ = (C’gk), Cék), Cék))Tsolve the linear algebraic system (10.75). The
remainder Ry in (10.83) satisfies the energy estimate

HVRN||2L2(QN) < const {Elld_n + €5d_3}|\VvH2L2(Q) : (10.84)

Proof. Essentially, the proof follows the same steps as in Theorem 10.1.1.
Thus, we give an outline indicating the obvious modifications, which are
brought by the boundary 0f2.

a) Auziliary functions. Let us preserve the notations ng) for cutoff func-
tions used in the proof of Theorem 10.1.1. We also need a new cutoff function
Xo to isolate 0f2 from the cloud of holes. Namely, let (1 — xo) € C§°(£2) and
xo = 0 on a neighbourhood of @. A neighbourhood of 92 containing supp xo
will be denoted by V. Instead of the functions ¥, defined in (10.41), we in-
troduce

7 (x) = v(x) — o(0W) — (x — OW) . Vo(OW) 4 Z ). PV (x)

iFk
1<j<N
— Z (x —0W)).g(0® 0W)gW W
7k
1<G<N
N . .
-V QU Hy)| (10.85)
= y=00)

where the matrix ¥ is defined in (10.74) via second-order derivatives of
Green’s function in 2. Owing to (10.83) and the algebraic system (10.75)
we have

0
= (Lv,gm (x) + RN(X)) =0, xedF®, (10.86)
We also use the function
N .
. , L (x—0W
nx) =39 (D0 - QU STy 0w
=1

which is harmonic in 2. It follows from (10.83) that
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Ry (x) + Pp(x) (10.88)
0(j))
e B (2 9| N =
1;]\] {47r|x — 03 Y Y:OO)}
x €012 .
(10.89)
b) The energy estimate for Ry. We start with the identity
V(R + xo% Ry + > xMwi?)dx
/QN ( ) ( 1<k<N )
- —/ (By+xo) A(Ry + > x®Pw®)ax,  (10.90)
2N 1<k<N

which follows from (10.86), (10.89) by Green’s formula. According to the

definitions of xo and Xék), we have supp xo N supp ng) = o for all k =

., N. Hence the integrals in (10.90) involving the products of x¢ and xgk)
or their derivatives are equal to zero. Thus, using that ARy = 0 on 2y, we
reduce (10.90) to the equality

/ IVRy|?dx + Z/

VRN V(e )ax (1091)
1<k<N Y Bae\F

T Tt 5[ (007

which differs in the left-hand side from (10.47) only by the integral over
2y NV.
Similarly to the part (b) of the proof of Theorem 10.1.1 we deduce

1<k<N

IVRN 320y < const{ V201132 () + 1200132 crm)

Y IV, e ) (10.92)

1<k<N

Similar to the steps of part (d) of the proof in Theorem 10.1.1, the last
sum is majorized by

const (e'a~* +55d_3)||Vv||%2(m. (10.93)

It remains to estimate two terms in (10.92) containing ¥. Using (10.67),
together with (10.79) we deduce
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|CY)|2dx
%0132 < const &° / —_—

8
; €
< const &® Z cV)? < constEHVvH?Lz(Q), (10.94)
1<j<N

and

|C(j)|2dx

V%l2. < const &® / _—
L) 22 S =00

28

< const &% Z |IcW))? < constd3

1<j<N

IVll72(0)- (10.95)

Combining (10.92)—(10.95) we complete the proof. O

10.7 Illustrative example and discussion

Now, the asymptotic approximation derived in the previous section is applied
to the case of a relatively simple geometry, where all the terms in the formula
(10.83) can be written explicitly.

10.7.1 The case of a domain with a cloud of spherical
voids

Let 25 be a ball of a finite radius R, with the centre at the origin, containing
N spherical voids F'9) of radii p; with the centres at OU),j = 1,..., N, as
shown in Fig. 12. The radii of the voids are assumed to be smaller than the
distance between nearest neighbours. We put ¢ = 0 and

_ [ 6 when |x]| <p,
) = { 0 when p < |x| < R. (10.96)
Here, it is assumed that p +b < |OY)| < R—b, 1 < j < N, where p and b
are positive constants independent of £ and d.

The function uy is the solution of the mixed boundary value problem for
the Poisson equation:
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Fig. 12 Example configuration of a sphere containing a cloud of spherical voids in a the
cube w.

Aun(x)+ f(x) =0, when x € 2y, (10.97)
un(x) =0, when |x| =R, (10.98)
8’(1,]\7

a—(x) =0, when |x —OW|=p;, j=1,...,N. (10.99)
n

In this case, uy is approximated by (10.83), where the solution of the
Dirichlet problem in {2 is given by

2 -1 2
p?(3—=2pR 1) — |x] when |x| < p,
v(x) = { 203(|x|7' = R7Y)  when p < |x| < R. (10.100)

In turn, the dipole fields DY) and the dipole matrices QY have the form

5 X — lo1%2

€] _
DY) = = oo

QY = —dmplls, (10.101)
where I3 is the 3 x 3 identity matrix.

The regular part H(x,y) of Green’s function in the domain {2 (see (10.12))
is
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R R?

o y=" 10.102

iyl 51 T IyP 0102
The coefficients CY), j =1,..., N, in (10.83) are defined from the algebraic
system (10.75), where Green’s function G(x,y) is given by

H(va) =

1 R
dmlx —y| Axlyllx - y|

G(x,y) = (10.103)

10.7.2 Finite elements simulation versus the
asymptotic approxrimation

The explicit representations of the fields v, DU ), H, G, given above, are used
in the asymptotic formula (10.83). Here, we present a comparison between the
results of an independent Finite Element computation, produced in COM-
SOL, and the mesoscale asymptotic approximation (10.83).

For the computational example, we set R = 120, and consider a cloud of
N = 18 spherical voids arranged into a cloud of a parallelipiped shape. The
position of the centre and radius of each void is included in Table 2. The
support of the function f (see (10.96)), is chosen to be inside the sphere with
radius p = 30 and centre at the origin, as stated in (10.96).

[Void|  Centre [p;/R[[Void| Centre |[p;/R]|
FOT (=50, 0,0) [0.0417[[FOO] (-72, 0, 0) [0.0417
F®@1 (-50, 0, 22) [0.0333[|[FOD| (-72, 0, 22) [0.0458
FOI (-50, 22, 0) [0.0292[|FI2)| (-72, 22, 0) [0.0292
F@WT (=50, 0, -22) [0.0375(|FI3| (-72, 0, -22) [0.0375
FOI] (=50, -22, 0) [0.0458[[FUID] (-72, -22, 0) [0.0417
FO[ (-50, 22, 22) [0.0292[[ F(15)| (-72, 22, 22) [0.0333
F(M|(-50, 22, -22) [ 0.025 [[FAO | (-72, 22, -22) | 0.05
F®[ (=50, -22, 22) [0.0375[| FAD| (-72, -22, 22) [0.0333
FO[(-50, -22, -22)[0.0375[| F(1®)|(-72, -22, -22)[0.0375

Table 2 Data for the voids F(9), j =1,...,18.

Figure 13 shows the asymptotic solution uy of the mixed boundary value
problem (part (b) of the figure) and its numerical counterpart obtained in
COMSOL 3.5 (part (a) of the figure). This computation has been produced
for a spherical body containing 18 small voids defined in Table 2. The relative
error for the chosen configuration does not exceed 2%, which confirms a very
good agreement between the asymptotic and numerical results, which are
visually indistinguishable in Fig. 13a and Fig. 13b.

The computation was performed on Apple Mac, with 4Gb of RAM, and
the number N = 18 was chosen because any further increase in the number of
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Numerical solution Asymptotic fomula

2000 2000
1500 1500
1000

1000

500

SO / -100
100 "/
150 150

/- .
o 100
150 -150

a) b)

Fig. 13 Perforated domain containing 18 holes: (a) Numerical solutions produced in COM-
SOL; (b) Asymptotic approximation.

voids resulted in a large three-dimensional computation, which exceeded the
amount of available memory. Although, increase in RAM can allow for a larger
computation, it is evident that three-dimensional finite element computations
for a mesoscale geometry have serious limitations. On the other hand, the
analytical asymptotic formula can still be used on the same computer for
significantly larger number of voids.

In the next subsection, we show such an example where the number of
voids within the mesoscale cloud runs upto N = 1000, which would simply
be unachievable in a finite element computation in COMSOL 3.5 with the
same amount of RAM available.

10.7.3 Non-uniform cloud containing a large number
of spherical voids

Here we consider the same mixed boundary value problem as in Section
10.7.1, but the cloud of voids is chosen in such a way that the number N
may be large and voids of different radii are distributed in a non-uniform ar-
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rangement. For different values of N, the overall volume of voids is preserved
- examples of the clouds used here are shown in Fig. 12.

The results are based on the numerical implementation of formula (10.83)
in MATLAB.

The cloud w is assumed to be the cube with side length % and the centre
at (3,0,0). Positioning of voids is described as follows. Assume we have N =
m?3 voids, where m = 2,3, .... Then w is divided into N smaller cubes of side
length h = ﬁ, and the centres of voids are placed at

1 21 1 21 1 2r—1
owar) — (3 — - ——=+ ,——=+ h)
2V/3 2 2V/3 2 2V/3 2

for p,q,7 =1,...,m, and we assign their radii p, 4, by

h

— itp>q,

5

ah .

Pp.gr = > ifp<gq,

h i

i ifp =

4 pP=q,

where a < 1, and it is chosen in such a way that the overall volume of all voids

within the cloud remains constant for different N. An elementary calculation

2
suggests that there will be m? voids with radius % and equal number m (m=1)

of voids with radius % or a—zh

Assuming that the volume fraction of all voids within the cube is equal to
0B, we have

4h? (mQ(m —1)(84 125a3) m72> _ 3 1
3 2000 64/ "33’

and hence 16 3 125 + 32( 1)
3 — l{i _ i} 10.104
R P 8000m (10.104)

In particular, if N — oo, the limit value a, becomes
12 8 Y1/3
o =9 —0—-— . 10.1

“ { —_ 125} (10.105)

In the numerical computation of this section, 8 = m/25.

Taking R = 7 and p = 2, we compute the leading order approximation
of uy — v, as defined in the asymptotic formula (10.83), along the line ~
at the intersection of the planes x5 = —1/(2v/3) and x5 = —1/(2V/3), for
N = 8,125,1000. Fig. 14 below shows the configuration of the cloud of voids
for a) N =8 and b) N = 125. For a large number of voids (N = 1000), Fig.
15a) shows the cloud and Fig 15b) includes the graph of o versus N. The plot
of uy —wv given by (10.83) for 2 < x7 < 4 is shown in Fig. 16. The asymptotic
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Cloud of voids, N=8 Cloud of voids, N=125
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Fig. 14 The cloud of voids for the cases when a) N = 8 and b) N = 125.
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Fig. 15 a) The cloud of voids for the cases when N = 1000, b) The graph of a versus N
given by formula (10.104) when 8 = 7/25, for large N we see that o tends to 0.7465 which
is predicted value present in (10.105).
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Plot of u v

0.015

0.01

0.005

uyv

-0.005

-0.01

Fig. 16 The graph of ux — v given by (10.83), for 2 < z1 < 4 plotted along the straight
line v adjacent to the cloud of small voids.
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correction has been computed along the straight line v = {x; € R,ap =
—1/(2v3), 23 = —1/(2v/3)}. Dipole type fluctuations are clearly visible on
the diagram. Beyond N = 1000 the graphs are visually indistinguishable and
hence the values N = 8,125,1000, as in Figures 14 and 15 have been chosen
in the computations. The algorithm is fast and does not impose periodicity
constraints on the array of small voids.






Bibliographical remarks

Chapters 1-5 of Part I of the book address the asymptotics of Green’s func-
tions for boundary value problems for the Laplacian.

The analysis of uniform asymptotic approximations for Green’s functions
for Dirichlet problems in multi-dimensional domains with small perforations
is included in Chapter 1, which is based on the papers [16, 17].

Chapter 2 incorporates the results of the paper [19], which deals with
Neumann and mixed boundary value problems, with Neumann boundary
conditions on the boundaries of small holes. The analysis of [19] includes uni-
form asymptotics of Green’s kernels in two- and three-dimensional domains
containing a small hole.

Chapters 3 and 4 address uniform asymptotics of Green’s kernels in do-
mains with several perforations and the numerical simulations. The material
of these chapters is based on the results of [21]. The paper [18] shows other
examples of uniform approximations of Green’s functions in singularly per-
turbed domains, such as thin bodies, truncated cones and domains with small
grooves on the exterior boundaries - this material is discussed in Chapter 5.

Part IT of the book, incorporating Chapters 6, 7 and 8 presents the asymp-
totic approach for uniform approximations of Green’s kernels in vector prob-
lems of elasticity in two- and three-dimensional elastic bodies with small
holes. Chapter 6 discussing the case of a domain with a single inclusions
is based on the paper [20], and Chapter 7 addressing the case of multiply-
perforated elastic bodies includes the results of [21].

In Part III, we consider the case when the number of perforations becomes
large. A new method of meso-scale asymptotic approximations is introduced
in Chapters 9 and 10. Chapter 9 on meso-scale approximations for solutions
of Dirichlet problems uses the results [13], and the case of mixed boundary
value problems in multiply-perforated domains of Chapter 10 is discussed in
[23].
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