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Preface to the German Edition

Inequalities for differential operators of the kind considered in this book play a funda-
mental role in the modern theory of partial differential equations. Among the numer-
ous applications of such inequalities are existence and uniqueness theorems, error es-
timates for numerical approximation of solutions and for residual terms in asymptotic
formulas, as well as results on the structure of the spectrum. The inequalities arise in
a wide range of topics and differ by the choice of differential operators and boundary
conditions, by requirements on the boundaries of domains, and by the norms in the
relevant function spaces.

For general differential operators with constant coefficients considered in this
book, estimates in L2 for functions with compact support in a domain have been
extensively studied in [H55].

Estimates up to the boundary are much less studied. Estimates of such type can be
found in the papers of Aronszajn [Aro54], Agmon [Agm58] (coercivity of differen-
tial operators and integro-differential forms), Schechter [Sch63], [Sch64], [Sch64a]
(sufficient conditions for dominance in a half-space) and in other publications that
will be discussed in the bibliographical notes at the end of each chapter.

The subject of this book is estimates for differential operators with constant co-
efficients in a half-space. There are no a priori restrictions on the type of considered
differential operators.

The right-hand sides of the studied integral inequalities involve matrices of dif-
ferential operators or scalar differential operators in a half-space as well as boundary
operators. Conditions under which the above-mentioned system of operators “domi-
nates” an individual differential operator in a half-space or on its boundary are com-
pletely described. Applications of these results to the theory of well-posed boundary
value problems in a half-space are given.

The domains of the relevant maximal operators are investigated in detail. In par-
ticular, the maximal operators weaker than the given one are described and a com-
plete characterization of boundary values of functions from the specified domain is
presented.

The results are complete. To a large extent, they are necessary and sufficient con-
ditions. From these, more evident sufficient conditions are derived. General criteria
are systematically applied to certain types of operators, in particular, to classical equa-
tions and systems of mathematical physics (Lamé’s system of static elasticity theory,
the linearized Navier—Stokes system, Cauchy—Riemann operators, Schrodinger oper-
ators, and so on).

The known results of Aronszajn, Agmon—Douglis—Nirenberg, Schechter fall into
the general scheme and are sometimes strengthened.

This monograph does not overlap with the content of other books on linear dif-
ferential operators and results presented have so far only been published in journal
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papers. The book summarizes the joint work of the authors on this topic during the
period 1972-1977.

The authors hope that the book will be interesting and useful to a wide audience.
It is intended for specialists and graduate students specializing in the theory of differ-
ential equations.

The reader is expected to be familiar with elements of the theory of ordinary
differential equations, functional analysis, the theory of partial differential equations,
and basics of linear algebra.

The content of the book is detailed in the introductions to each of its four chapters.

The authors thank the translator and the publisher for high quality of translation.

I. V. Gel'man
V. G. Maz'ya
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Chapter 1
Estimates for matrix operators

1.0 Introduction

1.0.1 Description of results

The main result of this chapter is a theorem providing necessary and sufficient condi-
tions for the validity of the estimate

m m m N m
1> R (D130 < CL 1Y Py (D 12+ > (D Qas (D).
j=1

k=1 j=1 a=1 j=1
(1.0.1)
where u = (u1(x;t),...,um(x;t))" denotes an arbitrary vector function belonging
to C(R™).
We will write the estimate (1.0.1) in the matrix form
IR, > < € (IPD)u]? + QD). (10.2)

Here R(§:7) = {R;(§:7)}, P(§:7) = {Px;(5:7)}), and Q(§:7) = {Qaj(§:7)) are
1 xm, m x m, and N x m matrices, respectively. The elements of these matrices
are polynomials of the variable 7 € R! with complex measurable locally bounded in
R”~1 coefficients growing no faster as some power of |£| as |§] — oo. The vector
functions u € CS"(R’i) with m components are regarded as m x 1 matrices.

In Section 1.2 of this chapter, we will formulate some necessary and sufficient
conditions for the validity of the estimate (1.0.2).

Foramatrix operator P(D)suchthat & (§; t)=det P(£; 1) Z0andord Z(§; 1) =
J = 1, we introduce the following matrices and polynomials:

P¢ = {P7¥} is the adjugate matrix of the m x m matrix P, i.e., the m x m matrix
whose (j, k) entry is the (k, j) cofactor of P;

S = {8y} = RP®; T = {Tu} = OPF;

4 is the polynomial of the variable T whose roots (counting multiplicities) co-
incide with all the roots of £ in the half-space Im{ = 0 ({ = t + io); we shall
assume that the leading coefficient’ of the polynomial £ is equal to 1;

P_ = P/ (P4 po), where po(€) is the leading coefficient of the polynomial

>

'Vectors and one-column matrices are explicitly given as row vectors. In formulas, they appear as column
vectors without transpose sign. The reader will be able to easily recognize this from the context.
2The coefficient of the highest degree term of a polynomial is called the leading coefficient.
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M is the greatest common divisor of the polynomials &2, Sy, ..., S, with the
leading coefficient equals to 1.

We assume that pg(§) # 0, ordSy < J,ordTy < J —1( = 1,...,m;
a=1,...,N),and ord (P /.#) = N = 1 for almost all § € R*"!.

Under the above assumptions, we consider the matrices S+ and 74, defined by
the partial fraction decompositions with respect to t

S s Se,S T _ T T
L@_C(E)_F L@++L@_, ,@_ ,@J’_—'_L@_’

and the matrix I', defined by the formula

Ty = n% (P ()84 (E:7) — P (E:0) S E: ).

where £ € R*71; 7,5 € R

In Theorem 1.2.2 it is asserted that the estimate (1.0.2) holds for all v € C{R"})

if and only if for almost all § € R*~! and all 7,7 € R! the following conditions are
satisfied:

BY2(£)IS(§:1)| < const| (51 7)l: (1.0.3)
T(£:7) = 0 (mod A (£: 7)) (1.0.4)
the rows of the matrix T are linearly independent
(1.0.5)
modulo # ;
there exists a uniquely determined 1 x N matrix
G(&;1) = {Gy(&; 1)}, whose elements are polynomials (in 7) 106
such that max, ord G, < N — 1 + ord .# and (1.06)
G(§:7) =0 (mod.Z(§;7)) and G(§: )T (§:m) = T (€ 7. m):
[ [| G6&oTEn |

B dtdn < const; 1.0.7

@)_[o _é FEazEn| 0D
B(é)f‘Mzdr<const (1.0.8)

J 7@ T n

The estimate (1.0.2) holds also for N = 0. (In this case, the matrix Q is omitted
on the right-hand side of (1.0.2)). The criterion for the validity of such an estimate
consists of condition (1.0.3) and the congruence S(€;7) = 0 (mod L4 (§; 7)) (see
Theorem 1.2.3).

3This means that each element of the matrix 7T satisfies (1.0.4).
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In Section 1.2 it is also shown that relations (1.0.3)—(1.0.7) are necessary and
sufficient for the validity of the estimate

IR(D)ul|31/> < Col P(D)ul? (1.0.9)

forallu € Cg"(R’j’L) satisfying the equation Q (D)u(x;0) = 0 (see Theorem 1.2.5).
All these criteria follow from upper and lower bounds for the sharp constants in
inequalities of type (1.0.2) and (1.0.9) for ordinary differential operators on the semi-
axis ¢ = 0 (see Section 1.1). This allows us to get also the inequalities obtained from
(1.0.2) and (1.0.9) by replacing the norm || - || by the norm || - |,,, and the norm { - )

by the norm (( . ))M, respectively (see Corollaries 1.2.13 and 1.2.14)*.

Some sufficient conditions for the validity of the estimate

IR, 2 < € (IPD)UI? +{Q(D)uly,) (1.0.10)

are established in Section 1.3 (in inequality (1.0.10) the matrices R, P, and Q are the
same as in Section 1.2, while

(oD, = / |M(E)Q (§:—id/d1)U(E; 1)],—o|” dE,
RrRr—1
where 901(£) is an arbitrary measurable N x N matrix, regular a.e. in R?~1).

In particular, Theorem 1.3.3 states that if conditions (1.0.3)—(1.0.6) are fulfilled
and the inequality

2

B(E)tr (yglﬂ_)‘si < const (1.0.11)

Py

with -
Te(&:mTI(E: )

T. =/ £ 1.0.12
207 | Tm@nr -

holds for almost all £ € R"! then the estimate
IRD)ull 2 < € (12D + (D) 1r2) (1.0.13)

holds for all u € C§°(R"}).

Conditions (1.0.3)—(1.0.6) are also necessary in this case.

The next assertion (Theorem 1.3.6) is a simple consequence of Section 1.2 and
the arguments used in the proof of Theorem 1.3.3.

Let Q(§;7) = {Qq;(§;7)} be an N x m matrix, let the polynomial &, (£; 1)
have no real t-roots, and let the relation ord & (§;t) = N hold for almost all

4+ |ly and (( . )) . @re the norms in vector spaces .72}, (R’i) and J7;, (aRi), respectively.
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£ € R*" !, Let the N x N matrices .74 be defined by equation (1.0.12). If for
almost all £ € R"~! the rows of the matrix T'(¢; 7) are linearly independent modulo
P, (&; 1) and the matrices 74 satisfy the condition

T T T = const I_, (1.0.14)

then the estimate (1.0.13) holds for all u € C3°(R’}.) and any operator R(D) satisfy-
ing condition (1.0.3).
A direct proof of this theorem was given by M. Schechter in [Sch64a].

We just mention, without precise formulation, two other sufficient conditions from
Section 1.3.

In Theorem 1.3.9, sufficient conditions for the validity of the estimate (1.0.10)
are established for the case where () is a diagonal matrix with eigenvalues (1 +
E2)8/2 (B =1,....N;p = (u1.p2...., un) € RV).

Sufficient conditions for the validity of the estimate

IR, < € (IPDYuI? + QD)) + ull?)., (1.0.15)

which differs from the estimate (1.0.2) by an additional term on the right-hand side,
are formulated in Proposition 1.3.12. It is obvious that conditions (1.0.3)-(1.0.8) en-
sure the validity of (1.0.15) for all u € C§°(R’}.). Proposition 3.1.12 is a strengthen-
ing of this assertion in the case when the leading coefficient po (&) of the polynomial
P(&; 1) = det P(£; 1) is uniformly bounded from below in some ball in R” 1!,

Section 1.4 contains several examples of the estimates for operators of concrete
types. The validity (or impossibility) of these estimates follows from the theorems
proved in Sections 1.2 and 1.3.

Proposition 1.4.1 and Corollary 1.4.2 concern inequalities of the type (1.0.2) for
generalized-homogeneous quasi-elliptic matrices P. As a special case, we get the
corresponding estimates for general elliptic and parabolic systems.

Some applications of the results of Section 1.2 to concrete elliptic systems (the
Lamé system of stationary elasticity theory, the Cauchy—Riemann system, the sta-
tionary linearized Navier—Stokes system) are considered in Subsections 1.4.2—1.4.4.
For example, for the Lamé system, it is proved the validity of the “nonelliptic” es-
timate (1.4.12), which fails if the boundary operators are replaced by their principal
parts.

Hyperbolic systems are treated in Subsection 1.4.5. It turns out that for the ho-
mogeneous hyperbolic operators P(D) it is reasonable to examine only estimates
corresponding to the case N = 0 (i.e., estimates without boundary operators). Nec-
essary and sufficient conditions for the validity of such estimates are provided in
Proposition 1.4.6. On the other hand, we provide several examples showing that for a
nonhomogeneous hyperbolic operator P (D) the trivial case N = 0 is not necessary.

Finally (in Subsections 1.4.6—1.4.7), we give several examples of estimates for
scalar operators of the first and second order w.r.t. ¢ “without a type”.

In Section 1.5, results from Section 1.2 are used to study conditions ensuring the
well-posedness of boundary value problems in a half-space.
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1.0.2 Outline of the proof of the main result

To give an idea about the method of proving the main result of this chapter (Theo-
rem 1.2.2) and to understand how conditions (1.0.3)—(1.0.8) arise, we consider the
estimate

12Dl 2 < € (12(Dwl? + (D)) (1.0.16)

for scalar operators (m = 1). Here Z(§; 1), & (§; t) are polynomials, and Q(&;t) =
{Q1(§;7),...,9n(§; 1)} is a polynomial N x 1 matrix.

All a priori assumptions, expressed in Subsection 1.0.1, remain valid; the only
difference is that S, S, T, T+ are replaced by Z, %+, O, O, respectively.

The proof of the equivalence between the estimate (1.0.16) and conditions (1.0.3)—
(1.0.8) is based on the following simple observation: The estimate (1.0.16) holds for
allu € Cg°(R7) if and only if

/|,92 (£;—id/dr)v|* dt
0

(1.0.17)
o0 N
< AGE) / |2 (&:—id/dr)v]*dt + | Q (6:—id/d1) v],_?
0 a=1

forall v € Cg° (Rﬂr) and almost all £ € R"~!, and the sharp constant A (£) satisfies
the condition
BE)A() <C? (1.0.18)

First, we explain how conditions (1.0.3)—(1.0.6) follows from inequalities (1.0.17)—
(1.0.18).
Condition (1.0.3). For m = 1 it takes the form

BY2(§)|%(&: 7)| < const| 2 (&: 7). (1.0.19)
The necessity of (1.0.19) follows from (1.0.18) and the estimate
sup |(E:0)/ P (& < A, (1.0.20)
T€R

Notice that (1.0.20) is easily obtained by substituting in (1.0.17) a smooth function
v(t) vanishing near ¢t = 0 (Lemma 1.1.5).

Condition (1.0.4). For m = 1 this condition reads
Ou(£:7) = 0 (mod .Z (€; 7)), a=1,2,...,N, (1.0.21)

where . (§; 7) is the greatest common divisor of Z and ... The necessity of condi-
tion (1.0.4) is proved in Section 1.2 (see Theorem 1.2.2) with the help of Lemma 1.1.9.

SThe necessity of (1.0.17) is proved by applying to (1.0.16) the localization method w.r.t. £; the sufficiency
is checked by substituting in (1.0.17) the function v = vg(t) = 74\(5, t) (see Subsection 1.2.2).
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The following example gives an idea of how inequality (1.0.17) implies congruences
(1.0.21).

Example. LetIm{;(§) > 0(j = 1,2), let

PE1)= P4 (E1) = (= LENE —82(8). L) # 82(5). &(6) # L(8).

and let Z(§:7) = (r — {1(§))(r — $2(8)). Then A (§:7) = v — §1(§), Py /M =
T — {»(§), and, consequently, N = 1. Let Q(&; t) be an arbitrary linear polynomial
of 7 such that Q(£; ¢»(£)) # 0. Now substitute the function

Q(§:81(8))

ve (1) = exp (81 (6)1) — m

exp (i82(§)7)

in (1.0.17). Obviously,
P (E:—id/d)vg) =0, Q(E:—id/d1)ve(t)],_y =0

and

Q(§:81(5))
Q(§:82(8))

In view of the assumptions {1 (§) # $»2(§), {3(8) # £2(§), it follows from (1.0.17)
that Q(£;¢1(€)) = 0,1.e., @ = 0 (mod .#).

Condition (1.0.5). Its necessity follows from Lemma 1.1.5. In the case m = 1, this
condition is formulated as follows:

Z (§:—id/dt) vg(t) = (82(8) = £1(§))(La(§) — £3(8)) exp (iL2(£)7).

The polynomials Q, are linearly independent modulo &2

1.0.22
for almost all £ € R" ™1, ( )

We show how (1.0.22) can be derived from (1.0.17). For simplicity, we assume
that .# (¢;7) = 1 and the t-roots &1 (§),..., {n (€) of the polynomial &2, are pair-
wise distinct a.e. in R" 1. It follows from (1.0.20) thatIm ¢, (§) > 0 (j = 1,..., N).
Therefore (cf. Remark 1.1.8), the solution

N
ve(t) = D c; (&) exp (ig; (E)r)

Jj=1

to the equation L (§;—id/dt)v = O satisfies inequality (1.0.17). Now let the
coefficients c; (§) satisty the conditions

N
Y e (E)QulE: 4 (E) = Qu (i —id/dD)ve()],_y =0  (@=1,....N).

j=1
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Then the estimate (1.0.17) yields

N
R (& —id/di)ve(t) = Y c;(O)R(E: () exp (it (§)r) = 0.

j=1

Since the polynomials % and &, are relatively prime, the last equality implies that

c;j(§)=0( =1,...,N).
Hence, the N x N matrix

D) = {Qu(&: (5} (1.0.23)

is nondegenerate, which is equivalent to (1.0.22).

Condition (1.0.6). We show that for m = 1 this condition follows from (1.0.3)-
(1.0.5). For simplicity, we assume .Z (§;7) = 1.
If m = 1, then relation (1.0.6) can be written as

N . . . .
S GalE: 1) Qs (6:7) = [9”+(§,n)%ﬁu(é,zr)]:f)”ju(éﬂ)e%’#é,n)]' (1.0.24)

Denote the right-hand side of (1.0.24) by I'(£; 7, ). Clearly, 3% T'/an"¥ = 0 for all
7,1 € RL. In addition, it follows from (1.0.22) that the polynomials Q1 (&; ) are
linearly independent. Since ord Qu+(€;1n) < N — 1, the coefficients G, (&; t) are
uniquely determined by (1.0.24). On the other hand, 3¥ T/t = 0 and, conse-
quently,

a=1

N

Z PGel&i0g, . =0

for all 7, n € R!. Using again the linear independence of the polynomials Qg+ (£; 1),
we conclude that 9V G, (£;:7)/9tY = Oforall t € R! (@ = 1,2,...,N). This
means that G(§;7) = {Gq(§;7)} is an 1 x N matrix of polynomials (in t) and
maxq ord Gy (§;7) < N — 1.

The polynomials G (£; ) can be expressed explicitly in different ways in terms
of the polynomials Z, & and Q,. We give one such representation, which will be
used later.

Let, for simplicity, the -roots ¢; (§) (j = 1,..., N) of the polynomial & (§; 1)
be pairwise distinct a.e. in R"~1, and let .# (€; t) = 1. We show that

G(E:1) = {G(E: 0} = HE DD (@) (1.0.25)
where H (§; 7) is the 1 x N matrix defined by

k74
HE = L1266 0) *f (g (1.0.26)
J

and D71 (£) is the inverse of the matrix (1.0.23).
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Indeed, setting in (1.0.24) n = (&) (j = 1,..., N) and taking into account the
equalities

Q=02 +Q. P, R=cE)P+RBP_+A P, (1027

which follow from definitions of the polynomials %+ and the matrices Q.+, we find
that

P 1)

ZG (&) QalE: £;(8) = Z(E G E)
— ()

a=1
or, equivalently,
GE;1)D(E) = H(E; 7). (1.0.28)
It remains only to observe that (1.0.28) implies (1.0.25).

Integral representation. The proof of the sufficiency of conditions (1.0.3)—(1.0.8)
and the necessity of conditions (1.0.7)—(1.0.8) is based on the integral representation
(1.0.29) given below. For simplicity, we assume that .# (£§;t) = 1 and the t-roots
¢;(€) of the polynomial 2, (§; 7) are pairwise distinct a.e. in R"~1. Furthermore,
suppose that conditions (1.0.19) and (1.0.22) are fulfilled, and Im¢;(§) > 0 (j =
L N).

We show that for ¢ = 0 the function Z (§;—id/dt)v (v € C°°(R )) can be

represented as

. 1 H(E; 1) i G
wiidtiny = | ¢ L@(s;r)” Dt e 7€)
oo - (1.0.29)
1 Q_(&:n) .
m_oo «@—(E;n)(Ft_)nf)dn_ Q. —id/dt)v|,—g }dr,

where f(§;t) = & (§;—id/dt)vfort = 0and f = 0 fort < 0; Q(§; 1) is the
given N x 1 matrix of boundary polynomials Oy (§; 1), G(&; 7) is the matrix (1.0.25),
and Q_(§; 1) is the matrix satisfying the first of the relations (1.0.27); Fy—.; f denotes
the Fourier transform of the function f(&;¢) w.r.t. £. The inverse Fourier transform is
denoted by F,_!_.

To derive representation (1.0.29), we express v(¢) € C“(R ) as

N
v(t) = we(®) + Y c; @ exp(iL;(§)r). 120, (1.0.30)

j=1

where

we(t) = F L (Fise [/ P(E:7)).0

The representation (1.0.30) holds, and the coefficients ¢ ; () are uniquely determined by it. It is obvious
that 7 (§;—id/dt) wg = f fort = 0 and, therefore, Z (§;—id/dt) [v(t) — we ()] = 0.
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From the definition of f(£;¢) it follows that the function F;_,; f can be continued
analytically to the half-plane Im¢{ < 0 ({ = 7 + i0), and hence

7Q(E;r) fioe /Q == g

G ) P_(&; )
Therefore,
Q& —id/dt) v, = — /Q (& )e@t_()gf)

(1.0.31)
+ Z cj () QE: L (E)).

Jj=1

The condition (1.0.22), as we have already noted, is equivalent to the nondegen-
eracy of the matrix (1.0.23). Hence system (1.0.31) is solvable with respect to c; (§)
and its solution takes the form

€ ={c;(€)}
o . Fionf
= @{Q@, id/d) vl ~ /Q (&) s
(1.0.32)
From (1.0.30) and (1.0.32) we get
Z (&;—id/dt) (v(t) — we (1)) =t($;t)©_l(é‘){ Q(§:—id/dr)vl,—
. 00 F ; (1.0.33)
- t—n
TV [o SEN S }

where the 1 x N matrix v(§;¢) satisfies
v(§. 1) = {Z(§:{;(§)) exp (iL; (§)1)}.

Notice that Fy_.t(€;1) = i Q)" YV2H(E; 1) P4 (€; 1), where H(E; 1) is the
matrix (1.0.26). Therefore, representation (1.0.29) follows from (1.0.33) and the ob-
vious equality

@ (E-id/dn i) = P |26 0 S,

P 1)
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Sufficiency of conditions (1.0.3)—(1.0.8). As it was already shown, conditions (1.0.3)—
(1.0.6) imply representation (1.0.29) for t > 0. Considering § € R""! as a fixed
parameter value, we extend the function % (£; —id /dt) v to the whole R! by setting
it equal to O for # < 0. Then, it follows from Parseval’s identity and (1.0.29) that

sup
TeR!

2 o0
drdn:|/|,@($;—id/dt)v|2dt (1.0.34)
0

R(E: 1)
Pi(¢:1)

/I«%’ (£:—id/dt)v|*dt < C
0

[T GED2 (En
+// Py EDP(E

—00 —00

Gt |?

o0

dr| Q(E:—id/dt)vlt=o|2} :

The estimate (1.0.34) can be treated as an inequality of the type (1.0.17). Thus, the
sharp constant A(§) in (1.0.17) admits the upper bound

A(&) < const |:rs€uﬂs1 %

[ ] GEDO(E:D
+_[o_[o‘3z+(§; _(&;
(1.0.35)

and inequality (1.0.18) follows from conditions (1.0.3), (1.0.7) and (1.0.8) (for m =
1).

Necessity of condition (1.0.8). Let v be asolution of the equation Z (§; —id /dt) v =
0. Substituting vy into (1.0.17), we obtain

G
v */ ‘%(5 =

/ | (& —id/dt) vol> dt < AE)|Q(E:—id/dt)vol,—ol>.  (1.0.36)
0

On the other hand, representation (1.0.29) for vy has the form

R (& —id/dt)vg = —— F,_,,[ G0 e idjdr vo|,:0] (1.0.37)

2w Pi(&;7)

Since the 1 x N matrix G(§; t)/ £+ (&; ) admits an analytic continuation to the half-
plane Im§ < 0 (§ = 7 + io) for any £ € R"™L, it follows from (1.0.36) and (1.0.37)
that

A(§) = const / ‘e@ig(;i)

Therefore, (1.0.18) implies condition (1 .0.8).

dr. (1.0.38)
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We also note that (1.0.18) and the following estimate of A(§) from below,

o [6EDeEn [P
A§) = const_[o_i 'L@-F(E;T)L@—(S;n) dtdn (1.0.39)

imply the necessity of condition (1.0.7). The estimate (1.0.39) for arbitrary m > 1
is proved in Section 1.1. The proof is quite involved. Since the restriction to m = 1
does not lead to any substantial simplification, we do not provide it in this short
presentation.

Case m > 1. The sketch of the proof of the main result of this chapter given above
for the case m = 1 already contains the most essential arguments of the proof for the
general case.

However, there are some additional special features for m > 1. Thus, instead
of the matrices Z and Q, which enter into the formulation of all the conditions for
m = 1, in the case m > 1 we have to consider the matrices S = RP“and T = QP°.
The transition to the matrices S and T is accompanied by a diagonalization of the
matrix P. So, the problem for ordinary differential operators reduces to the study of
estimates that are equivalent to the initial ones, but have the simpler form (1.1.6). The
mathematical apparatus necessary for these investigations is constructed in Lemmas
1.1.5-1.1.18.

A further feature of the case m > 1 is that the existence of the matrix G satisfying
identity (1.0.6) occurs now as an independent condition, while for m = 1 it follows
from other conditions of the criterion for the validity of estimate (1.0.2). We estab-
lish (see Propositions 1.2.6 and 1.2.7) necessary and sufficient conditions and more
simply formulated sufficient conditions ensuring that in the case m # 1 the existence
of the matrix G with the above-mentioned properties follows from (1.0.3)—(1.0.5). In
particular, this is true if .# (£, 7) = 1 forall t € R! and almost all £ € R*~!, orif the
t-roots of the polynomial 22, (£; t) are pairwise distinct a.e. in R?~!, On the other
hand, if the polynomials . (§;t) and £ (§;71)/.# (§; 1) are not relatively prime
(in 7), then counterexamples exist (see Section 1.1, Example 1.1.20).

Remark on the notation. Along with notations already introduced above, we will use
the following designations:

In the expressions sup |S(€;1)/ P (€;7)|,sup |S+(&;7)/ P+ (€;7)| and the sim-
ilar ones, the upper limit is taken over all 7 € R!;

If f(1) = (f1(D)..... fm()) and ¥ (z) = (Y1 (7). .. .. ¥m(7)), then we set

o0 o0
1 /‘ . 1 .
F.,f = —— | e % f(t)dt, Fly=— / ey (1)dr.
1 f Ner S@) otV T V(1)
—00 —00
We denote by C, cq, C,, ... various positive constants which do not depend on
the polynomials Py, Rj, and Qg;.

"This implies that, in the dominance problems for general differential operators, the sharp constants in the
estimates are not always continuous functions of the coefficients of differential polynomials entering these
estimates.
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1.1 Estimates for systems of ordinary differential
operators on a semi-axis

Let R(r) = {Rj(7)}, P(r) = {Px;(1)}, Q(r) = {Qq;(7)} be matrices of size
(1xm), (mxm), and (N xm), respectively. Suppose that the entries of these matrices
are polynomials of the variable T € R! with complex coefficients. In this section we
establish necessary and sufficient conditions for the validity of the inequality

/|R(—id/dt)u|2dt <A /|P(—id/dt)u|2dt+|Q(—id/dt)u|t=0|2
0 0

(1.1.1)
forall u = (u1(t),...,um(t)) € C° (R}r), and give the upper and lower bounds for
the sharp constant A figuring in (1.1.1).

1.1.1 Some assumptions and notation

First, we formulate assumptions on the matrices R, P, and Q under which the esti-
mate (1.1.1) is studied. By P¢(t) = {Pjr(7)} we denote the m X m matrix whose
rows are composed of the algebraic complements of the column elements of the ma-
trix P(t). We set

S(@) ={Sk(D)} = RO P (1), T(v) ={Tak(v)} = Q(0)P*(x). (1.1.2)

Let Z(t) = det P(7), let Z4(7) be a polynomial whose roots (with multiplicities
taken into account) coincide with the all roots of Z(t) in the half-plane Im¢ = 0
(¢ =t +i0), and let Z_(t) = P (1r)/ P+ (7). Finally, let .4 (t) be the greatest
common divisor of the polynomials 4 (7), S1(),..., Sm(r), and let @Jr(r) =
P (v)/ M (7).

We assume that

1. P(v) £0.

2. The leading coefficients of the polynomials Z (1), ¥+ () and .# (z) are
equal to 1.

3. ord @Jr (r) = N = 1, where N is the number of rows of the matrix Q (7).

4, mI?X ord Si(t) < ord #(1) and mz}(x ord Ty (t) = ord L (7) — 1.
,

Based on the last of these assumptions, we define the 1 x m matrices S+ (7) =
{Sr+(7)} and the N x m matrices T+ (t) = {Tyr+(7)} by the identities

S Sy S T Ty T
— =c+—"+— — =

7 7. "7 7 :z—F%’ (1.1.3)
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where the relations
max ord Sy, max ord Tyx4+ < ord A,
a,

max ord S;_, max ord T,;_ < ord &_
k ok

are valid, and ¢ = {cx} is a 1 x m matrix with constant entries.

1.1.2 Transformation of the basic inequality

In the case m # 1, an essential difference between the estimates (1.1.1) and (1.0.17)
lies in the fact that P entering on the right-hand side of (1.1.1) is no longer a polyno-
mial, but an arbitrary m x m matrix of polynomials. Now we present a simple method
that allows to replace the estimate (1.1.1) by the estimate (1.1.6) (and even by in-
equality (1.1.8)), where the matrix P (—id/dt) on the right-hand side is replaced

by the diagonal matrix &2 (—id/dt) I (by the matrix 7 (—id/dt) I, respectively).

This enable us to follow the plan of proving the estimate (1.0.17) outlined in Subsec-
tion 1.0.2.

Lemma 1.1.1. For any vector function g = (g1,...,8m) € C§° (RL) there exists a
solution ¢ = (¢1,...,¢m) € C° (RL) of the system of equations
P(—id/dt)[p = g. (1.1.4)

Proof. Let J = ord (1), letv'(t),..., v’ (¢) be a system of linearly independent
solutions of the equation Z(—id/dt)v = 0, let W(v!, ..., v’) be the Wronskian of
this system, and let Wy (v!, ..., v7) be the determinant obtained from W(v', ..., v’)
by replacing its k-th column (1 < k < J) by (0,...,0,1). Then the vector function

J “+00
Wi, ..., v") (1)
o) =—> vk g(r)dt
]; t/ wol, ..., v))(x)

is the solution of system (1.1.4) in the space C° (Rﬂr). O

Lemma 1.1.2. For any u € Cg° (]Rﬂr) there exists a solution ¢ € Cg° (]Rﬂr) of the

system of equations
PC(—id/dt) ¢ = u. (1.1.5)

Proof. We set g = P (—id/dt)u and observe that g € C3°(R} ). Then by Lemma
1.1.1 there exists a vector function ¢ € Cg° (RL) such that & (—id/dt) ¢ = g.
We show that ¢ is also a solution of the system (1.1.5). Indeed, from the definition of
g and the equality P¢(t) P(r) = &(v)I, which is obviously true for the matrix P¢,
it follows that

P (=id)di) ] [u— P (—id/di)g] = P (—id/di) [u— P (id/di)g =0,
Since u — P¢(—id/dt) ¢ € C3°(RL), we finally getu = P¢(—id/dt) ¢. O
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From the definition of the matrices S and 7', and this lemma, the following asser-
tions can be immediately obtained.

Lemma 1.1.3. The inequality (1.1.1) with some A < 0o holds for all u € C§° (Rﬁ_),
if and only if

/oo IS (—id/dt) ¢|* dt

0 o0 (1.1.6)

sA[/ |32(—id/dt)lgo|2dt+|T(—id/dt)<p|,=o|2}
0

forall ¢ € Cg"(]RL).
Lemma 1.1.4. Let the matrix T (t) satisfy the congruence
T(z) = 0 (mod .Z (7)). (1.1.7)

We set S(t) = S(v) /M (1), P(x) = P(v)) M (v), and T (x) = T(v)] M (7).
The inequality (1.1.1) with some A < oo is true for all u € Cgo(]R}F), iff the
estimate

/OO|S'(—id/dt)w|2dt

0 -~ . (1.1.8)

. . 2

sA[/ ‘@(—id/dt)lw‘ dt—i—|T(—id/dt)1//|t=0|]
0

holds for all € Cg"(RL).

1.1.3 The simplest lower bound of the constant A

In this subsection we obtain the lower bound (1.1.9) for the constants A as a very
simple corollary of inequality (1.1.6). It will be used in the proof of Theorem 1.1.19.
The estimate (1.1.9) can be regarded as the first natural restriction on the class of
operators R that obey inequality (1.1.1).

Lemma 1.1.5. If for some A < oo inequality (1.1.6) holds for all ¢ € C3° (Rﬁ_), then
sup |S(7)/ Z(1)|* < A. (1.1.9)
Proof. We substitute in (1.1.6) the vector function ¢(¢) = v(t + a), where v(¢) €
C$°(R') anda € R! are chosen such that supp vg (£) N (—00,a) = @ (k = 1,...,m).
It is evident that ¢(r) € C(RL) and ¢)(0) = 0 (j = 0,1,2,...). This means
that T (—id/dt) ¢|,—¢ = 0.
Thus, the estimate
oo [e.e]
/ IS (—id/dt)v]*dt < A / | P (—id/dt) Tv|*dr.

—00 —00
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holds true for all vector functions v € C$°(R'). Now, applying the Fourier transform
and using the standard arguments, we get (1.1.9). O

Remark 1.1.6. It follows from inequality (1.1.9) that the polynomial P (t) has no
real roots.

1.1.4 On solutions of the system &7, (—id/dt) I¢p =0

In Section 1.0, we repeatedly substituted solutions of the equation & (—id/dt) v =
0 in inequality (1.0.17). However, these solutions do not belong to the space C°(RY.)
(with respect to ¢), so this procedure requires a justification. In this subsection, we
show that the validity of inequality (1.1.6) for all ¢ € Cg° (]Rﬂr) establishes its correct-
ness for solutions of the system &7 (—id/dt) [¢ = 0 as well. Thus, we complete a
gap in the arguments of Section 1.0 and, at the same time, provide a necessary basis
for further studying of the inequalities (1.1.6) and (1.1.8).

We begin with some remarks on solutions of the system of equations
Py (—id/dt) 1o = 0.

Let ¢, be the root of the polynomial Po(t) = Po(v)/#(7) of multiplicity
kg, so that 3.2+(r) = ]_[i_):l(r — é‘g)ké’ (ky +---+ k; = N). The roots of the
polynomial & (r) will also be denoted by ¢, and their multiplicities by x,. Then
we have &, (1) = ]_[i_):l(r — {p)*e. Itis clear that [y = [ and x, = k, provided
1 <o <. Letly (0 <l <I)beanintegersuchthat #({,) =0for1+/ <o <[4
and . ({,) # 0 for o < I,.% Then for o < I, we have x, = k,.

From the definition of .# (z) it follows that the 1 x m matrix S(t) satisfies the
following conditions:

(@ S() #0, if 1 <o <o
(b) S@ (L) =0, if

l.h+1<o<land0 <o <x,—ky—1,

22 l+1<o<h and0<a<x,— 1
(c) SUeko)(z,) #0, ifl,+1<o<I.

Let ord .# (t) = N;. We introduce two N x mn matrices & and ¥, and the
N x mNp matrix T(A) as follows:

Matrix ®. Let S* = {sfg((f))k} be the N x N matrices whose rows are labeled by the

indices v, B(v), and whose columns are labeled by the indices o, 0 (o), respectively.

8If .4 (¢p) = O forall g = 1,...,11, then we set Iy = 0. We restrict ourselves to the case /o > 0 and
leave it to the reader to make the obvious modifications in all subsequent arguments and formulas for [, = 0.
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These indices take the values v,0 = 1,...,[; B(v) = 0,...,k, — 1 and 0(0) =

0,...,k, — 1, while the index k runs through the numbers 1, ..., m. We set
_g¢l my. oo (0)k __ : .
B={S",....8"} SuB(v) =0, if v#og;
0, if o <8,
g2 @k _ o!
0B(0) _ 9 ¢=p ;
G VG it o=p
(1<p<h,0=0(0),8=p)):
0, if o4x,—ko <B,
SQU(Q)k — (0 +x —k )| .
0B(0) e —Ko): lotxg—ko—P) if k>
TRt (Go). it0 + 20— ko = B
(b+1<p<l,o=0(0),B=p0),

(1.1.10)
where Si(7) (k = 1,...,m) are the entries of the matrix S(7) defined by (1.1.2).

It follows from conditions (a) and (c) thatrg & = N.

Matrix €. Let Tk = {tﬁo(g)k} be the N x N matrices whose rows are labeled by the
index o, and whose columns are labeled by the indices o, 0 (o), respectively. These
indices take the valuesae = 1,...,N;o=1,...,l;0(0) =0,...,k, — 1 in the case

l<o<l,ando(o) = xg—kg,....%o—linthecasel, +1 < ¢ < [, respectively.
The index k runs through the numbers 1, ..., m. We set
T=ATL,.... T, 2@ =T 5 =0(0), (1.1.11)

where Ty (1) are the entries of the matrix 7' (7) defined by (1.1.2).

Matrix T(MH). Let T*(A) = {tgd(g)k (.#)} be the N x N1 matrices whose rows
are labeled by the index o, (I < o < N), and whose columns are labeled by the
indices o, 0 (o), respectively. These indices satisfy the conditions I, + 1 < o < [;
and0 < 0(0) < xp,—ko—linthecasel, +1 <o </, while0 <0(0) < %, — lin
the case / + 1 < ¢ < /;. The index k runs through the numbers 1, ..., m. We set

(M) = {TN(AM),....T"(MH)}, 187 () = TD (&),

(1.1.12)
o =0(0).

The solutions of the system # (—id/dt) I¢ = 0, which we need later, are
constructed as linear combinations of the vector functions x!, x2, y!, y? with the
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following components:

I ko—1
1
GO =" Xookzoo(D).
o=1 o0=0
xo—1

xk(t) = Z Z xgokZQU(t)

o=l+1 o=xp—ko (1.1.13)

xo—ko—1

i) = Z > YookZoo (D)

o= lz+1 o=0

xo—1

YR = Z > YookZeo(t).

o=I[+1 0=0

Here, zy5 (1) = exp (i{1)(i1)?, Xk, and y,oqk are arbitrary complex constants, and
k=1,....m
A direct verification shows that

1. S(—id/dt)y' = S (—id/dt) y*> = 0 for any choice of the constants y,q-

2. S (—id/dt) (x' + x?) = 0 if and only if the vector & € C™" composed of
the coefficients xyq such that

o]

=(xgak)
(k=1,....m; 0<o<ky,—1 if 1<0<l,, (1.1.14)
andx, —ky <o =x,—1 if L+1<p<I),

satisfies the condition
&

0]

=0, (1.1.15)
where & is the matrix (1.1.10).

3. T (=id/dt) (x" + x?)|,_, = 0 if and only if vector (1.1.14) satisfies the
condition
T

[l

=0, (1.1.16)
where ¥ is the matrix (1.1.11).
4. T (—id/dt) (x" + x2 + y! + yz)‘t=0 = 0 if and only if
TE =-FA)H. (1.1.17)

Here, E is the vector defined by (1.1.14), T and T(.#) are the matrices defined
by (1.1.11) and (1.1.12), respectively, and H € C™M is the vector composed
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of the coefficients y,qx such that

Hz(ygak)
(k=1,....m; 0<o<xyg—ko—1 if L+l1<o<l (1LI8)
and0<o<x,—1 if I+1<o<h).

Lemma 1.1.7. Let inequality (1.1.6) hold for all ¢ € CZ° (R ). Then, for any solu-
tion (t) of the system P4 (—id /dt) 1 ¢ = O there exists a sequence ¢° € C3° (R )
satisfying

T (—id/dt)¢*|,—o =0 (s=1,2,...), (1.1.19)

and
Sl_i)noio/|9+ (—id/dt)1¢°|*dt =0,
0 (1.1.20)
Jjim [15 id/an - ¢)P ar =0

Proof. Consider a cut-off function n(t) € C °°(]R ) such that n(t) = 1 for 0 <
t < land n(t) = 0for2 <t < oco. We set ¢° (t) =n(t/s)el) (s = 1,2,...).
Obviously, ¢* € C§° (RL) and (1.1.19) follows from the definition of 5(¢). Since
P4 (—id/dt) I = 0, it suffices to show for the proof of (1.1.20) that

lim /|§f’+( id/dt) [r](t/s)zga(t)” dt =0 (1.1.21)
and

Tim. 0/ Sk (<i.d/d1) [zgo (1) = n(t/$)z200 ]| dt = 0 11.22)

k=1,2,...,m),

where zy4 () = (if)? exp (i{ot), and ¢ and o take the same values as in (1.1.13).

We now prove equalities (1.1.21) and (1 1.22). Since the estimate (1.1.6) holds
true for all ¢ € Cg° (R ), the polynomial Qz(r) has no real roots in accordance with
Remark 1.1.6, Chapter 1. Therefore, foro = 1,...,l,0 = 0,...,kg — 1, and
o=hL+1,....01,0 =xy—kq,...,20—1,the functions Zgo(t) and their derivatives
decrease exponentially as t — oo, so that (1.1.21) and (1.1.22) hold.

Now,leto = L +1,....150 =0,...,%p —kg—loro =1+4+1,....11;
o =0,...,% — 1. It follows from property (b) of the matrix S(r) that for these
values of o and 0, Si (—id/dt) zo6(t) =0 (k = 1,...,m).

On the other hand, it is obvious that

P (—id[d1) [z00 (1)) (—id /D) [n(2/5)) < 577 7+,
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and, consequently,
[ 124 Ciardn /o201 dr < est 2ot 20,
0

where ¢ > 0 is a constant. The integrals on the left-hand side of (1.1.22) can be
estimated in the same manner (with ord &2 replaced by ord S). To complete
the proof, it remains to note that all the values of o considered here do not exceed
min {ord #,,ord S1,...,ord S;,} — 1. O

Remark 1.1.8. Tt follows immediately from Lemma 1.1.7 that the vector functions
p € C° (Rﬂr) in inequality (1.1.6) can be replaced by the solutions of the system
P, (—id/dt) I¢ = 0. From now on we will perform these (and similar) substitu-
tions without further comments.

1.1.5 Properties of the matrix 7'(7)

In this subsection we specify the algebraic conditions that the matrix 7' () figuring in
the estimate (1.1.6) must satisfy. We show that if inequality (1.1.6) holds for all ¢ €
Cy (Rﬂr), then the greatest common divisor of the polynomials 4 (1), S1(7),...,
S (7) is a divisor of the matrix 7'(7), and the rows of T'(7) are linearly independent
modulo &, (7).

Lemma 1.1.9. If inequality (1.1.6) with some A < oo holds for all ¢ € Cg"(RL),
then the matrix T (t), defined by equation (1.1.2), satisfies relation (1.1.7).

Proof. We show that (1.1.6) leads to the equation rg ¥ = N, where ¥ is the matrix
(1.1.11), and to the equivalence of conditions (1.1.15) and (1.1.16).

We substitute in (1.1.6) the vector function ¢ = x! + x?2, where x! and x? are the
vectors introduced in (1.1.13). Since &4 (—id/dt) ¢ = 0, the implication (1.1.16)
=> (1.1.15) follows from inequality (1.1.6) and assertions 2 and 3 (see page 17). Since
rg & = N,wehaverg T = N.

From the implication (1.1.16) = (1.1.15) it follows that the rows of the matrix
® belong to the linear span of the rows of the matrix ¥. Since rg® = N, then,
conversely, the rows of ¥ belong to the linear span of the rows of &. Therefore, we
have the equivalence (1.1.16) < (1.1.15).

We proceed now to the proof of relation (1.1.7). Obviously, it suffices to prove
that ¥(.#) = 0, where T(.#) is the matrix defined in (1.1.12).

Let E and H be arbitrary vectors of the form (1.1.14) and (1.1.18), respectively,
and let x!, x2, y!, y2 be the vector functions defined by (1.1.13). We substitute the
vector function ¢* = x! + x2 + y! + yZin (1.1.6). Since . (—id/dt) [¢* = 0,
the implication (1.1.17) = (1.1.15) follows from assertions 1, 2 and 4 (see page 18).
Since rg ¥ = N, the system of equations (1.1.17) is solvable with respect to & for
any H € C™N1_ For a fixed H it follows that every solution E of (1.1.17) satisfies
also (1.1.15). The equivalence (1.1.15) < (1.1.16) has already been shown. Taking
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into account (1.1.17), we get $(#Z)H = 0 for all H € CmN1 | and, consequently,
(M) = 0. O

To prove the linear independence of the rows of the matrix 7 modulo & (Lemma
1.1.10), we again introduce two N x m N matrices & and ¥.
Let the matrix 7'(t) defined by (1.1.2) satisfy relation (1.1.7), and suppose that

S(1) = S(@)/ M (%), T (v) = T(2) /M (v),and P (v) = P () M (7).

Matrix &. Let S¥ = {ng((f)) k} be the N x N matrices whose rows are labeled by the
indices v, B(v), and whose columns are labeled by the indices o, 0 (9), respectively.
These indices take the values v,o = 1,...,[; B(v) = 0,...,k, — 1, and o (p) =

0,...,k, — 1. The index k runs through the numbers 1, ..., m. We set

Ko gal Smy. -00(@)k __ : .
& ={S",...,S"}; sf}’g(f) =0, if v#op;

0, if o< 8,
§90@k _ ol ) (1.1.23)
oB(0) Y &8 .

Gopise o) i oz

(0 =0(0), B = B(0),

where Si () are the entries of the matrix S (7).

In accordance with the definition of the polynomial .# (), the greatest common
divisor of 2, (1), _S‘l (1),....Sm(7) is equal to 1. Therefore, the matrix S () satis-
fies the condition S(¢,) # 0, (0 = 1,...,/). This condition and definition (1.1.23)
yield to the equalities rg & = ord &2, (1) = N.

Matrix ¥. Let T* = {§2°@%) be the N x N matrices whose rows are labeled by the
index «, and whose columns are labeled by the indices o, o (o), respectively. Here,
l<a<N,1<p<!l,and0 < 0(0) < k, — 1. The index k runs through the
numbers 1, ..., m. We set

T={T',....T™), €@k =79¢,)  (0=0()), (1.1.24)

where T,y are the entries of the matrix 7' (7). ) )

First, we highlight two properties of the matrices ® and €. These are similar to
properties 2 and 3 of the matrices & and ¥, which are defined by (1.1.10) and (1.1.11),
respectively.

We introduce the vector

(@) = W), ....¥m()),

I k-1

V() =Y D Vook(it)7exp(iLet)  (k=1,....m),

o=1 0=0

(1.1.25)

where v, are arbitrary complex constants. Consider the vector ¥ € C™N com-
posed by the coefficients /44 as follows:

U= o) (k=1..mo=1...10=0. .k —1. (1.126)
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A direct verification shows that
1. S (—id/dt)y(t) = 0 if and only if vector (1.1.26) satisfies the condition

SY =0, (1.1.27)

where & is the matrix (1.1.23).
2. T (—id/dt) ¥ (t)|;—o = 0 if and only if vector (1.1.26) satisfies the condition

LU =0, (1.1.28)
where ¥ is the matrix (1.1.24).

Lemma 1.1.10. Let the matrix T(‘L’) satisfy (1.1.7). If for some A < oo inequality
(1.1.8) holds for all y € Cg° (R ), then the rows of the matrix T (t) are linearly
independent modulo Z4 (7).

Proof. We substitute the vector function (1.1.25) into inequality (1.1.8). Since
,@Jr (—id/dt) Iy (t) = 0, the implication (1.1.28) = (1.1.27) follows from (1.1.8)
and assertions 1 and 2. Observe also that rg & = N, and, consequently, rg ¥ = N.
In accordance with definition (1.1.24), this last equality is equivalent to the linear in-
dependence of the rows of the matrix 7' () modulo ,@Jr () or, what is the same, to
the linear independence of the rows of the matrix 7'(7) modulo #, (7). O

Remark 1.1.11. The estimate (1.1.8) implies not only the inclusion ker < C ker é5_(0r,
what is the same, the implication (1.1.28) = (1.1.27)), but also the equality ker T =
ker(’ﬁ Indeed, if we assume that (1.1.28) = (1.1.27), then the rows of the matrix
& belong to the linear span of the rows of the matrix <. Since rg & = N (see the
definition of the matrix &), we conclude that the rows of & form a basis of the linear
span of the rows of <. Therefore, it follows from the implication (1.1.28) = (1.1.27)
that the inverse implication (1.1.27) = (1.1.28) also holds. Thus, ker T = ker &°.

1.1.6 Integral representation for S (—id /dt) ¥

In this subsection, we derive for vector functions ¥ € Cg° (R ) the formula (1.1.31),

which gives an integral representation of S (—id/dt) ¥ interms of P (—id/dt) ¥
and T (—id/dt) ¥|;—. Representation (1.1.31) will be frequently used in the sequel.
In particular, it provides the estimate (1.1.8) as a direct corollary.

If m = 1 and the roots of the polynomial 32+ are pairwise distinct, then the
formula (1.1.31) is already proved in Subsection 1.0.2 (see (1.0.29)). In the general
case, an essential role is played by the N x m N matrices & and T, which are defined
by (1.1.23) and (1.1.24), respectively. For m > 1, both these matrices have nontrivial
kernels, and, in accordance with Remark 1.1.11, the condition

ker € = ker & (1.1.29)

9The reader will note the similarity of this result with the assertion (1.1.15) <> (1.1.16) established in the
proof of Lemma 1.1.9.
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is necessary for the validity of (1.1.8). Assuming ker® C ker®, we construct the
matrix &(7) (its existence in the scalar case follows from other conditions necessary
for the validity of (1.1.8))'% and obtain representation (1.1.31), according to the plan
outlined for the scalar case.

Lemma 1.1.12. Let the matrix T (t), defined by (1.1.2), satisfy relation (1.1.7), let its
rows be linearly independent modulo &2 (t), and let the polynomial & () have no

real roots. Suppose also that ) )
ker T C ker &, (1.1.30)

where & and X are the matices defined in (1.1.23) and (1.1.24), respectively. Then
there exists a 1 x N matrix G(v) = {Gq}(v) with polynomial entries G, satisfying
maxy ord Go(t) < N — 1, such that for all vector-functions ¥ € C°°(R1) the
representation

. 1T S@
S(—id/dt)y = \/E_ée {@( )( Fisef)

i GoT 1 [ T (1.1.31)
= @m[m_w 7y 1

-T (—id/dt)lmt:oj“dr

holds. Here, f(t) = P (—id/dt) Iy fort = 0and f(t) = 0 fort <0, while T_ is
the matrix defined by (1.1.3).

Proof. Setv(t) = _l,t(F,_”f/L@(r)) Since the polynomial (1) does not have
real roots, the components of the vector function Fy_,; f /32(1) belong to space
L?(—00,00). Since P (—id/dt)Iv = f fort = 0, we have for ¢t = 0 the rep-
resentation

v—v=y"=W.....¥0).

1 ko—1
< : (1.1.32)
P =3 3 vl et (k=1.....m).

o=1 o0=0

where W0 = (woak) e CmN.

Further, as the vector function F;_,, f can be continued analytically into the half-
plane Im ¢ < 0, we get

T(n) T_(n)

/ —( t—>nf)d77_ 32 (n )( t—>nf)d777

108ee Subsection 1.0.2.
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which in conjunction with (1.1.32) yields

1 T
Var | 7

T (—id/dt)y|,— = (F—n f)dn 4+ S9°, (1.1.33)

where ‘Z is the matrix (1.1.24). )
Let T3! be the right inverse'! of the matrix T, and let

[ T-()
\/E_oo Z_(n)

U = (Yoor) = T5' | T (—id/dt) ¥l,—g — (Fy—yf)dn

(1.1.34)
be a solution of system (1.1.33). If ¥° is any other solution of this system, then the
vector WO — W satisfies condition (1.1.28). In accordance with (1.1.30), this vector
satisfies also condition (1.1.27).

Fort = 0, set

(o2
U ook op i
hook (1) = Y —=385% (i) Peibe!
i B (1.1.35)

(e=1,....10=0,....kg—1; k=1,...,m),

where Ssgk with B = B(0) and 0 = o (p) are the entries of the matrix (1.1.23).
A direct verification shows that representation (1.1.32) implies the equality

m 1 ko—1

S(—id/dry (¥ —v) =D 3> Yl hoor(t). 120 (1.1.36)

k=10=1 0=0

Taking into account (1.1.36) and the fact that the vector WO satisfies condition
(1.1.27), we can replace the coefficients wgok in (1.1.36) by the coefficients Vyq,
which are defined by (1.1.34). Then representation (1.1.36) takes the form

S (—id/dt) (Y —v) = h(t)%g" [T (—id/dt) Y=o

0 1.1.37
1T T (1137

“Vax ) i)

(Ft—>nf)d771| s

where h(t) = {hyek(2)} is the 1 x m N matrix with entries defined by (1.1.35) for
t = 0andh(t) = 0 fort < 0. We also point out that the matrix T;l in (1.1.37) can

1I'The existence of the right inverse matrices follows from the assumptions about the matrix T (z) formulated
in the lemma to be proved, since under these assumptions we have rg T = N.
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be replaced by any right inverse of the matrix <. (The latter is equivalent to replacing
1//30 © 10 (1.1.36) by another solution of system (1.1.28). This is legitimate by virtue

of the implication (1.1.28) = (1.1.27)). Since the vector function ¥ € Cg° (]Rﬂr) is
arbitrarily chosen, it follows that the product h(t)"ZI_Q1 does not depend on the choice
of the matrix .

Let H(t) = i (27)Y/2 2, (v) Fy—h(1) or, what is the same,

P (2)

0! p)
= o . o = _S s \ot1-B
H(t) = {Hook (1)}, Hook () ,32:;) BI7k (o) (t —gp)ot1-F (1.1.38)

We set ) )
G(r) = H(r)TR". (1.1.39)

_ It follows from (1.1.38) and (1.1.39) that entries of the 1 x N matrix G(r) =
{G1(7),...,GnN(7)} are polynomials and maxy ord G4 (7t) < N — 1. Taking into
account (1.1.37), we arrive at (1.1.31). O

Remark 1.1.13. If the conditions of Lemma 1.1.12 are satisfied, then the matrix G
does not depend on choice of the matrix ‘I;l. This follows immediately from the

analogous property of the matrix h(t)‘i}l and equations (1.1.38) and (1.1.39).
Remark 1.1.14. The representation (1.1.31) remains valid when 1 is a solution of the

system P, (—id/dt) Iy = 0. Indeed, setting f = 0 and v = 0, we can repeat the
remaining part of the proof of Lemma 1.1.12 without any changes.

1.1.7 Properties of the matrix G(7)

In this subsection, we study some connections between the integral representation
(1.1.31) and the identity (1.1.40). Corresponding results are contained in Lemmas
1.1.15 and 1.1.17, respectively.

Lemma 1.1.15. Let the assumptions of Lemma 1.1.12 be satisfied. Assume also that
G(t) = A (v)G (), where G(t) is the 1 X N matrix defined by (1.1.39). Then

GOT+() = (=) [P+ (DS+(x) = P1(1)S+(n)] (1.1.40)
forall t,n € R'. Here Ty and S are the matrices defined by (1.1.3).
Proof. From (1.1.7) and (1.1.3) it follows that

T+(t) =0 (mod.Z(zr)) and Si(r)=0 (mod.Z (7)).
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Therefore, it suffices to verify that for all 7, n € R! one has
GO = -7 [ZemS+ (@ - Ze@S+)]. (114D

where Ty = Ty /. #, Sy = Sy /.#,and G is the matrix defined by (1.1.39).
We show that

P (2)

G :zQUk o—B)
2 Z( oSS Co e

(1.1.42)

for all T € R! and for all ¢ and o satisfying 1 < ¢ </ and0 < o < k, — 1,
respectively. Here,

"IQGk_ T(G)
U = 1T (G (1.1.43)
(@=1,....,N;0=1,....,1;0=0,....kg—1; k=1,...,m)

the gok-th column of the N x mN matrix constructed from the matrix T in the
same way as the matrix ¥ was constructed from the matrix 7" (cf. (1.1.24)). For this

purpose, we substitute into (1.1.31) the vector functions U = (Wiks o Umi) '2,
whose components are defined as follows:
Vixk=0 for j#k, Yir =0 for t <0

Vi = (1) exp (ifet) for =0
(k=1,....m;o=1,....01; y=0,.... kg —1).

Applying the Fourier transform, we find that for all T € R!

, :
G (1) = Z N "_so-Pg, P+(1)

- B)! (T —o)B ! (1.1.44)
(1< (0<y<k,—1).

Here €27 s the oyk-th column of the matrix (1.1.24).
It follows from identities (1.1.3) that

PO N O L\
O ] @ (5) @

and

o—B (0—B—-v1)
. (G—,B) _ (U — 13)' (yl) ( 1 )
St (o) y;o o — B — Vl)'S (o) A (%o)-

12The possibility of such substitution follows from Remark 1.1.14.
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Using these relations and equations (1.1.44), we obtain

ook _ 0! LN o coB) 24 (x)
G ZZ@ m'(o—y)'( ) G ) Ty

B=0y=p
g o! LN o0y P @)
=L 2 - () s

v 9 B P+(1)
S LG @

which is exactly equation (1.1.42).
Since the entries of the matrices 74 () and S1(n) are polynomials of degree at
most N — 1, identity (1.1.41) follows from (1.1.42). O

Remark 1.1.16. If the matrix T satisfies (1.1.7) and its rows are linearly independent
modulo &2, then the matrix G(t) = {G1(7), ..., Gy (1)}, which satisfies (1.1.40)
and the relation G(t) = 0 (mod.# (7)) and consists of the polynomial entries such
that maxy ord Gy (7) < N—1+4ord .# (), is uniquely determined. Indeed, the right-
hand side of (1.1.41) is the 1 X m matrix, whose elements are polynomials w.r.t. n of
degree at most N — 1. Since the rows of the matrix 7. (1), consisting of polynomials
of degree at most N — 1, are linearly independent, the coefficients of the expansion
of the right-hand side of (1.1.41) with respect to these rows (if such an expansion is
possible) are uniquely determined.

Lemma 1.1.17. Let the 1 x N matrix G(t) = {Gy (1)} with polynomial entries
satisfy the conditions G(t) = 0(mod.# (1)) and maxgord Go(r) < N — 1 +
ord A (t) as well as identity (1.1.40). Then ker < C ker &, where € and & are
the matrices (1.1.23) and (1.1.24), respectively. If, in addition, the other assumptions
of Lemma 1.1.12 are in force, then the matrix G = G/./# admits representation
(1.1.39) and, consequently, equality (1.1.31) holds for all vector-valued functions
¥ € CP(RY).

Proof. Dividing both sides of identity (1.1.40) by .# (7). (n), we see that the matrix
G satisfies (1.1.41), and, consequently, conditions (1.1.42). Using relation (1.1.3) we
can express T (¢,) and S V) (¢,) in terms of TJ(FG) (¢p) and S'J(f_ﬁ ) (¢o), respectively.
The latter guarantees that G satisfies equations (1.1.44)'3.

Let ¥ = (Y40k) be an arbitrary solution of system (1.1.28). We show that W is
also a solution of system (1.1.27). To this end, using (1.1.44) and definition (1.1.23),

13The computation justifying this is completely analogous to one in the proof of Lemma 1.1.15, where equa-
tions (1.1.42) are derived from (1.1.44). For this reason, we do not repeat this computation here.
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we observe that for all T € R,

3 | o P .
= Z Z Z Z ﬁ‘g]gy m@g)@”gyk# = E(1)BY,

where E (1) = {Eyg(7)} is the 1 x N matrix whose entries are the polynomials given
by _

P (1)
(t— Cg)ﬂ +

Since polynomials (1.1.45) are obviously linearly independent, we have &W = 0,
and, consequently, ker T C ker &.

Suppose now that the other conditions of Lemma 1.1.12 are satisfied. We show
that the matrix G/.# admits the representation (1.1.39). Let H(t) be the matrix
(1.1.38), and let 51}1 be an arbitrary right-inverse matrix of ¥. By Lemma 1.1.15,
the matrix .# (1) H (r).TI_Q1 satisfies identity (1.1.40). But then, in accordance with
Remark 1.1.14, we get G(t) = . (t) H(t)SZ". O

Epp(z) = (1<o<L;0<B<k,—1). (1.1.45)

1.1.8 A quadratic functional

In this subsection we calculate the norm of a quadratic functional in the Hilbert space
(Lemma 1.1.12). The obtained result is fundamental for the proof of the lower bound
(1.1.49) for the sharp constant A in inequality (1.1.1) (see Subsection 1.1.9).

Lemma 1.1.18. Let [-, ] denote the scalar product in the Hilbert space F, let g,
dai,...,an, bi,....,by € F, and let

1 N N
O(g) = @ [Z[gvaa]ba’ Z[g’ aoc]boc:| .

a=1 a=1

Then sup{®(g) : g € F} is equal to the largest eigenvalue of the matrix B, where
the N x N matrices $\ and B are defined by \ = {[ay,agl} and B = {[by, bg]},
respectively.

Proof. Consider the operator K : .77 — ¢ defined by the formula

N
Kg=) [g.aulba. g€ .

a=1
Since this operator is finite-dimensional, sup{®(g) : g € J} is attained at some
go € . Let A = ®(gy). Varying &(g) w.rt. g € I, we get
N
[bg. ballgo. aglaa = Ago,
a,B=1
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and, consequently,

N

3 lay.aqllba. bgllag. gol = Alaj. g0l (1<j<N).  (L146)
o,B=1

From the definitions of the matrices i, B it follows that all the eigenvalues of the
matrix (8 are nonnegative. Let Ao be the largest of these eigenvalues. Then, by
(1.1.46), we have A < Ay.

Now let us show that A = A¢. For this purpose, we denote by y = (y1,...,¥N)
an arbitrary eigenvector of the matrix (L28)* corresponding to A¢ and set

N
g =Y yja;.
j=1

Then, on the one hand, we have

N N
[Z[g*, ), Z[g*,aa]}
a=1

N

> 7ilaj.anlyvilar. apllba. bgl
o,B.k,j=1

N N

> > [ba.bpllap. arlyila; . aaly;
a,j=1Bk=1

N
=20 Y la), a7V

o,j=1

a=1

while on the other hand,

N
[g*.8* 1= ) [aj.a4]7;Ve-

o,j=1

Therefore, ®(g*) = Ao and A = Ag. O
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1.1.9 Necessary and sufficient conditions for the validity of inequality
(1.1.1)

‘We now state the main result of Section 1.1.

Theorem 1.1.19. Let N = 1. The estimate (1.1.1) holds true for some A < oo and
allu € C§° (R ) if and only if the following conditions are satisfied:

1. The matrix S(t), defined by (1.1.2), satisfies the inequality sup |S(7)/ P (7)| <
0.

2. The matrix T (1), defined by (1.1.2), satisfies relation (1.1.7).
3. The rows of the matrix T (1) are linearly independent modulo & (7).

4. There exists a uniquely determined polynomial 1 x N matrix G(t) = {G4(7)}
such that
max ord Gu(t) < N — 1 + ord . (7).
o

This matrix satisfies the congruence G(t) = 0 (mod.# (t)), and identity
(1.1.40) holds for all T, n € R

Moreover, the sharp constant A in (1.1.1) obeys the estimates:
/ / ' G(0)T-(n)
P (1) P-(7)

< GA,

2

CiA <sup

/ ‘ G(7)

Pi(7)
where T_ and G are the matrices defined by the identities (1.1.3) and (1.1.40), re-
spectively.

(1.1.47)

Proof. Necessity. Suppose the estimate (1.1.1) holds for all u € C§° (R ). Then, in
accordance with Lemma 1.1.3, inequality (1.1.6) holds for all ¢ € C°° (Rl ). There-
fore, the necessity of conditions 1 and 2 of our theorem follows from Lemmas 1.1.5
and 1.1.9, respectively. The necessity of condition 3 follows from Lemmas 1.1.4 and
1.1.10.

In the proof of Lemma 1.1.10 it was shown that the implication (1.1.27)=(1.1.28)
or, what is the same, the inclusion (1.1.30), follows from the validity of (1.1.8). Tak-
ing this into account, we conclude that the necessity of condition 4 of our theorem
follows from Remark 1.1.6, Lemmas 1.1.4,1.1.12, 1.1.15, and Remark 1.1.16.



30 1 Estimates for matrix operators

Sufficiency. Let G(t) be a 1 x N matrix satisfying condition 4 of our theorem.
Then, conditions 1-3 of the theorem, Remark 1.1.6 and Lemma 1.1.17 guarantee that
representation (1.1.31) holds for all vector functions ¢ € Cg° (]R ). Using Parseval’s
identity and condition 1, we observe that (1.1.31) yields the followmg estimate for all
¥ € CP(RL):

S(r) |?
P(7)

/|S'(—id/dt)w|2dt < c[(sup
0

[ [ GOT-
+_[o [o Everan

G(r)

2 o0
dtdn) / ‘32(—id/dz)11//2dz (1.1.48)

dr T (—id/dr) ¢|,=0|2].

This estimate is obviously an inequality of the type (1.1.8).
Finally, applying Lemma 1.1.4, we get the estimate (1.1.1) for all u € C°(R1).

Estimates for the sharp constant A. The upper bound for the sharp constant A in
inequality (1.1.1) follows from (1.1.48) and Lemma 1.1.4.

Let us prove the lower bound in (1.1.47). Due to Lemmas 1.1.2 and 1.1.5, it
suffices to check the inequalities

T [ 6T
ABC_é [o ‘@+(T)@_(n) dtdn (1.1.49)
and
G(2)
A= C/‘@+(T) (1.1.50)

‘We now prove the estimate (1.1.49). Substituting in (1.1.31) the vector-functions
¥ € CP(RY) satisfying the condition T (—id/dt) ¥|,_y, we see that the integral
representation takes the form

- R PG
S (—id/dt)y = \/E_[oe [@(T)(Ft—rzf)

(1.1.51)
i G(r)/ T_(n)
J_32+(f) V27 Z-(n)

(Ftanf)dn]dr
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Since the entries of the 1 x N matrix G (1) / @(f) can be continued analytically to
the half-plane Im¢ < 0 (¢ = t + i0), equation (1.1.51) implies the estimate

> 1/2

(Fisn f)dn| dt

7’ G) [ T-(n)
7@ ) 7

— OO

> 1/2

= K/ .Gu) ) (Fisy f)dn| d

Pi(1) ) P_(n)

1/2

/N

2n/|S'(—id/dt)w|2dt
0
i $() ’
+ |2 F;,[ ‘ (F,ﬂf)}
/

P(0)
< V2R (A2 4 sup S/ 2@ [ [Frnef Pt

(1.1.52)
1/2

o0
$2\/271A1/2/|Ft_”f|2dr,
—0o0

where the last step used the inequality (1.1.9).

Consider the Hilbert space ¢ of vector functions g = (g1, . - ., gm), Whose com-
ponents belong to L?(R!) and admit analytic continuation to the half-plane Im¢ < 0
(¢ = 7 4+ i0). We define a scalar product by

[g. h] Z / grk(Dhi(v)d, g.hed.

k=0_"go

The vector functions g = Fy;_,. f, figuring in (1.1.52), are obviously dense in
.

We consider also the vector functions aq (1) = (aq1(7), . e m(7))and by () =
(ba1(T), ... bam(z)) € (¢ =1,...,N), where aak(f) Tok—(1)/P_(1) and
bar (1) = Go(7)/ P4 (7) (@ = 1,.. N k =1,...,m). Here, Tyr_(t) and G4(7)
are the entries of the N x m matrix T_ and the 1 x N matrix G(t), respectively.
Suppose that

N
CD(g) [Z[g’aa a’zg,aa]bai|’ gE%”.
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The inequality (1.1.52) can be recast as
P(g) < 8wAm.

Then the estimate (1.1.49) follows directly from Lemma 1.1.18, if we observe that
the double integral on the right-hand side is equal to m ™~ tr(48).

It remains to prove inequality (1.1.50). Using Remark 1.1.14, we substitute in
(1.1.51) a solution ¥° of the system Py (—id /dt) Iy = 0. Then representation
(1.1.31) takes the form

S(—id/dl‘)l//():—\/iz_nFr__l,t(ggi())T( id/dr)y°|,_ 0) (1.1.53)

On the other hand, substituting ¥° in the estimate (1.1.8), we obtain

oo

/ IS (=id/di)y° dr < A|T (—id/dt)y°|,_,|”. (1.1.54)

0

Let < be the matrix (1.1.24). Since rg T=N (see the proof of Lemma 1.1.10), the
mapping T’ (—id/dt) y° ‘t=0 of the space of solutions of the system 7N (—id/dt) Iy =
0 into the space C¥ is surjective. Therefore, inequality (1.1.50) follows from (1.1.53)
and (1.1.54). O

1.1.10 On condition 4 of Theorem 1.1.19

We have already noted in Subsection 1.0.2 that in the case m = 1 condition 4 of
Theorem 1.1.19 follows from the other conditions of this theorem. This assertion
was proved there under the additional assumption .Z (§;7) = 1. To remove this
restriction, it is sufficient to divide both sides of (1.0.24) by .# (€;t).# (§;n) and
repeat for the resulting equality all the subsequent arguments.

If m > 1, then, in general, condition 4 of Theorem 1.1.19 does not follow from
the other conditions of this theorem, as shown by the following example:

Example 1.1.20. Let m = 2, R(r) = {1, 1} and P(z) = (t — {)I with ¢ € C' and
Im¢ > 0. Then we obviously have S(r) = {r — {,7 — {} and ,@Jr(r) = A1) =
(t — ¢)2, and, consequently, #(t) = P1(t) =t - N = 1and S() = {1,1}.
We set Q(t) = {1,0}. Since T(r) = {r —{,0}, we get T(r) = {1,0}. In view of
definitions (1.1.23) and (1.1.24) we find: 6 = {1,1} and € = {1,0}. However, the
latter means that ker ¥ is not a subset of ker &, and, consequently (see Lemma 1.1.15),
condition 4 of Theorem 1.1.19 is not fulfilled. At the same time, it is clear that all the
other conditions of this theorem are satisfied.

The question of when condition 4 of Theorem 1.1.19 follows from other condi-
tions of this theorem is completely answered by Lemmas 1.1.15 and 1.1.17. Indeed,
these lemmas imply
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Proposition 1.1.21. Let & and < be the matrices defined by equations (1.1.23) and
(1.1.24), respectively. Then condition 4 of Theorem 1.1.19 follows from conditions 1
3 if and only if the rows of the matrix & belong to the linear span of the rows of the
matrix <.

In the context of this proposition, it would be appropriate to identify some easily
verifiable sufficient conditions for the validity of the inclusion ker ¥ C ker & in the
case m > 1. A result of this type is Proposition 1.1.25, established below. Its proof is
based on the following lemma.

Lemma 1.1.22. Let U be the subspace of solutions of the system P (—id/dt)u =0
defined by

U= {u Cu = PC(—id/dt) g, Py (—id/dt) [¢ = 0}. (1.1.55)

If the polynomials # (1) and @.F (7) are relatively prime, then dim U = ord ,@4_ (7)

Proof. Since P(t) is a polynomial m X m matrix, there exist polynomial m X m
matrices A(t) and B(t) such that det A = const # 0, det B = const # 0, and the
matrix L = APB is diagonal. A direct verification shows that P = BK A, where
K(t) = Z(r)L™ (7).

Consider the subspace of vector-functions
Y= {go:g'u (—id/dt)I(sz}. (1.1.56)
In accordance with (1.1.55), we have
U=B(—-id/dt)K (—id/dt) A(—id/dt) V.

Let V) = K (—id/dt) A(—id/dt) V. Since det B = const # 0, it follows that
dim V; = dim U. .

Now we show that dim V; = ord &2 (t). Because det A = const # 0, a basis
of the subspace A (—id/dt)V is provided by the vector functions with components
exp (ilp?)(ir)%, where 1 < o </ and 0 < 0 < ky, — 1 (here we use the notation
introduced on page 16).

We denote by K () the diagonal elements of the matrix K, and by L ;(7) the
diagonal elements of the matrix L, respectively. Let y;, denote the multiplicity of a
root {, of the polynomial K ;. Since K; = &?/L; and (as .# and ,@Jr are relatively
prime) {, is not a root of the polynomial .#, we have the relations y;, < k, — 1
(e=1,...,1;j =1,...,m). We also note that

Kj (—id/dt) [(it)? exp (iot)]
0, ifo <yjo
- o (1.1.57)
T Y ——— kP exp (idor). i o = yjo.

(o — p)!
v, V=t
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Therefore,

m 1 m 1
dim V; = Z Z(ké’ —Yjo) =m ord P — Z Z Yio-

j=1p0=1 j=1p0=1

On the other hand, since the polynomials .# and P, are relatively prime and
since

l_[ K (t) = constdet P°(r) = const[Z(7)]"!, (1.1.58)
j=1

we arrive at

m 1
ZZVJP =(m—1) ord ,@Jr.

j=10=1
Using the last equality, we get dim V; = ord P, O

Remark 1.1.23. The assumption that the polynomials .# and 9@ are relatively
prime is not necessary for the equality dim &/ = ord &, as the following exam-
ple shows.

Example 1.1.24. Let m = 3 and ¢ € C! with Im¢ > 0. Consider the 1 x 3 matrix
R = {0,0, t—¢} and suppose that P is a a diagonal matrix with the diagonal elements
1,1, and (z — ¢)2. Then Z(1) = P, (1) = (r — {)?, the diagonal elements of the
matrix P¢ are equal to (t — {)?, (t —¢)? 1, and S = {0,0,7 — ¢}. Therefore,
we have 4 (1) = P,(r) = v — ¢. Let V be the subspace (1.1.56). It is obvious
that dim VV = 3 and as a basis we can take the vector functions (exp (i¢?), 0, 0),
(0,exp (il?), 0), (0,0, exp (ift)). Thus, we obtain the relations

P (—id/dt) (exp (itt),0,0) = (0,0,0),  P°(0,exp(ilt),0) = (0,0,0),
and P°¢(—id/dt) (0,0exp (i¢t)) = (0,0, 0). Therefore,
dim U = ord 24 = 1.

On the other hand, if the polynomials .# (t) and P(t) are not relatively prime,
we can not guarantee that dim ¢/ = ord ,@Jr. For instance, in Example 1.1.20 the
matrix P¢ = (t — {)I coincides with the matrix 9’@ (7)I. Hence dim U = 0, while
ord 9@ =1.

Proposition 1.1.25. If the polynomials . (t) and P (1) = P(v)) M (7) are
relatively prime, then condition 4 of Theorem 1.1.19 follows from conditions 1-3 of
this theorem. In particular, this assertion holds true if all roots of the polynomial

P4 () are simple or if M (v) = 1.
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Proof. We consider the homomorphism O which associates to each element u of the
subspace (1.1.55) the vector

Q=0 (-id/dt)ul;—

from space CV. Here Q(t) is the N xm matrix figuring in (1.1.1). Proposition 1.1.25
follows from the facts that the homomorphism Q(u) is even an isomorphism, if the
polynomials .# (t) and ,@Jr () are relatively prime and conditions 2-3 of Theo-
rem 1.1.19 are fulfilled. First, we prove the latter assertion.

Let Q be an arbitrary vector in'(CN , and let T be the matrix (1.1.24). Condition 3
of Theorem 1.1.19 means that rg € = N, and hence the equation TV = Q is solv-
able. We denote by W an arbitrary solution of this equation. Considering ¥ € C™V
as the vector (1.1.26), we define the vector function 1 (¢) by the equalities (1.1.25).

Since the polynomials .# and &2, are relatively prime, we can construct a solu-
tion ¢ of the system .# (—id/dt) I¢ = { such that &y (—id/dt) I¢ = 0 holds.
We set u = P¢(—id/dt) ¢. In accordance with the definition of the matrix 7' and
condition 2 of Theorem 1.1.19, we get

Q) =T (—id/dt)gl,—g =T (-id/d)Y]|,cg =F¥ =Q.  (1.159)

The latter means that Q(u) : U — C is an epimorphism.

On the other hand, according to Lemma 1.1.22, we have dim &/ = N. Therefore,
the mapping Q(u) is an isomorphism.

We proceed now to the proof of Proposition 1.1.25. Consider equalities (1.1.59)
for @ = 0. Since Q(u) : U — CN, as shown above, is an isomorphism, we obtain
u = 0. This means that

R(=id/dt)u = S (=id/dt)p = S (—id/dt) ¥ =0

or, equivalently (see Remark 1.1.11, p.22), SV = 0, where & is the matrix (1.1.23).
Thus, if the polynomials . () and ,@Jr (7) are relatively prime and conditions 2—
3 of Theorem 1.1.19 are satisfied, then the implication (1.1.28)=>(1.1.27) holds. In
other words, ker € C ker &.
The validity of condition 4 of Theorem 1.1.19 can now be established by using
Lemma 1.1.15 and Remarks 1.1.6 and 1.1.16. O

1.1.11 Matrix G(7) for estimates with a ‘“large’’ number of boundary
operators

Up to now, we have discussed the estimate (1.1.1) with a matrix Q of boundary
operators, the number of rows of which satisfies N = ord (£ /.#). We note that
the estimate (1.1.1) is, in general, not true for matrices Q with a smaller number
of rows. Indeed, it follows from the definition of the matrix & (see (1.1.23)) that
rg® = ord (P4 / M). So,if N < ord (L /. ), then (1.1.28) does not (1.1.27) for
every vector W. Meanwhile, the validity of the implication (1.1.28)=(1.1.27) for an
arbitrary N is necessary for the validity of (1.1.8)'*, which is equivalent to (1.1.1).

14See the proof of Lemma 1.1.10.
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Along with the estimates containing such a minimal number of boundary oper-
ators, one can also study estimates of the type (1.1.1) where the number of rows of
the matrix Q is greater than ord (&4 /.#). For example, in Section 1.3 we prove
Theorem 1.3.6 providing sufficient conditions for the validity of the estimate (1.3.9)
in the case the number N of rows of the matrix of boundary operators is equal to
ord #4 > ord (P4 /.#), and these rows are linearly independent modulo Z,..
(The last condition restricts naturally the number of rows of the matrix Q).

To pave the way for studying such estimates, we establish in this subsection a
result (Proposition 1.1.26) which is similar to Lemmas 1.1.12 and 1.1.15. A special
feature of this result is that the existence of the matrix G is independent of conditions
of the type (1.1.30). The issues discussed in Subsection 1.1.10 do not arise here.

Proposition 1.1.26. Suppose the roots of the polynomial &4 (t) are not real,
ord #, (1) = N, and the rows of the N x m matrix T(t) = Q(t)P°(z) are
linearly independent modulo P (t). Then there exists a uniquely determined 1 x
N polynomial matrix G(t) = {Gi(t),...,Gn (1)} such that maxy ord Gy(r) <
N — 1 and the following assertions hold true:

1. The representation

S(id/dyg = —— [ et {;’((?)

T (Ft—>rf)

—00

(1.1.60)

L, [ 1 =Y (Fin f)dn

_|_
Vax 2v@ | Vax | 7w
-T (—id/dt)g0|t:0:|} dt
is valid for all ¢ € Cgo(]RL). Here f(t) = P (—id/dt)I¢ fort = 0, and

f(@)=0fort <O.
2. The identity (1.1.40) is valid for all T,n € R

Proof. Consider
W={u:u= P¢(—id/dt) ¢, P4 (—id/dt)Ip =0},

which is a subspace of solutions of the system P (—id/dt)u = 0. The definition
of W is obtained from the definition of the subspace (1.1.55) by replacing 32+ by
... Further, if in the proof of Lemma 1.1.22 we replace 2, by 2, [ by I, ko by
%o, and take into account the fact that polynomials & (t) and &_(t) are relatively
prime, we obtain for the multiplicities yj, arising in the proof of this lemma the
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estimates yj, < %, — 1 and the equality

m
Z Zng =(@m—1) ord ;.
j=1lo0=1
m I
Since ) > x, =m ord ¥, we getdim W =ord ¥, = N.
j=1p0=1

Let Q(u) be the homomorphism of W into C", defined by the relations Q(u) =
Q (—id/dt)ul,—q = T (—id/dt) ¢|;,—y. From the linear independence modulo
P+ of the rows of the matrix 7(z) and the equality dim ) = N it follows that
O(u) is also an isomorphism. Therefore, we have u = 0 and R (—id/dt)u =
S (—id/dt)p = 0, provided that T (—id/dt) ¢|,—o = 0.

The last conclusion is an assertion of the type of implication (1.1.28)=-(1.1.27).
In combination with the facts that the roots of the polynomial &7, are not real
and the rows of the matrix 7'(t) are linearly independent modulo Z, it allows
us to construct a polynomial 1 x N matrix G(t) = {G1(7),..., Gy (7)} such that
maxy ord Gy (7) < N—1 and representation (1.1.60) holds for all vector-valued func-
tions ¢ € Cg° (Rﬂr). The arguments justifying this are a modification of the proof of

Lemma 1.1.12, where ,@Jr is replaced by <., S by S and T by T, respectively. The
detailed justification is left to the reader.

The representation (1.1.60) is also valid for solutions ¢ of the system
P, (—id/dt) ¢ = 0 (cf. Remark 1.1.14). Therefore, a further development of
the case discussed above leads to an assertion of the type of Lemma 1.1.15:

The matrix G in (1.1.60) satisfies identity (1.1.40). (Here again plays an essential
role the fact that the roots of the polynomial & (t) are not real, cf. the proof of
Lemma 1.1.15).

Finally, the uniqueness of the matrix G follows from the linear independence
(mod Z) of the rows of the matrix 7. The proof is complete. O

1.1.12 Explicit representations of the matrix G(7)

We provide now two explicit representations of the 1 x N matrix G(r) figuring in
condition 4 of Theorem 1.1.19.
We have already obtained one such representation in Lemma 1.1.17:

G(t) = M (t)H(1)ER, (1.1.61)

where H(t) is the 1 x m N matrix (1.1.38), and T}l is any right-inverse to the matrix
(1.1.24).
Another representation for G(7) follows directly from identity (1.1.40).
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Proposition 1.1.27. Suppose that conditions 1-4 of Theorem 1.1.19 are satisfied.
Define the N x N matrix 7, by

[ Te()TEn)
T = / I 1.1.62
+ EAU (1.1.62)

Then the 1 x N matrix G(t), satisfying condition 4 of Theorem 1.1.19, admits the
representation

G(r) = / Pr()S+(r) — P4 (1)S+(n) T (rydn T, (1.1.63)

(=P

Proof. Thanks to the conditions 1-2 of Theorem 1.1.19 the integral on the right-hand
side of (1.1.62) converges, while condition 3 ensures the invertibility of the matrix
4. Now multiply from the right both sides of identity (1.1.40) by the m x N matrix
T/ P4 (n)|? and integrate over 1. Multiplying both sides of resulting identity
by 7!, we get representation (1.1.63). O

Remark 1.1.28. Obviously, representation (1.1.63) is also valid for the 1 x N matrix
G(7) figuring in Proposition 1.1.26.

1.1.13 Estimates for vector functions satisfying homogeneous
boundary conditions

In this subsection, we show that the necessary and sufficient criterion for the valid-
ity of (1.1.1) coincides with the necessary and sufficient criterion for the validity of
(1.1.64) for vector functions satisfying the condition Q (—id/d¢)u|,_, = 0. How-
ever, the exact constants A and Ag in (1.1.1) and (1.1.64) are estimated in different
ways.

Theorem 1.1.29. Let N = 1. The estimate
o0 o0
/|R(—id/dt)u|2dt < Ao/ | P (—id/dt)u|2dt (1.1.64)
0 0

holds for some ANy < oo and for all u € C°°(R ) satisfying the condition
0 (—id/dt)u|,—y = 0, if and only if conditions 1-4 of Theorem 1.1.19 are satis-
fied. The sharp constant Ao in (1.1.64) obeys the estimates

( _GOT-()
P(z // P1(0)P—(n)

where S, T_ and G are the matrices appearing in inequality (1.1.47).

2

Ci1Ap < sup dtdn < CyAy, (1.1.65)
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Proof. The necessity of the conditions of this theorem has already been established in
the proof of the necessity of conditions of Theorem 1.1.19. Indeed, that proof is based
on the substitution of the vector functions u(¢) satisfying Q (—id/dt)u|,—, = 0
in (1.1.1). The latter is equivalent to inserting the vector functions ¢(¢) satisfying
T (—id/dt) ¢|,—¢ = 0, and the vector functions v (¢) satistying T (—id/dt) ¥|,—¢
= 0in (1.1.6) and (1.1.8), respectively.

The sufficiency of the conditions of the theorem and the upper bound for the sharp
constant A follow from representation (1.1.51).

Finally, we note that in the proof of the lower bounds (1.1.9) and (1.1.49) for
the sharp constant A, we considered only vector valued functions satisfying homo-
geneous boundary conditions. Hence, these estimates are also valid for the constant
Aop. O

1.1.14 Estimates for vector functions without boundary conditions

Up to now we have assumed that the number N (the number of rows of the matrix Q
of boundary operators in the estimate (1.1.1) or the number of rows of the matrix of
homogeneous boundary conditions to which the vector functions are subjected in the
estimate (1.1.64)) is at least 1. In this subsection we consider the case N = 0.

Here we will show (Theorem 1.1.30) that the congruence (1.1.67) is necessary
and sufficient for the validity of (1.1.66). The left-hand side of the inequality
sup |S(z)/ P (1)|*> < oo, which follows from (1.1.67), is just the sharp constant
A in the estimate (1.1.66).

Theorem 1.1.30. The inequality
/|R(—id/dt)u|2dt sA/|P(—id/dt)u|2dt (1.1.66)
0 0

holds for some A < oo and for allu € C3° (RL), if and only if the 1 x m matrix S(t),
defined by (1.1.2), satisfies the congruence

S(7) = 0 (mod Z(7)). (1.1.67)
The sharp constant A in (1.1.66) is equal to sup |S(t)/ P (1)|* < .
Proof. Tt follows from Lemma 1.1.3 that the inequality (1.1.66) is valid for all u €
C3°(RY) if and only if the inequality

/|S(—id/dt)go|2dt < A/|@(—id/dt)l¢|2dt (1.1.68)
0 0

is valid for all ¢ € C§° (RL).
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On the other hand, it is clear that (1.1.68) holds for all vector functions ¢ €
Cy° (R ) if and only if the inequalities (perhaps with a different constant A1)

/|Sk (—id/dt) g |* dt sA1/|@(—id/dz)<pk|2dz (k=1,....m)

(1.1.69)
are satisfied for all their components ¢y. Substituting in (1.1.69) an arbitrary solution
z(t) of the equation &4 (—id/dt)z = 0 (see Remark 1.1.8) instead of ¢ (¢), we
obtain

Sk (—id/dt)z(t) =0 (k=1,...,m),

which is equivalent to (1.1.67).
Conversely, let S(r) = 0 (mod &4 (7)). Then A (v) = L1 (v), P+ (1) = 1,
and (1) = &_(1), and representation (1.1.31) is replaced by

L -1 (S
S (—id/d >t C°(RA 1.
(—id/dn)y = Fr_n(g,( )F f) ¥ € Co(RY), (1.1.70)

where f(1) = P (—id/dt) Iy fort = 0and f(t) = 0 fort < 0.'5 It follows from
(1.1.70) that

/|S( id/dr)y|*dt < sup

_‘ /(@( idjdn 1y . d

¥ € CPRY).

Hence, estimate (1.1.68) with the sharp constant A < sup |S(7)/Z(1)|? holds
forall ¢ € COO(R ).

The opposite inequality for A is deduced from (1.1.68) along the lines of the proof
of Lemma 1.1.5. O

1.2 Estimates in a half-space. Necessary and sufficient
conditions

Suppose R(§:7) = {R;(§: 1)}, P(§:7) = {Py;(§:7)}, and Q(§:7) = { Qg (§:7)}
are 1 xm, mxm and N xm matrices, respectively, the entries of which are polynomials
of the variable € R! with measurable complex-valued coefficients that are locally
bounded in R”~! and grow no faster than some power of |£| as || — oo.

Indeed, from the equality :@_;,_ (7) = 1 it follows that ¢ = thr (Ft%r f/y(r)) fort = 0.
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In this section we establish necessary and sufficient conditions for the validity of
the estimate

IR < € (1P + (D)) 1.2

forall u = (u1(x,1),...,um(x,1)) € C°(R’L). Here R(D), P(D) and Q(D)
are pseudodifferential operators corresponding to the matrices R(§;7), P(&;t) and
O (&: 1), respectively, and B(£) is a measurable function that is positive a.e. in R" ™!,

1.2.1 Basic assumptions and notation

First, we formulate assumptions on the matrices R, P and Q entering in (1.2.1).
Let Z(&;1) = det P(§; 7). Assuming Z2(§; 1) # 0, we rewrite this polynomial
(of 7) in the form

J
P& =) pi)c

j=0
and set
Z ={:§ R, po(§) = 0}.

We denote by P¢(§;t) = {P7k(&; 1)} the m x m matrix, whose rows are com-
posed of the algebraic complements of the elements of colunms of the matrix P. We
also define the 1 x m and N x m matrices S(&;7) and T'(§; 7) by

SE; 1) ={Sk(: 1)} = RE: )P 1), (122)
TE:7) ={Tu(: 1)} = Q& )P T)
Let ﬁ(é; T) = P(£;1)/po(€) with € € R"™1\ 2. In addition, we consider the
following polynomials (of 7):
Po(E;1) —  the polynomial with leading coefficient 1,
whose 7-roots (counting multiplicities)
coincide with the t-roots of & lying in the half-plane
Im{=0( =1t+i0);
Z_(5:1) = PE0)/ P60
M(E;T) — the greatest common divisor of the polynomials
Pi(€:1), S1(6:;7), ..., Sy (€; T) with leading
coefficients 1;

PiEr) = P/ ME).
The basic assumptions are:
1. J=21;

2. mes,_1Z =0;

3. ord P (§;1) = N,ord Sp(§;7) < J,ord Ty (E;1) < J—1(k=1,....m;
a=1,...,N)onafull-measure set X S R"~!\ 2.
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We define on the set X x R! the 1 x m matrices S+ (£;7) = {Sk+(£;7)} and the
N x m matrices T+ (§; 1) = {Tr+(&; )} by the following partial fraction decompo-
sitions (W.r.t. T):

SEo) _ Si(E:1)  S_(&:1)
70 Ot T T PEn (123)

and
o _ T TG
PEr) Py PG

where the 1 x m matrix c(§) does not depend on 7 and

(1.2.4)

ord Sg+(§;7), ord Tox4(§;7) < ord P4 (€5 7),
ord Sg—(£;7), ord Tox—(§;7) < ord Z_(&; 1),
k=1,....m; a=1,...,N).

Remark 1.2.1. The condition mes,—;.% = 0 is satisfied, for example, if po(§) is a
polynomial of the variable £.

This is a consequence of the following assertion:
Let p(£) be a non-identically vanishing polynomial of the variable £ € R~ with
complex coefficients. Then

mes,_1{§ 1§ €R"™', p(§) =0} =0.

We prove this by an argument from [LouSim72] (see [LouSim72], pp. 11-12). It
suffices to show that the assertion is true for polynomials with real coefficients.

The proof is done by induction w.r.t. deg p. In the case deg p = 0, the assertion
is trivial.

Now, let r = 0 and suppose that the assertion is true for all polynomials of degree
less than or equal r that are not identically equal to zero.

Consider an arbitrary polynomial p(&) of degree r 4+ 1 with real coefficients, and
set

N ={E:Ee R, p(§) =0},

M={E:E R, p(§) =0, grad p(§) # 0},
My =N\ M.

We claim that
mes;_1.4 = mes,_1.45 = 0.

Indeed, for every integer K > O the set A7 N {§ : € € R"7!, |§] < K} can
be represented as a union of pieces of regular hypersurfaces in R”~!. Therefore, its
(n — 1)-dimensional Lebesgue measure equals zero. Since .47 is a countable union
of such zero-measure sets, we conclude that mes,_1.4] = 0.
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To prove that mes,—1.45 = 0, we note that deg (Bp/aéj) <r,(j=1,...,n=1).
On the other hand, grad p(§) # 0: otherwise we would have p(§) = const # 0. The
latter implies deg p(§) # r + 1 (r = 0), which contradicts the induction hypothesis.

Applying the induction hypothesis to the polynomial dp/0&; (j = 1,...,n—1)
we get mes,—1.45 = 0.

1.2.2 Theorems on necessary and sufficient conditions for the validity
of the estimates in a half-space

In this subsection we describe the main results of Section 1.2. Necessary and suffi-
cient conditions for the validity of the estimates (1.2.1) and (1.2.12) for all vector-
functions u € Cg° (R’i) are established in Theorems 1.2.2 and 1.2.3, respectively.
Necessary and sufficient criterion for the validity of (1.2.13) for vector functions that
satisfy homogeneous boundary conditions is given in Theorem 1.2.5.

We show that the statements of these theorems are simple corollaries of the anal-
ogous statements about estimates for matrix ordinary differential operators on the
semi-axis ¢ = 0, obtained in Section 1.1.

Theorem 1.2.2. Let N = 1. The estimate (1.2.1) is valid for all u € C§°(R") if and
only if the following conditions are satisfied:
1. The matrix S(&; t), defined by (1.2.2), satisfies the inequality
BY2(£)|S(&; 7)| < const| 2 (£; 1) (1.2.5)
forall T € RY and almost all € € R*~1,
2. The matrix T (§; ), defined by (1.2.2), satisfies the congruence
T(&;7) = 0 (mod . (§; 1)) (1.2.6)

for almost all £ € R*~1,

3. The rows of the matrix T (§; T) are linearly independent modulo & (§; t) for
almost all £ € R"™1.

4. There exists a uniquely determined 1 x N matrix G(&;1) = {G1(&;7), ...,
Gy (§; ©)} with polynomial (of T) entries such that

max ord Gy (£:7) < N — 1 + ord . (£; 7).

Moreover; the congruence
G(;t) =0 (mod.Z (&;7))
and the identity w.rt. T,n € R!
1
GEOT+(E:n) = n—[e@+(§2 mS+(E; 1) — 24 (& )8+ (& (1.2.7)

-7

hold a.e. in R"™'. Here Sy (£;7) and Ty (£;7) are the matrices defined by
(1.2.3) and (1.2.4), respectively.



44 1 Estimates for matrix operators

5. The inequality

B 7 f' G OT_(E: )

2
dtdn < const (1.2.8)

PiED)P_(E:n)

holds for almost all ¢ € R"™1. Here G(§; 1) is the matrix satisfying condition
4, and T—(€; n) is the matrix defined by (1.2.4).

6. The inequality

00 . 5
&’?) dt < const (1.2.9)

o0
holds for almost all € € R"™1.

Proof. Necessity. Consider for arbitrary A > 0 the “cut-off” function

B(§), if B(§) < 4,
Ba(§) = .
A, if B(E) > A.
In accordance with definition of the norm || - || g1/2, it follows from (1.2.1) that the
estimate .
IR(DuI/ < € (1POWI? + QD). (12.10)

holds for any A > 0 and for all u € Cg°(R7).
Let £ € R\ 2, and let p(§) = [po(é)]l/ " be the principal value of the

m-th root of po(£). We set R(§:7) = R(§:7)/p(§), P(§:7) = P(§:7)/p(§) and
0(&;1) = Q(&; 1)/ p(€). We substitute in (1.2.10) the vector function

u(x:1) = h=M12g (h) e¥Ey (1),

where & > 0 is a parameter, ¢ € CP(R"™!), and v(t) = (v1(¢),...,vm(1)) €
Cy (R ), and then let & to +o00 and take into account that the “cut- off” function
B 4(§) is bounded and the coefficients of the polynomials R;(§; 1), Px;(§;7), and
Qq;j(&; 7) are measurable, locally bounded functions growing not faster than some
power of || as |§| — oco. In this way we get a new inequality. Finally, reducing all
its terms by the factor

p©OF [ loeoPax
RrRr—1
and letting A — 400, we conclude that

o0 o0

/‘R(é —1d/dt)v(t)‘ dt < B(§)|:/‘P($ 1a’/dt)v(t)‘ dt
o 0 (1.2.11)

o 2
+ |6 G:=id/dn) o)) }
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for almost all £ € R"™! and all v(r) € CF(R.). Here det PE1) = PEn)isa
polynomial of degree J (in ) with leading coefficient equal to 1.

Regarding for fixed § € R"~! inequality (1.2.11) as an estimate of the type (1.1.1),
we observe that the necessity of the all assumptions of Theorem 1.2.2 follows from
Theorem 1.1.19.

Sufficiency. The conditions 1-6 imply the estimate (1.2.11) for all v € Cg° (RL).

Let u € CP(R%). We substitute in (1.2.11) the vector function ve(?) = u(§:1).

Multiplying both sides of the resulting inequality by B(£)| p(£)|? and integrating over
R”~! we find that u(x; ¢) satisfies (1.2.1). O

Next, we formulate a result relating to the case N = 0.

Theorem 1.2.3. The estimate
IR(D)ul|%:,> < CIIP(D)ul? (12.12)

holds true for all u € Cg°(R%) if and only if the 1 x m matrix S(&; 1), defined by
(1.2.2), satisfies the following conditions:

1. S(§;7) =0 (mod P, (£:7)) for almost all € € R"™1;
2. BY2(£)|S(E;1)| < const | Z(E;7)| for all T € RY and almost all £ € R,

This theorem is deduced from Theorem 1.1.30 in the same way as Theorem 1.2.2
is deduced from Theorem 1.1.19.

Remark 1.2.4. If for almost all £ € R”~! all t-roots of the polynomial 2 (£; 1) lie
in the half-plane Im ¢ < 0, then condition 2 of Theorem 1.2.3 is evidently necessary
and sufficient for the validity of (1.2.12). Indeed, in this case &4 (§;7) = 1 and
condition 1 of Theorem 1.2.3 is automatically satisfied.

Finally, for vector functions u(x; ) € C3°(R’}) satisfying homogeneous bound-
ary conditions, we have the following direct consequence of Theorem 1.1.29.

Theorem 1.2.5. Let N = 1. The inequality

IR(DYulG1/> < Col P(D)ul® (1.2.13)
is valid for all u € C3°(R") satisfying the equation Q(D)u(x;0) = 0 if and only if
conditions 1-5 of Theorem 1.2.2 are satisfied.

1.2.3 Matrix G(&; ) and its properties

Now, let us discuss some properties of the 1 x N matrix G(&; t) that appears in
condition 4 of Theorem 1.2.2.

Recall that, for m = 1, the existence and uniqueness of the matrix G(£; 7) follow
from conditions 1-3 of Theorem 1.2.2. However, for m > 1 this is, in general, not



46 1 Estimates for matrix operators

true (see Subsection 1.1.10). From this point of view, one can interpret failure of
certain estimates of the type (1.2.1). For example, the estimate

lluy (x52) + ua(x;0)||?
2 8 2
Z (— — A+ 1) ur(x;t)
ot
k=1

92 2
where x = (x1,...,X,—1) and A = ™ 2 + e+ BT is not true for all u =
(u1,uz) € C°(R’.). Here the matrices R(S 7) = {1, 1} P 1) = i(t +i(E2 +
1))1, and R(§; 7) = {1, 0} are the same as in Example 1.1.20.

‘We formulate a criterion for condition 4 of Theorem 1.2.2 to follow from condi-
tions 1-3 of the same theorem. Let

1(§)
PyEr) =@ =EN°® (1) + -+ e E) = N).

o=1
SE:r)=SE: 1)/ M (&) = {SKE: D)}
T(E7)=TE 1)/ MET) = {Tek(E: 7))}

4 f jur (x: )Pl |

RrRn—1

Let é5($ ) be the N xm N matrix obtained from the matrix (1.1.23) after we replace
S’(G_ﬂ)(fg) by S(G_ﬁ)(é‘ ¢o(£)), and let (&) be the N x mN matrix obtained from

the matrix (1.1.24) after we replace T(G)(g“g) by T(G) (&:20(8)). (In both cases we
differentiate with respect to the variable 7).

Proposition 1.2.6. The condition 4 of Theorem 1.2.2 follows from conditions 1-3 of
the same theorem if and only if, for almost all § € R"~ 1 the rows of the matrix &(§)
belong to the linear span of the rows of the matrix T,

This proposition follows directly from Proposition 1.1.21.
We also give an easier stated sufficient condition, which follows from Proposi-
tion 1.1.25.

. P ;

Proposition 1.2.7. If the polynomials 4 (§;7) and P4 (§;7) = % are rela-
;T

tively prime for almost all ¢ € R"™1, then condition 4 of Theorem 1.2.2 follows from

conditions 1-3 of the same theorem. In particular, this assertion holds if the t-roots

of the polynomial P, (£; t) are pairwise distinct a.e. in R* 1, orif M (£;7) = 1 for

all T € R! and almost all § € R"™L.

Finally, we provide a result concerning estimates with a “large” number of bound-
ary operators (cf. Subsection 1.1.11).
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Proposition 1.2.8. Let the t-roots of the polynomial &4 (§; t) be nonreal for almost
all ¢ € R"™ and let the rows of the N x m matrix T(£§;7) = Q(&;71)P(§; 1)
be linearly independent modulo &2 (&;1). Then there exists a uniquely determined
1 x N matrix G(§;1) = {G1(&;7),...,Gn(&; 1)} with polynomial in T entries such
that
max ord Gy (§;7) < N —1
o

a.e. in R"™1, and the following conditions are satisfied:
1. For all vector functions ¢ € Cg° (R ) and almost all ¢ € R"! one has the

representatlon
S (€ S i Gln)
ST = V_ / Seo " T TETED
o0 (1.2.14)
! T (&) o
Vo T (5. Lron =T (G=id/d)¢li—o | o dT.

Here S(£; f)_z‘é(g D) P(E; 1), T(E; 1) = O(E; 1) PE(E; 1), T (§:7) is a matrix ob-
tamedfrom T(é 7) via a decomposition of the type (1.2.4), while R(E 7), P(E 7), and

Q(é 1) are the matrices R(€; v), P(£:7) and Q(&: 7) divided by p(£) = [po(§)]/™,
respectively; po(£) is the leading coefficient of the polynomial 2 (§; t) = det P(€; 1),
and [ = P (&;—id/dt) I fort =0and f =0fort <0.

2. Identity (1.2.7) holds for all T,n € R and almost all £ € R,

This assertion obviously follows from Proposition 1.1.26. It will be used in Sec-
tion 1.3.

We complete this subsection by two propositions about exact representations of
the matrix G(§; 7).

Again, let N = ord @+ (&¢; 7). In addition to the above-introduced matrices
S(&:7), T(€:7), and T(£), we consider the 1 x m N matrix

H(§:7) = {Hpok (§: 1)},

A P
Hoot 6:1) = Y- 31806 Lo(6) — 01
B=0""

(T —Go(§))o+1-5
(1<o0<l();0<g<ky(&)—1;, 1<k <m).

(1.2.15)

Proposition 1.2.9. Suppose that conditions 1-4 of Theorem 1.2.2 are fulfilled. Then,
for almost all € € R"™! one can represent the matrix G(§; 1), figuring in condition 4
of Theorem 1.2.2, in the form

G(Et) = A (& T)H(E T)TR (), (1.2.16)

where H(§; ©) is the matrix (1.2.15) and ‘i’;l (&) is an arbitrary matrix right inverse

10 T(§).
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This result is a consequence of Lemma 1.1.17 (see also equation (1.1.61)).

Another representation for G(&; 7) follows from equation (1.2.7).

Proposition 1.2.10. Suppose that conditions 1-4 of Theorem 1.2.2 be fulfilled. Sup-

pose also that
[e.e]

[ TREnTE )
7+ ‘_/ EAGDLE

where T (§: 1) is the N x m matrix defined by (1.2.4), and T} (§; 1) is the m x N ma-
trix, that is the conjugate transpose of T+. Then the 1 x N matrix G(§; 1), satisfying
condition 4 of Theorem 1.2.2, admits for almost all £ € R"~! the representation

dn, (1.2.17)

[ PEnSL(ED) — Py 0S4 (E )
G 1) =
€7 / -7 Enl2

TEE ndn T " (1.2.18)

—00

This representation holds also for the matrix G figuring in Proposition 1.2.8.

The proof of Proposition 1.2.10 is based on Proposition 1.1.27 and Remark 1.1.28.

1.2.4 The case of a single boundary operator

The necessary and sufficient conditions for the validity of the estimates (1.2.1) and
(1.2.13), established in Theorems 1.2.2 and 1.2.5, respectively, can be formulated
more clearly in the case N = 1. The formulation of condition 4 of these theorems
becomes especially easy. Namely, we have

Corollary 1.2.11. Let N = 1, let Q(&; 7) be a given 1 x m matrix, and let S(§; 1) =
{Se& )L TE 1) ={Tk(&: 1)}, and T_(E; 1) = {Ti—(&; 1)} be the 1 x m matrices
defined by (1.2.2) and (1.2.4), respectively. Suppose also that @.F & 1)=1t-¢().

Then the estimate (1.2.1) holds for all u € C3°(R") if and only if the following
conditions are satisfied:

1. Forall T € R! and almost all §¢ € R~ inequality (1.2.5) remains valid.
2. T(&;1) =0 (mod.Z (£;7)) a.e. in R" 1,

3. [T v)) A (& T)]|r=§(§‘) # 0a.e inR"1,

4

. There exists a measurable function a(£) in R*~ such that

S 1) B T(:7)
[«///(S;r)] - “(E)[ ]

. n—1
D) ae.inR".  (1.2.19)

=£(§) =£(§)
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5. The inequality

2 . 2
MS)' T—(E,.n) dn < const (1.2.20)
holds for almost all € € R"™1,
6. The inequality
B(£)|a(£)> < constIm £ (£) (1.2.21)

holds for almost all £ € R~ 1,

Moreover, conditions 1-5 are necessary and sufficient for (1.2.13) to hold for all
vector functions u € C°(R'}) satisfying the equation Q(D)u(x;0) = 0.

Proof. We show that for N = 1 conditions 1-6 of Theorem 1.2.2 turn into conditions
1-6 of of this corollary.

Indeed, conditions 1 and 2 are formulated identically in both cases. The condition
3 of Corollary 1.2.11 obviously means nothing else than the “linear independence” of
the single-row matrix 7'(§; v) modulo &4 (§;1) = (t — £(§)).# (€; 7).

Further, we consider condition 4. Let &(£) and S(£) be the matrices mentioned
in Proposition 1.2.6. It is obvious that, in the case N = 1,

N S(S;r)} ; :[T(S;f)]
o) [///(5”) e=£(8) wd o 2O= e =t

Relation (1.2.19) says that for almost all £ € R"~! the single-row matrix (’5(5) be-
longs to the subspace generated in C™ by the single-row matrix T(£). Taking into
account Proposition 1.2.6, we observe that conditions 1-4 of Theorem 1.2.2 are over-
all equivalent to conditions 14 of Corollary 1.2.11.

Finally, we turn to conditions 5 and 6. Comparing (1.1.23) and (1.2.15), we note
that for N = 1 the matrix H(§: ) does not depend on 7 and the equality H(§;7) =
®(£) holds a.e. in R”~!, Then, in accordance with (1.2.19), we have

H(E 1) = a(OF).
Therefore, for N = 1, representation (1.2.16) takes the form
G:t)=a)AE: ), (1.2.22)

where «(§) is the coefficient on the right-hand side of equation (1.2.19).

Using (1.2.22) and the relation N (&;7) = © — (&), it is easy to see that in-
equalities (1.2.8) and (1.2.9) turn into (1.2.20) and (1.2.21), respectively. O
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1.2.5 The case of a polynomial &7 (&; 7) with roots in the half-plane
Im¢ <0

If all the t-roots of the polynomial #(&; ) lie in the half-plane Im¢ = 0 (¢ =
T +io) for almost all £ € R"™!, then Z_(£;7) = 1 and T_(£:7) = O a.e. in R* 71
Therefore, Theorem 1.2.5 admits the following

Corollary 1.2.12. Suppose all the t-roots of the polynomial & (§; 1) lie in the half-
plane Im¢ > 0 for almost all § € R"™1. The estimate (1.2.13) holds for all u €
C3°(RY) if and only if conditions 1-4 of Theorem 1.2.2 are fulfilled.

We do not dwell on the obvious simplification of Theorem 1.2.2 that is achieved
on this class of polynomials. Of course, all the above remarks on the special cases,
where condition 4 can be omitted from Theorems 1.2.2 and 1.2.5, remain valid.

1.2.6 Estimates of the types (1.2.1), (1.2.12), (1.2.13) in the norms |- |,
and (- )
I

In this subsection, we establish several necessary and sufficient conditions for the
validity of the estimates (1.2.27), (1.2.31) and (1.2.33) in some more general norms,
in comparison with || - | and (( . )) (Corollaries 1.2.13 and 1.2.14). Different versions of
these results will be used in Subsection 1.2.7 (Remark 1.2.16) and in Section 1.4, in
the analysis of estimates for quasielliptic generalized-homogeneous matrix operators.

First, we define the norms || - |2 and (( . ))ﬂ.

Let v = (v1,...,Vn) be a vector with nonnegative integer coordinates, and let
u(x;r) = (ur(x;t),...,um(x:1)) € C°(R%). We set

m
2 2
elly =D lhejl3,
j=1

where || - ||y; is the norm in J%,; (R"). Further, let p = (u1,...,un), and let
9(x) = (p1(x), ..., on (x)) € CPR"™). We set

ol = 2" sl

B=1

where ( - ))u is the norm in 7, , (OR" ).
8
Similarly to the beginning of Section 1.2, we consider the 1 xm, m xm and N xm
matrices R(§; 1), P(§;7) and Q(&; 7). The entries of these matrices are polynomials
of the variable T € R! with measurable locally bounded in R"~! coefficients that
grow no faster than some power of || as |§| — +o0.

The assumptions about the matrix P are the same as those at the beginning of this
section. Namely, #(&;7) = det P(§;7) #0,J = ord Z(§;7) = 1, mesy,1 Z =
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0, where 2 = {£ : £ e R"!, po(§) = 0} and py(£) is the leading coefficient of the
polynomial L (§; 7).

Let the matrices S(&;7) and T'(§; t) be defined by (1.2.2). We assume that on
some full-measure set X € R"~!\ 2 the following conditions hold:

ord Sp(§:7) < J + v,
ord Tpr(§:t) < J + v —1 k=1,....m;a=1,...,N),
ord 9@(5;1) =N.
On the set X x R! we define the 1 x m matrices S+ (£;7) = {Sk+(&;7)} and the

N x m matrices Ty (§; ) = {Tyx+(&; 7)} by means of the following partial fraction
decompositions:

Sk (&;7) — (E) + Sk+(&;7)
PE (T +ilg| + i) Pi(E:1) (1.2.23)
n Sk—(§;7) o

P_(E1)(r +1lE] + 1)
and
Tor(§:7) _ Tok+(§:7) Tok—(§:7)

PE (T +ilE| +i)ve PuEr)  P_(En)( FilEl i b, (1.2.24)
k=1,....ma=1,...,N)

where

ord S+ (§:7), ord T+ (§:7) <ord P, (§:7),
ord Si_(&:7), ord Tyr_(£:7) < ord Z_(£:7) + vi.

Also, we denote by 23(§; t) the diagonal m x m matrix
R(E: 1) = {8k (v +i]E| + 1)V}, (1.2.25)
and by (&) the N x N matrix
M(E) = {Sap (1 + [51)/2} (1.2.26)
(Here § jx stands for the Kronecker symbol).
As a generalization of necessary and sufficient conditions for the validity of the
estimates (1.2.1) and (1.2.3) we have the following assertion.
Corollary 1.2.13. Let N = 1. The inequality
2
IR, < € (IPDu]} +{QD)ul) (1.227)

holds for all u € Cg°(R'}) if and only if the following conditions are fulfilled:
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1. For almostall ¢ € R"! and all T € R the matrix S(; 1), defined by (1.2.2),
satisfies the inequality

BY2(£)[S(&; 1)R1(E; 7)| < const | P (£; 7)), (1.2.28)

where R(§; 1) is the matrix (1.2.25).

2. The matrix T(&;7), defined by (1.2.2), satisfies conditions 2 and 3 of Theo-
rem 1.2.2.

3. The matrices S+ (&; 1) and T4 (§; 1), defined by decompositions (1.2.23) and
(1.2.24), respectively, satisfy condition 4 of Theorem 1.2.2.

4. Forthe 1 x N matrix G(&; 1), satisfying identity (1.2.7), the inequalities

7 G D)T-(§;mR™
B(E)_[o_[o' P& 1)P_(E;n)

dtdn < const (1.2.29)

and

B(£) / ‘G(E DM dr < const (1.2.30)

Py (1)

hold for almost all ¢ € R"™1. Here T_(§; 1), R and M are the matrices
defined by (1.2.24), (1.2.25) and (1.2.26), respectively.

Moreover, assumptions 1-3 and inequality (1.2.29) are necessary and sufficient
for the validity of the estimate

IR(D)u |51z < Col P(D)ul; (1.2.31)
forallu € C3°(RY) satisfying the equation Q(D)u(x;0) = 0.

Proof. We introduce the matrices Py (§;7) = R r)P(€:1) and Qu ;1) =
M(E; t)Q(; 1) and show that, in accordance with Theorem 1.2.2, conditions 1-4
are necessary and sufficient for the validity of the estimate

IRD)ul: 2 < € (IP(Du]? + [Qu(D)u)) (1232)

forall u € C3°(R7).

Indeed, if we replace P by P, and Q by Q, then the matrix S is transformed
into the matrix SR, the matrix 7 into the matrix 97T R, and the polynomial & into
the polynomial & det fR. Therefore, (1.2.3) is replaced by (1.2.23), while (1.2.4) is
replaced by the decomposition

(1 + [E[2)He/2 Ty (£:7) 1+ |E12)1e/ 2 Ty 1 (§:7)
PE (T +ilg[+ i) PiE:1)
(14 |E)" 2Ty _(€:7)
P_(&:1)(r +ilE| + i)’

_|_
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which is clearly equivalent to (1.2.24). Inequality (1.2.5) is transferred into (1.2.28),
whereas the matrix G(§; 1), appearing in (1.2.7), must be replaced by the matrix
G(&; )M 1(§). Therefore, conditions 5-6 of Theorem 1.2.2 take the form of the
inequalities (1.2.29) and (1.2.30), respectively. Finally, the matrix 97T R satisfies
conditions 2 and 3 of Theorem 1.2.2 if and only if the matrix T satisfies these condi-
tions. (The latter follows directly from the definition of the matrices )t and R).

Now we show that the estimates (1.2.32) and (1.2.27) are equivalent. Indeed, on
the one hand, the norms of || Py (D)u|| and || P(D)u||, are equivalent, since v is an
integer vector. On the other hand, from the definition of the norm in J7, ;(dR"}) it
follows that {Q, (D)u) = (Q(D)u), forallu € CF(RY).

Thus, the first part of Corollary 1.2.13 follows from Theorem 1.2.2, and the sec-
ond part from Theorem 1.2.5, respectively. O

We provide also a generalization of necessary and sufficient conditions for the
validity of the estimate (1.2.12).

Corollary 1.2.14. The condition 1 of Theorem 1.2.3 and condition 1 of Corollary 1.2.13
are necessary and sufficient for the validity of the estimate

IR(D)ul|%i/» < CIIP(D)ull; (1.2.33)

forallu € C. If, for almost all ¢ € R"™!, the t-roots of the polynomial & lie
in the half-plane Im¢ < 0 ({ = t + i0), then condition 1 of Corollary 1.2.13 is a
criterion for the validity of the estimate (1.2.33) for all u € Cg°(R".).

This corollary follows from Theorem 1.2.3 and Remark 1.2.4.

1.2.7 The case, where the lower-order terms have no influence

In Section 1.0 it has already been noted that the lower order terms of the operators
R, P, Q may exert a decisive influence on the validity of the estimate (1.2.1) and
similar inequalities. In this subsection we consider a class of estimates that remain
true after replacement the operators R, P, and Q by their homogeneous principal
parts. We show (Proposition 1.2.15) that under certain natural assumptions on the
matrices R, P, and Q, the estimate (1.2.38) is equivalent to the estimate (1.2.39) for
allu € Cg°(R7).

Suppose the entries of the matrices R, P, and Q, figuring in the estimate (1.2.38),
are polynomials of the variable (£,7) € R”. We assume that the m x m matrix
P = {Py;(&; )} satisfies the condition

deg Z(&; 1) = max deg (Pii, Paiy - - - Pmiy,). (1.2.34)
where & = det P and the maximum is taken over all permutations
I ... m
i1 ... im

of m natural numbers 1, ..., m. A matrix P with this property is called regular.
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Further, we rely on the following fact stated by L. R. Volevich [Vol60], [Vol63].
For every regular matrix P the Leray—Douglis—Nirenberg condition is fulfilled:

there exist nonnegative integers S1, . .., Sy (minsg = 0) and 71, .. ., #, such that
m
deg Prj <t; —sk and Z(tj —5j) =deg Z. (1.2.35)
j=1

For regular polynomial m x m matrices, one can give the following natural defi-
nition of the principal part (see [Vol63]).

Let P,éj (&; 7) be the principal part (the homogeneous part of the maximal degree)
of the polynomial Py;(&; 7). We set

0, if dengj<l‘j—Sk,

— _ 1.2.36
Utk kj}’ Xkj 1, if deg Pr; =1j — sk. ( )

The matrix P’ is called the principal part of the matrix P. Obviously, det P’ coin-
cides with the principal part &’ of the polynomial & (§; 1) = det P(&, 7).

The norms figuring the right-hand side of the estimate (1.2.38) were defined at
the beginning of Subsection 1.2.6. Now we define the seminorms that appear on the
right-hand side of (1.2.39).

Let v = (v1,...,Vn) be a vector with nonnegative integer coordinates, and let
u=(uy,...,.un) € C(RY). We set

m
Nelll; =D Y 1D%u,|”

J=1]al=v;

Further, assumingthatp = (i1, ..., un) € RV andg = (¢1,....¢n) € CP(R" ),
we set

(((w)))i=i [ 1eeeigpiae.
Bt

Proposition 1.2.15. Let P = {Py;(§;1)} be a regular in the sense of definition
(1.2.34) m x m matrix, let the entries of P be polynomials in (§;1) € R", and let
S1s-+sSm, 11,...,tnm be the nonnegative integers figuring in (1.2.35).

Let R(§:7) = {R;j(§:7)} and Q(§:7) = {Quj(§:7)} be 1 xm and N x m
matrices with entries polynomial in (§;t) € R”" such that degR; = t; + | and
deg Qoj = t; — xq, respectively. Here j = 1,....m; a = 1,...,N, while
l,x1,..., %N is another tuple of integers.
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In addition, let P’ be the principal part of the matrix P in the sense of the defini-
tion (1.2.36), let R; and Q:xj be the principal parts of the polynomials R; and Q;,
respectively; and let R" = {R';} and Q' = {Q’,;}. We set

s+l=(1+1,....8m+1),
t+1-1=(t+1—-1,...,tp +1-1),
w+1—(1/2) = Gey +1—1/2, ... xn +1—1/2)

and assume that

[ =max (0,1 —1t;,1—x). (1.2.37)
The estimate
2
IR(D)ul? < C (||P(D)u||§+. sy QDMWY ) (1:238)

holds for all u € Cg° if and only if the inequality

IR Dyl < ¢ (1P DyulliZ + (P11 ry2)) (1.2:39)
is satisfied for all u € Cg°.

Proof. Since the right-hand side of (1.2.38) contains the term ||u||t2+l_1, the suffi-
ciency is obvious.

It remains to show the necessity. Assume that inequality (1.2.38) holds for all
u € CP(R"%). Estimating the norms ||(R — R")(D)ul?, (P — P")(D)ul|Z,, and
(((Q — Q’)(D)u))iH_(l/z) by ||u ||t2+l—(l/2)’ we see that all operators in (1.2.38) can be
replaced by their principal parts.

We substitute in resulting inequality the vector function

U= Uy, ...,unp),

X : R .
uj(xir) = h=M72g (z) EE T () (=1,

where i > 0 is a parameter, ¢ € C°(R"™1),0 £ & e R" L andv = (v1,...,um) €
Cy (Rﬂr). Applying the same arguments as in the proof of the necessity of conditions
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of Theorem 1.2.2, we obtain

2

[t r; @—idyan | ar
o |/=1

2
m Llsi+l
s¢ Z/ > e (—id/dr)° Zlél" ki Py (6 —id/d)yv;| di
k=17 |0=0 j=1
F 2| X P [(id s o+ 167204 [P
j=1 g=0 0 0
N m 2
+ > 1gP S 0l (s —id/dn) E7 v,
a=1 j=1
(1.2.40)

We put§ = [£|6 and T = ||t here, use the homogeneity of the polynomials R';, P; ;
and Q’ ., multiply both sides of the resulting inequality by |£|, and pass to the limit

oj’

|&] — oo. This yields the inequality

2

/ i R (0:—id/dt)v;| dt
0

Jj=1

k=1 o=0 j=1

m  Rlsk+l 2
[Z [ Y (<id/do)f ZXkJPk, (0:=id/dr)v;| dTt  (1.2.41)
J :

2
m

N
+ 1D 04 B:—id/dr) v, _,
a=1|j=1

We return in (1.2.41) to the variables £, ¢, and set

v = Ui:([) = (Ulg(f)’- --’Ums(t))

with v;e(2) = |€|7u;(&;1), where u = (uq(x;1), ..., um(x;1)) is an arbitrary ele-
ment of the space C3°(R’.). Finally, integrating w1th respect to £ and applying the
inverse Fourier transform we get (1.2.39). O

Remark 1.2.16. Proposition 1.2.15 remains valid if we require additionally in the
part concerning the necessity of the assertion that suppu C D(0, o) for some o >
0, where D(0, ¢) denotes the n-dimensional ball of radius ¢ centered at the ori-
gin. To show this, it suffices to note that the estimate (1.2.38) is valid for all u €
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C3°(R}) (possibly with a different constant), if it holds for all u € Cg°(IR".) satisfy-
ing suppu C D(0, o). The last statement can be easily verified by using a partition of
unity subordinated to a finite-multiplicity cover of R, by congruent cubes. Since the
commutators of the operators R (D), Pi; (D) and Q; (D) with the operator of mul-
tiplication by a smooth function have the orders t; +1—1,¢; —sg —land t; —xq —1,
respectively, one can estimate the terms appearing in this case and not figuring on the
right-hand side of (1.2.38) by ||u ||t2+l—1'

Remark 1.2.17. Letdeg &2'(€;1) = ord &?’'(€;7) = J = 1. We define the polyno-
mials (of ) &/ (&;1), 2L (E;1), A'(E;7) and P! " (§:7), which correspond to the

polynomial 2’ (&; 7) and the matrix R’(£; 7). Suppose that ord &/ (i) =
forall £ € R"1,

Under these assumptions, necessary and sufficient conditions for the validity of
the estimate (1.2.39) and, consequently, the estimate (1.2.38) are contained in Corol-
lary 1.2.13. It is necessary only to set B(§) = 1 in the formulation of this corollary,
replace the matrices (1.2.25) and (1.2.26) by

R(E1) = St —ilED* T and O (E) = {SupE[*eH /2y,

and replace the numbers vg and uq by sk + [ and x4 + [ — 1/2, respectively.
Indeed, setting

PLED =REDPED and O, q/ED) = MEQE: D),

we obviously get the equality (((Q/ (D)u)))i ez = ((Q; +—q /2)(D)u))2. In ad-
dition, the norms ||| P’(D)ul||s+1 and || P/, (D)u| are equivalent, since s + 1 is an
integer vector. Hence, inequality (1.2.39) is an estimate of the type (1.2.27). Finally,
we show that in the case under consideration all a priori assumptions necessary for
the validity of Corollary 1.2.13 are fulfilled.

The conditions det P'(§;t) # 0 and mes,—1Z = 0 follow from the relations
deg &' = ord &' = J = 1 and Remark 1.2.1. Consider the matrices S" = {S; } =
R'P* and T' ={T,, } = Q'P’, where P’ is the adjugate of P’. It can be directly
verified that S;_and 7/, are homogeneous polynomials in (§; 7) € R" with deg S} =
J + sk + 1 and degT,, = J + sg + xq, respectively. Since ord &' = J and
[ =21—xy,wehaveordS, <J +s;+/landordT,, = J +sp +1—1.

1.3 Estimates in a half-space. Sufficient conditions

Let M(§) be an arbitrary measurable N x N matrix, which is regular a.e. in R*~!. We
generalize definition of the norm ((Q(D)u)) which figures in the estimate (1.2.27),

by setting for vector functions u € Cg° (R )

(o), [ IME)O (&1 —id/di) A(E: 1)), o dE.

RP—
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In this section, we consider a modified version of the estimate (1.2.27). Replacing
in (1.2.27) ((Q(D)u))u by (Q(D)u),, and restricting ourselves, for the sake of sim-

plicity, to the case v = (vq,...,vy,) = 0, we formulate some sufficient conditions
for the validity of the estimate
2
IR(DYIZ, < € (IPDYu]? + QD)) (13.1)

forall u € C3°(R7).

1.3.1 Sufficient condition for the validity of the estimate (1.3.1)

The main result of this subsection is Theorem 1.3.1, which states that inequality
(1.3.3) and conditions 1-4 of Theorem 1.2.2 are sufficient for the validity of esti-
mate (1.3.1) with any measurable N x N matrix 90, which is regular a.e. in R*~!. Of
course, conditions 1-4 of Theorem 1.2.2 are also necessary for the validity of (1.3.1).
In addition, all the remarks from Section 1.2, describing the cases where condition 4
of Theorem 1.2.2 can be omitted, remain valid.

We assume that the matrices R, P, and Q satisfy the conditions formulated at the
beginning of Section 1.2; the matrices S(&; 1) and S(&; t) are defined by equations
(1.2.2), the matrices S+ (&; 1) and T+ (§; 7) are defined by the decompositions (1.2.3)
and (1.2.4), respectively; and the matrix .74 () is defined by equation (1.2.17). We
also consider the N x N matrix

[e.e]

[ T-(&)Tx(E:n)
5—(5)—/ EACEE dn, (13.2)

where the m x N matrix T* is the conjugate transpose to 7.
Theorem 1.3.1. Let N = 1. If conditions 1-4 of Theorem 1.2.2 are fulfilled, and

S+(:7)
Pi¢:1)

for almost all § € R"™1, then the estimate (1.3.1) is valid for all u € C (R7).

2

Bé)tr [(zm*zmﬁ)‘l] [1+ tr (M 9MI)] sup < const  (1.3.3)

Proof. Let 13(5 7)), 18(5 ;7) and QO(S ; T) be the matrices considered in the proof of
Theorem 1.2.2. It suffices to show that the assumptions of Theorem 1.3.1 imply the
validity of the estimate

]o‘ﬁ(s;—id/dt)v‘zdt
0

¢ /‘f’(&;—id/dt)v‘zdtnL G (:—id/dr) vl |
0

SBE
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forallv € C3° (R ) and almost all § € R"~!. For a fixed £ € R”~! this is an estimate
of the type (1 1. 1) Applying Theorem 1.1.19, we see that it suffices to verify that

T1GE )M _ . 1 Sy(&7) 2
/ ‘ AT dr < const tr [(zm MT,) ]sup —— (1.34)
and
[ [ 6EorEn P
dtd
[oé‘ﬁ+(é;r)e@—(é;n) e
T TIGE DM 2 (13.5)
dtd
[o[o‘ PLE0)P () e
. - . - S0 [?
< const tr [(zm 9.71,7_) ]tr [(zm EUL%F) ]sup m
+ b

for almost all £ € R"™!. (Here G is the 1 x N matrix figuring in Condition 4 of

Theorem 1.2.2.)
Denote by (97_) ; the j-th column of the matrix 917_. One can directly verify

that
N OET-(E:),

;_o/o P_(&:m)

where 7_ is the matrix (1.3.2). It means that (1.3.5) follows from (1.3.4).
Now we prove the estimate (1.3.4). Using representation (1.2.18) for the matrix
G(£; 1) and the boundedness of the singular integral in L?(R!), we obtain

dn =t (M*MI),

/O‘O‘G(S )M dr
Pyt
-~ 2
3 SiE0) P& T TED -
< const sup 70 / l R )( T+) (5))] dn.

Here (77 (MT;) ! )j denotes the j-th column of the matrix 75 (M.7;)~". On the

other hand, a direct calculation shows that
2

NOT I TrED _)
M*MT4 ) =T om7,)! dn. O
[( ) ; [o <9+(E;n) ) ; !
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Remark 1.3.2. If conditions 1-4 of Theorem 1.2.2 are fulfilled and
SE: o) |?

B)tr [(QJI*S)JL%F)_I] [1+ (M MI)]su < const  (1.3.6)

for almost all § € R"™1, then the estimate (1.3.1) remains valid for all u € C$° (R7).
Indeed, it is well known that there exists a constant C > 0, depending only on
ord Z(&;t) = J and on the order m of the matrix P(§; ), such that for almost all
£ € R"! the inequality
Se(E0) | _ oo | SED)
sup
Pi(ET) P 1)

holds'®. Hence inequality (1.3.6) implies the estimate (1.3.3).

sup (1.3.7)

1.3.2 The case M(£) = Z__l/z(&)

Consider the case M = 7 V2 where 4 denotes the matrix (1.2.17). First, we
show (Theorem 1.3.3) that assumption (1.3.3) of Theorem 1.3.1 can be replaced by
simpler to formulate condition (1.3.8) or by condition (1.3.10).

The sufficient condition of Theorem 1.3.6, related to the estimates with a “large
number” of boundary operators, can be formulated in an even more simple way. (In
this case, conditions 2 and 4 of Theorem 1.2.2 will be omitted.) This condition,
proved by a direct method by M. Schechter [Sch64a], is a simple consequence of
some results of Section 1.2 and the arguments used in the proofs of Theorems 1.3.1
and 1.3.3.

Theorem 1.3.3. Let N > 1, and let the matrices T4 (§) and T_(§) be defined by
(1.2.17) and (1.3.2), respectively. If conditions 1-4 of Theorem 1.2.2 are fulfilled and

BE) tr (7 7 sup | &) T) * < cons (1.3.8)
for almost all £ € R"™1, then the estimate
IRD)ull} 2 < € (12D + (D) 112) (1.39)
holds for all u € C(R™).
Proof. Suppose that M(§) = 7 /?(&). Then

w[(UMT) | =N and o (MMI) = (T 7).

Taking into account inequality (1.3.7) and condition 1 of Theorem 1.2.2, we conclude
that the estimate (1.3.3) follows from (1.3.8). O

16This result was proved by V. E. Katsnelson ([Kats67], pp. 58-61).
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Remark 1.3.4. The estimate (1.3.9) holds for all u € C3°(IR”.) also in the case when
conditions 1-4 of Theorem 1.2.2 are fulfilled and the matrices .74 and 7_ satisfy for
almost all £ € R"! the relation

T T VT < const I_. (1.3.10)
Indeed, condition 1 of Theorem 1.2.2 and the estimate (1.3.7) imply the inequality
S+ 1)
B(&) sup| ————=| < const.
D7)

On the other hand, (1.3.10) is clearly equivalent to the estimate
tr (771 7-) < const.

Remark 1.3.5. Obviously, condition (1.3.10) is equivalent to the following statement:
For almost all £ € R"~! we have

dt < const / 'XTJF(E T)

1.3.11
7.0 (1310

7 Lr €[
P_(&:1)

where the 1 x m matrices 7 and .ZT_ are determined by the decomposition

S Lr &0 L (6
2 Py PG
Here the 1 x m matrix .£7 (§; t) is an arbitrary linear combination of the rows of the
matrix T'(§; 7).
The following result is an example of an assertion that is not related (as the case

was up to now) to an individual matrix R, but to the whole class of the matrices R
such that the corresponding matrices S satisfy condition 1 of Theorem 1.2.2.

Theorem 1.3.6. Let &2 (§; 1) have no real t-roots, let ord P, (§;1) = N = 1 for
all€ € R"™!, and let the N x N matrices 7y and T be defined by (1.2.17) and (3.2),
respectively. If for almost all £ € R"™! the rows of the matrix T (§; 1) are linearly
independent modulo P (§; 1) and the matrices Iy satisfy condition (1.3.10), then
the estimate (1.3.9) holds for all u € Cg°(R".) and for any 1 x m matrix R(§; t) for
which the corresponding matrix S(§; ‘L’) satlsﬁes condition 1 of Theorem 1.2.2.

Proof. According to Proposition 1.2.8, we can construct the 1 x N matrix G(&; 1)
that figures in representation (1.2.14) and satisfies identity (1.2.7). By the second part
of Proposition 1.2.10, the matrix G admits representation (1.2.18). As noted in the
proof of Theorem 1.3.1, inequalities (1.3.4) and (1.3.5) follows from (1.2.18).

Suppose that M(§) = T, 1 2(g?). We use condition 1 of Theorem 1.2.2, in-
equality (1.3.7) and condition (1.3.10) which, as we have already mentioned above,
is equivalent to the inequality

tr (9;19_) < const.
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Then (1.3.4) and (1.3.5) imply the inequalities

B(E)]o
B(E)]o]o

—00 —00

2

G(E TP E)
P(&:7)

GE: ) T2 &) T V26 T_(E: )
PL(E0)P_(E1)

dt < const,

) (1.3.12)

dtdn < const.

In representation (1.2.14) we replace 70“(5; 7) by ,7;1/2(5)70“(5; n) and G(§; 1)

by G(£:7).7,/*(§). Using (1.2.5), (1.3.12) and the result of the substitution, we
conclude that the inequality

B() f $ € —iasan | ar
0

< const| || P (@ —id/dn 1¢| di + |77 OT @ -id/dn gl
0

2

holds for all £ € R*"! and all ¢ € Co°(R%). Then, in view of Lemma 1.1.3, the
inequality

B(§) 7‘13 (& —id/dt) u(z di
0

[e.e]
o 2 o 2
< const / ‘P (é;—id/dt)v‘ dt + ‘5;1/2($)Q (& —id/dt)v|,—
0
(13.13)
is valid for all v € C°(R1).

We consider any u(x:;¢) € Cg°(R’) and set in (1.3.13) v = ve(t) = u(§:1).
Multiplying both parts of the resulting inequality by |p(£)|> = |po(£)|?/™, where
po(§) is the leading coefficient of the polynomial & (§;t) = det P(£; 1), and inte-
grating over £, we conclude that u(x; ¢) satisfies (1.3.9). O

The scalar version of Theorem 1.3.6 (see Corolary 1.3.7) was proved by a direct
method in the work of M. Schechter [Sch64]. Now we show that this result (contrary
to Theorem 1.3.6 itself) follows directly from Theorem 1.3.3.

Corollary 1.3.7. Let m = 1, let the polynomial & (§; 1) has no real T-roots, and
letord 2 (§;7) = N = 1 for almost all ¢ € R"~!. Define the N x N matrices ©+
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by the equalities

[ Qu(E: Q% 2y

0= | e or "

where

Q&) _ Qi) Q-6
PEn) P PoE0)
and Q(&; 1) = {Q; (&: 1)} denotes a given N x 1 matrix satisfying

ordQj(&;1) <ord Z(&;1) = J.

If for almost all § € R"™! the polynomials Q j (§; ©) are linearly independent modulo
P (§;7) and the matrices D+ satisfy the relation

@JDIFIQ_ < const®_,
then the estimate
12Dyl < € (12Dl +(QD), 2 )

holds true for all functions u € C3°(R’,) and for any polynomial % (§; t) satisfying
the inequality
Z(§:7)

P 1)

BY2(§) sup < const

ae in R,

Proof. We set Z1(£:7) = po(€) P4 (£:1)P_(£: 1), where po(£) is the leading
coefficient of the polynomial Z2(&; t). Since all the t-roots of the polynomial % lie
in the half-plane Im¢ < 0 ({ = v + io) and

'@(gif) _ pl/2
«‘%)—1@;7) = B/“(&)sup L@(S D < const,

then, in accordance with Remark 1.2.4 (m = 1), the estimate
|Z(D)ul%1,2 < C |12y (D)u|?
is valid for all u € Cg°(R%).
On the other hand, Z, /P = P,/ P, i.e., we have
Z1(€:7) Hi+(§:7)
PE; 1) D7)
with ord Z14+ < ord . It follows directly from this decomposition that

Fr1+(E:7) ZX(3%3)
Py(E:) PEv) |

BY2(¢) sup AEi)

=)+

sup < const sup
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We note that the polynomials % (§; t) and &2 (§; ©) are relatively prime. Moreover,
in the case m = 1, condition 4 of Theorem 1.2.2 follows from conditions 1-3 of the
same theorem. Therefore, in view of Theorem 1.3.3 (m = 1, B(§) = 1), the estimate

|21 (Dyul? < € (12Dl +(QUDYY )2 )

holds for all u € C{°(R’.). Thus, the statement of Corollary 1.3.7 follows from this
theorem. L

We return to the general case of arbitrary m and consider a direct corollary of
Theorem 1.3.3 concerning the matrices P (&; t) with determinants having a unique
T-root with negative imaginary part.

Corollary 1.3.8. Let Z_(&;t) = t —z(€), and let the N x N matrix 4 (§) and the
N x m matrix T_(§) = {T)x—(§)} be defined by (1.2.17) and (1.2.4), respectively. If
conditions 1-4 of Theorem 1.2.2 are fulfilled and

N m
ZZ Tok—(E) > [T71(£)] < const|Im z ()] (1.3.14)
A=1k=1

for almost all § € R"™1, then the estimate (1.3.9) holds true for allu € C§° (R%).

Proof. By hypothesis, the polynomial & (£; 1) has only one root T = z(§) in the
half-plane Im¢ < 0 ({ = t + io). Hence the matrix 7_(§;t) = {To;—(§; 1)} does
not depend on 7, and then it follows from (1.3.2) that the entries of the matrix 7_
have the form

Tap—(E) =7 Y Tak—(E)T pr—(§)/|Im 2 (£)].
k=1

Therefore,

N m
w(TE) =7y > |Tar(®)?/Imz ().

a=1k=1

Since the inequality
w (7' T) < Nu (T ) ()
is obviously valid, assumption (1.3.14) yields

tr (9{15_) < const.

Finally, estimating sup |S4/Z74|* in accordance with inequality (1.3.7) and using
condition 1 of Theorem 1.2.2, we conclude that (1.3.14) implies (1.3.8). O
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1.3.3 The case of the diagonal matrix 9%(&)

In this subsection we formulate sufficient condition for the validity of the estimate
(1.3.16) (Theorem 1.3.9). This estimate is a special case of the estimate (1.3.1), which
corresponds to the case of the diagonal matrix 9t(£) with eigenvalues (1 + |£|%)*6/2.
This situation arises often in applications. We will show that the sufficient condition
of Theorem 1.3.9 is also necessary in the case N = 1. In general, this condition is
not necessary for N > 1.

Theorem 1.3.9. Let the matrices Sy and Ty = {Typ+ } be defined by decomposition
(1.2.3) and equalities (1.2.17) and (1.3.2), respectively, and let g = (i1, ..., UN) €
RN, We also consider the N x N matrices Ty = {(1 + |E[})*e Tpp_(£)} and
(,7_,__1)(_” = {(1 + [§|*)*B1,8(£)}, where tog are the entries of the matrix T .
I

2

S+(&;
+(E0) 1 onst (13.15)

Pi(E:1)

for almost all ¢ € R"™! and conditions 1-4 of Theorem 1.2.2 are satisfied, then the
estimate

B)tr (,7;1)(_‘” [1+tr T )] sup

IRDYul1 2 < € (IPDYIP + QD)) (13.16)
holds for all u € C3°(R"}).

The proof is based on a direct calculation of the traces tr [(S)ﬁ*i)ﬁ,%r)_l] and
tr (M*9M.T_) figuring in the left-hand side of (1.3.3). Here 9i(§) is the matrix
(1.2.26).

Remark 1.3.10. In the case m = 1, B(§) = 1, condition (1.3.15) is not necessary for
the validity of the estimate (1.3.16) for all u € Cg°(R").

Suppose, for example, that N = 2, m = 1, Z(&;7) = 1, P(E;1) = (r —
ix1(§))(r — 12(8)), Qj(6:7) = 1 —x;(6) (j = L2 and p = (p1,112) € R
In Subsection 1.4.7 we prove that if »;(§) > 0 (j = 1,2) and »;(§) # »2(§), then
assumption (1.3.15) takes for almost all £ € R”~! the form:

(1+02/301)%25 (01 — 2) 2 (1 + |E[P) T < CO“St’§ , (1.3.17)

(14 21 /32)% (1 — 32) 72 (1 + |£[*) 2 < const
It will be also shown that, under the assumptions introduced above, one of neces-

sary conditions for the validity of the estimate (1.3.16) (similarly to condition 6 of
Theorem 1.2.2) can be represented a.e. in R”~! in the form

w0 (e =) 2+ [EP) T < COHSL§ (1.3.18)

2y er — 22)T2(1 + |E]2)TH2 < const

It is obvious that (1.3.18) follows from (1.3.17), while the converse is, in general,
incorrect.
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Remark 1.3.11. If N = 1, then (1.3.15) is also necessary for the validity of the
estimate (1.3.16) for all u € C§°(R’}).

This claim follows from Corollary 1.2.11. To see this, replace in the formula-
tion of Corollary 1.2.11 the estimate (1.2.1) by the estimate (1.3.16), and inequality
(1.2.21) by the inequality

B(®)|a(§)[* < const (1 +|€[*)*Im ¢ (£), (1.3.19)

where . € R! denotes the exponent of the norm (( . ))M.

Indeed, let N = 1, 2, (£:7) = v — £(§), let Q(&;7) = {OQ;(&:71)} be a given
1 x m matrix, let S = {Sx(§;7)} and T = {Tx(&; 1)} be the matrices defined by
equations (1.2.2), and let S+ = {Sr+(&:7)} and T+ = {Tr+(§; 1)} be the 1 X m ma-
trices defined by decompositions (1.2.3) and (1.2.4), respectively. Since N = 1, the
matrices S1(§;t) = S+(§) and T4 (§; v) = T (£) do not depend on 7. Moreover, it
follows from (1.2.19) and the decompositions (1.2.3) and (1.2.4) that

S+(§) = a(§)T+(8). (1.3.20)

where «(£) is the measurable function figuring in (1.2.19).
One can verify directly that

(77 Ly = 7 T O @+ 1§D 7

T_(&:n)
P_(&n)

2

dn,

wﬁmzaﬂww/‘

2

S+ (&; -
S+ = [ImZ(£)] 7> |S+(5)]>.

Pi&:1)
Using relation (1.3.20), we find that in the considered case condition (1.3.15) is

equivalent to inequalities (1.3.19) and (1.2.20). It follows from Corollary 1.2.11 that
(1.3.19) and (1.2.20) are necessary conditions for the validity of the estimate (1.3.16).

sup

1.3.4 Sufficient conditions for the validity of the estimate (1.3.21)

In this subsection we consider the estimate
IR(D)ul%,2 < C (llP(D)ull2 +{o(D)u)’ + ||u||2) , (1.3.21)

which differs from the estimate (1.2.1) by the additional term ||u||? on the right-hand
side. Of course, the conditions of Theorem 1.2.2 are also sufficient for the validity of
(1.3.21) forallu € C3°(R}).

In the case when the leading coefficient po(§) of the polynomial Z(§;1) =
det P(&; 7) is uniformly bounded from below in some ball in R” !, one can formulate
the following strengthening of the above assertion:
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Proposition 1.3.12. Let A; > 0, A, > 0, A3 > 0 be given constants, let |po(§)| =
Ay and B(§) < As foralmostall € € {€ 1 € € R"™1,|€| < Ay}, and let the conditions
of Theorem 1.2.2 be satisfied for almost all € € {§ : £ € R"1|&| > A,}. Assume
also that maxy ord Py; = J; and the polynomials R;(&; ) satisfy a.e. in the ball
|&| < A, the condition

ord Rj(£:7) < J;. (1.3.22)

Here J; are constants that do not depend on §. Then the estimate (1.3.21) holds true
forallu € C3°(R7).

Proof. 1t follows from Theorem 1.1.19 that inequality (1.2.11) is valid for almost all
£ € R" ! with |£| > A, and for all v € C°(RY ), in particular, for vg(r) = 1 (&:1).

Suppose that [§] < A,. We denote by pi;(§) the leading coefficient of the poly-
nomial Py;(&; 7). It is obvious that po(§) = det{ px;(§)}. Since |po(§)| = A1 > 0
for almost all £ satisfying |£| < A, the inequality

3 ‘(—id/dt)’f a,-(s;z)\ <const Y |3 puj (6) (<id/dn)’ g v)| (1.3.23)
j=1 k=1

holds a.e. in this ball. Since the coefficients of the polynomials Py (§; 7) are locally
bounded, it follows from (1.3.23) that for almost all £ satisfying || < A, we have

m Jj m m

YD l=id/dn ayE: )| < const Y Y Pry (E:—id/dr) i (E: 1)

j=1r=0 k=1|j=1
Jji—

Z Z (—id/dt) fj(&:1)]

(1.3.24)
Using the well-known inequality

o0

(—id/dt) ;& 0| dt <s/(( id/dn’s agen|

0

%/

0\8

e®) / (e 02
0

and taking into account the local boundedness of the coefficients of polynomials
R;(&; 1), inequalities (1.3.22) and (1.3.24), as well as the validity of the estimate
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B(&) < Az a.e. inthe ball |£| < A5, we conclude that the estimate

B(;)/|R(§ —id/dt)a(E; 1) dt < const /|P(E —id/dt)a(E )| dt

O/ (e 1) Pdr

holds for almost all £ with || < A,. This means that for almost all £ € R*!

/|R($;—id/dt)ﬁ($;t)|2dt < const /|P(E;—id/dz)a($;z)|2dz
0 0

110 (€ —id/dn) i Dml? + / 0P ||
0
which yields (1.3.21). O

Similarly, if |po(§)| = A1, B(§) < As, assumption (1.3.22) is fulfilled a.e. in
the ball |£] < A,, and conditions 1-5 of Theorem 1.2.2 are satisfied for almost all
£e{t: £ e R |E] > Ay}, then the estimate

IR(D)ull%1/2 < Co (IIP(D)ul® + ul?) (1.3.25)
holds for all u € Cg° (R} ) such that Q(D)u(x;0) = 0.
Remark 1.3.13. Condition (1.3.22) is satisfied, for example, if the coefficients of
the polynomials R;(§;7) and P;(§; 1) are themselves polynomials of the variable
£ € R"! and inequality (1.2.5) holds true for almost all £ such that || > A, and for

all T € R,
Indeed, let { = ({1,...,¢m) € C™ and |§] > A,. From the identity

m m
YR =271 Y RPFPL
=1 Li,j=1

(here P'*(&; ) are the entries of the matrix P°(£; 7)) and inequality (1.2.5) it follows

that
Z R;&;| < const Z Z Prig;

k=11l=1

forall T € R'. Weset¢; = 1 and {; = 0 for/ # j. Then (1.3.26) implies for all
7 € R! and for almost all £ with || > A, the inequality

B(§) (1.3.26)

B(§)|R;(£:7)| < const Y|Py (E: 7). (1.3.27)

k=1
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Since B(§) > Oa.e. inR"~ ! and R, Py; are, by assumption, polynomials of (§; ) €
R”, relation (1.3.27) yields (1.3.22).

1.4 Examples

In this section, we consider concrete operators and consider some examples of esti-
mates whose validity follows from the general theorems proved above.

1.4.1 Generalized-homogeneous quasielliptic systems

The main result of this subsection is a necessary and sufficient condition for the va-
lidity of the estimate (1.4.4) (and, in particular, of the estimate (1.4.9)), where P is
a generalized-homogeneous quasielliptic matrix. We shall consider only matrices for
which all numbers sy, ..., Sm; 1, ..., In, occuring in conditions 1 and 2 given below,
are integers. However, more general definitions of quasielliptic matrices that allow
non-integer (rational) s, fx (see, for example, [Vol60a], [Vol62]) are also possible. It
will be seen from the discussion below that the used estimation method requires at
least integer numbers ;.

First, we define the notion of a generalized-homogeneous quasielliptic matrix.

Leth, > 0(0 =1,...,n—1)be givenreal numbers, andletb = (b1, ...,by_1,1).
We say that a function f(;7) is a generalized-homogeneous function of degree k
with respect to the weight b (deg,, f/ = k), if for any A > 0 and all (¢;7) € R” the

relation
FOb1E L abmg, ae) = K f(E o)

is satisfied.

We call the m x m matrix P(§; 1) = {P;(§; )} generalized-homogeneous with

respect to the weight b, if it satisfies the following conditions:

1. There exist nonnegative integers i, ..., S, (minsg = 0) and ?, ..., %, such
that Py; (§; ) are generalized-homogeneous polynomials in (§;7) € R" with
respect to the weight b satisfying deg P; = t; — s, and Pg;(§:7) = 0 for
tj =8k < 0.

m
2. Let Z(&;1) =det P(§;7). Thendeg, & = J = ) (tj —5;).
k=1
Since the last component of the weight vector b is 1, we have ord Z(§;1) = J
provided that po(§) = 1.
A generalized-homogeneous matrix P (£; 1) is called quasielliptic, if Z(§; 1) #
0 for all real (§; t) # O or, what is the same, if the estimate

2(E:7)| = C (7] + () (1.4.1)

n—1
holds for all (§; t) € R”. Here (5) = 3 |&,|/Pe.
o=1
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We also say that a generalized-homogeneous quasielliptic matrix P (£; ) is prop-
erly quasielliptic of type A, if for all £ € R"~! \ {0} the polynomial Z(§; t) has the
same number /1 (counting multiplicities) of t-roots with positive imaginary part.

Finally, we define the seminorms that occur in the estimate (1.4.4). Conditions
for the validity of (1.4.4) for quasielliptic systems are established below.

For vector functions ¢(x) = (¢1(x), ..., on(x)) € CPR" 1) we set
N
W= [ Yl ipa©Prd (1.42)
pn—1 ®=1
where g = (i1, ..., un) € RY and @y () is the Fourier transform of the function
%(&u = (ur,....upy) € CF(RL), and leta = (ay, ..., an) be an integer posi-

tive multi-index. We set

Iullab—Z > 1D %, (1.4.3)

Jj=1(a,b)=a;

where @ = (@1, ...,a,) and (e, b) = > apb, (by = 1).
o=1

Proposition 1.4.1. Let P(§;7) = {Pr;(§:7)}, R(§:7) ={R;(§: 1)} and Q(§;7) =
{OQqj (§; 1)} be generalized-homogeneous with respect to the weightb = (b1, b2, .. .,
bn—1,1) polynomial m x m, 1 x m, and N X m matrices, respectively, and let
P(&:1) = det P(§; 1) with po(§) = 1. Suppose also that degy, Px; = t;j — s,
deg, 7 = 37 \(tj —sj) = J = 1, deg, Rj = t; + 1 and degy, Quj = tj — X,
where tj, s are the integers defined by conditions 1 and 2, xy (. = 1,...,N) is an-
other set of integers, and | is an integer satisfying the condition | = maX(O 1 —xy).

Let the matrix P(§; 1) be quasielliptic, and let for all ¢ € R*~! \ {0} the degrees of
the polynomials (of T) M (€; 1) and P+ (§; 1) be constant, and let ord P4 (€;1) =
N = 1. Finally, we sets+1= (s1 +1,....sm+Dandx +1—-1/2 = (31 +1 —
1/2,...,xny +1—1/2).

The estimate

IR < € (1PDYu)Z0p + QD 41 1)) (1.4.4)

holds true for all u € C°(R’}) if and only if conditions 2—4 of Theorem 1.2.2 are
satisfied for all £ € R"™1 \ {0}.

Proof. Consider the m x m matrix

W (E; 1) = {85 (x +ilE)c T} (1.4.5)

and the N x N matrix ()
M (§) = {8ap(e)* ), (1.4.6)
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We set

Pon(E:t) =R(E )P n), (1.4.7)
OQuti-/2(:11) = M (E; 1) 0 (&5 7). (1.4.8)

It is obvious that {Qy+1-(1/2 (D))’ = [Q(D)u]2,,_, - In addition, since s +1
is an integer vector, the norms || P (D)u||s41,» and || Ps+1(D)u|| are equivalent for all
u € C°(R’}). Hence, inequality (1.4.4) is an estimate of the type (1.2.27).

We show that the result of Proposition 1.4.1 follows from Corollary 1.2.13. One
only has to put B(§) = 1 in the formulation of this corollary and replace the matrices
(1.2.25) and (1.2.26) by the matrices R’ and 2V, respectively.

Indeed, the conditions det P(£;7) # 0 and mes,—1Z = 0 follow from the
quasiellipticity of the matrix P. Let S = {S;} = RP and T = {Tyx} = OQP°. A
direct verification shows that Sy and T, are generalized-homogeneous polynomials
with respect to the weight b satisfying deg, Sx = J + sx + [ and deg, Tyx =
J + sg — xy, respectively. Since ord Z(§;7) = J and [ = 1 — x,, we have
ordSy < J +sp+landord Ty < J + s +1—1.

From the quasiellipticity of the matrix P(§; t) follows the validity of inequality
(1.2.28) with B(¢) = 1. To complete the proof, it remains to show that inequalities
(1.2.29) and (1.2.30) (with B(§) = 1 and 9V, R instead of 91 and fR) are satisfied
forall £ € R"~1\ {0}.

By assumption, thg matrices R, P, Q are generalized-homogeneous. Hence, the
functions P4, M, P+, Sk+, Tak+, Tak— and G4 also have this property. Suppose
that deg, &+ = r. A direct calculation shows that deg,, S+ = r, degy, ¥_ = J —r,
degy Tkt =1 +1—ny,degy Tyk— = J + s —xq—r anddegy, G =17+ +xq—1.
Therefore, substituting §, = (S)l/bg% @=1....n—1), 7= (£ and n = (&)1
in (1.2.29)—(1.2.30), we see that these inequalities hold for all £ € R”~! \ {0} if and
only if they hold forall ¢’ € "2 = {§ : £ e R*™1,(¢/) = 1}.

Notice that ord G (€;7) < ord 4 (§;7) and ord Ty _(£;7) < ord P_(&; 1) +
sg + 1. To prove the validity of inequalities (1.2.29)—(1.2.30) for all £’ € X"2,
it suffices to show that the coefficients of the polynomial matrices G, T— and the
polynomials 4 (£; T) are piecewise continuous on %" ~2,

As we know (see [Tre59], p. 126), the assumption po(§) = 1 implies the piece-
wise continuity of the z-roots of the polynomial Z2(£;t) on £"~2. Combining this
fact with inequalities (1.2.3) and (1.2.4) and the constancy of ord .# and ord ,@Jr, we
see that the coefficients of the polynomials &, &_, Sy, Tyr— and Ty also have
this property. Finally, by the above arguments, we obtain the piecewise continuity of
the coefficients of the polynomials G, on X"~2 from the representation (1.2.18) and
the linear independence of the rows of the matrix 7" modulo & . (|
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The following assertion is a direct consequence of Proposition 1.4.1.

Corollary 1.4.2. Let P(&; t) be a generalized-homogeneous properly quasi-elliptic
m x n matrix of the type N = 1, let po(§) = 1, and let Q(&; 1) be a generalized-
homogeneous N x m matrix of boundary operators. The estimate

el < € (1P, + QD1 y2) (1.49)

where the weight b and the numbers I, sg, tj, xq are defined in Proposition 1.4.1,
holds for all w € CZ(RY) if and only if the rows of the matrix T(§;t) =
Q(&: 1) PS(£; 1) are linearly independent modulo P (§;7) for all £ € R"™1\ {0}.
(Heret+1=(t1 +1,...,ty + 1), whiles + 1 and # +1— 1/2 are defined in Propo-
sition 1.4.1).

Remark 1.4.3. Inthe case b = (1,..., 1), the matrix P(£; 7) is elliptic in the sense
of Douglis and Nirenberg [DN55] and, in particular, P(§; 7) withs; =--- =5, =0
is elliptic in the sense of Petrovsky [Pet39].

If s = s;/2b and t; = /2D, where s, #; and b are integers, then the weight
b = (1/2b,...,1/2b,1) with integers s; and ¢; corresponds to parabolic systems
in the sense of Solonnikov [Sol65]!". In particular, if s; = --- = s, = 0 and
t} =2b— s;., then the matrix P(&; t) is parabolic in the sense of Petrovsky [Pet38],
and if ; = 2b —s’; then P(&; 7) is called parabolic in the sense of T. Shirota [Shi57].

Note also that the weight of the form (1/2b4, ..., 1/2b,—_1, 1) withintegers by, . . .,
bn—1 > 0 corresponds to parabolic systems in the sense of Eidelman [Eid60], pro-
videds; =+ =8, =0andt; = 2bjn; (here nj > 0 are integers).

1.4.2 The Lamé system of the static elasticity theory

Using the Lamé operator of the isotropic elasticity theory we want to show that for
elliptic operators one can also have “nonelliptic” estimates, that is, the estimates that
cease to be valid after the operators are replaced by their principal homogeneous
parts. Such an estimate is inequality (4.4.12), where R(§;7) = {z(z —il£|),0,0),
Q(&:7) is the 1 x 3 matrix {(1 + i&1)|€]Y/?(r —i|£|), 0,0}, and P(£; ) is the matrix
(1.4.10).

It is known that the operator of the Lamé system of static isotropic elasticity theory
has the symbol

—(c+ D> — &7 —ckiT —céat
P& 1) = —citT —12 — |E> —c£} —c6162
—cET —c£1& —t2 —|§]2 — &3

(1.4.10)

71n the definition of parabolicity given in [Sol65] it is not required that the numbers t;- and s;C be divisible

by 2b. However, this divisibility is presupposed in the derivation of estimates in integral norms (see [Sol65],
Theorems 5.4 and 5.5).
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(here ¢ is a constant and |§|> = &7 + £3). Since det P(§;7) = Z(§;1) = —(1 +
¢)(z? + |€]?)3, the matrix (1.4.10) is homogeneous and elliptic in the sense of Petro-
vsky provided that ¢ # —1. It is also clear that this matrix is properly elliptic of type
3withs; =5, =53 =0andt#; = t, = 13 = 2. (We use the notation introduced in
Subsection 1.4.1.)

Suppose that Q(§;7) = {Qq;(§;7)} is a 3 x 3 matrix of boundary operators, the
entries Qq;(&; v) of which are homogeneous polynomials of deg Qqj = 2 — xq
(a,j = 1,2,3). Assume also that / is an integer satisfying the condition / >
max (0, 1 — xg). It follows from Corollary 1.4.2 that a necessary and sufficient con-
dition for the validity of an “elliptic estimate” of the type (1.4.9)'® is the linear inde-
pendence of the rows of the matrix Q(£; 7) P¢(£; r) modulo (t —i|£])3, where

Pe(ED) = (2 +[E])

2 + (c + 1)|§)? —céit —cért
X —ckit (c+ 1D+ [E]* +c&F —ck1£s
—cat —ck16 (c + D72+ [§1> + c§F

(1.4.11)
Now we consider an example of nonelliptic estimate for the Lamé system. Let
P(&; t) be the matrix (1.4.10), and let the constant ¢ satisfy the conditions ¢ # —1
and ¢ # 0; the first of this conditions ensures the ellipticity of the matrix P and the
second one excludes from our consideration the case P(D) = Al, where A is the
Laplace operator.
Choose R(&;1) = {t(r —il€|),0,0}. Using (1.4.11), we obtain

S 1) = @+ P —ilED{? + (1 + )7, —cbir, —cbart}.
Therefore, . (£;7) = (t—i|§])2. Since P (£;7) = (t—il§])3, we get P, (§;:7) =

T —iléland N = 1.
We show that for all u € CP(R3),

IR < € (IPDu]? + {Dw)), (1.4.12)
where the 1 x 3 matrix Q(§; 7) is defined by

Q(&:7) = {(1 +i&n)|§]"/*(x —il€])., 0,0}

To do this, we verify that conditions 1-6 of Corollary 1.2.11 with B(§) = 1 are
fulfilled in the considered example.
The validity of condition 1 follows from the ellipticity of the polynomial & (§; 7).
Calculating T'(¢; ) = Q(&; 1) P¢(€; 1), we obtain the equality

T ) = (L +iE)E (@ —ilE)*e? + (1 + 0§, —c 17, —c 1),

which establishes condition 2.

18 In the case under consideration, the weight b = (1,1, 1), [-]541—@/2) is the norm in L* +H-1/2)(R2),
while || - [li,1 and || - [[241,1 are the norms in the spaces le(Ri) and L2+1(Ri), respectively.
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Since in the considered example {(§) = i|€|, we have
[T D)/ A E O, = 2101+ iEDIEPclg], —ciEr, —c &2} # 0

for |&| # 0. Hence condition 3 is verified.
Calculating

[SGE: 0/ M EO)|,_p ey = —216Ptelg]. —cibr, —cita},

we see that condition 4 holds. Moreover, the coefficient o (§) figuring in (1.2.19) is
determined by the equality

a(§) = il€]"2(1 +i&) 7",

which immediately yields condition 6.
Finally, condition 5 follows from the representation

2 2
€0/ 2o = e+ | (1+5) + T+ Telen].

which is established by expanding of T/ &7 into partial fractions (see (1.2.4)).
However, the estimate (1.4.12) ceases to be true for all u € C§° (Ri) if the matrix

Q is replaced by its principal part Q'(£; 1) = {i&;|&|'/2(r —i|€]), 0, 0}. Indeed, for
the matrix Q' we get

(T'(&: 7)) A (E; T)]L;:;(g) = _251|$|5/2{C|S|’ —ciéy, —ciba}.

Therefore, the coefficient a(£) in (1.2.19) will be replaced by o/(§) = £71|£|V/2.
Thus, condition 6 of Corollary 1.2.11 is violated for B(§) = 1.

1.4.3 The Cauchy-Riemann system

Consider the matrix
PEo=( 5 T (1.4.13)
D= \ie i o
corresponding to the Cauchy—Riemann system of equations

ouy/dx — duy/dt = 0,
oui/ot — dup/dx =0

in the half-space R3 . Since det P(§:7) = Z(£; 1) = —(§%41?), the matrix P(§; 1)
is homogeneous and elliptic in the sense of Petrovsky (s; = s, = 0,7; =1, = 1). It
is obvious that this matrix is also properly elliptic of type 1. Therefore, considering
the weight b = (1, 1) and using Corollary 1.4.2, we can formulate necessary and
sufficient condition for the validity of an “elliptic” estimate (an estimate of the type
(1.4.9)) for the Cauchy—Riemann system. We do not go into the details associated
with such “elliptic” estimates. Instead, we consider in more detail some estimates of
the type (1.2.1).
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Proposition 1.4.4. Let P(&; ©) be the matrix (1.4.13), and let Q(§) = {q1(£),q2(€)}
be a 1 x2 matrix whose entries qi (§) are measurable locally bounded in R! functions
that grow no faster than some power of |&| as || — oo. Set D = (Dy; Dy) where
Dy = —id/dx and D, = —id/ot.

The estimate

o0 o0
/dr [ (1D P + | Doal? + | Dyar 2 + | Dyusl?) dx

0 —00 (1.4.14)
< € (IPOWI? + g1 (D)us + g2(Daya)’)
holds for all u = (u1,uz) € Cg° (]R%r) if and only if the inequality
€1'% + [ig1 — g2 sgn &| < const|ig1 + g2 sgn £| (1.4.15)

is satisfied for all £ € R!.

Proof. We show that Proposition 1.4.4 follows from Corollary 1.2.11 (B(§) = 1).
From the definition (1.4.13) of the matrix P(&; t) it follows that

Pe(&;7) = ( _ii g ) (1.4.16)
For example, let R(£;7) = {r,0}. Then we have S(§;7) = {it&,ir?}. On the

other hand, in accordance with definition of the matrix Q(§) we get

T(§:7) = {ifq1 —itqa.itqy + i§q2].
Obviously, the ellipticity of the matrix (1.4.13) implies the validity of condition 1 of

Corollary 1.2.11.

Since &4 (§;t) = v —il§|, we have {(§) = i|§| and S(&;¢(§)) # O for & # 0.
This means that .# (§;7) = 1 for all T € R! and all £ # 0. Therefore, conditions

2 and 4 of Corollary 1.2.11 are automatically satisfied (for condition 4 see Proposi-
tion 1.2.7).
A direct calculation shows that

(§)” = [§lig1 + g2 5gn &7,

where «(§) is the coefficient appearing in (1.2.19). Thus, condition 6 of Corol-
lary 1.2.11 takes the form

1€]'/2 < constligy + ¢» sgn £|. (1.4.17)
Determining the matrix 7_(§) from the decomposition

TEr)  T4(8) N T_(§)
242 r—ilg] T +ilE]
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we get the relation

o0
IT-©F n = ——ligi — g2 sgn &2
n? + &2 20| '

—00

Therefore, condition 5 of Corollary 1.2.11 takes the form
ligy — g2 sgn £| < const|ig; + g2 sgn & (1.4.18)

But inequality (1.4.15) is equivalent to inequalities (1.4.17) and (1.4.18).

As to condition 3 of Corollary 1.2.11, a direct check shows that in the example
under consideration it takes the form [ig; + g2 sgn &| # 0 a.e. in R!, which here
clearly follows from inequality (1.4.15).

The remaining terms on the left-hand side of the estimate (1.4.14) can be treated
in a similar way, by taking as matrix R(&; t) the matrices {0, t}, {£,0} and {0, &}. O

Notice also that if we take as R(&; t) the matrices {1, 0} and {0, 1}, and apply
Corollary 1.2.11, we obtain

Proposition 1.4.5. Let P(&; 1) be the matrix (1.4.13), and let Q(§) = {q1(§),q2(§)}
be a 1 x2 matrix whose entries qi (§) are measurable locally bounded in R} functions
that grow no faster than a certain power of || as |&] — oo. Set Dy = —id/dx,
D; = —id/0t, and D = (Dy, Dy). The estimate

lull3i2 <C (IIP(D)u||2 + (q1(Dx)ur + qz(Dx)uz))z) (1.4.19)
holds for allu = (u1,u2) € Cg° (Rﬁ_) if and only if the inequality

§17% + 1§17 igr + g2 5gn §72 (1 + 1817 fig1 — g2 5¢n §I°)

< const[B(§)] ! (1420

is satisfied for almost all € € R,

1.4.4 The stationary linearized Navier—Stokes system

We write the operator of the stationary linearized system of the Navier—Stokes equa-
tions in the half-space Ri in the form

— Av + grad p,
P(D)u =3 . gracp
div v,
where u = (v, p) and v = (vy, V2, V3).
This operator corresponds to the matrix

2 + |&)? 0 0 i£
oy 0 2+ |§)? 0 &>
P&;1) = 0 0 2R i | (1.4.21)

i§ i& it 0
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with determinant 22 (§; ) = (72 + |£|?)3. The matrix (1.4.21) is elliptic in the sense
of Douglis—Nirenberg. As the numbers s, ¢; one can choose s; = s, = s3 = 0,
s4 = 1,1 =1, = t3 = 2, and t4 = 1. Therefore, the statement of Corollary 1.4.2
with b = (1,1, 1) holds true for the operator P(D). Thus, for example, for all
solutions of the system —Av + grad p = f, divv = 0, where f = (f1, /2, f3),
one has the estimate

3 2 2 8p 2
D il + Y + ”a_
— i Ll
j=1 k=1

ap : 3
’E <C Z ||fj||12 + Z ((Uj))12+(3/2)
j=1 J=1

(1.4.22)
Here || - |, and {- ), are the norms in L5 (R3 ) and L3 (9R?.), respectively, and / is an
integer, [ = —1.
Indeed, in the case under consideration we have

Pe(ED) = (2 + [E])

2+ & —£16 =&t —i&1 (22 + |§?)
« —£1&2 £+ 12 =&t —i& (% + §]?)
—&it &t £ +& —it(e* + %)

—i61 (2 + [E]7) -2+ EP) -t +EP) (4§12

Therefore, setting
1 00O
oEn=[010 0|,
0 010

we see thz;t the rows of the matrix Q P° are linearly independent modulo &2 (§;1) =
(r —ilg])”.

We note that “nonelliptic” estimates can be also obtained for the Navier—Stokes
system. Examples of such estimates can be constructed as we proceeded for the Lamé
system (see Subsection 1.4.2): choose a matrix Q in such a way that the rows of the
matrix QP°¢ are linearly independent modulo &, (£; 7) for all £ € R? \ {0}, while
the rows of the matrix Q' P° (here Q' denotes the principal part of the matrix Q) do
not possess this property.

1.4.5 Hyperbolic systems

Consider the m x m matrix P(§;7) = {Pg;(§; 1)} whose entries are homogeneous
polynomials of degree y of the variable (£; ) € R". Suppose that the hyperplane
t = 0 is not characteristic for the polynomial & (§; t) = det P(§; 7).

A homogeneous operator P (D) is called hyperbolic if the equation #(§;t) = 0
has only real t-roots for all £ € R™"~1, If these t-roots are, in addition, pairwise
distinct, then the operator P (D) is hyperbolic in the sense of Petrovsky [Pet37].

Obviously, if all the T-roots of the polynomial £ (€; 1) are real and condition 1
of Theorem 1.2.2 (or condition 1 of Corollary 1.2.13) is satisfied, then these roots
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must also be roots of all entries of the matrix S. Therefore, we have .#Z(£;1) =
Pi(E:1) = P(E;1)/ po(§), where po(£) is the leading coefficient of the polyno-
mial &. Hence, 4 (§;7) = 1forall (§;7) € R™.

Thus, if P(D) is a homogeneous hyperbolic operator, it is reasonable to consider
only estimates corresponding to the case N = 0. Below we formulate a result related
to such estimates which follows from Corollary 1.2.14.

Let v = (v1,...,v,) be a vector with nonnegative integer coordinates and u =
(u1,...,um) € CF(R7). We set

m
1y = D Huslll3,
j=1

where [[| - |||, is the norm in L;j (R7).

Proposition 1.4.6. Let the weight B(§) be a homogeneous function of the variable
£ e R let R(E;7) = {R1(§;7), ..., Rn(£:7)} be a homogeneous 1 x m matrix
of polynomials of the variables (§;t) € R", and let P(§;7) = {Py;(§;7)} be a
homogeneous hyperbolic m x m matrix. The estimate

IR(D)ul%i/» < CIP(D)ull; (1.4.23)

holds for all u € C§°(R'}) if and only if the following conditions are satisfied:
1. R(§; 1) is a matrix of the form

RE ) = RYED = (@ P& 1), o) Prm (D)), (1.4.24)

where ri.(§) (k = 1,...,m) are homogeneous polynomials of the variable
£ e R

2. The inequalities
BY2(&)|r(£)| < const|E]*  (k=1,....m) (1.4.25)
are fulfilled for all £ € R*™1,

Proof. Since P4 (§;1) = ZP(§;1)/po(£), condition 1 of Theorem 1.2.2 is equiv-
alent to condition 1 of this proposition. We replace the norm | - ||, in the formu-
lation of Corollary 1.2.14 by the norm ||| - |||». This is equivalent to replacing the
matrix (1.2.25), which appears in condition 1 of Corollary 1.2.13, by the matrix
R(&; 1) = {§x(r + i|§[)"*)}. Using representation (1.4.24), we find that condi-
tion 1 of Corollary 1.2.13 becomes after this replacement condition 2 of Proposi-
tion 1.4.6. O

To conclude this subsection, we note that for nonhomogeneous hyperbolic oper-
ators it is not necessary to restrict to the the trivial case N = 0. Likewise, it is not
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necessary to assume that the matrix R is proportional to some row of the matrix P
(see (1.4.24)).
For example, let (£; 7) € R? and

[ it i€ —1

P;7) = ( E-1 ir ) (1.4.26)

Thendet P(&;7) = P(£;1) = —12+£242iE—1 is a polynomial whose T-roots are

equal to +(£ +1i). Hence, the imaginary parts of these roots do not depend on £ € R!.

Therefore, the operator P (D) is hyperbolic (see, for example, [H63], pp. 178-180).
We claim that for all u = (u1,uz) € C°(R?) the estimates

s 2 + ) < € (I POyl + fur}?)

) (1.4.27)
lurl? + sl < € (IPDYI? + (o))

hold.
Indeed, let, for instace, R(£; 1) = {1,0}. Since Z;+(§;t) =t — (§ +1) and

reo-(,_5 )

we get S(§; 1) = {it, 1 —if} and .#Z (€, 7) = 1. One can easily verify that |S(&; 7)| <
|2 (&; 7)| for all (§;7) € R2. Hence, N = 1 and we can use Corollary 1.2.11 with
B()=1.

We set Q(&;t) = {1,0}. Then T(§;7) = S(€; 1) and conditions 1-4 of Corol-
lary 1.2.11 are satisfied, and «(§) = 1. Since {(§) = & + i, condition 6 of Corol-
lary 1.2.11 is also satisfied.

Calculating the 1 x 2 matrix 7_(§; 7) and taking into consideration the equality
P_(&;1) =1+ (E+1), we get

T-&:n) n)

Therefore, condition 5 of Corollary 1.2.11 is satisfied.
It is clear that we reach similar conclusions by taking Q(§;t) = {0, 1}. Hence

the inequalities
lurl> < € (1P + fur}7)

12 < € (1P + fuz)’)

hold for all u = (uy,uz) € C°°(R ).
Applying the same arguments to the matrix R(§;t) = {0, 1}, we find that the
right-hand sides of inequalities (1.4.28) are also majorants for ||u- .

(1.4.28)



80 1 Estimates for matrix operators

Notice also that for R(§; t) = {t, 0} we obtain S(§; ) = t{it, 1 —i€}. Therefore,
IS(E:€)| = O(|€)?) as |€] — oo. On the other hand, we have 22 (§;£) = O(|€]).
Hence, if P is the matrix (1.4.26), then for any matrix Q of boundary operators the
estimate

|Danr? < € (IPD)u) + [Q(D)u’) (1.429)

does not hold for all u = (u1,uz) € C3° (R%r). Failure of the estimate (1.4.29)
is, of course, a consequence of the hyperbolicity of the operator P(D) (cf. Proposi-
tion 1.4.4 on conditions for the validity of the estimate (1.4.14) for the elliptic operator
of the Cauchy—Riemann system).

1.4.6 Operators of first order in the variable ¢. Scalar case

In this subsection we consider estimates of the types (1.3.16) and (1.2.12) in the case
where m = 1 and P (D) is a first-order operator with respect to the variable ¢. It will
be shown that criteria for the validity of such estimates can be formulated explicitly
in terms of the coefficients of polynomials #, &, and Q.

Let ro(§), r1(§), po(§), p1(£), and ¢(&) be measurable functions that are locally
bounded in R”~! and grow no faster than some power of |£| as |£| — oco. Suppose
that po(£) is not equal to zero a.e. in R*~!. We set D = (Dy; D), where D; =
—id/dt and Dy = (—id/0dxy,...,—10/9dx,—1).

Proposition 1.4.7. Let n € RY, let rop1 — r1 po # 0, and let Im (pop1) < 0 a.e. in
R"™L. The estimate

I 0oDD; + 1D Ul < €I a0+ D)l + fa(D ol

(1.4.30)
holds for all u € C§°(R'}) if and only if the inequalities

BY2(&)|rop1 — r1pol
< const min{[Im(po p1). (1 + [€[*)*/?|g| Im(po p1)"/?}. (1.4.31)
BY2(&)|ropy — r1po| < const |[Im(pop1)|

are satisfied for almost all € € R"™1,

Proof. We show that Proposition 1.4.7 follows from Corollary 1.2.11 if in the for-
mulation of the latter we replace the estimate (1.2.1) by the estimate (1.3.16), in-
equality (1.2.21) by inequality (1.3.19), and the matrices S and T by the polynomials

Z(E:7) = ro(§)T + r1(§) and Q(§: 1) = ¢(£), respectively.

Indeed, a direct calculation shows that

roT + 11
PoT + p1

_ |r1po —rop1l + |r1po — ’01’1'7 (1.4.32)

2|Im(po p1)|

sup
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provided ro p1 — r1 po # 0. It is also obvious that in this case

MET) =1, %(s;r):w% P_(g17) = 1,
0

() =-2 QE:n=o.
Do

Thus, conditions 5, 2, and 3 of Corollary 1.2.11 are evidently fulfilled (the latter one
is satisfied since ¢(£) # 0 a.e. in R*™!). The function «(£), defined by (1.2.19), is
here equal to

o) = L2107 (1.4.33)

Poqo
Finally, using (1.4.32) and (1.4.33), we conclude that inequality (1.3.19) and con-
dition 1 of Corollary 1.2.11 are equivalent to inequalities (1.4.31). O

Proposition 1.4.8. Let Im (pgp1) = 0 a.e. in R"™. The inequality
I (ro(D2) Dy + (D) ullga/2 < Cl (po(Dx)Di + pr(D))ul®  (1.4.34)
holds for all u € Cg°(R'}) if and only if the conditions

rop1 —ripo =0, (1.4.35)

B'2(&)|ro| < const | pol (1.4.36)

are satisfied a.e. in R*™ 1,

Proof. The statement of Proposition 1.4.8 follows from Theorem 1.2.3, if in the for-
mulation of this theorem we replace the matrix S by the polynomial Z = rot + ry.
Indeed, the equality Im(pop1) = 0 implies the relation &4 (€;7) = © + p1/po-
Thus, conditions (1.4.35) and (1.4.36) are equivalent to conditions 1 and 2 of Theo-
rem 1.2.3, respectively. (|

Proposition 1.4.9. Let rop1 — ripo # 0 and Im(pop1) > 0 a.e. in R*"™L. The
estimate (1.4.34) holds for all u € C§°(R'}) if and only if the inequality

BY2(£) (Irop1 — r1pol + |ropr — 11 pol) < constIm(pop1) (1.4.37)

is fulfilled a.e. in R"™ 1,

Proof. We claim that this proposition follows from Remark 1.2.4 (see Subsection
1.2.2). Indeed, since Im(pgp1) > 0, the unique z-root of the polynomial &2 lies in
the half-plane Im ¢ < 0 (¢ = 7 +i0). On the other hand, it follows from (1.4.32) that
condition 2 of Theorem 1.2.3 is equivalent to inequality (1.4.37). O
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1.4.7 An example of a second-order operator w.r.t. ¢

In this subsection we consider in detail an example of a second-order operator w.r.t.
the variable t, which was already discussed in Remark 1.3.10 (see Subsection 1.3.3).
Here we prove all the statements about this operator which were already used in that
remark.

Proposition 1.4.10. Let p = (j1, o) € R?, let Z(£;1) = 1, and let

PE1) = (v —ix1(§))(r —ina(§)).

Suppose also that x;(§) > 0 (j = 1,2) and x1(§) # x2() for almost all § € R"~1.
Set Q(&;7) = {Q1(5;7), Qa(&; 7))}, where Q;(§;7) = v —ix;(§) and j = 1,2. The

estimate

lul® < € (12Dl +{QeDyul,) (14.38)
holds true for all u € Cg°(R".) if and only if condition (1.3.18) and the inequality
(x1%2) "' < const (1.4.39)
are satisfied a.e. in R"~1,

Proof. We show that this proposition follows from Corollary 1.2.13 if in this corol-
latyweputm =1, B(§) =1, R(§;7) =S¢ 1) =1,

ren-aen- &3}

= (U1, u2), and v = vy = 0 (and, consequently, R = 1).

_ Indeed, in the example under consideration we have Z(§;7) = 2, (§;7) =
P4 (£, 7). Therefore, condition 2 of Theorem 1.2.2 is automatically satisfied, while
condition 3 of Theorem 1.2.2 follows from the assumption x; (§) # x5 (). Thus, con-
dition 2 of Corollary 1.2.13 is also satisfied. Similarly, condition 3 of this corollary is
fulfilled, because m = 1. Obviously, the equality

2

AED) 1 @)

P ;1)

sup

holds, and, consequently, condition 1 of Corollary 1.2.13 is equivalent to inequality
(1.4.39). From the equation & = £, we obtain &_ = 1, which means that
Q- = T- = 0. Hence, condition 4 of Corollary 1.2.13 follows from inequality
(1.2.30). We show that this inequality is equivalent to condition (1.3.18).

First, we note that in the case m = 1 representation (1.2.16) for the 1 x N matrix
G(&: 1), related to the estimate

12Dyl 2 < € (12Dl + Qo).
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takes the form ) .
G:1)= A ETHET(DE) . (1.4.40)
Here H(&; 1) is the 1 x N matrix {Hyo (§; )} with entries

Hoo(E:1) =01y 1,92”(5; LN PHED(T - 5E) 7 (144D

y=o V"
and (D (E))_1 is the inverse of the matrix

DE ={QPELE))  (e=1....0=0() =0, ....k(§) 1
a=1,....N; BR=R|M; Q= Qu/ M).
In the considered example we have Qg (&; ) = t — ixy (€). Therefore,
. _ 0 (¢ — 1)
o6 = ( i) 0 )

and

: -1 _ 0 —i(}{l — %2)_1
(P®) = ( i — x2)7! 0 |

On the other hand, the equalities Z = 1, &, = 32+ =% = (t —1(§))(x —

ix2(£)) and equations (1.4.41) imply .Z (§;7) = 1 and H(&; 1) = {t —ix1, T —ixa2}.

Therefore, it follows from (1.4.40) that

G(E:1) = {i0ey — 2x2) Nt —inq), =101 — 22) "z — i22) ). (1.4.42)
Finally, calculating the integral on the left-hand side of (1.2.30), we conclude that
inequality (1.2.30) (with B(§) = 1) is equivalent to (1.3.18). O

At the end of this subsection, we show that condition (1.3.15) (with B(§) = 1) is
equivalent to (1.3.17) (it was noted in Subsection 1.3.3 that condition (1.3.15) is, in
general, not necessary for the validity of (1.3.16)).

Indeed, since m = 1, it follows from the definition of the polynomials &, Qq,
and Q, given in Proposition 1.4.10 that the matrix 7 has the form

Ty = ( oy ! =27 (31 + 22) 7! )

=2 (1 + 23)7 ! ey !
and .7_ = 0. Consequently, we have

_ x2 (21 + 22)? a1 (1 + 22)°
W 0 — )2+ EPM T (g — x2)2(1 + [E]P)H2
and tr 7_(,) = 0. On the other hand,
R+ (E;7) 1
Py&:1) |2 1)

Rewriting condition (1.3.15) with these equalities in mind, we arrive at (1.3.17).

ntr(fﬁr_l)

2

sup = sup = (1x2) 2.
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1.5 On well-posed boundary value problems in a half-space

In this section we establish necessary and sufficient conditions for the unique solvabil-
ity of the boundary value problem (1.5.4)~(1.5.5), where exp(B1) - f(x:1) € L*(R")
for some B € R' and ¢ = (¢1,....¢n) € HLORY) (0 = (U1,....uN) €
RY). We seek a solution to this problem in the class of functions u(x;¢) such that
exp(Br) - u(x:1) € W 7 (1),

We denote by WZJ: 2 J(R ) the closure of the space Cy°(R’}) w.rt. the norm

lv: W 27 (R™)|| defined by

lo: W ST @12 =Y D%, 2 Hs (R (1.5.1)

lee]<J

with s € R! and an integer J > 1. It is well known that for the elements v €

ZJ: b / (R ) there exist the successive traces

Dlv|,_y € s jmqn@RL) (G =0,1,....J —1).

Let Z(&;:1) and Qu(é:7) (@ = 1,..., N) be polynomials of the variable 7 € R!
with measurable coefficients that are locally bounded in R”~! and grow no faster
than some power of |&| as |§] — oo. Suppose that the leading coefficient pg(£)
of the polynomial & is not equal to zero a.e. in R"~!. Suppose also that J =
ord Z(E;t) = 1land J, = ord Qu(€:7) =J — 1 (@ =1,...,N)ae. inR"!,

For any f € R! we denote by [Z(§; 7 + Bi)], the polynomial of T with the
leading coefficient 1, the roots of which (counting multiplicities) coincide with the
7-roots of the polynomial &2 (§; t + Bi) in the half-plane Im¢ = 0 ({ = © + io). We
set

(P&t + B = P(E T+ Bi)/po(§) [P (5T + By
and define the polynomials [Qq (&§; 7 + Bi)],. by the partial fraction decompositions
(w.rt. 7):

Qu€:r+ ) _ [QuEir+ By | [Qu(E:z + D]
PEr+p)  [PE+BYL [P2ET+BI . (1.5.2)
(x=1,...,N)

We consider also the polynomials [,%’ (T + ,Bi)] 4 Which are defined by the
following partial fraction decompositions (w.r.t. 7):

(r + pi)/ i) 4 (% (& + BD)] N [%;(&: T+ Bi)]_
PET+p) [Z2¢E:c+ B, [PET+BI . (153)
(J=0,1,....N)

Itis obviousthatc;(§) =0(j =0,1,....,J—1)andcy = [po(&)]7". Itis also clear
that in the case B = 0 we have [Z(§; 7))L = Z+(6:7), [Qu(€; 7))L = Qux(§;7),
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and [Z;(§:0)], = Zjx(&1). Here Pi(€:7), Qua(§;7) and Zj1 (& 7) are
the polynomlals defined in Subsections 1.0.1, 1.0.2 by the polynomials & (§; 1),

Qq(£;7) and Z; (£;7) = T/, respectively.
Consider the Hilbert spaces L*(exp(8t);R”) and WZJ;r 57 (exp(Br); R” %) with
the norms

If 2 L2 (exp(B1): R%)|| = [lexp(Bt) - f : LA(R™)]
and
lu = W5 5 (exp(B): RL)|| = [lexp(Bt) -u = W 37 (R,

respectively.

Let 9 = (¢1,...,9n) € FHORY) (0 = (U1,...,un) € R") and f €
L?(exp(Bt);R” ) with some B € R'. We say that a generalized function u is a
solution of the boundary value problem

P D= f(x;t) (xeR" t>0), (1.5.4)
Qu(D)u|,_y =¢alx) (xeR" N a=1....N), (1.5.5)

if there exists a number s € R! such that u € WZJ;L e I (exp(B1); R" ") and u sat-
isfies equation (1.5.4) and boundary conditions (1.5. 5) in the sense of generalized
functions'.

The boundary value problem is called well-posed in the pair of spaces

[W5707 (exp(Br)s R, L2 (exp(Br)i RY) x 5, (0RY) |

if forany f € L*(exp(B):R") and ¢ € ., (9R") there exists a unique solution of
the problem (1.5.4)—(1.5.5) satlsfymg the estimate

llu = W5 (exp(B): RL) |

(1.5.6)
< const |1/ : L2(exp(Br: R + ¢, ) -
Theorem 1.5.1. Assume that the equality
ord[Z(E;t + Bi)]ly =N ae in R'", (1.5.7)

holds for some B € R, and for some s € R! the polynomials P (£;t + Bi) and
Qe (&; T+ Bi) satisfy for all T € R and almost all §¢ € R"™! the following conditions:

7)) < const(1 4 [HU=D2\ 2 c + )] (j=0.1,....J); (1.58)

the polynomials Qu(§;7 + Bi) (¢ =1,...,N), are linearly

independent modulo [ (&; T + Bi)] : (1.5.9)

19The boundary values are understood in the sense of traces.
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L

(1+ €)Y |00, GaolE: T + Bi) [Qu(E: 0 + B (
(26 + il (27 + B[

8\8
=

//\Za { Gas (67 + B [Qa(E: 1 + D] 1 o (1:.10
n
S I 2@+ B PG+ B[
< const(1 + [¢[2)™
7’% (1 + 16 Gao(: 7 + B + [Gas (E: T+ B
(1 + [§[P)He| [P (&5 T + B4 |2 (1.5.11)

—0o0

< const(1 + [£*) 7%,

where Gyo(&; T + Bi) are polynomials (in t) of degree at most N — 1, satisfying the
identity

N
Y GaolE: T+ B [Qu(En+ Bl = (n—1) 7"
a=1
< A[P(En + By [Zo (i + By — [Pt + B, [BoEn + B}
(1.5.12)
here Gyj(§;T1 + Pi) denote the reminders of the division of the polynomials
(t + Bi)! Guo(&; T + Bi) by [P(E; 7 + Bi)l,. The polynomials [Qu(&; T + Bi)] 4
and [#o(&; T + Bi)], are defined by decompositions (1.5.2) and (1.5.3) with j = 0,
respectively.
Then the boundary value problem (1.5.4)—(1.5.5) is well-posed in the pair of
spaces

(W30 (exp(Br); R, L2 (exp(Br)i RY) x A (0.

Conversely, if condition (1.5.7) is satisfied for some B € R! and inequality (1.5.6)
holds for some s € R and allu e sz;rf J(exp(,Bt) R% ), where f(x;t) and p(x) =
(@1(x), ..., N (X)) are the right-hand sides of (1.5.4) and (1.5.5), respectively, then
assumptions (1.5.8)—(1.5.11) are fulfilled for all t € R and almost all £ € R"™1.

Proof. Without loss of generality, we may assume 8 = 0. Indeed, the case of
arbitrary B € R! is reduced to the case B = 0 by the substitution u(x;t) =
exp(—pBt) - v(x;t). After this substitution the argument —id/dz is shifted by fi in
all operators.

Suppose that conditions (1.5.7)—(1.5.11) are satisfied for 8 = 0. We prove the
well-posedness of the problem (1.5.4)—(1.5.5) in the pair of spaces

[ Wy T (RY), L2 (RY) x A5, (R, )]
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We represent the polynomial &2, (§; 1) as

1)
240 = [ [ 5@)<®. (15.13)

o=1

From condition (1.5.7) it follows that k1(§) + --- + k) (§) = N, while inequality
(1.5.8) guarantees that Im¢,(§) > 0 (0 = 1,...,1(§)) a.e. in R" "1,
Consider the N x N matrix

D) = {QL (5: ¢, (8)}. (1.5.14)

where the rows are labeled by the index «, and the columns are labeled by the in-
dices g, 0 = o (o). These indices take the valuesa = 1,...,N; 0 = 1,...,1(§),
ando = o0(0) = 0,1,...,ko(§) — 1. The assumption (1.5.9) is equivalent to the
nondegeneracy of the matrix (1.5.14) for almost all £ € R*~1,

Let f € L? (R%) and ¢ € 7, (0R", ). The solution (in the sense of distributions)
of the boundary value problem (1.5.4)—(1.5.5) will be constructed as follows. For all
t = 0 and almost all § € R"~! we set

1(§) ko(§)—1
+ 30N oo®)i0)7 exp(itp(€)r).  (15.15)

D) = F [Fmg@;z)}
o=1 o0=0

P(§:1)
where g(§;1) = O fort < 0, and g(&;1) = f(é;t), and {c,s(§)} is the uniquely
determined solution of the system

1(£) ko(§)—1
Yo Y QVEC®)co(®)

o=1 o0=0

R (1.5.16)
= 0u®) - = [ S s
(x=1,...,N). )

Using representation (1.5.13) and equality (1.5.16), we obtain by direct differen-
tiation of (1.5.15) w.r.t. ¢ that

P (E:—id/d)i(E: 1) = f(&:1) (15.17)
for all # > 0 and almost all £ € R 1. and
Qq 6:—id/dt)u(§:1)|,—9 = Pu(£) (1.5.18)

a.e. in R"~1. Hence, the inverse (§ — x) Fourier transform u of the function i is a
generalized solution of the boundary value problem (1.5.4)—(1.5.5).
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Further we show that u € WZJ’;L, ; o (R%) and the norm ||u : WZJ; ;V’J (R%) || admits
the estimate (1.5.6) (with B = 0) forany s € R! satisfying conditions (1.5.8), (1.5.10)
and (1.5.11) (B8 = 0).

Let G4;j (§; 7) be the polynomials (in ) of degree at most N — 1 that satisfy iden-
tity (1.0.24)*° with Z(§:1) =t/ (@ = 1,...,N; j =0,1,...,J)) forall t € R!
and almost all § € R*~!. It follows from Remark 1.1.16, Lemma 1.1.15 and Propo-
sitions 1.1.26 and 1.2.8 that these polynomials admit the following representation of

the type (1.2.16):
Gj(E:1) ={Gyj(5:0)) = H;(£;1)D1(§) (j=0,1,....J). (15.19)

This representation is obtained, if we putin (1.2.16)m = 1, #Z(§;7) = 1, ‘i’;l & =
D~1(£), where D(£) is the matrix (1.5.14), and define the matrix H,(&; t) by setting
in(12.15ym =1, S(€:7) = t/, and P4 (£:1) = P4 (£: 7). Since ord Goj(&:7) <
N — 1, it follows directly from (1.5.19) that the polynomial G4; (§; 7) is equal to the
reminder of the division t/ Ggo(£;7) by Z4(E;1) (@ =1,...,N;j =0,1,...,J).

Differentiating (1.5.15) w.r.t. ¢, calculating the Fourier transform of the deriva-
tives of the second term of this equation and taking into account (1.5.16), we obtain
for all # > 0 and almost all £ € R"~! the representation

Vagn
TGy
3 Guen) | ! [ Qo)

o P @0 | Var ) P

2E O] L
VIPEO] (Fog @) + =

(1.5.20)

(Fi—>y8(&:1))dn — ¢u(£) }

where Gy (§; 7) are the polynomials defined by (1.5.19)%!.

Using the Parseval identity and the definition of g(£;¢), we conclude that repre-
sentation (1.5.20) implies the inequalities

o0 2
/ dt < const|:(sup
—o0

YN Gy (E:1)Qu—(E: 1)
PiE0)P_(En)

® N
+ [ S a gy

20In particular, for B = 0 the polynomials Gy (£; T) satisfy the identity (1.5.12).
2IThe attentive reader will certainly note that the calculation referring to the second summand of equation
(1.5.15) has already been carried out in the proof of Lemma 1.1.12 (see (1.1.37)—(1.1.39) as well as (1.1.31).

‘L'j 2

P ;1)

)
ot/

2 [ee)
drdn) / | £ (&:0)dt (1.5.21)
0

Gaj(g:; 7)
Py(;7)

2 N
dry (1+ |s|2)“a|¢a(s>|2}
a=1
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for almost all £ € R"~!. On the other hand, it is obvious that the norm defined by
(1.5.1) is equivalent to the norm whose square is equal to

2

} it

Hence if s € R! satisfies conditions (1.5.8), (1.5.10), and (1.5.11) with 8 = 0, then
the estimate (1.5.6) (with 8 = 0) of the solution of boundary value problem (1.5.4)—
(1.5.5) follows directly from inequalities (1.5.21) for #1(£;¢) and 07 u(£;¢)/0t”, and
the problem (1.5.4)—(1.5.5) is well-posed in the pair of spaces

ord

/dr / (1 + €y {(1 L IERY P +
0 1

(Wil ), 120 x A (R

We proceed to the proof of the second part of Theorem 1.5.1. Suppose that for
B = 0,somes € R, and all u € WZJ;r h J(]R ) inequality (1.5.6) is satisfied,
where f(x;1) and ¢(x) denote the right-hand 51des of equations (1.5.4) and (1.5.5),
respectively. Then, the estimates

a’
/ /(1+|§|2)S“ / ’gg of dr < const (| 2(Dyull? + (Q(D)u}],)
v (1.5.22)
Qi1(D)
(j = 0,1,...,J) hold true for all u € C5°(R”%). Here Q(D) = :
Qn (D)

Each of these estimates is a special case of the estimate (1.2.27), specified by m = 1,
v =0 %ZE7) =1/, and B) = (1 + [/ (j =0,1,...,J). Thus,
taking in conditions (1.5.8)—(1.5.11) 8 = 0, we see that these conditions follow from
conditions 1, 2, and 3 of Corollary 1.2.13. O

1.6 Notes

The questions discussed in Chapter 1 were studied in the case m = 1 in the authors’
paper [MG75], where it was also mentioned that the established theorems can be
generalized to matrix operators in spaces of vector functions (see [MG75], p.242).
Such a generalization was carried out by the authors in [GMS85]. Some results of
[MG75] were announced in [GM72].

Section 1.0 A priori estimates for differential and pseudodifferential operators (un-
der various assumptions on the type of the operator, its coefficients and the domain
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in R", where the functions u; are defined) were treated by many authors. Without
touching on results, obtained in this direction for concrete types of operators, we men-
tion here several papers on estimates for general differential operators with constant
coefficients in the spaces of vector-functions that are directly related to our topic.

In the papers of B. Fuglede [Fug61] and B. P. Paneyakh [Pan61], the well-known
result of L. Hérmander [H55] on L?-estimates for minimal operators in a bounded
domain or in R” is generalized to certain systems of differential operators (in [Fug61]
deals also with overdetermined systems). Further development of these results —
necessary and sufficient conditions for the validity of estimates in interior of a domain
for certain systems of operators acting in vector spaces H* — can be found in the
article of B.P. Paneyakh [Pan66].

Necessary and sufficient conditions for the coercivity of integro-differential forms
in spaces of vector functions satisfying homogeneous boundary conditions were ob-
tained by D. G. de Figueiredo [Fig63].

In [Sch64a] M. Schechter established sufficient conditions for the validity of in-
equality (1.0.1) for all u € C§°(R’,) under the assumptions that R(D), P(D) and
Q(D) are matrices of differential operators with constant coefficients, & (&;1) =
det P(&; 1) # 0, and the 7-roots of the polynomial &?(§; t) are not real. The proof
of these results in the scalar case (m = 1) is given in [Sch64]. Judjing by remark at
the end of the article [Sch64a], Schechter intended to publish some generalizations of
these results; but we have no references to such publications.

The role of the matrix P° n the study of a priori estimates for matrix differential
operators has already been noted by A. A. Dezin in [Dez59]. The matrix P°¢ figures
also in the formulation of results in the papers [Fug61], [Pan61], [Pan66], [Sch64a].

Section 1.1 The main results of Section 1.1 were established by the authors in
[MG75] for m = 1 and in [GMS85] for arbitrary m.

An assertion of the type of Lemma 1.1.1 was proved for m = 1 in the authors’
paper [GM74] (see [GM74, Lemma 7]), where one can find also an assertion of the
type of Lemma 1.1.7 for m = 1 (see [GM74, Lemma 5]). Lemma 1.1.5 withm =1
was proved by the authors in [GM74] (see [GM74], item 3 in the proof of necessity of
the conditions of Theorem 1.2.2). Lemma 1.1.18 is also proved therein (see [GM74,
Lemma 2.1)).

The integral representation (1.1.31) was verified for m = 1 in [GM74] (see
[GM74, Lemma 2.2]). The identity (1.1.40) for the matrix G(t) was proved by an-
other method in [GM74] (see [GM74], Lemmas 1.3 and 1.2).

Finally, Theorems 1.1.19, 1.1.29, and 1.1.30 were proved in [GM74] form = 1
(see [GM74], Theorems 2.1, 2.2 and 2.1/, respectively).

Section 1.2 The main results of Section 1.2 were obtained by the authors in [GM74]
for m = 1 and in [GMSS5] for arbitrary m. Also in [GM74] a version of the estimate
(1.2.1), corresponding to the case B(§) = 1, is considered. Instead of the norm (( . )),
[GM74] uses the norm (( . ))u’ so that the results of [GM74] (see Theorems 3.1, 3.2

and 3.1’ therein) are particular cases of Corollaries 1.2.13 and 1.2.14 of this section.
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The result of Proposition 1.2.15, concerning the case m = 1, is also established in
[GM74] (see [GM74, Proposition 3.1]). The results of Subsection 1.2.7, concerning
the case of arbitrary m, are published here for the first time.

Section 1.3 The results of Section 1.3 were established in [GM74] and [GMS85].
The proofs presented in this book are almost identical to the corresponding proofs
in [GM74], concerned with the case m = 1. The only exception is the proof of
Theorem 1.3.6 which follows directly from Theorem 1.3.3 just for m = 1 (see Corol-
lary 1.3.7).

Condition (1.3.11) (see Remark 1.3.5) was apparently considered for the first time
by J. Peetre [Pee61]. Under the assumption that & (£; t) is a hypoelliptic polynomial,
Peetre showed that condition (1.3.11) is necessary and sufficient for the validity of
certain estimates for solutions of the problem 2(D)u = f, D] u| im0 =00 =
0,1,..., N — 1) in the half-space R,

The proof of Proposition 1.3.12 uses some arguments found in the work of
M. Schechter [Sch64a] (see [Sch64a], p. 424 and p. 433). The result of Remark 1.3.13
belongs to M. Schechter (see [Sch64a], p. 426 and p. 433).

Section 1.4 The results of Subsections 1.4.1-1.4.5 were established in the authors’
paper [GMS85], and the results of Subsections 1.4.6—1.4.7 were obtained in [GM74].

An estimate of the type (1.4.9) for quasielliptic systems in a class of the Sobolev
spaces with fractional exponent (Slobodeckij spaces) was studied by K. K. Golovkin
and V. A. Solonnikov [GolSol68]. The class of spaces considered in [GolSol68] cov-
ers the Holder spaces, but not the L?-spaces. From this point of view, Corollary 1.4.2
can be considered as a supplement to Theorem 19 from [GolSol68].

Many authors have studied estimates of the type (1.4.9) for solutions of elliptic
systems. Among the works devoted to this topic we mention those by of S. Agmon,
A. Douglis and L. Nirenberg [AGN64], L. P. Volevich [Vol65], and V. A. Solonnikov
[Sol64]. Works dealing with general parabolic and quasielliptic systems have already
been mentioned in Subsection 1.4.1. For the scalar quasielliptic P(D), results similar
to Corollary 1.4.2 were obtained by V. T. Purmonen ([Pur77] and [Pur79]), who used
Schechter’s method ([Sch63] and [Sch64]) and results by T. Matsuzawa [Mat68].

Section 1.5 The result of this section is published here for the first time. It is close
to the papers [Dik62], [DikSi60a], [DikSi60b], [Pal60] (see also [Sil65, Chapter IV])
of G. V. Dikopolov, V. P. Palamodov and G. E. Shilov, where the general question
of describing well-posed problems in a half-space for equations and systems solved
with respect to the highest derivative w.r.t. the variable ¢ is discussed. Well-posed
problems for equations not solved with respect to the highest derivative w.r.t. ¢ were
studied by A. L. Pavlov [Pav77].

In the papers [DikSi60a], [Pal60] and [DikSi60b], solutions are sought in the
classes of distributions that depend on a parameter ¢ > 0 and belong to the space 7
foreacht = 0. The space .77 consists of ordinary functions that are square integrable
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in the whole space R”~! and together with their generalized derivatives w.r.t. 7 up to
the order J — 1 grow in J¢ as t — 400 no faster than a certain power of z.

Well-posed problems in spaces that contain growing functions (for example, in
the space S”) were studied in [Dik62] and [Pav77].

We also note that the problem considered in this section is regular (the definition
of regular problem can be found, for instance, in [Sil65], p. 253), since we assume that
condition (1.5.7) is satisfied. This enables us to prove (under additional conditions
(1.5.8)—(1.5.12)) its well-posedness in the pair of spaces

(W37 texp(pry: R, L2 (exp(Br): RY) x A (IR



Chapter 2
Boundary estimates for differential operators

2.0 Introduction

2.0.1 Description of results

In this chapter we formulate necessary and sufficient conditions for the validity of the
estimate

m N
(RDYWYy12 < € | NP P + 3 {QuDIu)? 20.1)

a=1

u=u(x;t) € CgRY),

and give the exact description of the “trace space” R(D)u | (—o for elements u belong-
ing to the completion of the space C3°(R’}) in the metric Y, || P; (D)ul|>.

We assume that R(§;7), Pj(§;7) and Qu(&; v) are polynomials of the variable
t € R! with complex measurable coefficients that are locally bounded in R*~! and
grow no faster than a power of |£| as |€| — oo. Itis also supposed that the inequalities

0 <ordR(¢; 1), ord Qy(&;7) <  max ord Pj(§;7)— 1
<jsm

hold a.e. in R"~1,

A criterion for the validity of the estimate (2.0.1) is established in Section 2.2. To
formulate this criterion we need the polynomials Hy (¢;t) and T1(§;7), ..., Tm(&; 1)
(in 7), which are defined as follows:

Polynomials Hy (€; 7). We set
Y|P E: DI = Hy (i) H-(§: 7). (2.0.2)
j=1

Here, Hy (§;7) = ZSJ:O hs ()77 75 is a polynomial with roots lying in the half-plane
Im{ =0 =1t+io0),and H_(§;7) = Hi(&;1). We assume that 1p(§) # O a.e. in
R

Polynomials T (§; t). For a point § € R"~! with ho(§) # 0 we denote by T4 (£; 1)

the greatest common divisor of the polynomials H4(&;71), P1(§;7),..., Pn(é;T)
with leading coefficients equal to 1. Suppose that there exist functions B, (£) such
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that

def

Mé)—R@ﬂ—Ejm@wA&ﬂEOmMHA&ﬁ) (2.0.3)
a=1
ae. in R*71,
Denote by T;(§;7) (j = 1,...,m) the polynomials in 7 (ord 7;(§;7) < J — 1)
that satisfy for all T € R! and almost all £ € R"~! the following conditions:

Ti(;1)=0(modM4(5;7)) (j=1,...,m); (2.0.4)
DEDH-(§:7) = ) P& 0)T;(E7); (2.0.5)

j=1
P& DT (E7) = Pj(E 0T ) (mod M4 (8 1) H (€5 7)) (2.0.6)

(@ # j;i,j =1,...,m;condition (2.0.6) is omitted if m = 1).

From the results of Subsection 2.2.1 (Lemma 2.1.1) it follows that for every N -
tuple of functions B4 (§) satisfying condition (2.0.3), the polynomials 7 (§; 7) exist
and are uniquely determined by conditions (2.0.4)—(2.0.6).

In Subsection 2.2.1 (Theorem 2.2.2) it is stated that the estimate (2.0.1) holds true
if and only if the following conditions are satisfied:

1. There exist functions B¢ (£) such that relation (2.0.3) is valid a.e. in R* !,
2. The inequality

® §m T (&; 2 N
L [ 2SO s e b <o
a=1
(2.0.7)
holds true. Here the infimum is taken over all N-tuples {84(£)} satisfying
(2.0.3), and T (§; T) denote the polynomials determined by conditions (2.0.4)—
(2.0.6).
The left-hand side of (2.0.7) is the sharp constant in (2.0.1).

B
i © ol Vo J Y- PP

Some corollaries of this result are derived in Subsection 2.2.2. In Subsection 2.2.3
we consider an inequality of the type (2.0.1) with an additional term on the right-hand
side. It turns out that this inequality (cf. (2.2.28)) remains valid if we replace all
operators by their principal homogeneous parts. Finally, an example of estimate for
operators P; (D) of first order w.r.t. ¢ is discussed in Subsection 2.2.4.

The main tool for obtaining the above-mentioned results is the theorem on the
sharp constant in an inequality of the type (2.0.1) for ordinary differential operators
on the semi-axis ¢t = 0 which is proved in Subsection 2.2.1.

In Subsection 2.2.3, a special case of inequality (2.0.1), namely

(R(D)u) B2 < CZHP (Dyul>,  ueCERL) (2.0.8)
j=1
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is studied. From the main result of Subsection 2.2.2 it follows that inequality (2.0.8)
holds true if and only if

R(:7) =0 (mod 4 (§;7)) ae. inR"™, (2.0.9)
and
sup B(§)A(§) < oo, (2.0.10)
SGR"_I
where

1 ELInEDP
A@)_zn_[o S P EOP 01D

and T (§; 7) are the polynomials (of 7) of degree at most J — 1, satisfying conditions
(2.0.4)—(2.0.6) (with D(&; 7) replaced by R(&; 7) in condition (2.0.5)).

The aim of Section 2.3 is to prove the converse of this result, namely the con-
tinuation theorem (Theorem 2.3.8). Here it turns out that if R(D), P;j(D) (j =
1,...,m) are differential operators with constant coefficients, then the “trace space”
R(D)u ‘ ;—o Of the elements u belonging to the completion of the space C5°(R"}) in
the metric Z?:l | P; (D)ul|?* coincides with closure of the linear space of functions
@ € C§°(R™!) that satisfy the inequality

2 Gl
ol = | g <o

Rr—1

w.r.t. the norm (( . »A—l/2'

Finally, in Section 2.3 we establish a corollary of these theorems (Proposition
2.3.11) related to the problem of extension with “preservation of the class” for func-
tions with finite norm

1/2
m
Y IP(Dyu: L2RY)|P
j=1

in the whole space R”.
Other applications of results of this chapter will be provided in Chapter 4.

2.0.2 Outline of the proof of the main result

To shorten the explanations, we consider in this section only a special case of the
fundamental inequality, namely the estimate (2.0.8). For the sake of simplicity, we
assume that the leading coefficient of the polynomial H (§; 7) is equal to 1, and the
t-roots of this polynomial ¢; (£), ..., {7 (£) are pairwise distinct a.e. in R ™!,



96 2 Boundary estimates for differential operators

As in Subsection 1.0.2, we begin by observing that estimate (2.0.8) holds if and
only if the inequality

IR (E:=id/d1) vl o[> < A(E)/ g [Py @i midydnofan

v e CP(RL).

is satisfied for almost all £ € R"~!, and the sharp constant A(£) in (2.0.12) satisfies
condition (2.0.10).

Necessity of condition (2.0.9). Let (&) be a t-root of the polynomial T (¢; 7). We
substitute the function vg(f) = exp(i¢(§)?) in inequality (2.0.12) (see Lemma 2.1.8).
Since P; (§;—id/dt)ve(t) = 0 (j = 1,...,m), it follows from (2.0.12) that
R(&:2(8)) = 0. Since {(§) is an arbitrary root of the polynomial I14(§; 1), the
last equation is equivalent to (2.0.9).

Without loss of generality, we may assume that [T (§;7) = 1. (Otherwise, we
should replace all the polynomials in (2.0.12) by the corresponding quotients arising
after dividing on IT4 (§; 7), and use the resulting estimate instead of (2.0.12).)

Estimate in a finite-dimensional space. For each fixed £ € R"™! we consider the
vector a(£) € C’ and the J x J matrix B(£), defined as follows:

a(§) = {R(E:61(8). ... R(E:Cs(§))} (2.0.13)
B(§) = {Ppv(§:50(5). Eu(%‘))}

Pj(§:8o(§) P (& Ev(E)) (2.0.14)
P vi§; s Sy =
ov(E:50(6).£0(8)) ; 06—
We show that the estimate (2.0.12) is valid if and only if the inequality
@), 0 <A (BExx), xeC’, (2.0.15)

holds a.e. in R"~!,
Indeed, let v € C§° (Rﬂr). We represent v(¢) in the form

J
v(t) = ze(t) + ) xk(€) exp(ity (€)1), (2.0.16)
k=1

where zé")(t)|t=0 =0(w=0,1,...,J —1),and x(§) is determined by the Cauchy
data of the function v. Since

Ms

1

~.
Il

/P‘(é;—id/dt)zs(t)Pj (§;—id/dr) [exp(i¢k (§)1)]d1
0

/ ze(1) Z P (& —id/do) [exp(Ge©)D)dr =0, (k = 1.....J).

0
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one can recast (2.0.12) as

|(a(§), x(§))]

T 2.0.17
<7® | [ 217 @ -idsanzof ar+ @exe.xen|
0o /=1

with x(§) = (x1(§), ..., xs(§)).
It is obvious that (2.0.15) implies the estimate (2.0.17). Conversely, if (2.0.12)
holds true, then approximation of the function

J
Xe(1) = Y xi(€) explii (6)1)

k=1

by a sequence of compactly supported functions (see Lemma 2.1.8 for details), yields
inequality (2.0.15).

Proof of inequality (2.0.15). From the definition (2.0.14) of the matrix B(§) it follows
that the equality

@BEx0 = [y
0

Jj=1

2
dt (2.0.18)

J
P; (6:—id/dr) [Z e explidi (S)t)}

k=1

remains valid for any vector x = (x1,...,XxJ).
Due to the assumption IT4(&;7) = 1, (2.0.18) shows that the matrix B(§) is
positive definite. Therefore, the equation

BE)x(§) = a() (2.0.19)

has a unique solution x¢(§), and, consequently, estimate (2.0.15) with the sharp con-
stant

A(§) = (B(E)x0(£).x0(§)) (2.0.20)
holds true for almost all £ € R" 1,
Computation of A(§). Now we explain how the formula (2.0.11) for the sharp con-
stant A(£) in the estimate (2.0.15) can be derived from equation (2.0.20). The com-
plete derivation of this formula is given in Section 2.1. Here, for simplicity, we restrict
ourselves to the case m = 2 and P,(§;t) = 1. It is shown in Subsection 2.1.1 (see

Remark 2.1.4) that under these additional assumptions the polynomials 77 (£; ) and
T, (&; ©) are completely determined by the equation

RH_ = P\T) + T>. (2.0.21)
From (2.0.21) it follows that
(&8 (8) = —PiELENTIELE) (v=1,...J). (2.0.22)
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We also note that in the case under consideration the identities

PiELENPIELE))=-1 (w=1....J) (2.0.23)

follow from (2.0.2).
Let xo(¢) = (X10(8), ..., X7o(£)) be the unique solution of equation (2.0.19).
Taking into account (2.0.13) and (2.0.14), we can rewrite (2.0.19) in the form

J —_— —
PL(E L) PL(E T, (8) + 1
R 5 = — v )
(&:0(5)) ;1 -6 T (§) 2.024)
e=1,..., J)

On the other hand, equality (2.0.21) implies the relation

N1E:4() | Ta(E:Ge(®))
H_(§:80(8)  H-(§:4,(8)

Applying the Lagrange interpolation formula to 77(§;¢,(§))/H-(§;¢,(5)) and
T5(§:80(8))/H-(&:o(§)) we transform (2.0.25) into the equality

R(§:80(5)) = P(§:8,(8)) (2.0.25)

J

PLE G ENTLE B ) + Ta(E: 60 (8))
R(&; = = = .
E8al®) = ) T ) (6 ®) —Lo®)

Next, using (1.0.22) and (1.0.23), we convert (1.0.26) as follows:

(2.0.26)

J

Pr(E:Lo(®) — P1(§: 60 (6))

R(&; = = —
GL®) =2 e T ) 66 - 6©)
3 PELOPIELEO) + 1 TELEPERE) 0D

1

v=1 (é‘Q(S)_Ev(E)) HL(S,EV(S))

T1(§:6u(8))

Since system (2.0.19) has the unique solution, we deduce from (1.0.24) and (1.0.27)
the relations

oy - THELETEG©)
* HL(E:56©)

In view of (2.0.22), these relations can also be recast as

w=1,...J). (2.0.28)

T(§60(8)

xyo(§) = 1m

wv=1,..., J). (2.0.29)
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Finally, we compute (B(£)x¢(£),x¢(£)) with the help of (2.0.19), (2.0.24), and

(2.0.29), and also the equation Py (&;&,(£))P1(£;¢,(£)) = 1, which follows from
(2.0.21). This yields

J
(B(E)x0(€), X0(8)) = (@), %0(§)) = Y R(E: {o(§))x00(6)

o=1
L PG L@ T E (6 + To(E 6(6)
B2 H(§:6,(®) Yool
L3 [ PG P )T E GO T 406
= H (6 £o(6) H-E: £o(6))
I GIAGRGIAG) |
(6 Go€) H-(E: £o(8))
_ L [MEOPHILEOR, 1 [ MEOP+HIBEOP,
T2 ) HyEDH-ET) Bz P12+ 1 '

Taking into account relation (1.0.20), we arrive at (1.0.11).

2.1 Estimates for ordinary differential operators

on the semi-axis
Let R(7), Pi(7),..., Pu,(7), 01(7),..., On(7) be polynomials of the variable
7 € R! with constant coefficients, let max; ord P;(r) = J = 1, and let ord R(7),

ordQy < J—-1(x=1,..., N). In this section, necessary and sufficient conditions
for the validity of the estimates

IR (—id/dt)ul,—o)?

[e.e] m N
<A |:/ Z ‘Pj (—id/dt)u‘zdt + Z |04 (—id/dt)u|t=0|2:| @l
0o /=1 a=1

u € Cg°(RY),
|R (—id/dt)u|,_|* < Ao/ S|P (—id/doyul dt,
o J=1 (1.1
u € C°(RY),
Oy (—id/dt)u |;=0 =0 (x=1,..., N)
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are established, and the sharp constants A, Ag in inequalities (2.1.1), (1.1") are cal-
culated.

In what follows, we denote by H () the polynomials of order J defined by the
relations

> 1P = Hi(t)H-(v) (2.1.2)
j=1

and H_(t) = Hy(t), as well as the property that all roots of the polynomial H, (7)
lie in the half-plane Im ¢ = 0 ({ = t+i0). By I14 (§) we denote the greatest common
divisor of the polynomials P;(7), ..., Py (7) and H4(t) with leading coefficients 1.

2.1.1 A lemma on polynomials

The main result of this subsection is the following lemma on the unique solvability of
the system of congruences and equalities (2.1.3)—(2.1.5). The solutions of this system
(the polynomials 7' (7)) are repeatedly used in this and the following chapters. In
particular, they appear in formula (2.1.58) for the sharp constant A from inequality
(2.1.1).

Lemma 2.1.1. Suppose the polynomial D(t) is such that D(t) = 0 (mod I14 (7))
and ord D(t) < J — 1. Then there exist uniquely determined polynomials T (t) sat-
isfying the relations T;(t) < J — 1 (j = 1,...,m) and the following conditions:

Ti(r)=0(modT4(r)) (j=1,...,m), (2.1.3)
D(D)H-(t) =Y Pj()T;(v), (2.1.4)

j=1
Pi(0)T j(r) = Pj(t)Ti(r) (mod Hy ()[4 (1)) (2.1.5)

(i#j,i,j=1,...,m; condition (2.1.5) is omitted form = 1).

Proof. Consider the polynomials p;(t), h4 (), h—(7), d(7), defined by the formulas
Pi(r) = e (0)p; (1), Ha(r) = M ()h4(0).
h_(t) = h4+ (1), D(r) = 4+ (v)d(7) (=1,....,m).
Let k = ordh4+ (), and let £, be the roots of k4 (t) with multiplicities k, (v =
l
1,....Liky +---+ k; = k), sothat hy () = [] (v — &,)kv.
v=1

Due to (2.1.3)—(2.1.5), the polynomials 7’ (6 can be written in the form 7 (7) =
T4 (7)t; (), where t;(7) are polynomials (ord#;(r) < k —1; j = 1,...,m) that



2.1 Estimates for ordinary differential operators on the semi-axis 101

satisfy the conditions

d(mh_(1) =) p;(0);(v). (2.1.6)
j=1
Pi(0)1;(1) = pj()ti(x)  (modh(v)). (2.1.7)

Let us show that the polynomials ¢;(7) are uniquely determined by (2.1.6) and
(2.1.7).

We set 1, (1) = (t — &) % hy(zr) (v = 1,...,1). From the definition of the
polynomials 44 (t) and p1(7),..., pm(7) it follows that they are relatively prime.
Hence for each value of v = 1,...,/ we can select an index a = a(v), 1 < a(v) <
m, such that p,(¢,) # 0. Then (2.1.7) yields

-2
¢ hy Pahv =4,

s 7 (62)
-2 (50)
=8y y=0 pahv =8y

(s=0,....kb,—L,v=1,...,1; j=1,...,m).

=0,

P (&)

According to the Lagrange—Sylvester interpolation theorem we have

I ky—1 7 (s)
o =hoY Y 5 (1)

v=1 s=0 v

1
=y (T - gv)kv_s ’

and, consequently, condition (2.1.6) takes on the form

I ky—1 s

—(s— (1)
d(r) = ZZZZ y)v by y)@")%’

v=1 s=0 y= 0]—1

1 ¢ )
where ¢, = (——ah)
y! pahy

s —y and

wv=1,....L;y=0,...,k, —1). Setting u =
t=§1)

pi0) KT A GGk

v — , 2.1.8
= Zl( AT m 19
we get the equality
m ky—1
d(T) =" oyl (D). (2.1.9)

v=1 y=0
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We claim that
S
dYopi@) Y mﬁﬁ“’@v)(r—a)“EO<mod<r—zv)kv—V). (2.1.10)

Indeed, it is obvious that

ky—1—y

1
pim= Y mﬁﬁm(%)(f—iu)“+(r—§v)k”_”qj(r), (2.1.11)

n=0

wherev =1,...,l,y =0,...,k, —1,j =1,...,m, and ¢, (7) is a polynomial of
7. On the other hand, we have

Z |p; (0)]* = hy(r)h—(r) = 0 (mod (z — &)%) wv=1,...,0). 2.1.12)
i=1

Thus, (2.1.11) and (2.1.12) immediately imply (2.1.10).
In view of the congruence (2.1.10) and the equality (2.1.8), we conclude that
lyy (7) are polynomials of t of degree less than or equal to kK — 1. The same is true

for the polynomial d(t). Therefore, if we prove that the k x k matrix {/, @ )(iv)}
(whose rows and colums are labeled by the indices v, y and g, o, respectively; v, o =
LSy =yw)=0,....ky,—1;0 =0(0) =0,...,ko — 1) is regular, then
the constants ¢,,, as well as the polynomials ¢, (), are uniquely determined by the
relation (2.1.9).
To prove the regularity of the matrix {/, (@ )(é‘ )}, we consider the Gram matrix of
the system of k vector functions

{p1 (—id/dt)[(it)° exp(iLot)]..... pm (—id/dt) [(i1)? exp(iLot)]}. (2.1.13)

whereo = 1,...,/ando = 0,...,k, — 1. Based on (2.1.8) one can easily verify
that the entry

Z/p,( id/dt) (1t)aexp(1§gt)] pj (—id/dt) [(1[)"‘)_1 Vexp(llgt)]
0

ji=1
7 & ()M —y —14+0—g—MICE __ Ck

. Z 1-y ~0o
=1 4

g=0 h=0 (e

< 3" P (6P (@)

Jj=1

_g'v)k,, y+o—g—h

of this matrix is equal to i (k, —y — 1)!{/, (@) (¢o)}. Hence the nondegeneracy of the
matrix {/y, @ (¢o)} is equivalent to the linear independence of vector functions (2.1.13).
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Let us established their linear independence. By contradiction, suppose that there
exist constants @, such that not all ¢, equal zero and

1 ko—1
SN Georj (mid/dn)[(i0)% exp(iLen)] =0 (= L.....mi 1> 0),
o=1 0=0

or, equivalently,

ko—

) o
> S oo P (40) (1) expligot) = 0.
0=1 0=0 h=0

—

This last condition is equivalent to the system of equations

ko—1 o

—h . .
Y3 e TV =0 (j=1...mi 1> 0),

o=0 h1=0

which can also be written as

ko—1 kop—1

SN g pTM " =0 (=1...mit>0). (2.1.14)
h1=00=h;

It is clear that equalities (2.1.14) holds true if and only if

ko—1
—h
> Cllgeapy () =0

o=h;

G=11....m; o=1,....,0; h1 =0,....ky—1).

(2.1.15)

Because of the triangular structure of system (2.1.15) for each fixed j, we can see
that if for some o (1 < ¢ < /)andforall j = 1,...,m we have p;({,) # 0, then

®g0 = *** = @ok,—1 = 0. Since not all of g,s equal zero, we see that for some g
(1 <00 <I),wehave pj({o,) =0(j =1,...,N), which contradicts the definition
of the polynomials p; (7). O

Remark 2.1.2. We consider a factorization I (t) = Io(7)I1;(7), where ITy(7) is
a polynomial with real roots and IT;(t) a polynomial with non-real roots, and the
leading coefficients of these polynomials equal 1. We set
Z(v) = D(1)/Mi(r).  Zj(r) = Pj(1)/ T (x). 4 (r) = Hy(r)/ T (7).
H(v) = H4(1), Hy(r) = A (D) —6)7F, Fi(0) = Ti(1)/h(2),
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and assume that

3w S AP —hy
ﬁvy(f)—zm > ! (2.1.16)

j=1 n=0
w=1,....0; y=1,...,k,—1).

We will prove the following assertions:

1. Foreachv = 1,...,1 there exists an index a = a(v), 1 < a(v) < m, such

that Z,(¢,) # 0.

2. The system of equations

I ky—1
D) =YD LYUC)dwy, (@=1.....I: 6 =0.....k1)
v=1 y=0
2.1.17)
has the uniquely determined solution
—= )
1 T
dd = — - : 2.1.18
vy V' (e@a%) r=§‘v ( )

First, we note that the roots of 44 () are not real. Indeed, assuming that 7y is a
real root of H4 (7) with multiplicity ko, (2.1.2) yields the congruence

Pi(t) =0 (mod(r —9)k)  (j =1.....m).

Hence (7 — 19)%0 is a divisor of IT4 (and also of ITy), but is not a divisor of /.

On the other hand, the polynomials p; and & are relatively prime, &; = p; I,
and the roots of 1y are real. Hence the polynomials &7; and h4 are also relatively
prime. This implies assertion 1.

Using this statement and differentiating the right-hand side of (2.1.16), we find
that the determinant of (2.1.17) is not zero.

Now let us prove (2.1.18). From (2.1.4) and the definition of the polynomials Z,
T, P; and F_ it follows that

D) A (1) =Y Pi(1)F;(v). (2.1.19)
j=1
In addition, we have 7; /5 = t;/h_ and T}/ H, = t;/h,, and hence

I ky—1 1 ? ()
T =AY Y o (j)

v=1 s=0

=

(t — é‘v)s_ku-
CV



2.1 Estimates for ordinary differential operators on the semi-axis 105

Since ;7 j = #;7; (mod h), we have also the relation
— \ — )
(%)(s) B @jya s _Xs:cy 7. Y

% =0, e@a% =ty o s @a%
Substituting these relations into the right-hand side of (2.1.19), we obtain
I k-1 —= )

— 1 T
D(r) = — 2

where L, (7) denote the polynomials (1.1.16). Thus, (2.1.18) follows from the
uniqueness of the solution of (2.1.17).

P,

=y

ﬁvy (T)s
=8y

Remark 2.1.3. Suppose that P;(t) = P(r) (j = 1,...,m). Consider a factorization
P(t) = P4 (t)P_(7), where the roots of P4 coincide (including multiplicity) with
the roots of P in the half-plane Im¢ = 0 ({ = t 4 i0). In this case we have

Tj=m Y2DPy/Py  (j=1,....m). (2.1.20)

Indeed, under these assumptions Hy = m'/2P, P_and H_ = m'/?P P_. Let
Do be the leading coefficient of P_. Then we obviously have the relations I1, =
mY2poPy, hy = P_/po, h— = P_/po, pj = m~'/2P_/ py. Therefore, equation
(1.1.6) can be written as

m
d(r) =m~"2py Y " 1;(x)/ po.
and congruence (1.1.7) as B
P_(f; —1;) =0 (mod P_).
Since P_ and P_ are relatively prime, the last formula implies the congruence
fj—1t =0 (mod P_).

However, we have ord P_(t) = k and ord?j(r) < k — 1. Hence, t; =¢t; (i,] =
1,...,m), which yields t; = m~'/2 pod / po.

Finally, since 7; = t;I1y and d = D/ I, we get (2.1.20) for the polynomials
T;.

Remark 2.1.4. Let m = 2, and let the polynomials P; and P, be relatively prime.
Then, 77 and T, are completely determined by the equation

D(T)H_(‘E) = P (‘L’)Tl(‘L') + Pz(‘L')Tz(‘L'). (2121)

In particular, if P;(r) = P(t) and P>(t) = 1, then 7} and T3 are the quotient and
the remainder of the division of DH_ by P.
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Indeed, in the case under consideration, condition (2.1.4) has the form (2.1.21).
Therefore, it suffices to show that (2.1.5) follows from (2.1.21).
By virtue of (2.1.21),

F]TI + Fsz =0 (mod H+),
and consequently L
|P1|2T1 + P2P1T2 =0 (modH+)
Using the equality | Py|? + | P2|?> = H H_ one can verify that

Fz (Psz — Ple) =0 (modH+)

If P, and H_ have no common roots, then our assertion is proved.

Now let ¢ be a common root of P, and H, . From the definition of H, and the
fact that Py and P, are relatively prime, it follows that Pi(l) # 0and Py &) # 0.
Since P1T1 + P,T, = 0 (mod Hy), we get T1(¢) = 0. But then P (¢)T2(¢) —
P,(8)T1(¢) = 0. The proof is complete.

Remark 2.1.5. For polynomials D, T satisfying the hypothesis of Lemma 2.1.1, we
have

m
D) <> IT; (0™ (2.1.22)
2 m m
Indeed, we have |DH_|*> = | Y. P;T;| < Y |Pj|* > |T:|*>. It remains to
j=1 = =

note that |[H_|? = Z |P;|?.

2.1.2 A variational problem in finite-dimensional space

As already shown in Subsection 2.0.2, the estimate (2.0.12) is equivalent to inequal-
ity (2.0.15). A similar statement for the estimate (2.1.1) will be proved in Subsec-
tion 2.1.3: we will see that (2.1.1) is equivalent to (2.1.43). In this subsection we
consider a variational problem equivalent to (2.1.43), give necessary and sufficient
conditions for the boundedness of the function (1.1.23), and calculate its supremum.

Let (-,-), and (-, -); be the scalar products in the spaces C* and C*, respectively,
and let {-,-} denote the scalar product in C* x C*. Elements z € C* x C* will be
written in the form z = (x;y),x € C*, y € C*.

We consider a nonnegative ;4 x pu matrix 8 in the space C*, and denote by X the
orthogonal complement in C* of the subspace ker B. Let B!/2 be the nonnegative
square root of *B.

Leta, ¢, € C*, b,d, € C (¢ = 1,...,N)and (a;b) # 0. We consider the
function
(@, %), + (b.y),[?

(Bx. %), + 0 (€. %) + (da. Y)2[2

d(z) = (2.1.23)
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and set
A= sup D(z). (2.1.24)
2€CH XCA

It is evident that A > 0.

The proof of Lemma 2.1.6, formulated below, will be essentially based on the
following result from the theory of nonnegative quadratic forms.

Let R1 and R, be nonnegative (i + 1) X (i + A) matrices. The ratio {R2,z}/
{Raz, 2} of their quadratic forms is bounded in C* xC* if and only ifker R, C ker 8.
If this condition is satisfied, there exists an extremal element z° € C* x C* such that

{R,2°, 2%} _ {Riz,2}

= su .
{ﬁ2z07 ZO} ze(c,ul)z(c)m {ﬁ2zy z}

Lemma 2.1.6. The function ®(z) defined by (2.1.23) is bounded in C* x C* if and

only if there exist constants By (¢ = 1, ..., N) such that
N

> Budy =b (2.1.25)

a=1
and the equation

N
Bx=a- Y Pucs (2.1.26)
a=1

is solvable.
If these conditions are satisfied and X¢ is an arbitrary solution of (2.1.26), then

2
(a— el Pucarx)
(Bxo, XO)M = Xs;g (Bx, X)u , (2.1.27)
and for the constant A defined by (2.1.24) it holds that
N
A= {iélf} |:(£BX0,X())M + 0; |ﬁa|2} . (2.1.28)

Here the infimum is taken over all By, satisfying the conditions of the lemma.

Proof. Denote by {Rz,z} and {R,z,z} the numerator and the denominator of the
right-hand side of (2.1.23). We seta = a® +a® ¢ = ¢’ +¢?, where a®, ¢V €
kerBanda®, c¢? e X(@=1,...,N).

Necessity. Let A < oo. If z = (X,y) € ker Ry, i.e., if X € kerB and (c((xl),x)u +
(dg,y)2 =0(x = 1,...,N), then z € ker R and (a((xl),x)u + (b,y); = 0. Thus,
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the vector (a(1; b) € ker B x C* belongs to the linear span of the vectors (cl(xl); dy).

N N
Hence there exist constants 8, such thatb = Y B,dy anda® = 3" ,BQC((;).
=1 =1
RE ) ’
Since a® — Y By’ € X, the equation
a=1

N
Bx =a® - )" g,c?
a=1

is solvable. Then equation (2.1.26) is also solvable.

Sufficiency. Suppose that there exist constants 8, such that (1.1.25) is satisfied, and
Xo is a solution of (2.1.26). Consider an arbitrary element z = (X;y) € ker R;. We
claim that z € ker £;. Indeed, if z € ker K5, then

N N
(Z 'B‘Xcl(xl)’x) + Z(,Bocdoc’Y)k =0,
a=1

I a=1

and consequently

N
(a — > Bac? — %xO,x) + (b,y)3 = 0.
"

a=1

But x € kerB and c((xz) € X. Hence (a,x), + (b,y), = O; thatis, z € ker £;.

Computation of (58X¢,Xp). Let B, be the constants satisfying (2.1.25), and let x¢ be
a solution of (2.1.26). Then

2

N
(a— > :Boccoux> = |(Bxo.%),, |’
a=1

w
< (%l/zxo,%l/zxo)M (%l/zx,%1/2x>M = (Bxo.X0), (BxX,X),, -

Therefore,
2

(a - fov=1 Pata: X)ﬂ
(Bx, x)

< (%Bx0,X0)

for all x € C*.
On the other hand, we have

2

(a - fov=1 Bata, XO>M
(°Bxo, XO)M

Combining all these relations we arrive at (2.1.27).

= (*Bxo, Xo)u'
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Computation of A. Let z° = (x°,y%) be an extremal element of the function ®(z).
In other words, let
{faz, 2%
{Rp20,20)

Varying the right-hand side of (2.1.23) over all possible vectors y and x, we obtain
at the extremal point z° the equalities

o(2°%) =

N
((@,x%), + (0, y)1)b =AY ((€a X + (da, )1 )de, (2.1.29)
a=1

N
((a,x%), + (b,y%),)a= A |:%x° + Z ((ca.x%), + (da,yO)A)ca} . (2.1.30)

a=1

Since A > 0, it follows that (a, x%),, + (b,y%)1 # 0. We set

x’ = A((a,x%, + (b,yO)A)‘lx", y' = A((a,x%, + (b,yO)A)‘lyO (2.1.31)

and

B = (e X + (do,¥%)s)  (@=1,...,N). (2.1.32)

Equation (2.1.29) can then be written in the form b = fovzl ﬁgda, while equation

(2.1.30) can be recast as a = Bxo + Y. ~_, B9¢,. Thus, the constants 2 defined by
(2.1.32) satisfy (2.1.25), and the element x( given by (2.1.31) is a solution of (2.1.26).

Let zo = (X0;yo). Since ®(z) is a homogeneous function of degree zero and
z° is an extremal element of this function, it follows from (2.1.31) that z, is also an

extremal element, i.e.,

{R120. 20}
A = D(z9) = m. (2.1.33)
From (2.1.25), (2.1.26), and (2.1.32) we obtain
N 2
{R120.20} = ‘(%Xo,xo)u + Z Ba ((€a.X0)p + (da. ¥0)2)

tx=Nl ,

= |:(%X0,X0)u +) |ﬂ2|2} :
a=1

On the other hand, we have

N
(820,20} = (BXo, X0) + Y |(€aX0)u + (da, Yo)a |

a=1

N
= (Bxo, xo)u + Y 1B

a=1
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Substituting these expressions in (2.1.33), we get

N
A = (Bxo.x0). + Y |BYI.

a=1
and, consequently,
N
A= inf {(%XO,XO)M +3 |ﬂ2|2} .
{Ba} o
To prove the opposite inequality, we consider an arbitrary element z = (x;y) €

CH* x C*, a set of constants B, satisfying (2.1.25), and an arbitrary solution Xo of
(2.1.26). It is obvious that

N N
|(a’ X)M + (b’ Y))»| < (a_ Zﬂacas X) + Z
a=1 w a=1

/
B [(€aru + @ yi]|

/N

N 1/2
(B'?x0, B ?x0) + ) |ﬂa|2}

a=1

N 1/2
x |:(SBI/ZX, B2+ Y [(eanX)p + (da,y)xlz} :

a=1

N
The latter implies ®(z) < (BxXo,Xo)y + D |Bal? and
a=1

N
A< {iélf} {(%XO,Xo)u +> Iﬂalz} :

a=1

The proof is complete. O

2.1.3 Reduction of the estimate for ordinary differential operators on
the semi-axis to a variational problem in a finite-dimensional
space

The main result of this section is Lemma 2.1.9, which establishes the equivalence of
inequalities (2.1.1) and (2.1.43). The proof is based on a special decompositions of
elements u € C§° (RL) (Lemma 2.1.7) and on the approximation of solutions of the
equation H (—id/dt) z = 0 by elements u € C(R}) (Lemma 2.1.8).

We define the dimensions p, A, the matrix 28, and the vectors a, b, ¢,, d, that
appear in (2.1.43). Let the polynomials P;, p;, Hy, H_, I11, I1y, I1p and Ay be
defined as in Subsection 2.1.1. We set H ¥ (7) = h (7)I1;(z), and we define

pn =ord H (1), A=J—pu=ordI(7). (2.1.34)
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The roots of the polynomial H*(z) will be denoted (as will the roots of /(7))
by ¢, (0 = 1,...,11 = [), and their multiplicities will be denoted by »x, (x, = k,,
o= 1,....0;%1 + x4+ -+ x; + -+ 4+ x, = ). The roots of the polynomial
ITy(7) and their multiplicities will be denoted by ns and gs, respectively. (Here
S=1,....081+ -+ g1, := 1.

Consider the pu x p matrix B = {Pygvy ({o. {v)}. Its rows and columns are labeled
by the indices 0, 0 = o (@) and v, y = y(v), respectively, where o,v = 1,...,[1;
0() =0,....,%g— 1, and y(v) = 0,...,%, — 1. The entries of this matrix are
defined by the formula

14 o o— thCh )
govy(fg,iv)—1zz( 1) (y—g+o—nh)

. )y g+o—h+1
8=

. (2.1.35)
x3 P}”’(@Fﬁg)@».
j=1

The matrix B is nonnegative, since for any X = (X,5) € C* we have the easily
verified identity

2
oollﬂgl

(BX.X),, = Z / D3 % Zcﬁpjh)(gg)(it)“—h exp(iC,r)| dr. (2.1.36)

j=1 0o |e= 1 0=0
Finally, we associate to the polynomials R(7) and Q, () the vectors

a=(R)). c=(0))eC* b=(RP (),
dy = (0P (ns)) € C*
(e=1.....0I11 0=0,....0—1; 8§=1,....1I;
B=0,....g56—1; a=1,....,N)

(2.1.37)

We will assume in the following that the polynomial R(t) is not identically zero,
so that (a; b) # 0.

Lemma 2.1.7. Any functionu € C§° (RL) has a unique representation
u() =x@) + y@) + v(), (2.1.38)
where x(t) and y(t) are solutions of the equations HY (—id/dt)x = 0 and

Iy (—id/dt)y = 0, respectively, and v(t) is an infinitely differentiable function
such that v (0) =0, p =0,...,J — 1.
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Proof. Define the functions x (), y(¢) by

Iy xo—1

X(0) =YY" Xoofoo(t),  foolt) = (1) exp(iloh), (2.139)

o=1 o0=0
I gs—1

@) =" ysphsp(t),  hsp(t) = (1) explinst), (2.1.40)

§=1 =0

where X = (Xp0) € CH andy = (y58) € c*.
The representation (2.1.38) is obtained as follows. First, we find the constants
Xoo» Y5p by solving the system

Iy %o—1 I gs—1

Z Z fg(cf)(o)xea + Z Z hg’é)(o)y(sﬂ =uP©0) (p=0,....J —1).

o=1 o=0 §=1 =0

It is obvious that the determinant of this system (the value of the Wronskian of the
linearly independent functions [ foo (¢), hsg(2)] at t = 0) is not zero.

Setting v(¢) = u(t) — x(¢t) — y(¢), we obtain an infinitely differentiable function
which satisfies the conditions v® (0) =0, p =0,...,J — 1. O

Lemma 2.1.8.! For an arbitrary solution z(t) of the equation
Hy (-id/dt)z =0
there exists a sequence zg € C3° (]Rﬂr) such that

R (=id/dt)(zs = 2)|;=9 =0,  Qq (=id/dt) (25 = 2)|;=9 = 0

(a=1,...,N; s=1,2,3,...) (2.1.41)
and N
sll{lgoZ/ |Pf (—id/dr) (Zs_Z)|2dl = 0. (2.1.42)
j=10

Proof. We represent z(¢) as z(¢) = x(t) + y(t), where x(¢) and y(¢) are given by
(2.1.39) and (2.1.40), respectively.

Consider a cut-off function n(¢) € CS"(R}F) such that n(f) = 1if0 <t <1
and n(¢) = 0if 2 <t < oo. Set zs(¢t) = z()n(t/s) (s = 1,2,...). Clearly,
zs € CP(RL).

The definition of 1 immediately yields (2.1.41). To prove (2.1.42), we fix the
indices ;, 8, B. In view of (2.1.40), we have P\ (=id/dt) hsg = 0,if & < g5. In
the case w = gg, we use the obvious estimate

@) CSﬂ—J—i—w
P (—id/dr) (hsp(1) (—id/dt)® (n(t/s))| < ——— = csP77,

sw

Ief. Lemma 1.1.7, Chapter 1.
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where C > 0 is a constant, and obtain

/ |Pj (—id/dt) (hsp(t) — hsg(OOn(t/s))| di < cs' 2B,

The last inequality evidently implies (2.1.42). O

Lemma 2.1.9. The estimate (2.1.1) holds with some A < oo if and only if

N
[(a,x), + (b,y)i]” < A [(%X,x)u + 3 |(ea X + (da,y)x\2:| . (2.1.43)

a=1
Sfor all vectors (x,y) € CH x C*. Here the dimensions W and A, the vectors (a; b) and
(co; dy), and the matrix 5 are defined by (2.1.34), (2.1.37) and (2.1.35), respectively.

Proof. Suppose that (2.1.43) holds for all (x,y) € C* x C*. Consider an arbitrary
function u € C§° (R ), and write it in the form (2.1.38), where x(¢), y(¢) are given
by (2.1.39) and (2 1. 40) respectively.

From (2.1.37)—(2.1.40) it follows that

R (—id/dt)ul,—y = (@, x), + (b.¥)2.
Qo (_id/d[)u|t=0 = (Coux)u + (de, Y)a,

I xo—1

Pj(—id/dtyu = P; (=id/d)v+) Y xQGZ CEP™ (L)1) exp(i gt).

o=1 6=0 h=0

Since

=1

~.

> / P; (—id/dt)vP; (—id/dr)[(it)° exp(il,t)]dt
0

m

= [v0) Y18 (id/an G0 explitonlde =0
0 i=1
oc=1,....01s 0=0,...,%—1),
the inequality (2.1.1) can be written in the form
[e.e]

|(a x), + (b, y),1 < |:/Z|Pj (—id/dz)v|2dt

o /=t (2.1.44)

N
+(BX X+ D | () + (da,ymz}

a=1

It is evident that (2.1.43) implies (2.1.44).
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Conversely, suppose that for some A < oo the inequality (2.1.1) holds true for all
u e Cg° (RL). Consider an arbitrary vector (x, y) € C* x C*. Following (2.1.39) and
(2.1.40), construct a solution z(¢) = x(¢) + y(t) of the equation Hy (—id/dt)z =
0. Using Lemma 2.1.8, approximate this solution by a sequence z; € Cg° (Rﬂr).
Substituting z in (2.1.1) and passing to the limits as s — oo we find that for the
given A the vector (x,y) satisfies (2.1.43). O

2.1.4 Two properties of the matrix ‘3

In this subsection we study the properties of the operator 8 : C* — CH, where
B is the matrix defined by (2.1.35). Lemma 2.1.10 provides a description of the
kernel of 8. A criterion for a vector (2.1.45) to lie in the range of the operator ‘B
is given in Lemma 2.1.11. The proof of Lemma 2.1.11 is based on Lemma 2.1.10.
Lemma 2.1.11 will be used in Subsection 2.1.5.

Lemma 2.1.10. Let I1;(7) be the polynomial defined in Remark 2.1.2, and let *B be
the matrix (2.1.35). The function x(t) given by (2.1.39) is a solution of the equation
IT; (—id/dt) x = 0if and only if X = (x,5) € ker’B.

Proof. Suppose that I1; (—id/dt) x = 0, where x () is the function (2.1.39). Then
the equations P; (—id/dt)x = 0(j = 1,...,m) follow from the definition of IT;.
Taking into account (2.1.36), we obtain (Bx,x),, = 0, B1/2x = 0 and x € kerB.
Conversely, if x € ker‘B, then (25x,x),, = 0, and, in accordance with (2.1.36), we
have P; (—id/dt)x = 0 (j = 1,...,m), where x(¢) is the function defined by
(2.1.39). Therefore,

Mo (—id/dt) Pj (—id/dt) 1, (—id/dt)x(t) =0 (G=1,....m),

where Ilg, P;, Iy are the polynomials introduced in Subsection 2.1.1. We set ¢ =
IT; (—id/dt) x(¢). In view of

HY (—id/dt)x(t) = hy (=id/dt) 1, (—id/dt) x(t) = 0,

I kp—1

wegeto(t) = Y Y @oo(it)? exp(ilyt) with o = const. Since Im, > 0 (0 =
o=1 0=0

1, ..., 1) and the roots of the polynomial I1o(7) are real, we have P; (—id/dt) ¢(t) =
0(j = 1,...,m). Thanks to the linear independence of the system (2.1.13), gp¢ = 0
for all the coefficients (see the proof of Lemma 2.1.1). Hence I1; (—id/dt) x(¢t) =
0. O

Lemma 2.1.11. Let D(t) be a not identically vanishing polynomial such that
ordD(tr) < J — 1, let

g=(DDC))eC* (o=1,....01:0=0,....,%—1), (2.1.45)
and let B be the matrix (2.1.35). Then the equation
Bx =g (2.1.46)



2.1 Estimates for ordinary differential operators on the semi-axis 115

is solvable if and only if
D(t) = 0 (mod I (7)). (2.1.47)

Proof. Equation (2.1.46) is solvable if and only if (g,x), = O for all x € ker®B. Let
x(t) be the function (2.1.39), and let x = (X,¢). Then

l] Jlg—l

@Xp =) > DWU)xpe = D (-id/dt) x|,

o=1 0=0

Applying Lemma 2.1.10, we see that Eq. (2.1.46) is solvable if and only if each
solution x(¢) of the equation IT; (—id/dt)x(t) = 0 satisfies the condition
D (—id/dt)x|,—o = 0. This last condition is equivalent to the statement that
D¥(@&) =0 (x =0,...,y — 1) for every root of multiplicity y of the polynomial
IT; (7). Hence D(7) satisfies (2.1.47). O

2.1.5 An estimate without boundary operators in the right-hand side

In this subsection we study a special case of inequality (2.1.1), that is, the estimate

S m
|D (—id/a’t)u|,=0|2 <A / Z |Pj (—id/dt)u|2dt, (2.1.48)
o /=1
where D(7) is a not identically vanishing polynomial such that ord D(z) < J — 1.

We also study the equivalent estimate (2.1.52). The results obtained here will be used
in Subsection 2.1.6 to prove a criterion for the validity of the estimate (2.1.1).

Lemma 2.1.12. Let D(t) be a not identically vanishing polynomial such that
ord D(t) < J — 1, let g € CH be the vector (2.1.45), let

e= DBy ect  @S=1,....; B=0,....g5—1), (2.1.49)

and let B be the matrix (2.1.35). Inequality (2.1.48) holds true with some A < oo
forallu € C§° (Ri) if and only if e = 0 and equation (2.1.46) is solvable. The sharp
constant A in (2.1.48) is given by

A = (2BX0,X0) u, (2.1.50)
where X is an arbitrary solution of (2.1.46).

This lemma is a direct consequence of Lemmas 2.1.6 and 2.1.9.
Remark 2.1.13. Lemma 2.1.11 implies that (2.1.47) is a necessary condition for the
validity of the estimate (2.1.48) forall u € C3° (RL). In what follows we assume that
(2.1.47) is satisfied.
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Lemma 2.1.14.% For any function ¢ € CP (]R ) there exists a solution u € C§° (R )
of the equation Iy (—id/dt)u = ¢.

Proof. Let x = u —k = ordI1;(7), let u1(7),...,u,(r) be a system of linearly
independent solutions of the equation I1; (—id/dt)u = 0, and let W(uy,...,uy)
be the Wronskian of this system. Let Wy(u1,...,u,) be the determinant obtained
from W(uy,...,u,) when the o-th column 1< Q < x) is replaced by the vector
©,...,0,1). Then the function

x +00
u(t):—ZuQ(t)/ Wolur,. )@ )1y,
o=1 t

Wuy, ..., u,)(t)

is a solution of the equation IT; (—id/dt) u = ¢ in the space Cg"(R_lF). O
We set
D(z) Pj(x) .
P(r) = , Pi(r) = =1,...,m). (2.1.51)
O=ta ZO=tem U )

By Remark 2.1.13, Z(7) is a polynomial in 7. Observe that Lemma 2.1.14 and
equalities (2.1.51) imply the following statement:

Lemma 2.1.15. Inequality (2.1.48) holds with some A < oo for allu € C§° (R ) if
and only if the inequality

o0

|D (—id]dt) ¢|,_|?* < A/ > |2; (—id/dt)|* dt (2.1.52)

o /=1
holds for all ¢ € COO(R ).
We associate with the polynomials & and &, the vectors
d= (20 eCr,  s=@P ) eC (2.1.53)
and the positive definite k x k matrix & = {Pp5vy ({o. (1)}, Where

o— hcgch _h
Poovy (L. Cy) =1 ZZ( D (y—g+o—h)

oo é-v)y g+o—h+1
8=

x Z @"”@M‘“@»,

(2.1.54)

and ¢, are the roots of the polynomlal hi(@)o,v=1,....01; 0 =0,....kpg—1,
y=0,....kb, —1,6=1,...,[5; =0,...,g5 — 1).

Replacing in the formulation of Lemma 2.1.12 u, D, P;, g, e, B, and x by k, 9,
P, d, s, &, and ¢, respectively, we obtain the following assertion:

2¢f. Lemma 1.1.1, Chapter 1.
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Lemma 2.1.16. Inequality (2.1.52) holds with some A < oo for all ¢ € CP(RY) if
and only if s = 0, where s is the vector in (2.1.53).
The sharp constant A in (2.1.52) is given by

A = (P90. 90k (2.155)
where @, € Ck is the (unique) solution of the equation
P =d. (2.1.56)

Here the vector d and the matrix & are given by (2.1.53) and (2.1.54), respectively.

2.1.6 Necessary and sufficient conditions for the validity of inequality
(2.1.1)

Now we turn to the proof of the fundamental result of this section.

Theorem 2.1.17. The estimate (2.1.1) holds with some A < oo if and only if there
exist constants B such that

N
D@ E R@) — Y BuQa(r) = 0 (mod [T4 (). (2.1.57)

a=1

The sharp constant A in (2.1.1) is given by

[e.e]
> 1T ()
A=infl— [ ==t 00 1Bal? ¢ . (2.1.58)
(Ba} J YL IPi B Z ¢
where the polynomials Tj(t) withordTj(v) < J — 1, j = 1,...,m, satisfy condi-

tions (2.1.3)—(2.1.5), and the infimum is taken over all {4} entering in (1.1.57).

Proof. Necessity. Suppose that (2.1.1) holds with some A < oo forallu € C °°(]R ).
We consider the matrix (2.1.35) and the vectors (2.1.37). By Lemma 2.1.9, the func-
tion ®(z) defined by (2.1.23) is bounded in C* x C*. Then by Lemma 2.1.6 there
exist constants S, satisfying (2.1.25) such that (2.1.26) is solvable. Consider the
polynomial D(t) = R(r) — Z(]xv:l BaQu(t). Let g and e be the vectors defined
by (2.1.45) and (2.1.49), respectively. Then, (2.1.26) coincides with (2.1.46). This
means that identity (2.1.47) holds true in accordance with Lemma 2.1.11. On the
other hand, condition (2.1.25) implies that e = 0, and so

D(t) = 0 (mod ITy(7)). (2.1.59)

The identities (1.1.47), (1.1.50) are equivalent to (2.1.57).
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Sufficiency. Let By be a collection of constants satisfying (2.1.57). Then we have
(2.1.47) and (2.1.59). From (2.1.59) it follows that e = 0, that is, the constants S,
satisfy (2.1.25). According to Lemma 2.1.11, identity (2.1.47) ensures the solvability
of (2.1.45), which in turn is equivalent to the solvability of (2.1.26).

Using Lemma 2.1.6, we deduce from these conditions the boundedness of the
function ®(z) defined by (2.1.23). Hence, by Lemma 2.1.9, the estimate (2.1.1) is
true with some A < oo forall u € C°(RY).

Computation of A. By Lemmas 2.1.9 and 2.1.6, the sharp constant in (2.1.1) can
be calculated by the recipe (2.1.28). The first term (*5xg,Xo),, on the right-hand
side of (2.1.28) equals the sharp constant in (2.1.48) according to Lemma 2.1.12.
By Lemma 2.1.15, this constant is equal to the sharp constant in (2.1.52). Using
Lemma 2.1.16, we obtain

(%Bx0,X0) ;. = (290 90k

where ¢, = (E) is the solution of (2.1.56). Let us calculate (@, 9)r. We
rewrite equation (2.1.56) in the form

I ky—1

90@9) = Z Z @govy@g’é‘v)@

v=1 y=0
I ky—1
=YY" Povwkr 190 by 100, 1y

v=1 y=0

Differentiating the right-hand side of (2.1.16), we get

i(ky — 1= NB (L) = Pooviy—1—yLor Cky—i—y)-

Since each of the equations (2.1.17) and (2.1.56) has a unique solution, the application
of (1.1.18) yields the relation

. . —_— (ky—1—y)
g0() _ ldgky—l—y _ 1 T a
vy ! ylky — 1=y \ P, o=t
N AN
which in conjunction with the equations 2™ (¢,) = ( {%]p / ) , which
Jj=1 - =04
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follow from (2.1.19), yields

(Bxo.X0) . = (P90, 00)k = (d. @)k
)

I ky—1 m — (kv—1—y)

P> 29;,;, (k 11 '(ﬁffl%)

v=1 y=0 \j=1 - =08 V( v V) a7ty =4,

ky—

B Z Z 7, P, 7, (kv—1)
k- 1)' S Py —t,

m ky—1 (kp—1—y) — \

Tj P T

— c’ i i< a
=i ;‘; (kv - 1! Z ky—1 (%ﬂ) =t, (9;1%) —t,

As was shown in Remark 2.1.2, we have

L@]?a (62) B z »)
Pty ) eme,  \ A

Therefore
1 T 9
@““ﬁ“”E:X%m—D« )

j=1v=1

=0y

=4y

Therefore, by the residue theorem,

I o/ /T TGOS B i oY 5100

(Bxg,Xg)y = — ~m .5 24T == N D2
0. 2071 27 ) X7 1250 2 ) Y PP

dt. (2.1.60)

d

2.1.7 Estimates for functions satisfying homogeneous boundary
conditions

In this subsection we formulate necessary and sufficient conditions for the validity of
(2.1.1) and find the sharp constant A for this inequality. We begin the study of (2.1.1)
with a consideration of the equivalent variational problem in the finite-dimensional
space CH x C*.

Lemma 2.1.18. Let the u x u matrix 8 and the vectors a,¢y, € CH, b,dy € cA
(¢ =1,...,N) be the same as in Lemma 2.1.1, andz = (x;y) € C* x C*. Let B be
the subspace of C* x C* defined by

={z:(ce.X)py +(dy)r =0, a=1,...,N}. (2.1.61)
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Further, let
[(a,%), + (b, y)2l?

) = , 2.1.62
0(z) (B %), ( )
and
Ao = sup Dy(z). (2.1.63)
z€eB

The function ©¢(z) is bounded on the subspace B if and only if there exist constants
Bo (@ = 1,...,N) that satisfy (2.1.25) and (2.1.26). If these conditions are fulfilled
and Xg is an arbitrary solution of (2.1.26), then the constant A defined by (2.1.63)
satisfies

Ao = ié’lf(%X(),X())M, (2164)

where the infimum is taken over all systems {Bq} satisfying the assumptions of the
lemma.

Proof. The boundedness of the function (2.1.62) on the subspace (2.1.61) is equiva-
lent to the following assertion: if z = (x;y) € B and (*5x,x), = 0, then (a,x), +
(b,y)» = 0. This in turn is equivalent to the boundedness of the function ®(z)
defined by (2.1.23) on C* x C*. Hence, the first part of the lemma follows from
Lemma 2.1.6.

We now prove (2.1.64). Let z° = (x°;y%) € B be an extremal element of ®g(z),
that is, A9 = ®¢(z°). Applying the method of Lagrange multipliers to the problem
of finding the extremum of (2.1.62) on the subspace (2.1.61) under additional con-
straints, we conclude that for some constants B9 the following equations are satisfied:

N
((@.x%), + (b.y%)) a— AgBx’ — ) " By =0, (2.1.65)
a=1
N
(@.x%), + (b.y%);)b— > Bldy = 0. (2.1.66)
a=1
We set
X0 = Ao((a,x%),, + (b,y9);) " x°,
yo = Ao((a,XO)M + (b,yO)A)_l v, . (2.1.67)

Boo = B2((@,x0), + (b,y");)""  (@=1,...,N)

Then, inequality (2.1.65) can be rewritten as

N
a=PBx+ Y _ Poata. (2.1.68)

a=1
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and equation (2.1.66) as
N
b= Boada. (2.1.69)
a=1

Thus, the constants B¢, and the element xg, defined by (2.1.67), satisfy conditions
(2.1.25) and (2.1.26). Let zg = (Xo;Yyo). Since z° = (x°;y?), equations (2.1.67)
imply zo € B. Since ®¢(z) is a homogeneous function of degree zero and z° is an
extremum of this function on the subspace B, it follows from (2.1.67) that z, is also
an extremum. From (2.1.69) and (2.1.61) we obtain

N
> (Boata: X0) = —(b,¥0) 5.
a=1

Therefore

(3. %0) . + (b, y0)2|?
(%Bx0,X0)

and, consequently, Ao = {%lf} (%Bxo, X0) .

o

To prove the opposite inequality, consider an arbitrary solution x¢ of (2.1.26),
where the constants B, satisfy (1.1.25). Letz = (x;y) € B. By (2.1.25), (2.1.26) and
(1.1.61),

Ao = Bo(z) = = (2BX0, X0) 1t

N
(@ %), + (b y)i] = (a ~ 3 Buta, x) = |(Bx0, Xo)
a=1 I
< (Bxo, X())L/Z (Bx, X)L/z.

Consequently Ay = {lélf} (Bxo,X0) - O

Now we can formulate a result about equivalence of the estimate (1.1’) for ordi-
nary differential operators in a half-space to inequality (2.1.70).

Lemma 2.1.19. The estimate (1.1') is true with some Ao < oo if and only if the
inequality
@, %), + (b, y)al> < Ao(Bx.X)u,  (xiy) €B (2.1.70)

holds, where the subspace B C C* x C*, the dimensions w and A, the vectors (a, b)
and (¢y, dy ), and the matrix B are defined by (2.1.61), (2.1.34), (2.1.37) and (2.1.35),
respectively.

This statement is deduced from Lemmas 2.1.7 and 2.1.8 in the same way as
Lemma 2.1.9 was derived from these lemmas. It is only necessary to consider so-
lutions z(¢) of the equation H (—id/dt) z = 0 satisfying the boundary conditions
Qq (id/dt)z|;—g = 0 (¢ = 1,...,N) instead of an arbitrary solution of this
equation.

We now formulate the main result of this subsection.
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Theorem 2.1.20. The estimate (1.1') holds with some Aoy < oo if and only if the
conditions of Theorem 2.1.17 are satisfied. The sharp constant Ag in (1.1') satisfies
the equation

T;(v)?
Ao = inf ZJ_1| (0]

—_ 2.1.71
{ﬂa}Zn Z,llP(r)l2 ( )

where the polynomials T (t) and the constants By are the same as in Theorem 2.1.17.

For the proof it suffices to make the following changes in the proof of Theo-
rem 2.1.17: Lemma 2.1.9 should be replaced by Lemma 2.1.19. Inequality (2.1.70)
is equivalent to the boundedness of the function ®¢(z), defined by (2.1.62), on the
subspace (2.1.61). Therefore, the references to Lemma 2.1.6 in the proof of Theo-
rem 2.1.17 should be replaced by the references to Lemma 2.1.18. Then, formula
(2.1.71) follows from (2.1.64) and (2.1.60).

2.2 Estimates in a half-space. Necessary and sufficient
conditions

Let R(&;1), Pj(§;1),0(6:1)(j =1,...,m;a = 1,..., N) be polynomials in the
variable T € R! with measurable coefficients that are locally bounded in R”~! and
grow no faster than some power of |£] as |&] — oco. Write

Y IPjE: D = Hi(G: ) H-(§: 1), 2.2.1)
j=

where Hy(§;7) = ZSJZO hs(£)t’ S is a polynomial with t-roots lying in the half-
plane Im¢ = 0, ¢ = v 4+ i0, and H_(§;7) = H4+(§;t). We will assume that
ho(§) # 0,and ord R(§;7),0rd Qg (£;7) < J —lae. inR* 1 (a=1,...,N).>

In this section we establish necessary and sufficient conditions for the validity of
the estimates:

m N
(RDWY S < C | SR @l + Y (Qa(D)u) |
= ot (2.2.2)
u € CPRY),
2
(R(D)/ < chuP J (D), u e CFR(RY), 222)

Qo (D)u(x;0) =0, a=1,...,N.

3This condition is fulfilled, for example, if #o(£) is a polynomial in the variable £ € R”?~! (cf. Re-
mark 1.2.1, Chapter 1).
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We will also derive some corollaries of these results. All these assertions follow
directly from analogous results of Section 2.1 on estimates for ordinary differential
operators on the semi-axis ¢ = 0.

2.2.1 Theorems on necessary and sufficient conditions for the validity
of the estimates in a half-space

The main result of this subsection is a criterion for the validity of the estimate (2.2.2)
(Theorem 2.2.2). Before deriving this result, we formulate the following lemma,
which follows directly from Lemma 2.1.1. For every point § € R”~! such that
ho(§) # 0, we denote by I14 (§; 7) the greatest common divisor of the polynomi-
als Hy (§;t) and P1(§;1),..., Pn(&; 7) with leading coefficients equal 1.

Lemma 2.2.1. Let D(; ©) be a polynomial of the variable T € R' with measurable
coefficients that are locally bounded in R"~1 and grow no faster than some power of
|€] as |&] — oo, let ord D(§;1) < J — 1, and let the congruence

D(§:7) =0 (mod IT4 (§: 7))

holds a.e. in R"~. Then there exist uniquely determined polynomials T; (§;7) (in T)
withordTj(§;7) < J —1(j = 1,...,m) which satisfy a.e. in R"™1 the following
conditions:

T;(5;1)=0(mod4+(£;7) (j=1,....,m), (2.2.3)
DEDH- (&) =) P& 0T ) (2.2.4)
j=1

Pi(&:0)T (5 7) = Pj(&0)Ti(€: v) (mod M4 (85 7) Hy (€3 7)),
(#j i, j=1,....,m).
(Condition (2.2.5) is omitted for m = 1).

(2.2.5)

Theorem 2.2.2. The estimate (2.2.2) is valid if and only if the following conditions
are satisfied:

1. There exist functions By (§) (@ = 1, ..., N) such that the congruence
D) E RE: 1)~ Z Ba(§)Qa(§:7) = 0 (mod M1 (§:7))  (22.6)
a=1

holds for almost all £ € R"™1.
2. The inequality

(& 2
sup 1B Y= Tt )|

2
s 1BE nt |5 / S o +Z|ﬂa<s>| s

(2.2.7)
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holds true. Here, the infimum is taken over all systems {Bq )} that satisfy
(2.2.6),and Tj(&;7)(j = 1,...,m)are polynomials satisfying (2.2.3)—(2.2.5).
The left-hand side of (2.2.7) is the sharp constant in (2.2.2).

Proof. Necessity. Suppose that (2.2.2) is valid for all u € Cg°(R’}) and C is the
exact constant in this inequality. Localizing (2.2.2) in £ (cf. the proof of the necessity
of conditions of Theorem 1.2.2, Chapter 1), we find that for almost all £ € R*1

o0

/ S|Py & —id/dn o) di

j=1

R|(E;—id/dt)v(t)],—o|® = B(%) {

(2.2.8)
+ Z |Qa (§:—1d/d1) v(t)|t=o|2]
a=1

forallv € C °°(R ). For each fixed £ € R”™!, inequality (2.2.8) is an estimate of the
type (2.1.1). Applying Theorem 2.1.17, we find that (2.2.6) must hold a.e. in R”~!
and the sharp constant in (2.2.8) satisfies

L P YL el &
MO =it 5 | SRRt T S OP ] 229

where the infimum is taken over all systems {4 (£)} entering in (2.2.6), and T (§; 1)
are the polynomials defined in Lemma 2.1.1. Hence, A(§) = C/B(£). This implies
(2.2.7) and the inequality
C = sup A)B(). (2.2.10)
EGR”_I

Sufficiency. Suppose that (2.2.6) holds a.e. in R”~!. Then, in accordance with Theo-
rem 2.1.17, for almost all £ € R"~! we have the inequality

R|(&:—id/dD) v(t)],_ol® < A(E)[ [ 1Py @ =iajan oo
0o /=t 2.2.11)

N
+ ) 10a (E;—id/dt)v(t)lt:olz},
a=1

where A(£) is defined by (2.2.9), and v is an arbitrary function in C§*° (RL). Assume
that condition (2.2.7) holds. Denote by C the left-hand side of this condition. It
follows from (2.2.11) that for all v € C°°(R ) and almost all £ € R"~! inequality
(2.2.8) is valid. Substituting v = vg(f) = u(f t) withu € Cg°(R’) in (2.2.8), and
multiplying both parts of the resulting inequality by B(§), we obtain after integration
over R"~! that inequality (2.2.2) with the constant C = supgegn—1 A(§) B(§) holds
for all u € Cg°(R’}). As it was shown above, the sharp constant in (2.2.2) satisfies
(2.2.10). This means that it is equal to the left-hand side of (2.2.7). O
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Remark2.2.3. If R, Pj, and Q are differential operators, then it is more appropriate
to consider instead of (2.2.2) the inequality

(R < € ZHP <D>u||2+2 0u(D), |.

a=1

(2.2.2")
u € C&O(RY),

where « . ))Ma is the norm in the space 7, (JR” ). A criterion for the validity of

estimate (2.2.2) is contained in Theorem 2.2.2. It is only necessary to replace in the
formulation of this theorem Oy (£;7) by (1 + |£]2) /204 (& 7).

We end of this subsection with a result cincerning functions that satisfy homoge-
neous boundary conditions.

Theorem 2.2.4. The estimate (2.2.2") holds if and only if the first condition of Theo-
rem 2.2.2 and the inequality

j=1 TP
i BE) ey 2 [o Yo IPiE0P

dr | < o (2.2.7)

is satisfied, where the polynomials T; and the functions By are the same as in Theo-
rem 2.2.2. The left-hand side of (2.2.7) is the sharp constant in (2.2.2).

This theorem is deduced from Theorem 2.1.20 in the same way as Theorem 2.2.2
was from Theorem 2.1.17.

2.2.2 Corollaries

In this subsection we study some special cases of the estimate (2.2.2), namely, in-
equalities (2.2.12), (2.2.15) and (2.2.19). The criteria for the validity of these in-
equalities follow from Theorem 2.2.2, Remarks 2.1.3 and 2.1.4, and from results of
Subsection 2.1.6. First, we consider the inequality

N
(R(DYUu)51/2 < C (||P<D)u||2 + ((Qaw)u))z) , (2.2.12)

a=1

which is a particular case of estimate (2.2.2) corresponding to the polynomials
P;i(D) = P(D).

Corollary 2.2.5. Let P(&;1) = P4+ (&;1)P_(€; 1), where the t-roots of the polyno-
mial P4 (§; 1) coincide (counting multiplicities) with the t-roots of the polynomial
P(&; ) in the half-plane Im¢ = 0, { = © + i0. The estimate (2.2.12) is valid for all
u € Cg°(R7) if and only if the following conditions are satisfied:
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1. There exist functions {By(§)} such that the polynomial D(&;t) defined by
(2.2.6) satisfies the congruence

D(&;1) = 0 (mod Py (£; 7)) (2.2.13)

for almost all € € R"™; and
2. the inequality

. 1 00 D(S;‘E) 2 N ,
vt R 27r_o/o ‘ P 1T LI | <o
(2.2.14)

holds true. Here, the infimum is taken over all {8 (§)} entering in (2.2.13).
The left-hand side of (2.2.14) is the sharp constant in (2.2.12).

This result follows directly from Theorem 2.2.2 and Remark 2.1.3. Indeed, it
follows from (2.1.20) that

YT 0P = [DE: D
j=1

In particular, if polynomials Q(£; 7) are all identically equal to zero, we obtain
the following assertion.

Corollary 2.2.6. The inequality
(R(DYU)31/> < CIIP(DYul? (2.2.15)

is valid if and only if the following conditions are satisfied:

1. The congruence
R(£;7) = 0 (mod Py (£; 7)) (2.2.16)

holds a.e. in R" 1,
2. The inequality

sup B(é)—/‘R(E 2l dr '\ < oo (2.2.17)

gern—1 P& 1)

holds true. The left-hand side of (2.2.17) is the sharp constant in (2.2.15).

Remark 2.2.7. Tt is well-known that condition (2.2.17) is necessary and sufficient for
the validity of the estimate

((R(D)u B2 S /|P(D)u|2dxdt (2.2.18)



2.2 Estimates in a half-space. Necessary and sufficient conditions 127

for all u € C§°(R"). Thus, the validity of (2.2.15) for all u € C§° (R, ) implies the
validity of (2.2.18) for all u € C°(RR% ). The converse statement is in general not
true.

‘We now consider the estimate
(R(DY)1,» < C Z | P;(D)u|?, (2.2.19)

which is a particular case of the estimate (2.2.2) where the polynomials Qg (§; 1)
(¢ = 1,..., N) are identically equal to zero. Next assertion follows directly from
Theorem 2.2.2.

Corollary 2.2.8. The estimate (2.2.19) is valid for allu € C§°(R'}) if and only if the
following conditions are satisfied:

1. The congruence

R(&;7) =0 (mod T4 (£; 7)) (2.2.20)
holds a.e. in R* 1.
2. The inequality
Z, T E D)
B dt 2221
il ©r I TTCETER (22D

holds true. Here T;(§; 1) are the polynomials that satisfy conditions (2.2.3)—
(2.2.5) of Lemma 2.2.1 (where D(&; v) is replaced by R(§;1)). The left-hand
side of (2.2.21) is the sharp constant in (2.2.19).

Remark 2.2.9. Set

IT;(&:70)?
A /=1 dr, 2.2.22
© = ./21W@ﬂ| (2:222)

where T (§; 7) are the polynomials defined in Corollary 2.2.8. Let

o . 2
L($)=%/ me(g’f)' d. (2.2.23)

i=11Pj¢: D)

Replacing in (2.1.22) D(z) by R(&;7) and T;(z) by T;(§; t), we obtain, in accor-
dance with Remark 2.1.5, that
L&) < A(§) (2.2.24)

a.e. in R*~1,
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It is well-known that the condition

sup B(§)L(§) < oo (2.2.25)
SGR”_I

is equivalent to the validity of the estimate

(R(DY)1,» < C / > |Pj(D)ul*dxdt (2.2.26)

Rn—1 J=1

for all u € Cg°(R}). By (2.2.24) and Corollary 2.2.8 the validity of (2.2.19) for all
u € Cg°(R’) follows from the validity of (2.2.26) for all u € C5°(R").

We show that the opposite statement is generally not true. Let R(§;7) = 1,
let N = 2, let Py(§;7) = it + |£|? be the symbol of the heat operator, and let
P> (&; ) = 1. Then, according to (2.2.23),

L) = ((&* + D)7 /27h
On the other hand, we have

Hi(Er)=—it—(E*+ D2, H_(50) =it — (€* + D2,
i) =1, Do) =—(&2 + (&*+ D'V?).

Thus, according to (2.2.22), we find that A(£) = |2 + (|€]* + 1)'/2 and, conse-
quently, the opposite of inequality (2.2.24) does not hold.

2.2.3 The case when the lower-order terms play no role

Let R(D), P; (D) and Qy(D) be differential operators with constant coefficients of
orders po, J; and g (j = 1,...,m a = 1,..., N), respectively, and let J =
maxi<,;<m Jj. We assume that the orders of these operators w.r.t. ¢ are also equal
to po, J; and pq, respectively. We denote by R'(§:7), P/ (§;7) and Qg (§:7) the
respective homogeneous principal parts of the orders 1o, J; and py w.rt. ¢ of the
polynomials R(&; 1), Pj(£;7) and Qq(§; 7).

Next, we introduce the polynomials H', (¢; ), H' (§; 1), IT/, (§; 7) corresponding
to the polynomials P; (&; 7). The validity of (2.2.2) and similar estimates depends
essentially on the lower-order terms of the operators R, Pj, and Q. For example,
consider the estimate

(R, < C (1Pl + Jul?). (2.2.27)

where R(§;7) = R/'(§;1), P(§;7) = P'(§:7), and ord P = 1. Then, we have
Pj(&;7) = 0. If we replace the operators by their principal parts, (2.2.27) takes the
form
2
(R(D)u) 12 < CP(D)u|>. (2.2.27)
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We already know (see Corollary 2.2.6) that the congruence R = 0 (mod Py) is
necessary for the validity of (1.2.27) for all u € Cg°(R%). On the other hand, this
condition has no relation to the estimate (1.2.27).
In this subsection we consider a class of estimates that remain valid after one re-
places the operators R, Pj, and Qg by their homogeneous principal parts. The result
formulated in Proposition 2.2.10 is analogous to Proposition 1.2.15 from Chapter 1.

Proposition 2.2.10. The estimate

(RODW),_, 1, < (Z||P~<D)u||2+||u||§f,_lm)
J=

. (2.2.28)
#3411
is valid for all u € Cg°(R'}) if and only if the inequality
(RDWY,_,_1)n < (ZIIP (Dyul?
. (2.2.29)
AL
holds true, or, what is the same, if and only if
1. There exist functions {By(€)} such that the congruence
def -
D'(§:1) = R'(&; )—Zﬂa(é)(lﬂélz)”z” Ha=(W2D gl (& 7)
a=1
= (modIT’, (§: 1))
(2.2.30)
holds a.e. in R"™!;
2. The inequality
o0
1 Ti(& 7 2
sup (14 [[)7 7072 in =€
Eern—1 Ba®3| 270 Z =1 1P (& P
> (2.2.31)

N
+> |ﬂa<s)|2}

a=1

holds. Here TJ’- (&; 1) are the polynomials constructed in accordance with
Lemma 2.2.1 for the polynomials P]’- (§:7) and D'(§; 1), and the infimum is
taken over all systems {Bq(§)} satisfying (2.2.30).
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Proof. The sufficiency is obvious. Let us prove the necessity. Suppose (2.2.28) holds
for all u € Cg°(RR” ). Estimating the norms

((R=RYDYu),_ 12y 1(P; = PP(D)ull. and ((Qu — Q) (D)) ;. (1)

by [[u]lz,_, (R% ), we see that all the operators in (2.2.28) can be replaced by their
homogeneous pr1n01pal parts of orders wg, J, and py, respectively. Localizing the
obtained inequality in &, we find that the estimate

|$|2J—2u0—1 |R/ (5, —id/dt) U|t=0|2

o0

< C(Z/ |P) (& —id/dr)v|* dr
0

Jj=1

_|_

\8

J—-1 o0
lv|2dt + ZISIZ(J‘I‘S)/|(—id/dt)sv|2dt
s=0 0

€[>/ 721t Qg (& —id/dt) vl =] )

M2°

a=1

holds for all v € C§°(RY ). We set here § = []6 and T = |§|¢, divide both sides of
this inequality by |£|?/~1, and take the limit as |£| — 0o, obtaining

IR (0:—id/dr)v],_o|* < (Z/|P 0:—id/dv)v|* dr
‘10 (2.2.32)

+ Z |04 (9;—id/df)v|z=0|2)'
a=1

If we revert in (2.2.32) to the variables £ and ¢, set v = vg(¢) = u(; r), where
u(x;t) is an arbitrary function in C§°(R’} ), integrate w.r.t. £ and apply the inverse
Fourier transform, then we arrive at (2.2. 29) O

Remark 2.2.11. The statement of Proposition 2.2.10 remains valid if we require
additionally in the necessity part that suppu C Z2(0, o) for some o > 0, where
2(0, o) denotes the n-dimensional ball of radius ¢ > 0 centered at the origin (cf.
Remark 1.2.16, Chapter 1).

2.2.4 An example of estimate for operators of first order with respect
tot

In this subsection we consider an estimate of the type (2.2.19) in the case when P; (D)
are the first-order operators in ¢, and R(D) = 1. It will be shown that a criterion for
the validity of such estimate can be formulated explicitly in the form of necessary and
sufficient conditions on the coefficients of P;(§; 7).
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Proposition 2.2.12. Let P;j(§;t) =it—p;(§) (j = 1,....m, m > 1), where p; (§)
are the measurable functions that are locally bounded in R~ and grow no faster
than some power of |&| as || — oo. Suppose that Z?zl |p;j(€)| # 0 ae inR"1
The estimate

()22 < C 3 1P (Dyul? (2.2.33)
j=1

is true for all u € C§°(R%) if and only if the following conditions are satisfied:
1. The inequality

> pi—pul #0 (2.2.34)

J:h=1

holds for almost all £ € ﬂ?zl{é :Re p;(§) <0}
2. The inequality

m m
B(§) <const| Y [Rep,|+ > [Im(p; — pa)l (2.2.35)
j=1 j.h=1

holds for almost all £ € {S : Z;’Ll Rep;(§) = 0}.
3. The inequality

m m m
BE) [ Y IRepjl+ Y Im(p; — pu)l | <const Y |p; — pul?
Jj=1 j,h=1 j,h=1

(2.2.36)
holds for almost all £ € {g LY Re pj(€) < 0}.

Proof. We show that Proposition 2.2.12 follows from Corollary 2.2.8. Since (2.2.33)
is a special case of the estimate (2.2.19) related to the polynomial R(§;7) = 1, we
see that condition 1 of Corollary 2.2.8 is fulfilled in the considered example if and
only if T4 (§;7) = 1 a.e. in R"~1. The last condition is equivalent to condition 1
of the proposition to be proved, since the T-roots of the polynomial it — p; lie in the
half-plane Im¢ = 0, { = v + io, if and only if Re p; < 0. We show that condition 2
of Corollary 2.2.8 is equivalent to conditions 2 and 3 of the proposition to be proved.
One can verify directly that P; = it — p; (&) satisfies the equality

Hi(E:1) = m"2(t — 1 (8)), (2.2.37)

where

(&) =m~" [ D Imp;(€) +i(f) (2.2.38)
j=1
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and
o\ 172

a@ =|mY 1p;EP =D mp,® : (2.2.39)
j=1 j=1

The polynomials T’ (§; t) (of degree zero w.r.t. T) are calculated for the polynomials
D(;t) =R(§;1) = 1land Pj(§; 1) =it — p;(§) in accordance with Lemma 2.2.1,
yielding

— im'? (it —pj

T, = (ir+ 6) — p; @) G=1,....,m), (2.2.40)

PUNCEAC)

where 74 (£) is defined by (2.2.38). Since

T

/o'o dt _
J X IPiEDR @)

where «(§) is the function defined by (2.2.39), we conclude that condition 2 of Corol-
lary 2.2.8 is equivalent a.e. in R"~! to the inequality

B ZT:I ity — pjl?

5 < const. (2.2.41)
o .
‘ZT:I(I T+ — Dj)
In accordance with (2.2.38), we have
m
> ity = pil? =2m7'(@® + ap) (2.2.42)
j=1
and
2
m
> ity —pj)| =(@+B)> (2.2.43)
j=1
where
m
BE) =Y Rep;(&) (2.2.44)
j=1

and «(§) is defined by (2.2.39). Therefore, condition (2.2.41) can be written in the
form
B(£) < const («(§) + B(§)) ae.in R"L (2.2.45)

Suppose that f(£) = 0. It follows from (2.2.39) and (2.2.44) that (2.2.45) is equiva-
lent to the inequality B < constw, which in turn is equivalent to (2.2.35).
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Suppose now that 8(§) < 0. Representing o + § in the form

. 1/2
alt—1=27""2 )" |p;— pul :
jh=1
we conclude that (2.2.45) can be written as
1/2
m m
Bll-[1-2"1a72 Z \p; — pnl? < consta ™! Z lp; — pul?.
Jh=1 Jh=1
(2.2.46)
Inequality (2.2.46) is equivalent to the inequality
m
Ba <const Y |p; — pul*. (2.2.47)
j,h=1
The equivalence of (2.2.47) and (2.2.36) is obvious. O
2.3 Description of the trace space
In this section we will assume that R(§;7) and P;(§;7) (j = 1,...,m) are polyno-
mials in the variables (§;7) € R". Hence, R(D), P;(D) are differential operators
with constant coefficients. Our goal is to study the “trace space” R(D)u | ;=g Of ele-

ments u belonging to the completion of C5°(IR”) in the metric ZT:I | P; (D)ul>.
The main result of this section (Theorem 2.3.8) will be established in Subsection 2.3.2.
We will show that the considered “trace space” coincides with the closed linear span
of the functions ¢ € C3°(R"~'), which satisfy

2 Sl
ol = [ Reges <o

RrRr—1

with A(§) defined by (2.2.22). Some preliminary results, needed for the proof of
Theorem 2.3.8, are presented in Subsection 2.3.1.

2.3.1 Preliminary results

In this subsection, we show (Proposition 2.3.6) that the function A(§) defined by
(2.2.22) is infinitely differentiable in each component E, of some open set £ C R”~!
of full measure. This result is essentially used in the proof of the main theorem
(Theorem 2.3.8) of this section. A description of 2 is given in Proposition 2.3.4.
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Before we state this proposition, let us recall several well-known statements about
polynomials of the variables (¢; t) € R” with complex coefficients that will be used
in its proof.

Lemma 2.3.1 (Hérmander [H63], p. 275). Let h(£; t) be a polynomial of n variables
oh(&;
£ = (E1,... En1) and T. IFh(E:7) = 0 and (; D 2 0fore =0, 1 =0, then

there exists exactly one function t(§) which is analytic in a neighborhood of zero,
equals zero for £ = 0, and satisfies the equation P(§;1(§)) = 0.

Following Hormander ([H63], p.277), we say that some assertion, depending on
£ € C"1, holds for a generic £, if there exists a non-identically vanishing polynomial
of & such that the assertion holds for all &, for which the polynomial does not vanish.

Lemma 2.3.2 (Hormander [H63], p. 277). Ifthe polynomials h; (§;t) (j = 1,...,m)
have no common divisors other than constants, then they, as polynomials of t, have
no common zeros for generic .

Lemma 2.3.3 (Hérmander [H63], p.277). If the polynomial h(§; t) does not have
multiple zeros, then the zeros of h(€; 1), regarded as a polynomial of T, are distinct
for generic .

We define some polynomials (of 7) which will be used later. Denote by H(§; 1)
the polynomial }7_, | P; (£; 7)|? and consider the polynomials H (§; ), H-(§: ),
and I14(&; 7) defined at the beginning of Section 2.2. Let go(§) and Ao (&) be the
leading coefficients of H(&;t) and Hy (&; 1), respectively. Since H(£; 1) is a poly-
nomial of (§;7) € R” and go(§) = |ho(£)|?, we obtain, according to Remark 1.2.1,
Chapter 1, that ho(§) # 0 a.e. in R”"!. As in Section 2.2, we will assume that
ord Hi = J > 1landord R = J — 1 a.e. in R"~!. We consider the decomposition

M) = Mo v)Ii(€:0), (2.3.1)

where ITp and II; are polynomials of 7 with leading coefficients equal to 1 and
with real and non-real t-roots, respectively. Let A(§) = ord [Ig(§; 1), %2(§) =
ord IT;(§; 7). We set

P;(&;7)
(& 7)

R(;1)

(G=1,....m),  REr7)= TG

PiE:ir) =

1)

0 = Tes = [1E =0 @0, (@) +-+ ki = k).

v=1

Proposition 2.3.4. There exists an open full-measure set & C R" ! (ie,
mes,,_1 (R"™!\ E) = 0), with the following properties:
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1. The orders of the polynomials R(§; t) and H(&; t) are constant for all £ € E.

2. The t-roots of the polynomials Ty, T11, and h+ are analytic in each component
Eq of the set B.

3. The orders A(§), x(§), and k(§) of the polynomials Ty, 1y, and hy and the
multiplicities of their T-roots are constant in each component & y.

Proof. Since the leading coefficients of H(&;7) and R(&; t) are polynomials of &,
the orders of these polynomials (in the variable &) for all £ are independent of £.
Let H(&é;t) = hi(€;1)---hg(&; 7) be a decomposition of H(&; t) into irreducible
polynomial (in £ and 7) factors. Since each of the polynomials i, (§;7), 1 < k < s,
does not have multiple factors, we conclude on the basis of Lemmas 2.3.3 and 2.3.1
that its roots © = (&) are distinct. Moreover, for all £ these roots are analytic
functions. Since the coefficients of H(&;7) = Y_7_; | P;(&; 7)|* are real, it follows
that each factor /i (§; 7) enters into the decomposition of H(§; ) together with its
complex-conjugate /i (§; 7). Take two arbitrary complex-conjugate z-roots of the
polynomial H(§: 1), namely {(§) = x1(§) + ix2(§) and §(§) = x1(§) — ix2(§). If
both £(§) and ¢(&) are t-roots of the irreducible factors of /g (£; 7), then, as it was
already noted, they must be different for all £. However, if () is a root of A and
£(&) is a root of hy, and not all coefficients of hy (§; 7) and hg (§; ) are real, then
hi(&; 7) and hy (&; v) do not have common divisors different from 1. According to
Lemma 2.3.2, in this case ¢(§) # ¢(§) for any £. We denote by H the closed subset
of R*"~! where at each point £ at least one of the following conditions holds:

a) The leading coefficient of the polynomial R(§; t) H(§; ) is equal to zero.
b) At least one of the polynomials of £ listed in the definition of “generic £”, for

which the statement on the complex-conjugate t-roots of irreducible factors of
H (&; 7) holds true, equals zero.

It is obvious that mes,—1 H = 0. We set & = R"*~! \ H. In each component &,
of the open set &, the multiplicities of the roots t = (&) of polynomials H (§; 7) are
constant, the functions { (&) are analytic, and their imaginary parts Im ¢ (§) either are
identicaly zero or preserve the sign. The last statement follows from the definition
of E. In accordance with this definition, it follows that the t-roots {(§) and ¢ (&) for
each fixed o must either coincide or differ for all £ € E,. Thus, for each fixed «,
decompositions (2.2.1) and (2.3.1) can be realized by setting

Hy(§:7) = 0 (mod (r — {(§))%) for Im¢(§) >0,
and
M€ 1) = 0 (mod (x — £(£))%) for Im{() =0 forall &€ Ea,
where k is the multiplicity of the root T = ¢(§) of H(€; ) in the component E,. [

Now we derive a formula for the function A(§) defined by (2.2.22). Using this
formula we will establish the main result of this subsection, i.e., the infinite differen-
tiability of A(§) is each component E, of the set E.
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Proposition 2.3.5. Let {,(§) be the t-roots of the polynomial hy (§; ©), and let
P ={Povy(§:80(5), 5u(8))}

be the positive definite k() x k(§) matrix with the entries

(- hcichkiy —g+o—h)
)y—g+o—h+1

V4 g
P ooy (E: Lo(E). 0o(8) =1 -
e ggog (Co(€) = Eo (£)

m
_( ) -
x Y PP E: 0 )P (E: 5, (8)

j=1
ov=1,...08),0=0()=0,....kg§) =1,y =y(v) =0,....k, (&) = 1).
Here A(§) is the function defined by (2.2.22), while T;(&;t) are the polynomials
satisfying conditions (2.2.3)—(2.2.5) of Lemma 2.2.1, where D(§; 1) is replaced by
R(&; 7). Then, for almost all £ € R"™1 we have the equality

1(§) kv (§)—1
AE) =D Y AV ELE), ©). (2.3.3)

v=1 y=0

(2.3.2)

where {(go‘?y (8))} is the (unique) solution of the system

1(§) kv (§)—1
AVEGE) =D D Poowy (). ()0, (£), (2.3.4)
v=1 y=0

e=1,....l(6§),0 =0(0) =0,...,k,(§)—1).

The proof follows immediately if in Lemma 2.1.16 we replace the polynomials
P () and & () by the polynomials Z(§; t) and &, (§; 1), respectively.

‘We now turn to the main result of this subsection.

Proposition 2.3.6. Let ord H1(§;7) = J = land ord R(§;1) < J — 1 for all
& € E. Then the function A(§) defined by (2.2.22) is infinitely differentiable in each
component By of the set E. Here T;(§; 1) are the polynomials satisfying conditions
(2.2.3)~(2.2.5) of Lemma 2.2.1, where D(§; 1) is replaced by R(€; 7).

Proof. Let E, be a fixed component of the set &. By Proposition 2.3.4, the functions
£y (€) are analytic, while [(§) and k,,(§) are constant in E,. Since Lemma 2.2.1 was
proved under the assumption that

D(&:7) = R(§;7) =0 (mod T4 (§;7)) ae.in R" L,

one can assume that the functions Z)(£; ¢, (£)) and Poovy (£ (o (£), 0y (£)) are in-
finitely differentiable in 2. Since the matrix (2.3.2) is nondegenerate, the functions
go,‘,)y (&) are also infinitely differentiable in E,. Then, from (2.3.3) we obtain this
property for the function A () as well. O
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2.3.2 Embedding and extensions theorems

It was shown in Proposition 2.3.6 that the function A(§) > O is infinitely differ-
entiable a.e. in R?~!. This means that B(§) = 1/A(£) is a measurable function
satisfying condition 2 of Corollary 2.2.8. Thus, Corollary 2.2.8 yields the following
embedding theorem.

Theorem 2.3.7. Let (2.2.20) be fulfilled a.e. in R"~. Suppose also that A(§) is the
function defined by (2.2.22), where T (§; ©) are the polynomials that satisfy condi-
tions (2.2.3)-(2.2.5) of Lemma 2.2.1 with D(§; ) replaced by R(§;t). Then, for all
u € Ci°(R’,) we have

[ IR (& —id /) (& 0) ]y oo fé) ;uP,«(D)uuz. (2.355)

Rn

In this subsection we formulate an extension theorem (Theorem 2.3.8), which in
a certain sense is a converse to Theorem 2.3.7. These two theorems give a com-
plete characterisation of the “trace space” R(D)u | ;=0 ©Of the elements u belonging to

completion of Cg°(R’} ) in the metric Y7, | P; (D)u]|*.

Theorem 2.3.8. Let the polynomial R(§; ©) satisfy (2.2.20) for almost all §¢ € R*™1,
and let the function A (§) be defined by (2.2.22). Then, for any function g € CS°(R"™1)

AOEV(2
such that fRn_l |§j\(($$))| d§ < oo there exists a sequence u, € Cg°(R") satisfying

the following conditions:

plgngow/ R (Gi-id/dn) 1,60,y =9 25 =0
fim 3" 12,0y w0l =0, fim ZuP (Dyup|? = / e P2
p,k—>ooj=1 J » ’ P xa A(S)

Proof. Consider the functions (pgy (¢) and A(§) defined by (2.3.4) and (2.3.3), re-
spectively. Set

P(E)ep, (§)
A(§)
Clearly, ¢, (£) are infinitely differentiable in each component 2, C E. Let§ € E,

letui(§:1), ..., uxe)(§: 1) be the fundamental system of the operator Iy (§; —id /dt),
andlet Wlui(§;1), ..., uxe)(§;1)] be the Wronskian of this system. Assume further

Qovy(f): (V:L’l(é)y)/:o”kv(f)—l)
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that W [u1, ..., ux)] is the determinant obtained from W by replacing the o-th col-
umn (1 < o < %(§)) by (0,...,0,1). Set
1&) kv (H)—1
gEND =" Y eu @) exp(Lu(E)),
v=1 y=0
x(8)
v(E: ) = Z p(E: 1) / 2(E:7)

Wolui, ..., ux(é)](é o).
Wi, ... uxe)

It is obvious that IT (§; —id/dt)v(§:t) = g(&:¢t) forall £ € E. Therefore, we have

1. R (&—id/d)v(Et),—g = Z (&;—id/dt) g(§:1)|,—0
1) kv(§)—1
— Z Z BV (E: 80 (8)) vy ()

v=1 y=0

1&) o ®O=1 500 (£ ¢,
—o®Y Y & &y, €) _

AG) 7¢3)

v=1 y=0

and

2. Z d/P~(§;—id/dt)v(§;t)|2dt
0

=3 | d& [ |2 E—id/dngEnl de
J«]

jlen—l
1(§) ko(§)—1 1(§) kv (§)—1
= f Y3 Y Y Py (E:406). ()% (E)E0, () dE

Rn—19=1 y=0 v=1 y=0

PO 5™ 0y 61 20(6), £ 0% 017, EE
A2(E) P 0avy (5:60(5), 6v(8))Pps (5) P,y
Rn—l
p@R & 0 O
- B (€))L, (E)dE = ds.
Rn[l A2(§) ; }’2:;) e L A2(§)

Consider the closed set H = R*~! \ E; then mes,_H = 0. Let Hy be a
neighborhood (in R”~1!) of the set H such that mes,_Hy < 1/k (k = 1,2,...).
Define a sequence of infinitely differentiable “cut-off” functions y. (§) by

0, if |g] =2k,

we® =10, if e H,
1, if |§|<k and E£¢ H, (k=1,2,...).
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Set gr(&:1) = g(&;1) xx(§). The functions

x(§)
D) = = Dol z)/gk@ )

Wolui, ..., ux(g)](g Ddt
Wilui, ... uye))

satisfy the equation IT; (§; —id/dt) vg(&;t) = gx(§:¢) (k = 1,2,...). Taking into
account the definition of yx (&) as well as the fact that the imaginary parts of the -
roots of I1; (&; 7) are bounded from below on the set E, \ Hj by a positive constant
(depending on « and k), we conclude that the functions

we(x;1) = 2m)A—m/2 / v (E:1)e*Ed g
Rn—l

are infinitely differentiable and decay at infinity (in R’} ) faster than any power of

(|x|?> + t?2)7! together with all their derivatives. We now consider a sequence of

infinitely differentiable “cut-off” functions
(iny = 1O i (PP )0
ne(x;t) =
! I, if (xP+A)YV2<r =12,

and set wg, (x;1) = wr(x;)n,(x;t) (k,r =1,2,...).

We show that the sequence wy, (x; t) satisfies all conditions of the theorem to be
proved. It is evident that wg, € Cg°(R7}) (k,r = 1,2,...).

Since the equalities

Pj(§:—id/dtyve(§:1) = Zj(§:—id/di)gr(§:1) = xi(§)Pj(5: —1d/d1)g(§:1)

hold, and the function g(£;¢) and all their derivatives w.r.t. ¢ tend to zero as t — +00
faster than any power of ! uniformly w.r.t. £ on the sets E, \ Hy, we have

lim Z / d$/|P (& —id/dr) [or(&;1) — vg (& 0] dr = 0,

k, s—>oo

and, consequently, klim Z'}Ll | P;(D)(wg — ws)||> = 0. From the definition of
,§—00

nr(x;t) and the properties of wy (x;¢) it follows that
m
Jim DUINPD)wir —wip)IP =0 (k=1,2....).
j=1

Then we also have N rilm ZT=1 | P;(D)(wg, — wsp)||> = 0. Analogous argu-

ments show that

m
i . _ 2 _ —
rlggoznPJ(D)(wkr w)l>=0  (k=1.2...).
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Applying Theorem 2.3.7 to the difference wy, — wy we get

2 d§

Jim / |R (§:—id/dt) (i, (§:1) — W (§:1))],=ol AGE)

Rl’l

However, the equalities

R (§:—id/dr)r(§:1)],=0 = Xk (E)R (§:—id/dt) v(§:1)|,=0 = Xk (5)P(§)

and

i 2~ ev2 46 .
Jm / (&) = D?@(8)] O] =0

Rn—l
hold true. Hence,

2 d§

o Jm |R (§:—id/dt) Wpr(§:1)];=0 — ¢ (§)] NG

RrRr—1

From Parseval’s identity and the properties of 1z (x;¢) and yg (£) it follows that

m m
li P;(D 2=l P;(D)wi|?
k’rgnoo;u j (D)wir | = lim Zu j (D)w

k—>oo

= lim Z / dg/|P (& —id/dn) v (&) di

=Z / ds;/|P (E:—id/d)v(E: )| di

_ 2
- / PO 1 0

Remark 2.3.9. In general, the condition

d
(e)2s = / |¢J(s)|2T§) <o

Rr—1

is not satisfied for all elements of the space C$°(R"™1).

Let, for example, n = 2, m = 2, P;(D) = P (—id/dx;—id/dt) = d/0t,
P,(D) =1, R(D) = R(—id/0dx;—i0d/dt) = d/dx. Then, we have P(§;7) = it
Pry(&t) =1L R(E ) =i Hy(§.1)=—it -1, H-(§;1) =it =1 Th(§:7) = i€,
T»(&;7) = —i&, A(§) = £2. Hence, for every function ¢ € C{°(R"™') such that
¢(0) # 0, we have «go»A_l/z = 00.
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Remark 2.3.10. Convergence to zero in the topology defined by the norm ((-)) —1/2
does not always imply convergence to zero in the space of Schwartz distributions &'.

Let, for example, n = 2, m = 2, P;(D) = P(D) = 3%/3x0t, P»(D) = 1,
R(D) = 1. Then P(§;7) = —&7, R(§;7) = 1, and for all £ # 0 we have

Hy(§:1) = —fr+isgné,  H-(§7) = —fr —isgné,
N =1 D) =—isgné,  AE) =57

Let r = (x2 4 t2)!/2. Consider the sequence of functions uy (x:) € 7] (R?) given
by

1, if r<l,

1
up(x;r) = (log x

0, it r>k

-1
)1%£,if1srsh k=1,2,...),

and set @ (x) = ug(x;0). It follows from ||Vuy|| = O((logk)™!) and

2

L2(R2)
o0

[ 161 0P < 1Vl

—00

that kli)rrolo «QO»A—l/z =0.
On the other hand, for any nonnegative function n € C$°(R!) it holds that

/ o (V)N (x)dx = / 1),

Rn—1 lx|<1

Hence, ¢ does not tend to zero in Z'(R!).

2.3.3 On the extension of functions from J7”(R") to 77 (R"})

In this subsection we establish a corollary of Theorems 2.3.7 and 2.3.8 and of Propo-
sition 2.2.12, which is possibly interesting in its own right. It is concerned with the
extension of functions having finite norm (}-7_, || P;(D)u : L2(1R’4‘_)||2)1/2 to the
whole space R” with class preservation.

Let Pj(D) = d/dt — p;(Dx) (j = 1,...,m; m > 1) be differential operators
with constant coefficients, with the polynomials p; (§) pairwise distinct. We denote
by 7 (R”.) and 7 (R") the completions of the spaces C§°(R” ) and C§°(R") in the
metrics

e : A®R)> = I1Pj(D)u = L2(RY)]?

j=1
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and

lu : AR")|? = Z | Pj(D)u : L>(R™)|?,
=1

respectively. The restriction of the elements of JZ(R") to J(R".) is defined in a
natural way.

Proposition 2.3.11. An element u € J (R’,) is the restriction of some v € F(R")
to (R") such that

v:2Z(R")| < const|lu : SR, (2.3.6)

if and only if the inequality

m

m
Z |Re pj| < const Z |pj — pal (2.3.7)
j=1 joh=1

is fulfilled a.e. on the set {E 1Y T_1Repj < O}.

Proof. Let R™ = {(x;t) : x € R" 1t < 0}, and let C{°(R") be the space of
functions from C§°(R") restricted to R”. We denote by ¢ (R”) the completion of
Cs°(R™) in the metric

he : ARL)P =D | Py (D)u: L*(RY)|.

j=1

The restriction of the elements from 57 (R") to 7 (%") is defined in a natural
way. By v~ we denote the restriction of v € 77 (R") to 5 (R" ). Further, notice that
(2.3.6) is equivalent to the inequality

[v™ : FRE)| < const [|u : F(RY). (2.3.8)

Since the polynomials p;(§) are pairwise distinct, we have Z7=1 |pjl # 0 and

Z?,h=1 |p; — pn| # 0 ae. in R"~!. Therefore, condition 1 of Proposition 2.2.12 is
fulfilled.

Necessity. Set
Av@ =2m""a+p7", A =2ma-p)", (2.3.9)

where «(§) and B (&) are defined by (2.2.22) and (2.2.44), respectively.
Theorem 2.3.7 implies the inequality

((u))Ar/z < lu: AR (2.3.10)
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Replacing H4 (§; t) by H_(; 7) in all arguments used in proof of Theorem 2.3.7 and
taking into account (2.3.8), we obtain

(v ) =12 = (u) \21/2 < const|v™ - (%"

2.3.11)
< const ||u : ff(%_"fl)ﬂ.

Combining (2.3.10) and (2.3.11) and taking into account the results of Corol-
lary 2.2.8 (see (2.2.21)), we find that the inequality A1 A~! < const or, what is the
same,

a — B < const(a+ ) (2.3.12)

holds a.e. in R”.
Let 8(£) < 0. From the definition (2.2.39) of the function «(§) it follows that one
can replace « in (2.3.12) by

m m
Y IRepjl+ Y Im(p; — pa)l.
j=1 jh=1
Representing o + B in the form
1/2
m
a+f=al|l— 1—2_101_22:|pj—ph|2 ,

j,h=1
we see that on the set {S : ZT=1 Rep; < 0} inequality (2.3.12) is equivalent to
(2.3.7).

Sufficiency. Suppose that (2.3.7) holds a.e. on {g 3" Rep; < 0}. Then (2.3.12)
is satisfied a.e. on this set (see the proof of necessity). On the other hand, (2.3.12) is
automatically fulfilled on the set {E : Z?:l Rep, == O}. Hence this inequality

holds for almost all § € R”~!. Therefore, the functions A 4 (£) and A_(£) defined by
(2.3.9) satisfy the condition Ay A”! < consta.e. in R*~!,
Letu € 7Z(R"). Using Theorem 2.3.7 we get

((u(x;O)))All/z < Ju: AR (2.3.13)
Since A AZ! < consta.e. in R”~1 it follows that
«u(x;O)»A:l/z < COHSt((U(X;O)))A:_I/2. (2.3.14)

Replacing H4 (§; t) by H_(€; 7) in all arguments used in the proof of Theorem 2.3.8,
we construct an element v~ € 57 (R" ) such that v~ (x; 0) = u(x;0) and

(uCx:0)) =12 = (v (x:0)) \z1/2 = 7 AR (2.3.15)
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From (2.3.13), (2.3.14), and (2.3.15) it follows that
[v™ : A RY)| < const|ju : (R

We show (this would be sufficient to complete the proof) that the elements # and
v~ are restrictions of some element v € JZ(R") to ' (R".) and 7 (R"), respec-
tively. Following the recipe described in the proof of Theorem 2.3.8, we construct the
fundamental sequence v, € C3°(R"), which determines the element v~ € JZ(R").
Let yx (&) and 71, (§) be the “cut-off” functions used in this procedure.

Consider the sequence 11 (§;1) = 6 (§;t) yx (§), where 11 (§; t) is the Fourier trans-
form of the element u € 7 (R’,) w.r.t. x. Further, let

wetein) = @02 [ e,

Rr—1

and let wy,(x;7) = wg(x:7)xx(§). It is obvious that wg, € C3°(R’}), and this
sequence converges in 7Z’(R") to the element u as k,r — oo.

Since u(x;0) = v~ (x;0) and the sequences v, € C5°(R”) and wy, € C5°(R’})
have been constructed by using the same system of “cut-off” functions yz(§) and
nr(x;t), we have Vg, (x;0) = wg,(x;0). Therefore, for each fixed pair k, r, the
functions v, (x; ¢) and wg, (x; 1) are restrictions of some function vg, € C5°(R") to
R” and R"} , respectively. Since v, (x;#) converges in 7 (R") to v~ and wy,(x;1)
converges in .7 (R’ ) to u, we conclude that the sequence v, (x:?) converges in
€ (R™) to some limit function v. The functions v~ and u are restrictions of v to
C(R™) and 7 (R} ), respectively. O

2.4 Notes

The main results of this chapter were established by the authors (sometimes in a less
general form) in the paper [GM74]; some of the results were announced in the note
[H58].



Chapter 3
Dominance of differential operators

3.0 Introduction

3.0.1 Description of results

In this chapter we formulate necessary and sufficient conditions for the validity of the
estimates

m N
IR(DYulIZn < C | D NIP (DYl + > (Qu(D)u) |

ot = (3.0.1)
u € C(RY)
and
m
IR(DYul31,2 < C D IIP; (D>, ueCPRY), 502

j=1
Quu(x;0)=0 (x=1,...,N).
Itis assumed that R(&; 1), P;(§; 1), and Q«(§; ) are polynomials in the variable T €
R! with complex measurable coefficients that are locally bounded in R*~! and grow
no faster than some power of |£| as |§] — oo. We suppose also that ord R(§;7) <
J = max;<j<mord P;(§;7)andord Qy (§:7) < J — L.
Criteria for the validity of (3.0.1) and (3.0.2) are given in Section 3.2. To formulate

these criteria, we consider the polynomials (of ) Hy (&;t) and I14 (€; 7) defined in
Chapter 2 (see Subsection 2.0.1), and the polynomials (of 5, 7 € R!)

QEnT) =0 — 1) "[HeET)RE T) — R(E 1) Hy(5:7)]. (3.0.3)

There exist functions By (£; 1) (1 < @ < N) such that the relations

® N
/Zlﬂa(é:n)lzdwoo (3.0.4)
_ a=1
and

N
DE D) E [He G076 10 — Y BalEin) Qa(§: 1) = 0 (mod T4 (§: 7))
! (3.0.5)
hold for all n € R! and almost all £ € R"~!.
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Denote by D (&;n, t) the polynomials of v (ord D;(&;n, v) < J — 1) satistying
for all n € R! and almost all £ € R"~! the conditions

D;(En 1) =0(modM4(E7)  (j=1,....m); (3.0.6)
D(En D H-(E:1) = ) Pj(E:1)D;(E 1, 7); (3.0.7)
j=1

Pi(§:1)D;(§:n.71) = Pj(§: 1) Di(§:n. 1) (mod Iy (§: 1) Hy (§: 7))
@#£j;i,j=1,...,m).
(Condition (3.0.8) is omitted in the case m = 1).

From Lemma 2.2.1, Chapter 2 it follows that for each system {B4(&;7)} satis-
fying (3.0.5) there exist polynomials D ;(§; 7, t), which are uniquely determined by
conditions (3.0.6)—(3.0.8). In Section 3.2 (Theorem 3.2.2) it is shown that inequality
(3.0.1) holds if and only if

1. there exist functions B4 (&;n) (¢ = 1,..., N) that satisfy conditions (3.0.4)
and (3.0.6);

2. the inequality

(3.0.8)

©0 N

. [ Zj=1|DiEn 0P
. 2 J
/{ﬂal(lgn)} 2 1Putsin) +_£ Y 1P (E )2 e

—oo a=1

3.0.9)
[R(E;1)|? _ const

+ <
YT IPiE D> T BE)
holds for almost all £ € R”™! and all r € R!. Here Dj(&;n, ) are the

polynomials defined by conditions (3.0.6)—(3.0.8), and the infimum is taken
over all systems {84 (§; )} satisfying (3.0.5).

If all polynomials Qg (; 7) vanish identically, then (3.0.1) takes the form

m
IR(DYul312 <C Y IP; (D, ueCRY). (3.0.1')
j=1
It is established in Theorem 3.2.4 that the estimate (3.0.1") holds if and only if

1. for almost all £ € R"! and all n € R! the polynomial (3.0.3) satisfies the
congruence
Q(&:n,7) =0 (mod Iy (§;7)); (3.0.10)

2. the inequality

]o 7 2321 |D;(&;n, T)|2drd |R(E:7)|? const
A B(§)

— +— < 3.0.11
ST mEor TS pE R GOID
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holds for almost all £ € R”™! and all n € R'. Here D;(§;n, 1) are the
polynomials of t satistfying conditions (3.0.6)-(3.0.8) with D(§;n,7) =
[Hi (&) 'QE D, ).
Finally, the criterion for the validity of the estimate (3.0.2) (Theorem 3.2.3) is as
follows: condition 1 of Theorem 3.2.2 is satisfied and the inequality
[e.e] [e.e]
/ . LG
{Ba (E:m)} m_ P& 7))
5 oL, 2= 1Pl (3.0.11)
|R(£:7)|? _ const

Y IPiE DR T B)

holds for almost all £ € R”~! and for all ¢ € R!, where the polynomials D j and the
functions B are the same as in Theorem 3.2.2.

All these results are deduced from necessary and sufficient conditions for the va-
lidity of inequalities of the types (3.0.1) and (3.0.2) for ordinary differential operators
on the semi-axis ¢t = 0, as well as from the estimates of the sharp constants in these
inequalities.

In Section 3.3 we consider several examples. In Subsection 3.3.1 it is shown
that the well-known theorem by N. Aronszajn [Aro54] on necessary and sufficient
coercivity conditions for a system of operators P; (D) in the half-space R’} is a direct
consequence of the results of Section 3.2. In Subsection 3.3.2 we consider the case
when m = 1 and the number N of the boundary operators Q4(D) is (in a certain
sense) minimal. Necessary and sufficient conditions for this case were established by
the authors in [MG75], where we used other methods and a different terminology. In
Subsection 3.3.2 it is shown that the main result of [MG75] follows from the general
criterion obtained in Section 3.2. The estimates of the type (3.0.1) for operators P;
of the first order in ¢ are studied in Subsection 3.3.3.

Other applications of the results of this chapter are given in Chapter 4.

+

3.0.2 Remarks on the method of proving the main result

The study of the validity conditions for the estimates (3.0.1), (3.0.2), and (3.0.1') is
based to a large extent on the results of Chapter 2. We explain this relationship using
as example the estimate (3.0.1"). Applying the method of localization in £ and using
the Fourier transform w.r.t. x, we obtain similarly to Subsection 1.0.2 that (3.0.1') is
valid if and only if the estimate

o0 o0 m

. 2 . 2

/ IR (&:—id/dt)v|* dt < A(§) / Y|Py (g:—id/dryv|” dt (3.0.12)
0 0

|
j=1

with v € C§° (RL) holds true for almost all £ € R”™!, and the sharp constant A(§)
in (3.0.12) satisfies the condition

B(§)A(§) < C. (3.0.13)
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Necessity of (3.0.10) is established in the same manner as necessity of (2.0.9) in
Subsection 2.0.2. Notice only that, in accordance with (3.0.3), the congruences
QE;n,7) = 0 (mod Iy (§;7)) and R(é;7) = 0 (mod 14 (&; 7)) are equivalent.
Without loss of generality we can assume that IT4 (£; ) = 1. For the sake of sim-
plicity, we assume also that the leading coefficient of the polynomial H(§; 1) is
equal to 1, and its z-roots &1 (£), ..., ¢y (£) are pairwise distinct a.e. in R*~!,

Variational problem in a finite-dimensional space and estimates of the sharp con-
stants. We consider the positive definite J x J matrix 25(§) defined by (2.0.14) from
Chapter 2. Leta(§; 1) = (ao(§:1)) € C” be the vector-function with the components

ap(§in) = [HrEMIT'QE N LE)  (@=1.....)). (3.0.14)
By (3.0.3), these components are continuous and belong to L?(R!) as func-
tions of the variable 7. Let x = (X1,...,X5) € C’, and let x() =

ZZ,=1 Xgexp (i, (£)t). Using the easily verifiable identity

/ | @(&:m). %) [2dn = 2x / IR (& —id/dn)x(n)? di
—00 0

and arguing in the same way as in Subsection 2.0.2, we can show that (3.0.12) is true
if and only if the estimate

o0
[ 1a@n.0, Pdn <2000 BEx0, . xeC! G013)
—00
holds a.e. in R”~! and the inequality

[ 1R € iaganofa < na) [ 2Py @ —idyanof ar
0 0

et (3.0.16)

veCPRY), vP0)=0 (p=0.....J -1

is satisfied. Here, the sharp constants A(§), A1(§), and A,(€) from inequalities
(3.0.12), (3.0.15), and (3.0.16), respectively, satisfy the estimate'

27TA () < max (A1(8), A2(8) < A(§).

Since (3.0.16) must be fulfilled for functions v(¢) satisfying the homogeneous Cauchy
data, we have?
IR D)

Z?:l |Pj(§2f)|2'

'A complete proof of an analogous statement corresponding to the estimate (3.0.1) is given in Lemma 3.1.6.
2For more details, see the proof of Theorem 3.1.9.

Ao (§) = sup (3.0.17)
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Along with (3.0.15) we consider the inequality

|@(E:n).x); > < M) (BEXX),;, xeC’. (3.0.18)

It is obvious that each of inequalities (3.0.15) and (3.0.18) holds true if and only if
for every n € R! all elements x € ker®B satisfy the condition (a(§;1),x); = 0.
Since the left-hand side of (3.0.15) is the result of integration of the left-hand side
of (3.0.18) over R!, the sharp constants A(£) and A,(&;7) in (3.0.15) and (3.0.18),
respectively, satisfy the estimate

A1 (E) < / M mdn < e A (E). (3.0.19)

From the results of Chapter 2 and (3.0.14) it follows that the sharp constant
A1(&; n) coincides with the sharp constant appearing in the boundary estimate

m [e.e]
_ . 2 . 2
H 172 € —id /0 olmof* < i Y [ [Py G —id/doofar
Jj=1 0
v eGP (RY)
(3.0.20)
for ordinary differential operators. According to Theorem 2.1.17, Chapter 2, we have

1 Y7 D)
M) = E/ Zz’g,:”iﬁ;f;l' dr, (3.0.21)

where D;(§;n,t) are the polynomials satisfying conditions (3.0.6)-(3.0.8) with
D(&;n, 1) = [Hy(§:7)]7'Q(&: 0, 7). Using (3.0.17), (3.0.19), (3.0.21) and (3.0.13),
we arrive at (3.0.11).

3.1 Estimates for ordinary differential operators on the
semi-axis

Let R, P}, and O, be polynomials of the variable v € R! with complex coefficients,
and let / = maxord P; = 1,ord R < J, and maxord Q, < J — 1. In this section

3 A complete proof of this assertion is given in Lemma 3.1.1.
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we establish necessary and sufficient conditions for the validity of the inequalities

/|R(—id/dt)u|2dt < A[/Z\P,- (—id/dtyul’ di
0 o /=1

N (3.1.1)
+3 10 (—id/dt>u|,=0|2],
a=1
u € C°(RY),
/|R(—id/dt)u|2dz sAO/Z|Pj (—id/dryul® dt,
0 0o /=1 (3.1.1)

Qq (—id/dt)ul,_y =0,
ueC&PMRLY)  (@=1,...,N)

and give upper and lower bounds for the sharp constants A, A figuring in (3.1.1) and
(3.1.1"), respectively.

3.1.1 A variational problem in a finite-dimensional space

As already noted, the estimates for ordinary differential operators on the semi-axis are
equivalent to certain inequalities in a finite-dimensional space. In Subsection 3.1.3
it will be shown that (3.1.1) is equivalent to (3.1.26) and (3.1.27), while (3.1.1’) is
equivalent to (3.1.36) and (3.1.27). In this subsection, we consider the variational
problems which are equivalent to (3.1.26) and (3.1.36): we find necessary and suffi-
cient conditions ensuring the boundedness of the function W, (z), defined by (3.1.4),
on C’ and the functions (3.1.14) on the subspace (3.1.10), respectively; and give
estimates for the suprema of these functions (Lemmas 3.1.2-3.1.4). To prove these
results, we begin with a statement related to a variational problem with a parameter.

Suppose that quadratic forms <7 (1, z;z) = 0, B(z;z) = 0,z € B, n € R! are
given on the subspace B of the complex space C’/. We assume that <7 (1, z; z) is
continuous w.r.t. n and <7 (n,z;z) € L' (R!) for all z € B. We set

o (n, 1z, T
@(n,z):%, W(z) = / ®(n, z)dn. (3.12)

It follows from (3.1.2) that W(z) is bounded on B if and only if we have ker #(z;z) C
ker <7 (n,z;z) for all n € R!, or, what is the same, if and only if the function ®(1, z)
is bounded for all € R!.

Let X be the orthogonal complement of the subspace ker %(z; z) in B, and let
r = dimX.
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Lemma 3.1.1. Let the functions ®(n,z) and V(z) be defined by (3.1.2), let the
function \V(z) be bounded on B, and let A(n) = sup,cp (1, z) and the constant
A = sup,cp Y(z). Then A(n) € LY (RY) and A satisfies the estimates

rIA < / A(n)dn < rA. (3.1.3)

Proof. Ttis obvious that Z(z; z) is positive definite on X, and A(7) = sup,cx (1, z),
A = sup,cx ¥(z). Let HB(z1;s2) be the bilinear form corresponding to #(z;z). We
define in X the scalar product {z,z,} = %(z1; 2>) and consider a nonnegative r X r
matrix U(n) satisfying {UU(n)z,z} = o/ (n,z;z) for z € X. It is evident that its
entries are continuous functions from L!(R'), and A(7) is the largest eigenvalue of

[ U(n)dn. Therefore, r~ trid(n) < A(n) < trld(n) and

—00

r /Z/{(n)dn <SA<tr /L{(n)dn

From these inequalities it follows that A() € L'(R!) and A satisfies (3.1.3). O

Now we turn to the consideration of variational problems discussed at the begin-
ning of this subsection.

We denote by (-,-), and (-, ), the scalar products in the complex spaces C* and
C, respectively, and set C/ = C* x C”. The elements z € C’/ will be written
asz = (x;y), where x € C* andy € C". Suppose that ¢g € C* and d, € C”
(¢ =1,...,N). Leta(n) # 0 be a u-dimensional vector-function with continuous
components belonging to L?(R!), and let % be a non-negative  x i matrix. For
zeC’/,neR!set

2
fD] (7]’ Z) — |A(/a(77)’ X)M | i
(%X’X)u + Za:l | (Ca,X)M + (da’ y)v |2
00 (3.1.4)
ne = [ odn
A1 = sup ¥y(2). (3.1.5)
2eC/

Lemma 3.1.2. The function V,(z) defined by (3.1.4) is bounded on C’ if and only if
there exist functions Bo(n) € L?(RY) that satisfy the following conditions:
1. The equality

N
> Bu(dy =0 (3.1.6)
a=1

holds for all n € R,
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2. The equation

N
Bx(n) =a(m) — Y _ Bu(n)ca (3.1.7)

a=1
is solvable for every n € R1.

If these conditions are satisfied and Xo(n) is an arbitrary solution of (3.1.7), then
the constant A1 defined by (3.1.5) satisfies the estimate

o0 N
rT AL < / s [(fsx@(n),xm)),ﬁZwa(nnz} dn<rhi (318

—o00 a=1
where the infimum is taken over all {4 (n)} satisfying conditions 1 and 2, and r is an
integer such that0 <r < J.

Proof. The boundedness of the function W;(z) on C” is equivalent to the bounded-
ness of the function ®;(n,z) for all » € R!. Substitutinga = a(n) and b = 0
in Lemma 2.1.6, Chapter 2, we see that this boundedness, in turn, is equivalent to
conditions 1 and 2 of the present lemma. In addition, we have

zeC’

N
A = sup @in.z) = inf [(%Xo(ﬂ),xo(n))u +3 Iﬁa(n)lz] (3.1.9)

a=1
Thus, (3.1.8) follows from Lemma 3.1.1 (with B = C7) and (3.1.9). O

Suppose that the matrix B, the vectors ¢,, dy, and the vector-function a(n) are
the same as in Lemma 3.1.2. Letz = (x;y) € C’, and let

B={z:(c,X)y+ (dg,¥)y =0, a=1,....,N}. (3.1.10)
For z € B we set
®10(n,2) = |(a(n). X)L [*[(Bx, x),.] 7", (3.1.11)
A10(n) = sup D10(7, 2). (3.1.12)
z€B

Lemma 3.1.3. The function ®1¢(1, z) is bounded on the subspace B for every n € R!
if and only if there exist functions By (n) € L*(R') satisfying conditions 1 and 2 of
Lemma 3.1.2. If these conditions are satisfied and Xo(n) is an arbitrary solution of
(3.1.7), then

Aro(n) = {ﬂirg’)} (Bx0(1), X0(M) , » (3.1.13)

where the infimum is taken over all {Bq(n)} satisfying conditions 1 and 2 of Lemma
3.1.2.
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Proof. All statements of this lemma are essentially contained in Lemma 2.1.18, Chap-
ter 2. It is only necessary to replace in that lemma a by a(7), set b = 0, and notice that
the boundedness of the function (3.1.11) on the subspace (3.1.10) is equivalent to the
boundedness of the function ®;(7, z), defined by (3.1.4), on the space C* x C*. O

Lemmas 3.1.1 and 3.1.3 imply immediately the following assertion.
Lemma 3.1.4. Let the function ®1¢(n, z) and the subspace B be defined by (3.1.11)

and (3.1.10), respectively, and let

o0

Wip(z) = / ®19(n,2)dn, z e B. (3.1.14)

—00

The function (3.1.14) is bounded on the subspace B if and only if there exist func-
tions Be(n) € L*>(RY) (1 < a < N) satisfying conditions 1 and 2 of Lemma 3.1.2. If
these conditions are satisfied, Xo(n) is an arbitrary solution of (3.1.7), and

A10 = Sup \Ifl()(Z), (3115)
z€eB
then
o0
r1AL < / {ﬂin(f)} (Bxo(n). Xo(n)),, dn < rA1o. (3.1.16)
o
—00

(Here, r is an integer such that 0 < r < J, and the infimum is taken over all systems
{Bqa} satisfying conditions 1 and 2 of Lemma 3.1.2).

3.1.2 The simplest lower bound for the constant A

In this subsection we obtain the lower bound (3.1.17) for the constant A from inequal-
ity (3.1.1). It is a direct consequence of inequality (3.1.1). It can be also regarded as
the first natural restriction on the class of operators R for which (3.1.1) holds. In
particular, the polynomial R(t) must satisfy condition (3.1.23) below.

Lemma 3.1.5.* If for some A < oo the estimate (3.1.1) holds for allu € C§°(0, 4+00),
then
|R(D)I?

AZsup—i——————.
ZT=1 |P;(7)]?

(3.1.17)

Proof. We substitute in (3.1.1) u(¢) = v(t +a), where v € C{°(R") and the constant
a € R! satisfies the condition supp v (—o0,a) = @. Since Qy (—id/dt)ul|,_y =0

4Cf. Lemma 1.1.5, Chapter 1.
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(¢ =1,...,N), we have

o0 o0 m
/ IR (—id/dt)v|*dt < A / P (—id/dr)v|* dt,
- (3.1.18)
—00 —o0 /=1
v e CPRY).
Inequality (3.1.17) is a trivial consequence of (3.1.18). O

3.1.3 Reduction of the estimates for ordinary differential operators
on the semi-axis to variational problems in a finite-dimensional
space

In this subsection we show that (3.1.1) is equivalent to inequalities (3.1.26) and
(3.1.27), whereas (3.1.1) is equivalent to inequalities (3.1.36) and (3.1.27).

Let us define the dimensions u, v, the vectors ¢, dy, the matrix 8 and the vector-
function a(n) that appear in (3.1.26) and (3.1.36). Let R, P;, and Q be the polyno-
mials considered at the beginning of Section 3.1. Set

> IP (0> = Hi(n)H(7), (3.1.19)
j=1

where H, (7) is a polynomial of degree J with roots lying in the half-plane Im ¢ = 0,
{ =1t+i0,and H_(t) = H4+ (7). Let [14(7) denote the greatest common divisor of
H, and Py, ..., Py, and let the leading coefficient of 1 (7) be equal to 1. Consider
the factorization [14 = IT1¢I1;, where [1o(7) is a polynomial with real roots, while
the roots of the polynomial IT (t) are non-real. We set H+ = H, /Il,.

We define the dimensions ¢ and v by

pn =ord H* (1), v = ord ITy(7). (3.1.20)

Clearly, u +v = J.

Let &, (0 = 1,...,11) be the roots of the polynomial H*, and let i, (1 + -+ +
h;, = ) be their multiplicities. Similarly, let 75 (6§ = 1,...,/2) be the roots of the
polynomial ITy, and let g5 (g1 + --- + g1, = v) be their multiplicities. We define the
vectors ¢, € C* and d, € CV as follows:

Cy = (Q,S;‘)(gg)), d, = (Qgﬁ)(rg))
o=1,....0h4, x=0,....hg—1, s§=1,....1, (3.1.21)
B=0...gs—1. a=1L...N).

LetB = (ngaﬂ (Co> fa)) be a 1 x u matrix, with its rows labeled by the indices
0, x = x(p) and its columns labeled by the indices o, (0). These indices take the
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valuesg,0 =1,...,01;%(0) =0,....,hg—1;B(0) =0,...,hs — 1. The entries of

this matrix are defined by
(— 1)” kcbck(ﬂ b+ x—k)

gxaﬂ(ggvé‘c _IZZ é—a)ﬂ —b+x—k+1
b=0k=0 (3.1.22)

x Z P}“(Q)Fﬁ-’”(éo).
j=1

Since B is the matrix defined by relations (2.1.35) from Chapter 2, we have B = 0
Therefore, inequality (2.1.36) from Chapter 2 holds true.
Further, to define the vector-function a(7), we will assume that

R = 0 (mod ITy). (3.1.23)

This congruence follows directly from (3.1.17), which is a necessary condition for
the validity of (3.1.1) for functions u € C§°(0, +00).
We introduce the polynomial

Q(n.7) = (n— 1) '[Hy (M R(z) — Hy(t)R(0))] (3.1.24)
and put
L 0% Q2
a(n) = (agn(n)) > agx(n) [H+(7I)] 97% . ) (3.1.25)

whereo =1,...,l1andx =0,...,h,—1. By (3.1.24) and (3.1.23), the components
of a(n) are continuous and belong to L?(R!).
‘We now turn to the main results of this subsection.

Lemma 3.1.6. The estimate (3.1.1) is valid for some A < oo if and only if the
following conditions are satisfied.:
1. The inequality

/ [ @(n), %), Pdy < 27A, [(%x X), + Z | (€ar )y, + (das¥), |2}
a=1
(3.1.26)
holds true for allz = (x,y) € C* x C". Here |, v are the dimensions defined
by (3.1.20), ¢, dy are the vectors defined by (3.1.21), B is the matrix (3.1.22),
and a(n) is the vector-function (3.1.25).

2. The estimate

/|R(—id/dt)u|2dt sAZ/Z|P,- (—id/dr)v|* dt,
J = (3.1.27)

vGCoo(R) v(p)0)=0 (p=0,....,J—1)
holds true.
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If A, A1, and A, are the sharp constants in (3.1.1), (3.1.26), and (3.1.27), then
271A <max (A1, Ay) < A

Proof. The necessity of condition 2 and the validity of the estimate A > A, are
trivial. We show necessity of condition 1.

Let (X;y) = (Xox: Y5a) € C* x C¥, and let z(¢) = x(¢) + y(¢) be a solution of
the equation H (—id/dt) z = 0, where

I, ho—1
X)) =Y xpulit)exp(ifor). t=0: x(1)=0. <0 (3.128)
o=1 x=0
I gs—1
@) =D ysalin®explizsr). t=0: y(r)=0, 1<0. (3.1.29)
§=1 a=0
Taking into account (3.1.23) and applying Lemma 1.1.7 of Chapter 1, one can con-
struct a sequence zZg € C“(R ) such that (zz — Z)(p)| =0 =1,2,...;
p=0,. —1)and

im /|R(—id/dt)(zs—z)|2dt Z/ |Pj (—id/dt) (zg —2)|*dt | =0,
0 =1y

Therefore, z(t) satisfies inequality (3.1.1). From (3.1.29) it follows that
Pj(=id/dt)y(t) = 0(j = 1,...,m). On the other hand, in view of (3.1.28) one
can recast equation (2.1.36) from Chapter 2 as

(Bx,x), = Z/|P (—id/dt)x(t)|” dt. (3.1.30)

]10

Consequently, we have
m [e.e]
Z/ P<(—id/dt)z|2dt=(€Bx,x)M. (3.1.31)
J=lyp

Using (3.1.28), (3.1.29), and (3.1.21), we get
Qo (—id/dt) z|;—¢ = (€a,X),, + (dg.,y), (x=1,...,N). (3.1.32)
Let (1, t) be the polynomial (3.1.24). Since Hy = 0 (mod H),
0* [ R(z
ROk —a,,[ ()}
Fle=gp  JT LN T

(Qzl,...,ll; x=0,...,hg—1).

0% Q

=ty (3.1.33)
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[e.e]
The integral [ | (a(n),x) " |2dn is calculated by means of the residue theorem.

—00
In doing so, we have to use (3.1.25) and (3.1.33). Then, we arrive at
o0 o0
/ | (a(n),x),, |2dn = 271/ |R (—ial/a’t)x(t)|2 dt. (3.1.34)

Now let us substitute the function z(¢) in (3.1.1). It follows from (3.1.23) that
R(—id/dt)z(t) = R (—id/dt) x(t). Hence, inequality (3.1.1) for z(¢) is trans-
formed into (3.1.26) with the constant 27 A (see (3.1.34), (3.1.31), and 3.1.32)).
Therefore, A = A;.

To prove the sufficiency of conditions 1 and 2, one has to use the representation
(2.1.38) from Chapter 2 for an arbitrary function u € Cg° (R}r), where x(¢) and
¥ (t) are the functions (3.1.28) and (3.1.29), respectively. Further, condition 2 implies
(see the proof of Lemma 3.1.5) the validity of (3.1.18) with A = A,. This yields
(3.1.17) (with A replaced by As) and (3.1.23). Setting z(¢) = x(t) + y(t), we get
R(—id/dt)z(t) = R(—id/dt) x(t). Therefore, taking into account (3.1.31) and
(3.1.32), we can rewrite (3.1.26) in the form

/|R(—id/dt)z|2dt sA{Z/m (—id/dz)z‘zdt
0 /=10 (3.1.35)

N
+ > 1Qa (—id/dt)z|t=0|2j|,

a=1

Arguing in the same way as in the proof of necessity of condition 1, we approximate
z(t) by functions z; € COOO(RL). Then the functions vy = u — zg satisfy (3.1.27),
and

m

Tim /|R(—ia’/dt)(vs—v)|2dt+Z/|Pj (—id/dt) (vs—v)[*dt | = 0.
0 0

j=1

Hence, the function v in representation (2.1.38), Chapter 2, satisfies also inequality
(3.1.27). Since

=1

~

3 / P; (—id/dt) vP; (—id]dt) [(it)* exp(ilor)]dt
=19

= / v(t) Y|P (~id/di) [(it)* exp(ign)]di = 0
j=1

0
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(oc=1,....011; x=0,...,hg — 1), we have

/Z\P,- (—id/dtyul’ di :/Z\P,- (—id/dr)v|* dr
0o /=1 o /=1

+ [ S|Py (id/deyz| .

j=1

It is also evident that Qo (—id/dt)ul,—g = Q« (—id/dt)z|;—¢, (@ = 1,...,N).
Combining (3.1.27) and (3.1.35), we obtain (3.1.1) with A < 2max (A1, Aj). O

An analogous statement is valid for functions satisfying homogeneous boundary
conditions.

Lemma 3.1.7. The estimate (3.1.1') is true for some A < oo if and only if condition
2 of Lemma 3.1.6 is satisfied and the inequality

[ 1@, Py < 22810 (830, (3.1.36)

holds for allz = (x;y) € B, where B is the subspace (3.1.10). Here, ¢y, and dy are the
vectors defined by (3.1.21), B is the matrix (3.1.22), and a(n) is the vector-function
definded by (3.1.25). If Ao, A10, and A, are the sharp constants in the estimates
(3.1.1"), (3.1.36), and (3.1.27), respectively, then 27 Ay < max (A9, A2) < Ao.

The proof of this lemma is a verbatim repetition of the proof of Lemma 3.1.6,
where A and A are replaced by A and A9, respectively.

3.1.4 Necessary and sufficient conditions for the validity
of inequalities (3.1.1) and (3.1.1")

We now turn to the main results of this section.

Lemma 3.1.8. For any polynomial D(n, t) of the variable T € R' (which depends
on a parameter 1 € RY) such that D(n,7) = 0 (mod 14 (7)) and ord D < J — 1
for all n € R! there exist uniquely determined polynomials (of ) D;(n,t) with
ordD; <J —1(j =1,...,m) that satisfy for all n € R! the following conditions:

D,(1.7) =0 (modTl,(r)) (j=1.....m): (3.1.37)

Pi(t)Dj(n.7) = P;j(r)Di(n, 7) (mod I (7) H+(7))

i s (3.1.38)
I#£j, Lj=1,....,m);
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m
D(n.1)H(1) = Y_ Pj(1)D;(n. 7). (3.1.39)
j=1
(In the case m = 1 condition (3.1.38) is omitted.)

This lemma is a natural generalization of Lemma 2.1.1, Chapter 2 to polynomials
depending on a parameter.

Theorem 3.1.9. The estimate (3.1.1) is true for some A < oo if and only if
|R(D)[?

Z?=1 |Pj (o)

sup < o0 and there exist functions By (n) € L?(RY) such that

N
Do) EHL ' 1) = Y Ba() Qa(r) = 0 (mod T4 (v))  (3.1.40)

a=1
foralln € R'. Here Q(n, T) is the polynomial defined by (3.1.24). The sharp constant
A in inequality (3.1.1) satisfies the estimates

o0

N S m 2
> =1 1Dj(n.7)l
1A < / inf 24+ ! dvyd
1 (B} ;'ﬂ“(n” P (@) !
s o (3.1.41)

|R()[?
+sup | =7———— | < A,
(ZT:] |P] (T)|2
where the polynomials D;(n,t) of the variable v with ordD; < J —1 (j =
1,...,m) satisfy conditions (3.1.37)—(3.1.39), and the infimum is taken over all sys-

tems {Bq(n)} figuring in (3.1.40).

Proof. Necessity. The necessity of the first condition of this theorem follows from
Lemma 3.1.5. We show that the necessity of the second condition follows from Lem-
mas 3.1.2 and 3.1.6. Let Wy be the function defined in (3.1.4) w.r.t. the vectors
(3.1.21), the matrix (3.1.22), and the vector-function (3.1.25). By Lemma 3.1.6, ¥,
is bounded on C”. Therefore, there exist functions B (17) € L2(R!) that satisfy con-
ditions 1 and 2 of Lemma 3.1.2. On the other hand, for all € R! these conditions
are equivalent to (3.1.40). To establish this, it suffices to replace the polynomial R(7)
by the polynomials (3.1.24) and the numbers S, by the functions B, (7) in the proof
of the necessity of the conditions of Theorem 2.1.17, Chapter 2.

Sufficiency. Condition 1 of Lemma 3.1.6 follows from Lemma 3.1.2 and the sec-
ond condition of the theorem. We show that, under the assumptions of the theorem,
condition 2 of Lemma 3.1.6 is also satisfied.

Letv € CP(RY) and v (0) = 0(p =0,...,J —1). We extend v to the whole
R! by setting v(t) = 0 for z < 0. Since ord R, ord P; < J and v‘»)(0) = 0 for
p < J —1,wehave

Fis: [R(=id/dt)v] = R(t) Fiv,  Fioe [Pj (—id/dt) U] = Pj(v) Fi-ov.
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Therefore, the inequality

) 00
/ |Fi—e [R (—id/dt)v])* dt < sup m|R(—T)|2 / |F,_>r [Pj (—id/dt)] v|2dr
—oo > |Pj(D)P -
j=1
is valid. From here and Parseval’s identity we obtain (3.1.27) with A, <
sup ( R@P )
Zj:l |P;(7)]?

Estimates of the sharp constant A. Let A, be the sharp constant in (3.1.27). It is not
difficult to show that A, = sup (%) To do this, it suffices to apply

to (3.1.27) the arguments from the proof of Lemma 3.1.5. Taking into account the
above-established estimate for A5, we find that

_ [R(D)[?

Let By(n) be the functions figuring in (3.1.40), and let x¢(n) be a solution of
(3.1.7), which is written for the vectors (3.1.21), the vector-function (3.1.24) and
the matrix (3.1.22). Then, in accordance with equation (2.1.60) from Chapter 2, we
obtain:

o0 m -1 m
(Bxo(n), Xo(1),, = (27)™" / YOIP@P ) YD 0)Pdr, (3.143)
“00 \J=1 j=1

where D (7, T) are the polynomials of 7 discussed in Lemma 3.1.8.
Therefore, (3.1.41) follows from Lemma 3.1.6, equations (3.1.42)—(3.1.43), and
the estimates (3.1.8). O

Finally, we present a result on inequalities for functions satisfying homogeneous
boundary conditions.

Theorem 3.1.10. The estimate (3.1.1') holds true for some Ao < oo if and only if
conditions of Theorem 3.1.9 are satisfied. The sharp constant A in inequality (3.1.1")
satisfies the estimates

T [ 1D ()P
cleS/ inf / 1:11 /7 dt ¢ dn
{Ba (M)} > = 1Pi(0)]?

—00

—0o0

R 2
+ sup (L) < 2o,

(3.1.44)

Z?:l |P;(7)]*

where the polynomials D ; and the functions By are the same as in Theorem 3.1.9.



3.1 Estimates for ordinary differential operators on the semi-axis 161

Proof. To prove this assertion, it suffices to make several changes in the proof of
Theorem 3.1.9. The role of Lemma 3.1.6 is now played by Lemma 3.1.7. Inequality
(3.1.36) is equivalent to the boundedness of the function Wy, defined by (3.1.14),
on the subspace (3.1.10). Therefore, the references to Lemma 3.1.2 in the proof of
Theorem 3.1.9 should be replaced by references to Lemma 3.1.4. O

3.1.5 Inequalities for functions without boundary conditions

In this subsection, we consider two estimates for functions u € Cg° (]Rﬂr) without
boundary conditions: inequalities (3.1.45) and (3.1.48). A criterion for the validity of
the first of these inequalities follows directly from Theorem 3.1.9, if we set Q4 (7) =
0 (e = 1,...,N) there. The second inequality is a special case of the first one for
m = 1, which is related to polynomials with the roots lying in the lower complex
half-plane.

Theorem 3.1.11. The estimate

/|R(—id/dt)u|2dt SA/Z|Pj (—id/dt)u|2dt, u eCé’"(Ri)
0 o /=1

(3.1.45)
holds for some A < oo if and only if

sup [ AROF ) _
ZT:I |Pj(7)?

Q(n,t) =0 (mod 14 (1)) (3.1.46)

holds for all n € R'. Here Q is the polynomial defined by (3.1.24). The sharp
constant A in (3.1.45) satisfies the estimate

and the congruence

[R(0)?
ZT:I |Pj (D)

[o.ole ] m 2
- |1Di(n, T
(A < / > j=11Dj(n.7)l

= dtdn+sup
Zj:1|Pj(T)|2 (

) < A, (3.1.47)

—00 —0O0

where the polynomials Dj are constructed for the polynomial D(n,t) =
[Hy(n)]~'Q(n, ©) in accordance with Lemma 3.1.8.

We now formulate a criterion for the validity of (3.1.48). Applications of this
result will be given in Sections 3.2 and 3.3.

Proposition 3.1.12. Let K(t), L(t) be polynomials of the variable T € R with com-
plex coefficients such that ord K(t) < ord L(t), and let all the roots of the polynomial
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L(7) lie in the half-plane Im{ < 0, { = t + i0. Then

/|K(—id/dt)u|2dt sA/|L(—id/dt)u|2dt (3.1.48)
0 0

forallu € Cé’"(RL). The sharp constant A in (3.1.48) is equal to sup | K(t)/L(7)|*.

Proof. Letu € CP(RL), let f(1) = L (—id/dt)ufort =0, f(r) = 0fort <0,
and let v(¢) = F;}, (Fi—.f/L(x)). Since the roots of the polynomial L () lie in
the half-plane Im ¢ < 0, we have u(t) = v(¢) for ¢t = 0. Therefore,

K (—id/dt)u = F!, (%F,ﬁ,f) , t=0. (3.1.49)

Since ord K < ord L and the roots of the polynomial L(7) are not real, we conclude
that

sup |K(t)/L(7)| < o0.

It follows from (3.1.49) that for all u € Cg° (R') the estimate (3.1.48) holds and
A = sup |K(7)/L(7)[*.

The opposite inequality for A is obtained by applying Lemma 3.1.5 to the estimate
(3.1.48). O

3.2 Estimates in a half-space. Necessary and sufficient
conditions

In this section we formulate theorems on necessary and sufficient conditions for the
validity of the estimates (3.0.1), (3.0.2), and (3.0.1"). Furthermore, we derive a num-
ber of corollaries.

3.2.1 Necessary and sufficient conditions for the validity
of the estimates (3.0.1), (3.0.2), and (3.0.1")

Let R(&;7), P;(§;7), and Qy(§; ) be the polynomials of t considered in the In-
troduction. In this subsection we formulate and prove the validity conditions for the
estimates (3.0.1), (3.0.2), and (3.0.1").

Following Section 3.1, we set

SO IP(E DI = Hy(E: D) H-(5: 7). 3B2.1)
i=1
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where Hy (§:7) = Z!:o hs(£)t? S is a polynomial with the roots lying in the half-
planeIm¢ = 0,¢ = t +io,and H_(§; 1) = Hy(§; 7). We put also

Z ={§ e R" 1 ho(§) = 0}.

Furthermore, we assume that on the full-measure set Y € R"~!\ Z we have J > 1,
mes,_1Z = 0 ord R(§;7) < J;andord Qu(§;7) < J —1 (@ = 1,...,N). For
each point £ € Y we denote by I (&; 7) the greatest common divisor of H (§; 1)
and Pi(§;7),..., Pn(&; 7). Let the leading coefficient of the polynomial T (§; 1)
be equal to 1.

Before we give the criteria for the validity of (3.0.1), (3.0.2), and (3.0.1), we
formulate a lemma that follows directly from Lemma 3.1.8.

Lemma 3.2.1. For each polynomial D(§;n, t) of the variable T € R' (depending
on a parameter (§;1) € R") such that D(&;1,7) = 0 (mod I14(§;7)) andord D <
J — 1 forall n € R! and almost all ¢ € R"™Y, there exist uniquely determined
polynomials (of t) Dj(§:n,7), ordD;(§;n.7) < J —1(j = 1,...,m), which
satisfy conditions (3.0.6)—(3.0.8) for all n € R! and almost all ¢ € R*~. (Condition
(3.0.8) can be omitted in the case m = 1).

‘We now turn to the main results.

Theorem 3.2.2. The estimate (3.0.1) holds true if and only if the following conditions
are satisfied:

1. There exist such functions Bg(§:n) (@ = 1,..., N) that

N
[ S ipatesnizan < oo
a=1

—00

and the congruence

D(:n.7) E [Hy (E:)] ' QE 0. 1)
N 3.2.2)
— > BalE:m)Qu(E;7) = 0 (mod T4 (£, 7))

a=1

is valid for almost all ¢ € R"™' and all n € R'. (Here, QE;n, 1) is the
polynomial (3.0.3)).

5This condition is satisfied, for example, if Ao (&) is a polynomial of the variable £ € R~ (cf. with
Remark 1.2.1, Chapter 1).



164 3 Dominance of differential operators

2. For almost all (§;1) € R" we have

o0

> _1 |Dj(&:m.7)?
Ba(&: M) + dr o dn
/{ﬂa(s m 0; _é Y |PiE P (3.2.3)
N |R(E;7)|? < const

Y IPiE D T BE)

where D j(§;n, 1) are polynomials of the variable © € R' (depending on a
parameter (§;1) € R™), which satisfy the conditions of Lemma 3.2.1 for all
n € R! and almost all ¢ € R, and the infimum is taken over all systems

{Ba} figuring in (3.2.2).

Proof. Necessity. Consider for an arbitrary A > 0 the following “cut-off” function:
B4(§) = B(§),if B(§) < A, and B4(§) = A, if B(§) > A. In accordance with the
definition of the norm || - || g1/2, the estimate

IR(DYulG12 < € Z 1P; (D)u* + Z(Qa(D)u)

a=1

(3.2.4)
u e Cg° (R ),

follows from (3.0.1) for any A > 0.

Let Y C R" '\ Z be the full-measure set defined above, and let £ € Y.
Put in (3.2.4) u(x;t) = h0~ ")/zgo (x/h)e*Ev(t), where h > 0 is a parameter,
¢ € CMR"™ M), and v € C“(R ). Since B4(§) is a bounded function, and the
coefficients of the polynomials R, P;, and Q, are measurable locally bounded func-
tions growing no faster than some power of |&| as |£§] — oo, we conclude, after
passing to the limit as # — oo and dividing all terms by [, lo(x)|?dx, that the
estimate

O/|R($;—id/dz)v|2dz B, (5)[/;“% (E;—id/dz)u|2dz

N (3.2.5)
+ ) 10a (E;—id/dt)vlpolz},
a=1

v e Cy° (]R)

holds true for almost all £ € R"~!. Thus, the necessity of all conditions of Theorem
3.2.2 follows from Theorem 3.1.9.

Sufficiency. According to Theorem 3.1.9, conditions 1 and 2 imply (3.2.5) a.e. in
R”~!. We substitute in (3.2.5) the function ve(t) = u(§:1) with u € Cg°(R%).
Multiplying both sides of the obtained inequality by B(§) and integrating the result
over R*~! we arrive at (3.0.1). O
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Theorem 3.2.3. The estimate (3.0.2) is valid if and only if condition 1 of Theorem
3.2.2 is satisfied and the inequality

o0 o0
/ . YD&)
(B (E:m)} Yo |PiE D)

|R(E:7)|? _ const
Y IPiE D) " B(§)
(3.2.6)

holds true for almost all (§; ) € R". Here, the polynomials D ; and the functions Bq
are the same as in Theorem 3.2.2.

dn +

—00 — 00

This theorem is deduced from Theorem 3.1.10 in the same way as Theorem 3.2.2
from Theorem 3.1.1.
In the same way, we derive from Theorem 3.1.9 the followign assertion:

Theorem 3.2.4. The estimate

m
IR(DYu|31,2 < C Y 1P (Dwul?,  ueCPRY), (3.2.7)
j=1
holds true if and only if
1. for almost all ¢ € R*™! and all n € R! the polynomial (3.0.3) satisfies the

congruence
Q(&:n.7) =0 (mod IT4 (§:7)); (3.2.8)
2. the inequality
i oOZ’}LlIDj(S;n,r)I2 |R(E; 7)|? const
— drdn + = < 3.2.9
_é S mEmGEor T T Eor S e O

holds true for almost all (§;t) € R*. Here, D;(&;n, v) are polynomials (of
1) satisfying for all T € R and almost all ¢ € R"~! the conditions of Lemma

3.2.1 with D(€;n,7) = [Hy (E: )] 'Q(E: 1. 7).

3.2.2 On the minimal number and algebraic properties
of the boundary operators; formulas for g, (&; )

Let .7 (§; ©) be the greatest common divisor of the polynomials R(&; ) and TT4 (; 1),
let the leading coefficients of these polynomials be equal to 1, and let

M0 =40/ AE ), NE) =ordITi (6 7).

In this subsection, we show that the number N of the boundary operators Q, (D),
for which (3.0.1) (or (3.0.2)) takes place, cannot be less than N(§), and among
the polynomials Qy(€; 7) there are at least N(§) linearly independent modulo I .
Moreover, if N = N(§), then the congruence Q4 (§;7) = 0 (mod.Z (§;7)) (0 =
1,...,N) holds, and the functions B (&;n) figuring in (3.2.2) are uniquely deter-
mined by this congruence and can be represented in the form (3.2.11).
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Corollary 3.2.5. Ifthe operators Q1(D), ..., Qn (D) satisfy the estimate (3.0.1) (or
(3.0.2)), then the inequality N = N(§) holds, and among the polynomials Q, there
are at least N (§) that are linearly independent modulo T1 4 a.e. in R" 1.

Proof. We denote by y, (&) the roots of the polynomials [T, 1, and represent these
polynomials in the form

s(§) s1(8)
Ma@ o = [J@- 2@ @, M@0 =[] 267
o=1 o=1

Let 55 (&) be an integer function such that

r
ath L

= 0, if the following conditions hold:
T=Xo

a)

‘T=Xg

l.ss+1<o<sand0< B <xy—ko—1,

2.5+1<o<s1and0< B <n,— 1

b) R(&;x0) #0. A (& x0) #0,if 1 <0 <52(8);

ko R g ke g

a.[xg—kg 8‘[”9_k0 7é O, if s> + 1< 0 <s.

T=Xo

c) # 0,

T=Xo

(Here we put for the sake of brevity y,(§) = xo. 5(§) = s, 51(§) = 51, 52(§) = 52,
ko(§) = kg, 24(§) = 1x,. Notice also that condition b) can be omitted for s, (§) = 0.)

Suppose that the operators Q4 (D) satisfy (3.0.1) (or (3.0.2)). Assume also that
52(€) > 0.° Then (3.2.2) implies the validity of the equality

Y 04
O; Jat?

fory = 0,...,kp —linthe case 1 < o < s52(§), as well as for y = x,(§) —
ko(§),....2#9(§) — 1 in the case 52(§) + 1 < o < s(§). From properties b) and
c¢) of the number s, (&) it follows that the right-hand sides of (3.2.10) are linearly
independent functions of n € R!. Since this system is solvable w.r.t. B, for all
n € R, we have rg D (§) = N(£), where D is the N(§) x N matrix of the system
(3.2.10). Hence, N > N(£). On the other hand, if, for a given £ € R""!, any
subsystem of N (&) polynomials Qy is linearly dependent modulo I14, then all the
minors of order N (&) of the matrix ® (&) are obviously equal to zero. O

(3.2.10)

&A&r):.TL[R@;ﬂ]
n—rt

r=x0(®) g r=x0(®)

The above statement can be strengthened in the case N = N(£) as follows.

©We leave to the reader to perform the obvious necessary changes in all arguments in the case 52 (£§) = 0.
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Corollary 3.2.6. If N = N(§) a.e. in R*™!, then conditions 1 of Theorems 3.2.2 and
3.2.3 are satisfied if and only if the polynomials Q are linearly independent modulo
I, for almostall § € R" ' and Qy = 0 (mod.#), (@ = 1,..., N). The functions
Ba figuring in (3.2.2) are uniquely determined by this congruence and satisfy the
equations

Gy(§:m)
My (&:n)

where Gy (€; n) are linearly independent polynomials of T such that ord G, < ord I+
and Gy = 0 (mod .Z).

Ba(§:n) = (@=1,...,N), (3.2.11)

Proof. Using Corollary 3.2.5, we conclude that conditions 1 of Theorems 3.2.2 and
3.2.3 imply the linear independence modulo IT of the polynomials Q in the case
N = N(&). Moreover, the solvability of (3.2.10) is equivalent to the validity of the
condition det®(§) # 0, where © denotes the matrix of (3.2.10). Calculating the
derivatives figuring in the right-hand side of (3.2.10) and multiplying both sides of
(3.2.10) by IT4 (§; 1), we find that the functions B, IT satisfy the system of equations
with the matrix D (§) and the right-hand sides Ry, (§:71), where R, (§:7) are the
linearly independent polynomials of 7 such that ord Ry, < ordIT;. Solving this
system and taking into account the congruence R,, = 0 (mod.#), which follows
from property a) of the number s5(£),’ we obtain (3.2.11). Finally, we note that
(3.2.2) ensures the validity of the congruence

N
> BalE:n) Qal(E:T) = 0 (mod . (£: 7)) (3.2.12)

a=1

for all n € R! and almost all £ € R"~!. But then, in view of (3.2.11), we get
Qo =0(mod.AZ),(x=1,...,N).

Conversely, suppose that Q, = 0 (mod.Z), (@ = 1,..., N). Suppose that the
polynomials Q are linearly independent modulo IT, and let

H+:H+%_l, QQZQQ%_I, R:R%_l,

and Q(E;n, 1) = [ A (&) (£;7)"'QE; 0. 7). Hence, for all n € R! and for
almost all £ € R"~! the congruence

N
[Hy (&) 7' QER ) — Y BalEm Ol 1) =0 (mod My (£:7))  (32.13)

a=1

is uniquely solvable and its solution {8} satisfies (3.2.12). But then (2.2.2) is also
valid. The relation ffgo Z(]xv:l |Be(£:1)|?dn < oo follows from (3.2.11). O

7See the proof of Corollary 3.2.5.
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3.2.3 Estimates for polynomials whose -roots lie in the lower complex
half-plane

In this subsection, we first establish Proposition 3.2.7, which is related, like Theorem
3.2.4, to the estimates of the type (3.2.7). It can be derived from Proposition 3.1.12
in the same way as Theorem 3.2.2 is derived from Theorem 3.1.9. Then, applying
Proposition 3.2.7 and Theorem 3.2.4, we verify inequality (3.2.16), which will be
used in Section 3.3.

Proposition 3.2.7. Let K(&;1) and L(&; 1) be polynomials of t with measurable
locally bounded coefficients growing no faster than a certain power of |€| as |§| —
o0, let ord K < ord L, and let the t-roots of the polynomial L lie in the half-plane
Im¢ <0, = 1+ io, for almost all § € R"™L. The estimate

IK(D)u||%12 < CL(D)ul?, u e C&ORY) (3.2.14)
is true if and only if the inequality
B(£)|K(&:7)|* < const|L(§; 7)|? (3.2.15)
holds a.e. in R"~1,

Corollary 3.2.8. Let the polynomials K(§; 1) and L(§;T) be the same as in Propo-
sition 3.2.7. Then the inequality

7 ]O'L(g DKED - LEDKED"
J J I -oLE&oLlE (32.16)
< constsup % i

holds a.e. in R"™1,

Proof. In accordance with Proposition 3.2.7, condition (3.2.15) implies the estimate
(3.2.14), which is a particular case of the estimate (3.2.7) form = 1, P = L, and
R = K. Since the roots of L lie in the half-plane Im¢ < 0, wehave Hy = L, H_ =
L. Therefore, [T+ = 1 and the polynomial D (§; 7, 7), satisfying the conditions of
Lemma 3.2.1, is given by the formula

Di(E:n, 1) =[(n—0)LE )] LEDKE: 1) — LE D)KE D] (3.2.17)

Using (3.2.17) and writing down the first term on the left-hand side of (3.2.9), we
arrive at (3.2.16). O

A direct proof of (3.2.16), without resorting Theorem 3.2.4, would be apparently
much more cumbersome.
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3.3 Examples
In this section we consider some applications of theorems from Section 3.2.

3.3.1 The theorem of N. Aronszajn on necessary and sufficient
conditions for the coercivity of a system of operators

Let Pj(§;7),j = 1,...,m, be homogeneous polynomials in the variable (£; 7) € R"
of order J. Following N. Aronszajn [Aro54], we say that a system of operators
P; (D) is coercive if the estimate

m
D ID%ulP < C Y IP (Dl uweCE®RY),  (B3)
la|=J j=1

holds. In this subsection we show (Proposition 3.3.1) that the well-known result of
N. Aronszajn [Aro54] on necessary and sufficient conditions for the coercivity of the
system P; (D) is a consequence of Theorem 3.2.4 established above.

Proposition 3.3.1. The estimate (3.3.1) holds true if and only if for all ¢ € R"*™! the
polynomials P;(&; t) have no common roots (§;z) # 0.

Proof. It is obvious that (3.3.1) is the special case of the estimate (3.2.7) correspond-
ing to the weight B(§) = 1 and the polynomial R(£;7) = (v + i|€])’/. From the
definition of Q(&; 1, 7) (see (3.0.3)) it follows that (3.2.8) is equivalent to the congru-
ence

R(£;:7) = 0 (mod IT 4 (£; 7)). (3.3.2)

Since R(£;7) = (¢ +il€])”, we obtain that (3.3.2) is valid if and only if TT (£;7) =
1. It follows from the definition of IT4 (&;t) that the equation IT4(§;7) = 1 is
satisfied if and only if for any § € R"~! the polynomials P;(£; ) have no common
roots (£;z) # 0 with Imz > 0. Since these polynomials are homogeneous w.r.t.
(&; ) € R”, they have, together with each common root (§; z), also the common root
(—&; —z). Therefore, for all £ € R"! the polynomials P; (£; t) have no common
roots (§;z) # 0 with Imz = 0 if and only if they have no common roots (§;z) # 0
for any £ € R" 1,

To complete the proof, we show that condition 2 of Theorem 3.2.4 is automatically
satisfied.

Suppose that the polynomials P;(&; v) have no common roots (§;z) # 0 for all
g € R""1. Then 14 (£; 7) = 1. Itis also evident that

|(x +il§]7)[* < const Y|P (&0

Jj=1
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Therefore (see Theorem 3.1.11), the estimate
J
k=0

is satisfied forall v € C§°(RY.). Here ||-|| denotes the norm in L*(R% ) and § € S"~2.
Let A(0) be the smallest constant in (3.3.3). Since the estimate

2 m
< AO) Y| P; (0:—id/dr)v|? (3.3.3)

d*v
k
dt =

m

| Py Or:—id/dryv|* = | Py (62 —id/dr)v|?
=1

J Jj=1

J
< const Z

k=0

2

dkv
|01 — 05

dtk

is obviously fulfilled, the function 1/A () satisfies the Lipschitz condition on S”~2.
On the other hand, the inequality 1/A(#) > 0 holds for all & € $”~2. This means
that the function A(6) is bounded from above on S”~2. Thus, (3.2.9) follows from
(3.1.47). O

3.3.2 The casem = 1, N = N(&) in Theorems 3.2.2, 3.2.3, and 3.2.4

In this subsection, we consider estimates of the types (3.0.1), (3.0.2) with one operator
P (D) for the case when the number N of the boundary operators Q4 (D) coincides
with the order N(£) of the polynomial IT, (£; 7) (cf. with Corollaries 3.2.5, 3.2.6).
It would be shown that the criteria for the validity of such estimates, obtained by the
authors in [MG75], follow from Theorems 3.2.2, 3.2.3, and 3.2.4, which were proved
in Section 3.2

We introduce the following notation. Let J > 1, and let 2(&:1) = po(£)t? +
p1(E)t? 71 + ... + py(£) be a polynomial of v with measurable locally bounded
coefficients that grow no faster than a certain power of |£| as |§] — oo. Let R and
Qq (@ =1,..., N) be the same polynomials as in Section 3.2. Weset Z = {£ : £ €
R"™!, po(£) = 0} and assume that mes,_1Z = 0.

For § € R"1 \ Z we define the polynomials (of ) P4, P_, M, and P, as
follows: &2 a monic polynomial whose t-roots (counting multiplicities) coincide
in the half-plane Im¢{ = 0, { = 1 + io, with the t-roots of the polynomial &7,
P_ = PPy M is the monic greatest common divisor of R and . ; and P, =
P, | M. We also consider the polynomials Ri, Qy+, which are defined by the
following partial fraction decompositions w.r.t. t:

R—ﬁ & — . &_QOH- Qo—
7= T e ¢ = c(§); > =7, T o

(3.3.4)

It is assumed that the condition N(§) = ord 9’@ (&;7) = N is fulfilled for all £ €
R"-1\ Z.
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Proposition 3.3.2. The estimate

N
IR(D)ully1/, < C (Ilg’(D)ull2 +) ((Qa(D)u))z) ;
a=1

u € Cg°(RL),

(3.3.5)

holds if and only if the following conditions are satisfied:

1. For almost all ¢ € R"™! the polynomials Q are linearly independent modulo
Pyrand Qy =0(mod . A) (@ =1,...,N);

2. The inequality

Go(&:1) [* Yoo Ga(E: 1) Qo (&: 0|’
| +//‘ ez En |
RE:7) | _ const
P(E:v) B(E)
(3.3.6)

is fulfilled a.e. in R*. Here Gy are the polynomials of n with ord G, <
ord P, which are uniquely determined a.e. in R"~! by the congruence G, =
0 (mod.Z) (1 < a < N) and by the identity (in t,n € R!)

ZG (&M Qa+(§:7) = —[9”+($ MRy (E: 1) — P (DRG]
3.3.7)

Proof. We show that this proposition follows from Theorem 3.2.2 form = 1, P, =
P, and N = ord Z;. Indeed, if m = 1 and P, = P, then Hy = P, P_,
and, consequently, T, = 2, and I1, = 2. By Corollary 3.2.6, we can restrict
ourselves to the proof of (3.3.7) and to estimating of the second term on the left-hand
side of (3.3.6). )

First, we derive (3.3.7). Using the equality Hy = £717_ and the identities
(3.2.11) and (3.3.4), we recast (3.2.2) as

1 : : R+($;n)) ]
— P TP ; Q —_— Q
9”+(E;n)9”—(é;n){ HE0ZE ”)[ 1(*”%@:@ e

+ Z_(EDP-EN - [PLEDRLE D — P (E DR (E 77)]}

Gqy
Z 27 (fs n))[Qﬁ(s 0P (£:1) = Qo (§: D) P4 (§:7)]

= o (mod P (&;1)), (3.3.8)
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where Q1 = Q1(§; 1, 7) and Q, = Q5(&; 1, ) are the polynomials of the variables
n, 7 € R!, defined by

QEn)=0-0) P_ENP_(E:1) - Z_(E0)P-(En]. (339
QEn ) = 0-0) [P_(EnR_(E:1) - P_(E:DR_(E:n].  (3.3.10)

It is obvious that (3.3.8) is equivalent to the congruence

N
Y GalE:mQa+(&:7)

a=1

= —1) [P+ ENRL(E 1) — P4 (E: )R (6:1)] (mod P4 (§:7)).

For all n € R! and almost all £ € R”~! both sides of this relation are polynomials of
T with degrees less than ord #2... This establishes (3.3.7).
Now note that for m = 1 and N = ord & the inequality

Z] 1|D (& n. T)|2 const
dtdn < ,
/[o S pEor S B

which appears in condition 2 of Theorem 3.2.2, takes the form

_ [o [o l?;(gn’ r))

where D(&; n, 7) is the left-hand side of (3.2.2). After transformation (3.2.2) from the
form (3.3.7) to (3.3.8), we obtain that (3.3.11) has the form

const

dtdn < BG)’

(3.3.11)

Ry (En) 2

7 7 e+ EF) T2 TN Gulen0uE:0)
) DP_(E:)P_(E:1) P& P-(E 1)
- const

< Ts)y
(3.3.12)

where €27 and €2, are the polynomials defined by (3.3.9) and (3.3.10), respectively.
We show that (3.3.12) is equivalent to the inequality

[

—00 —0O0

dtdn

SN GaE: Qa0
P P_(§:1)

const

B

drdy < (3.3.13)

which enters in condition 2 of the proposition being proved. In accordance with a
theorem of Katsnelson ([Kats67], pp. 58—61), there exists a constant ¢ > 0 depending
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only on ord &2 = J, such that

R+(E 7) R(§;7)
L@-i-(g ) ¢ sup PE7) (3.3.14)
a.e. in R"~1 It follows from (3.3.4) and (3.3.14) that the inequalities
|c(§)| < constsup RE: ) ,
ZE:r) (3.3.15)
sup LST) < constsup R(E;7)
AGHIE 4G

hold a.e. in R*~!, We set in Corollary 3.2.8 L = #_, K = P _ . If the estimate
R(E:7) | _ const
PE 1) BE)

holds true, then (3.2.16), (3.3.14), the first of the inequalities (3.3.15), and (3.3.9)
yield

(3.3.16)

oEin L RG]
// WD) [ + S ] drdn < SO (3.3.17)

P n)@ 1) T

—00 —00

Next, we set in Corollary 3.2.3 L = &_ and K = R_. It follows from (3.2.16),
(3.3.16), the second of the inequalities (3.3.15), and (3.3.10) that
(51, 7)

_[o _[o P (ENP(E)

Using (3.3.17) and (3.3.18), we conclude that (3.3.12) is equivalent to (3.3.13).
O

const

"B

(3.3.18)

In a similar way, one can show that for m # 1 and N = ord 2, Theorems 3.2.3
and 3.2.4 imply the following assertions.

Proposition 3.3.3. The estimate

IR(D)ul12 < Col P(DYul?,  u € CSP(RY).

(3.3.19)
Qu(D)u(x;0)=0 (¢=1,...,N)

is valid if and only if condition 1 of Proposition 3.3.2 is fulfilled and inequalities
(3.3.16) and (3.3.13) hold a.e. in R"™'. Here G, are the same polynomials as in
Proposition 3.3.2.
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Proposition 3.3.4. The estimate
IR(D)u%1,2 < C|2(D)ul®, u e CORY) (3.3.20)

is valid if and only if inequality (3.3.16) and the congruence R = 0 (mod &) are
satisfied a.e. in R" 1

3.3.3 Examples of estimates for operators of first order with respect
tot

In this subsection we consider two examples of estimates of the types (3.0.1), (3.0.1")
for operators P; (D) of order at most one w.r.t. #. The corresponding criteria (Propo-
sitions 3.3.5, 3.3.6) are formulated explicitly in the form of necessary and sufficient
conditions on the coefficients of the operators figuring in these estimates.

Proposition 3.3.5. Let P(§;7) = it — p(§), Q(&:1) = q(§), where p(§), q(§) are
measurable locally bounded functions that grow no faster than some power of |&| as

|E| — oo. The estimate
Su

’ ots
with s = 0, 1 holds true if and only if

2

=€ (||P(D)u||2 +llu)? + ((Q(D)u))2>, u e CRMRY), (3321)

B#)(1+ |p|**)(1 + Re p)~2 < const (3.3.22)
for almost all € € {£ e R"™! : Re p(§) = 0} and

1+ |p** [1 1 + |Re p|
(14 [Re p|)? lg1?> + (1 + |Re p|)~!

for almost all £ € {§£ € R"™! : Re p(§) < 0}.

B(§) ] < const (3.3.23)

Proof. The estimate (3.3.21) is a special case of the estimate (3.0.1) (for m = 2,
P =P, P,=1,0, = ¢q,and R = ¥ withs = 0,1). Since P, and P; are
relatively prime, we get [T = 1. This means that condition 1 of Theorem 3.2.2 can
be omitted and the infimum in (3.2.3) is taken over all 8. We show that (3.2.3) is
equivalent to (3.3.22) and (3.3.23).

It can be easily verified that for P(&; 1) = it — p(§) the equality

28 A+ 1pP)®
|IP(E;D)2+1 1+ |Repl?

sup (s=0,1) (3.3.24)

is valid.
The polynomials (of degree zero w.r.t. t) D5, Das, constructed according to
Lemma 3.2.1 for R = %, Py =it — p(§), P, = 1, Q = ¢(£), are equal to

Dis = —i{[H: & ] 7't5 — B}, Day = —i{[Hy(&:m)] ™' 75 — Ba}(r +ip),
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where 74(£) are the roots of the polynomial |P(£;7)|> + 1, so the equalities
Hi(&;7) = v — 14(§) are valid. Therefore, the first term on the left-hand side
of (3.2.3) is equal to

oo

f {1812 + |a — Ba*b?)dn,

—00
where a = [H4(§: )] !¢ and
b*> =m(1+ |t +ip|*)(1 + Re p|*)~/%.

Since infg{|B|* +|a—Bq|*|b|*} = |a|*b*(1+b>|q|*)~" and the roots of the polyno-
mial | P(£; 7)|? 41 are equal to 7+ = Im p£i(1+|Re p|?)'/2, we see that inequality
(3.2.3) can be recast as

1 2\s 1 R 2\1/2 t
(+pP) [1 g(1 + [Re p|*) _ cons (33.25)

1+ |Re p|? lgl2g + (1 + [Re p|»)¥/2 | = B(§)’

where g = 1+ [(1 4 |Re p|?)!/? —Re p]?. A direct check shows that the validity of
inequality (3.3.25) a.e. in R*~! is equivalent to conditions (3.3.22) and (3.3.23). O

‘We formulate one more result, which follows from Theorem 3.2.4.

Proposition 3.3.6. Let P;(§;1) =it —p;(§) (j =1,...,m; m = 1), where p; (§)
are measurable locally bounded functions growing no faster than some power of €|

m
as |&| — oo. Suppose also that Y |p;(€)| # 0 a.e. in R"~1. The estimate
i=1

with s = 0, 1 holds true if and only if the following conditions are satisfied:

0Su
ats

m

s <C § 1Pj(D)ull?, u € CP(RY), (3.3.26)
B P
j=1

m m
1. Y |pj— pnl # O foralmostall ¢ € () {£:Rep;(§) <0}
j,h=1 j=1

2. The inequality

m m m
BE) Y |pj|* <const| Y |Rep; >+ > Im(p; — p)* | (3327)
j=1 j=1 j.h=1

is valid for almost all & € {E : ZT:] Rep;(§) = 0}.
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3. The inequality

m m
B(E) Y |p;I** <const Y |pj — pal? (3.3.28)
j=1 j.h=1

is valid for almost all § € {S : Z?’:l Re p;(§) < 0}.

Proof. The estimate (3.3.26) is a special case of the estimate (3.2.7) for P; = it —
pj(§)and R = 7%, s = 0, 1. We note that condition 1 of Theorem 3.2.4 is satisfied
here if and only if [T (§;7) = 1 a.e. in R”. The latter condition is equivalent to
condition 1 of the proposition to be proved, since the t-root of the polynomial it — p;
lies in the half-plane Im{ > O if and only if Re p; < 0. We show that condition 2
of Theorem 3.2.4 is equivalent to conditions 2 and 3 of Proposition 3.3.6. As in
Subsection 2.2.4, we use equations (2.2.37), (2.2.38), and (2.2.39) for the polynomials
H(£; 1), their -roots 74 (£) and the function o (£).%
It is easy to verify that P; = it — p,(£) admits the relations

_[Zs

Z?:l |Pj(§§f)|2

In the considered example, the polynomials D js(§;n, ) appearing in (3.2.9) have
degree zero w.r.t. 7. Based on Lemma 3.2.1, we find that D js(§; n, v) satisfy the
relations

=m' a2 >, s=0,1. (3.3.29)

sup

5. = iml/zfj_(ir—pj)
P H (8 T) Y Gty — pr)

From (3.3.29), (3.3.30), and the obvious relations

G=1...ms=01. (3330

o0 m
/ |Hy(&;7)|%dt = a1, e P =m' > |p, P
% =

it follows that (3.2.9) is equivalent to the inequality

m m . 2
Z i—1 it — pjl const
2s, ., —2 J
; 1 < . 3.3.31
D Rl T G230
j=1 Zj=1(1T+—p])

We show that the validity of (3.3.31) a.e. in R?~! is equivalent to conditions 2
and 3 of the proposition being proved. By (2.2.38), the formulas (2.2.42) and (2.2.43)

8We note that the references (2.2.37)—(2.2.39) and (2.2.42)—(2.2.44) occuring up to end of this section refer
to the formulas of Subsection 2.2.4.
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hold true, where «(§) and B(§) are defined by (2.2.39) and (2.2.42), respectively. If
B = 0, then (2.2.42) and (2.2.43) imply

2 <
. m

Therefore, using the identity

2

m m m
[Im(p; — pn)> =m Y (Imp;)*— D Imp, | .
Jsh=1 Jj=1 7=1

N =

we conclude that on the set {£ € R”! : B(£) = 0} inequality (3.3.31) is equivlent to
(3.3.27).
Now, suppose B(§) < 0. Then (3.3.31) is equivalent to the inequality

B(§) Y |p;I* < const(a® + ap). (3.3.32)
j=1

1
From the easily verifiable equality a«? — 2 = 3 > h=11pj — pnl? (see (2.2.39) and
(2.2.44)) it follows that for B < 0 we have

. 1/2
o +af=a*|1— 1—2_105_22 lp;j — pul? ,
Jh=1
and (3.3.32) takes the form
1/2
m m m

BEY piP 1= 1-2"""2 )" |p; — pal® < const Y |pj—pul*.

Jj=1 j,h=1 j,h=1
(3.3.33)
The equivalence of (3.3.33) and (3.3.28) is obvious. O

Remark 3.3.7. Obviously, the estimate (3.3.26) is valid if condition] of Proposition
3.3.6 is satisfied and inequality (3.3.28) holds a.e. in R" !

3.4 Notes

The main results of this chapter were established by the authors in [GMS80]; some
results were announced in [GM75]. Necessary and sufficient conditions for the spe-
cial case when m = 1 and the number N of boundary operators is minimal (see
Subsection 3.3.2) were given in the authors’ paper [MG75].
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Problems of dominance of differential operators were studied by many authors.
Without mentioning here the numerous papers on estimates for operators of concrete
types as well as on embedding theorems for the Sobolev—Slobodeckij spaces and their
generalizations, we would like to point out some works that are more closely related
to our topic.

The work of N. Aronszajn [Aro54] established necessary and sufficient conditions
for the coercivity of a system of operators in a half-space or in a bounded domain (see
Subsection 3.3.1). Here, the estimates of L2-norms are considered under the assump-
tion that the integration domain has C!-boundary. A generalization of these results
to the case of the L?-norm, p > 1, and to the integration domains with Lipschitz
boundary was given by K. T. Smith in [Smi61]. S. Agmon [Agm58] generalized the
results of N. Aronszajn to the case of arbitrary integro-differential forms. Criteria for
the validity of the estimates for minimal operators in a bounded domain or in R” were
established by B. Malgrange [Mal56] and L. Hérmander [H55].

Sufficient conditions for the validity of the estimates of the types (3.0.1) and
(3.0.2) were given in the papers of M. Schechter [Sch63], [Sch64]. The case m = 1
was studied in [Sch64]. As we noted in Chapter 1, the condition established by M.
Schechter follows directly from the results of that chapter (see Corollary 1.3.7, Chap-
ter 1).

In [Sch63], the estimate (3.0.1) was studied under the assumption that R, P;,
and Q are homogeneous polynomials w.r.t. (§;7) € R”. Here, it is shown that the
estimate (3.0.1) holds true if the polynomial R satisfies a condition of the type

BEIRE D> <c Y |PjE )P
j=1

and for each § € S"~2 among Q, there are N(§) linearly independent polynomials
modulo IT4 (§; 7), where N(§) = ord I14(§; 7).

Finally, we mention the work of K. F. Schubert [Schu71]. There, a special case of
inequality (3.0.1’) is examined, namely the estimate

m
> < C > 1P (Dwl*.  ueCRRY). (34.1)
j=1

where P; (§; 7) are polynomials of the variable (§; r) € R". Here, it was shown that
for the case ord Pj(§;7) < 1 (j = 1,...,m) the estimate (3.4.1) holds true if and

only if the condition
m

> " |Pj(&:2)]* = const (3.4.2)
j=1
is fulfilled for all £ € R”~! and all z with Im z > 0. The condition (3.4.2) is also nec-
essary in the general case. The sufficiency of (3.4.2) was not established in [Schu71]
for the general case. One more condition is given in [Schu71] for the polynomials of
degree higher than 1. Together with (3.4.2) this condition is sufficient for the validity
of (3.4.1).



Chapter 4
Estimates for a maximal operator

4.0 Introduction

In this chapter we study criteria for the validity of the estimates
2
(RODuy12 < CAPDI + [ul?).  weCE®RL: @01

IR(D)ul1 < CUAPDI? + lul?),  u € C5°(RY). (4.0.2)

It is assumed that R(&;7) and P(£; t) are polynomials of T with measurable coeffi-
cients that are locally bounded in R"~! and grow no faster than some power of |£|
as |§] — oo, and that ord P(§;7) = J > 1 ae. in R""!. Assume also that the
degrees of the polynomials R(&; t) figuring in (4.0.1) and (4.0.2) satisfy for almost
all £ € R""! the conditions ord R < J —1 and ord R < J, respectively. Thus, (4.0.1)
is a special case of the estimate (2.0.8) of Chapter 2, and (4.0.2) is a special case of
the estimate (3.0.1”) of Chapter 3.

The goal of this chapter is to specify classes of operators P and R for which the
necessary and sufficient conditions for the validity of (4.0.1), (4.0.2) following from
the results of Chapters 2 and 3 take a much simpler and more explicit form.!

In Section 4.2, it is assumed that the polynomial P(§; t) is quasielliptic of type
[ = 1land R(&;7) = 7% where s = 0,...,J — 1 in the estimate (4.0.1) and s =
0,...,J in the estimate (4.0.2), respectively. It is shown that (4.0.1) holds true if and
only if the inequality

B(£)(1 + (£))@FDUm/T < const (4.0.3)
is satisfied a.e. in R”~!, while (4.0.2) remains valid if and only if the inequality
B(E)(1+ (£)>™7 < const (4.0.4)

is satisfied a.e. in R"~!. (Here, m is an integer and () is the norm in R"~! defined
by the quasielliptic polynomial P(§; 7)).

In Section 4.3, it is assumed that P(£;7) = 7/ + p1(&)t/ 1 + - + py(§) isa
continuous, positively homogeneous function of degree J w.r.t. (£; 1), and ps(§) #
0 for all £ # 0. It is required that the t-roots z1 (§), ..., zy (§) of the polynomial P
are pairwise distinct for all £ # 0, and for each o = 1,..., J the function Im z, (&)
either vanishes identically or preserves its sign on the unit sphere 772 C R"~1. Itis
also assumed that for each o = 1,..., J one of the following conditions is fulfilled:

I'Several complements of the results of Chapters 2 and 3, related to inequalities (4.0.1)—(4.0.2), are presented
in Section 4.1.
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either P(§;Z,(8)) = 0, or P(§;Z4(8)) # 0 for all £ # 0. Under these assumptions,
we obtain necessary and sufficient conditions for the validity of the estimates (4.0.1),
(4.0.2), where the polynomial R is the same as in Section 4.2. It will be shown that
necessary and sufficient conditions for the validity of the estimate (4.0.1) take the
form of one of the following inequalities:

BE)(1 + [€D**! < const, (4.0.5)

provided that at least one of the roots of the polynomial P lies in the half-plane
Im¢ > 0;
B(E)(1+ (D> < const, (4.0.6)

provided that all the roots of the polynomial P lie in the half-plane Im ¢ < 0 and at
least one of these roots is real;

B(E)(1+ N> 172/ < const, 4.0.7)

provided that all the roots of the polynomial P lie in the half-plane Im¢ < 0. Here
and below { = 7 4 io. A necessary and sufficient condition for the validity of (4.0.2)
is the inequality

B(&)(1 + [€])** < const, (4.0.8)

if at least one of the roots of the polynomial P lies in the half-plane Im ¢ = 0, or the
inequality
B(E)(1 + [)* 7 < const, (4.0.9)

if all the roots of the polynomial P lie in the half-plane Im ¢ < 0.

In Section 4.4, we consider some classes of nonhomogeneous polynomials. We
show, for example, that if all the r-roots z; (£) of the polynomial P (§; r) are real and
satisty the condition |z;(§) — z,(§)| = const (j # r, j.r = 1,...,J), then the
estimate (4.0.1) holds if and only if the inequality

REDLP
(E)/ PG )|2+1dr\const (4.0.10)

is valid a.e. in R"~!; moreover the inequality

N
B(§&) sup M < const 4.0.11)

cert |[PE D +1

is a criterion for the validity of the estimate (4.0.2).

In Section 4.5, it is assumed that P(£;7) = po(§)t? + p1(§)t + p2(§) and
po(€) # 0 ae. in R"™1. Criteria for the validity of the estimates (4.0.1), (4.0.2) are
studied for some classes of such polynomials in the case R(§; t) = 7°. For example,
it will be shown that if Im py (§) = 0 (k = 0,1,2) and s = 0, 1, 2, then the estimate
(4.0.2) holds true if and only if

B(E)[|pol + P} + |pop2]® < const|po|** ae. inR*. (4.0.12)
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In Section 4.6, we discuss in detail the case where B(§) = 1 and R(D), P(D) are
differential polynomials with constant coefficients. In this case, (4.0.2) is equivalent
to the embedding Z(P) C Z(R), where Z(P) and Z(R) are the domains of the
maximal operators generated in L2(R”) by the polynomials P(D) and R(D), re-
spectively. This follows from the result of Subsection 4.6.1. It is established there
that for a differential polynomial with constant coefficients the maximal operator
P in Lz(Ri) is the closure of its restriction to C5°(R’}). It is well known (see
L. Hérmander [H55]) that for maximal operators in a bounded domain 2 C R” the
embedding Z(P) C Z(R) is possible if and only if either R = aP + b, where
a and b are constants, or R and P are the ordinary differential operators satisfying
ord R < ord P. In the half-space R”, the embedding Z(P) C Z(R) is also possible
for non-trivial operators R.

In Subsection 4.6.2, theorems on the trace space of the elements u € Z(P) are
proved. These statements are the strengthening of relevant results of Subsection 2.3.2.

4.1 Preliminary results

In this section we formulate necessary and sufficient conditions for the validity of the
estimates (4.0.1) and (4.0.2), which were discussed in the introduction.
Let Hy(&; 1) be a polynomial of ¢ with roots lying in the half-plane Im¢ > O,
¢ = 1 4 io, such that
IPEOP +1=Hi () (4.1.1)

and H_(&; 1) = Hy(&; 7). Wewrite H, (§; ) intheform Hi (§; 1) = ZLO hy(£)r?!
andset Z = {£ e R" ! : ho(§) = 0}. We assume that mes,,_; Z = 0.

4.1.1 Results concerning the estimate (4.0.1)

In this subsection we present several assertions about necessary and sufficient condi-
tions for the validity of the estimate (4.0.1), which follow directly from the results
of Chapter 2. It is obvious that (4.0.1) is a special case of the estimate (2.2.19)
from Chapter 2 corresponding to m = 2, P1(é;t) = P(&;1), and Po(§;7) = 1.
Therefore, Corollary 2.2.8 of Chapter 2 and Remark 1.1.11 of Chapter 1 imply the
following criterion for the validity of (4.0.1).

Theorem 4.1.1. The estimate (4.0.1) holds true if and only if

(4.1.2)

der 1 r ITi(&:0) > + |T2(5: 1) _ const
AE= 2”_[0 PEOPLT TS BE

for almost all £ € R"™1. Here Ty (; 1) is the quotient and T»(§; ©) is the remainder
of the division of the polynomial (of T) R(§;t)H_(&; 1) by P(§; 7).
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In the sequel, we will give other representations for the function A(§) introduced
in (4.1.2).

Proposition 4.1.2. Let T>(§; 1) and A(§) be the same as in Theorem 4.1.1, and let
S(&; 1) be the remainder of the division of the polynomial (of t) RT, by H. Then
so(§)
ho(§)’

where 5o(§) and ho(§) are the leading coefficients of the polynomials S and H,
respectively.

A(§) = —Im

(4.1.3)

Proof. The identity RH_ = PT) + T, implies the relation

T[> + | T

=Re[H Y (H,.(|T1|?> — |R|?) + 2RT,)]. 4.1.4
P2 +1 e[Hy (Hi(|Th|” — |R|]") + 2)] ( )

Since ord R < ord P, we see that the left-hand side of this relation is a proper fraction
w.r.t. T. Therefore, it follows from (4.1.4) that

T % + | T»|? S(&:
|T1|” + |T>2| — JRe é:7)

PP+l N E @15

where S is the remainder of the division of RT, by H. . Integrating both sides of
(4.1.5) and taking into account that all z-roots of the polynomial H lie in the half-
plane Im ¢ > 0, we arrive at (4.1.3). O

Corollary 4.1.3. Let R(§; 1) = 1, suppose the leading coefficients of the polynomials
P(&; 1) and H_(§;7) coincide, and let z, (§) and £ (&) (r = 1,..., J) be the t-roots
of the polynomials P and H ., respectively. (The multiplicities of these roots is taken
into account). Then the function A defined by (4.1.2) is equal to

J
AE) =1Im Y (z(§) + & (6)). (4.1.6)

r=1

Proof. We write the polynomials P and H4 as
J J
PED =) p@®.  HiEo=) mEc .
=0 1=0

Since R = 1 and hg = pg, wehave T, = H_ — P, T, = Hy — P, and, hence,
so = h1 — p1. Therefore, in accordance with (4.1.3), we obtain

J
AE) = Im (‘% - %) =t 366 + (6, O
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Proposition 4.1.4. Let z,(§) be the t-roots of the polynomial P(&; ) with mul-

tiplicities jup(€) (@ = 1.....BE); w1(€) + - + ppey &) = J), let &,(€) be
the t-roots of the polynomial Hy (§;t) with multiplicities k,(§) (v = 1,...,1(§);
ki(§) + -+ + ki) (§) = J ). Suppose that

6 = {Ggsvy(zg(g)v &v(é)}
with
i(=D*(y +s)!
(zo(§) — Ly (§))s+H!

is a matrix such that its rows are labeled by the indices o, s and its columns are
labeled by the indices v, y. These indices take the values: ¢ = 1,...,B(§);
v=1..,0&);s5s =0,....008) — 1L, and y = 0,...,k,(§) — 1. Let H =
{Hosvy (20(8). Cv(§))} denote the J x J matrix inverse to the matrix ®. Then the
function A, defined by (4.1.2), is given by

Ggsvy (29(5)7 &) =

4.1.7)

B&) 1o )—1 1(§) kv (§)—1

AE =Y D0 D D Hosuy(2,6), 6(€)
o=1 s=0

v=1 y=0

(4.1.8)
x RO (£:2,(8)) RV (£ 6,(5))

Proof. We apply Remark 2.1.2, Chapter 2 to the case m = 2, Pi(r) = P(7),
Py(7r) = 1, 4 (r) = Ip(r) = I1(r) = 1, and D(r) = R(r). In this case,
for each fixed £ € R"! the relation (2.1.16) from Chapter 2 becomes

1
(L, ) O
P(ET) ky(§)—1—y 1

W) oz _
¢ aF 26w — Sy ®,
(t — ¢, &)k @-y M;) P (: L E) (T —8u(©)

2fv)/(g; T) =

4.1.9)
Furthermore, as it was shown in Remark 2.1.2, Chapter 2, the relation
1E) kv®-1
R =Y > d% )Ly (1) (4.1.10)

v=1 y=0

is valid. We differentiate (4.1.9), use the relation dl? ku_l_y(é) = y!(pgy (&), and

set T = z,(§). Since P(S)(S;ZQ(S)) =0 (s =0,...,1(8) — 1), we obtain from
(4.1.10) the following system for ¢, (£):

1(§) kv (§)—1

_ Dy + 9!
R(s)(E: 20(8) = i 7
M@= 0, 2 ST e

(e=1,....8(8): s =0,....1p(5) — D).

0
v (®) (4.1.11)



184 4 Estimates for a maximal operator

Replacing Z by R in relation (2.1.53) from Chapter 2 and applying the formula
A(§) = (d(§), ¢y(§))r which follows from equation (2.1.55) from Chapter 2, we
conclude that (4.1.8) follows from (4.1.11). O

Corollary 4.1.5. Suppose that all assumptions of Proposition 4.1.4 are satisfied. In
addition, suppose the t-roots of the polynomials P(§;t) and H(§; t) are simple for
almost all ¢ € R"™1. Then the function A(£), defined by (4.1.2), has for a.e. in R" !
the expression

J
AE) = D o), LE) RE 20(6) RE: 40()), (4.1.12)

v,0=1

where

J — —
[T (z(8) = £;(5) l;[ (2x(8) = ¢,())
_ wto

A ) =i L) —C,(6)
e O = o) TG =5, @)
j#e J#v

(4.1.13)

Proof. Formula (4.1.12) follows directly from (4.1.8). Using the Cauchy formula for
determinants of the type det{(a; + b,,) "'} (see, for example, [PS56], p. 112), we see
that the elements A,, of the matrix inverse to (4.1.7) are calculated in accordance
with (4.1.13). O

By Theorem 4.1.1, each of the newly obtained representations of A(€) corre-
sponds to a specific version of the criterion for the validity of (4.0.1). We formulate
some of them below.

Theorem 4.1.1 and Proposition 4.1.2 imply
Corollary 4.1.6. The estimate (4.0.1) is valid if and only if

‘I s0(§) _ const

Tho® | = BE)

Here, the functions so(§) and ho(§) are the same as in Proposition 4.1.2.

ae. inR"L. (4.1.14)

Theorem 4.1.1 and Corollary 4.1.3 imply

Corollary 4.1.7. Suppose that the leading coefficients of the polynomials P(§; t) and
H (£;7) coincide a.e. in R"™. The estimate

()51 < C (IPDYU)? + ull?) . u € CE®RY) (4.1.15)
is valid if and only if
J
Im Y (25(8) + £o(6)) < i;g)t ae inR"L, (4.1.16)

o=1
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Here, zo(§) and £o(§) (0 = 1, ..., J) are the t-roots (counting multiplicities) of the
polynomials P(§; 1) and H(§; 1), respectively.

Theorem 4.1.1 and Corollary 4.1.5 imply

Corollary 4.1.8. Suppose that the t-roots z,(§) and £, (§) of the polynomials P (&; t)
and H (£; 1), respectively, are simple a.e. in R"~1. The estimate (4.0.1) is valid if
and only if

const

B(§)

J
D X0 ®), L(E) R(E: 20() R(E: Gu(§)) < ae inR", (4.1.17)

v,0=1
where Ayo(20(8). £v(§)) are the functions defined by (4.1.13).

4.1.2 Results concerning the estimate (4.0.2)

In this subsection we give two statements on necessary and sufficient conditions for
the validity of (4.0.2).

Let the polynomials H (¢;7) and H_(£; 7) be the same as in the beginning of
Section 4.1, and let

QEn 1) =M0—1) ' [HyERE 1) — H(E:T)RE )] (4.1.18)

geR" 1 nteRl

Theorem 4.1.9. The estimate (4.0.2) holds if and only if the inequality

P / / (||A1(S:n,r)|2+|A2(5;’”)|2 dtd ' 4.1.19)

[PEDP+1 PEOP T DPEDE+ DS BE) B(E)

is satisfied for almost all ¢ € R~ and all t € RY. Here, A\ (§; 1, T) is the quotient
and A, (§; 1, T) is the remainder of the division (w.r.t. ©) of Q(&:n,T)H-(§;71) by
P(&; 1) (R is the polynomial (4.1.18)).

This result follows directly from Theorem 3.2.4, Chapter 3. It suffices to put
there m = 2, P1(&;t) = P(§;7t) and Py(&;1) = 1. Since I14(§;7) = 1, condi-
tion (3.2.8) from Chapter 3 can be omitted. It is obvious that A; =
Dj(&;n,t)Hy(&:n) (j = 1,2), where D are the polynomials appearing in inequal-
ity (3.2.9) from Chapter 3. Thus, that inequality takes the form (4.1.19).

Remark 4.1.10. A direct verification shows that the polynomials A, A, figuring in
(4.1.19) can be expressed in terms of the polynomials Tj, 75, defined in Theorem
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4.1.1, as follows:

ArEnt)=0—1) ' [(PEn) - PED)RE D
—(Th(&:n) —Ti(5; 7)) He(E:n)],

A& 1) = —1) ' [(PEDTIE D) + Ta(E: 1) Hi(E: 1)
—(PEDPE D + 1) R(E: ).

The polynomial A; can also be written in the form

Ar(Ent) = (n—1) H(T1(En) — T 1) PE 1) He(E n)
—[REN(PEDPED + 1) — REDH-_(§;1)He(E: )]}

To conclude this subsection we consider the estimate (4.0.2) for the case R(£; 1) =
1. Let Py (£; 7) be a polynomial (of t) with leading coefficient 1, and let its roots co-
incide (counting multiplicities) with all t-roots of P in the half-plane Im¢ > O,
{=1+i0.

Proposition 4.1.11. The estimate
[ullFi2 < C (IPDl® + [ul?), ue C5o(RY) (4.1.20)

is valid if and only if the following conditions are satisfied:
1. B(§) < C foralmostall§ € {§ e R"™1: PL(&;7) # 1};

2. B§) <C (1 + |P(&;7)] )foralmostallé ce{écR" P (§;1) =1 and
allt € R,

Proof. It is easy to show that (4.1.20) is true if and only if for almost all £ € R"~!

) - . 2 2
0/|v(t)| dr < C(B(£)) O/IP(E’ id/dr)v] d”g/'”(”' RS

v e Cy° (R)

or, equivalently,

( B(E))/| (O)Fdr B(S)/“D(S —id/dnoPdr, (4.1.22)

ve CPRL).

The sufficiency of (4.1.21) is proved by substitution ve () = 1 (&;¢); the necessity is
shown by the method of localization in & (cf. the proof of Theorem 3.2.2, Chapter 3).
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Suppose that for some £ € R"~! we have P4 (£;7) # 1. In this case, it follows
from Proposition 3.3.2 of Chapter 3 that (4.1.22) is impossible, if C(B(£))™! < 1.
On the other hand, the validity of (4.1.22) for C(B(£))~! = 1 is obvious.

Consider now such £ € R”~! that P, (§;7) = 1. Without loss of generality, we
can assume that C(B(£))~! > 1. However, this means that (4.1.22) is equivalent to
the inequality

/|v(t)| dt < B(é) /|P($ —id/dt)v|* dt, v e Cy° (R ). (4.1.23)

From Proposition 3.1.12 of Chapter 3 it follows that the exact constant in (4.1.23) is
equal to sup | P|72. Hence, if P4 (£;7) = 1, then (4.1.22) holds true if and only if
|P(&7)|72 < C [B(§) — C]™", or (equivalently) if B(§) < C (1 + |P(§;7)[?). O

4.2 Quasielliptic polynomials

In this section, we study the criteria, established in Theorems 4.1.1 and 4.1.9, in the
case, where R(&; ) = 7% and P(§; ) is a quasielliptic polynomial w.r.t. the variables

£, 1.

4.2.1 Polynomials with a generalized-homogeneous principal part

In this subsection, we consider the case R(&; t) = v° and establish an upper estimate
of A(§), defined by (4.1.2), for the polynomials P(£;7) with generalized homoge-
neous principal part.

Let us define the notion of the generalized-homogeneous principal part of the
polynomial P(&; 7). Suppose that the polynomial

PET) =) agky £y 4.2.1)

of the variables (§; 7) € R” satisfies the following conditions:

1. my,..., m, are natural numbers, and m = max m,.
1<o=n

2' q=(CII’-H’C[n—l’CIn),WhereCIQzmmgl (1 SQSm)

3. (@.q) = o191 + -+ p—1Gn—1 + Anqn.

4. The sum on the right-hand side of (4.2.1) runs over all multi-indices ¢ =
(o1, ...,q,) such that (e, q) < m.

The polynomial

Poi1) = ) agky £yt To (4.2.2)

(e,q)=m
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is called the generalized-homogeneous main part (w.r.t. the weight q) of the polyno-
mial (4.2.1).

We will also write P(§:7) as P(§:7) = D10 Pmp—k (£)7* and restrict ourselves
to the case po(£) = 1. For £ € R"~! we set

n—1
€)= [&lme. 4.2.3)
o=1

Proposition 4.2.1. Let R(¢;t) = % (0 < s < my — 1), and let the polynomial
P(&; ©) satisfy conditions 1-4. Then the function A(€), defined by (4.1.2), admits the
estimate

A(E) < C (1 + (g @rimim (4.2.4)

for all £ € R"™\. In particular, if the hyperplane t = 0 is not characteristic for the
operator P(D), then
AE)<Ca+gD>T. 4.2.5)

Proof. We set d(§) = (1 + (€))™™». From the estimates |£,| < (£)9% (0 =
1,...,n — 1) we obtain for all £ € R~ the inequalities

ps(§) < c(g)M 1 Ttean—1dn—1 < o(g)@D=lma—s)m/mn < o17(£)]5, (4.2.6)

where s = 0,1,...,m,. The coefficient g;(&) in front of the term t* in the poly-
nomial H(§;7) = |P(§;7)|? + 1 is equal to Y k4i=s Pk () p:(£). This means that
gs(E) < Cld(§)) (s =0.1,....2mp).

Let 7 be a root of the polynomial H—(§;7) = Y ;0 hm,—s(§)T* with hg(§) = 1.
Then 7 is also the root of the polynomial H (§; ), and therefore

2mpy

[Tl <) g

s=0

Hence, each root t of the polynomial H(&; 7) satisfies |t| < c¢d(§). Since the coeffi-
cients /4 (§) are symmetric functions of the roots of H_(&; 7), the inequality

lhs(€)] < c[d(§)]* (s=0,1,...,my) 4.2.7)

holds for all £ € R*~!.
‘We now consider the relation

*H_(&;7) = P(&;0)T(E: 1) + Ta (5 7), (4.2.8)

which determines the polynomials 77 and 7,. These polynomials can also be ex-
pressed as

TiED) = + 4@+ (D ©)r+ 1 ®),
To(E;0) = 1P @™ 4o 10 BT+ 12(6).
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Equating the coefficients of like powers of t in both sides of (4.2.8), we obtain the
relations

k
> Pe—o®1V®) (k=0,....5),
(&) =14 7" )
2@+ 1@ pe® k=s5+1....mp).
0=0
2@+ Y @) pe—g®) =0 (k= mu+1,...,mn +5)
o=k—my

(here tél)(f) = 1). Determining the coefficients of T7(§; 7) and T»(; t) from these
relations and using (4.2.6) and (4.2.7), we see that the inequalities

1PEI<cld®)F  (@=0,....5), (4.2.9)

POl <CA@OF  (k=1.....m) (4.2.10)

hold for all £ € R""!, Let § € R""1, let ¢c; > 0 be a sufficiently large constant,
andlet I1(§) = {r: 1 e RY, |t] < c1d(§)} and I5(§) = R\ I,(§). Consider the
representation
[Ty + TP TP + T TP + T
IT1|* + | T2| dr=/|1|+|2| dr+/|1|+|2| dr. (42.11)
|P|?+1 [P|?+1 P>+ 1
—o0 1, (&) 1>(§)

The first integral on the right-hand side of (4.2.11) is estimated with the help of (4.2.8)
and (4.2.9):

) ) ad® .
/‘HH +IDF /‘|n|+er_—PTﬂ

P2+ 1 PP+ 1 dr
I, (%)
c1d(§) J
<c / (T2 + T PIP P + )
J -
c1d(§)

<c / (IT1]? + v*)dt < c[d(E)]>* .
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The second integral on the right-hand side of (4.2.11) is estimated with the help of
(4.2.6) and (4.2.10):

o0

P12 +1 r2mn 4]
1) c1d(®)
[e.e]
sc / [dEPETV2dT = c[d (&)
c1d(®)

Thus, the estimate (4.2.4) is established for all § € R"~1,

Suppose now that the hyperplane t+ = 0 is not characteristic for the operator
P(D). Wesetmy, =m, = J (0 =1,...,n—1)in the conditions 1-4 that define the
polynomial (4.2.1). Then the norms |£| and (£) are equivalent in R”~!, and (4.2.5)
follows from (4.2.4). O

4.2.2 The estimate (4.2.16) for quasielliptic polynomials of type / > 1

The main result of this subsection is Theorem 4.2.3, which shows that the inequality
(4.2.17) is a criterion for the validity of (1.2.16) for quasielliptic polynomials P (§; 7)
of type / = 1.

The polynomial (4.2.1) is called a polynomial of type I, if for all € € R"~1\ {0}
the number of the t-roots of the polynomial Py(§; t) lying in the half-plane Im ¢ > 0,
{ =t + io, is equal to /. The polynomial (4.2.1) is called quasielliptic, if

|Po(§: 1) = ¢ ((§)" + [[™) (4.2.12)

forall (¢;7) € R™.
Now we show that, for quasielliptic polynomials of type [ = 1, the function A(§)
admits a lower bound, which is the opposite of (4.2.4).

Proposition 4.2.2. Let P(&; 1) be a quasielliptic polynomial of type | = 1, and let
RE;t) = 85 (s = 0,...,my — 1). Then the function A(€), defined by (4.1.2),
satisfies the estimate

AE) = ¢ (1 + (g)) 2 mimn (4.2.13)

for all £ € R"Y. In particular, if P(§; 1) is a properly elliptic polynomial of even
order, then -
AE) Zc(+ED> T (4.2.14)

Proof. If P(&;1) is a quasielliptic polynomial of type [ = 1, then one can easily
show that there exists a t-root T = z(£) of P(&; t) such that the estimate

Imz(€) = c (1 + (£)™™ (4.2.15)

holds true for large |£].
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Let n(£) be a piecewise continuous function in R”~! which is equal to z () for
large values of (£) and satisfies Im5(§) > ¢ forall £ € R"~!. Foreach § € R"! the
function u(&;¢) = exp (in(§)t) exponentially tends to zero as ¢ — oco. Therefore, in
accordance with Lemma 2.1.8, Chapter 2, one can approximate u for each fixed & €
R"~1 by a sequence u, € C§°(RY) such that (ug—u)®|,_, =0(s =0,...,mu—1)
and

nggo/ [|P (& —id/dt) (ug —w)|* + |up — u|2] dt = 0.
0

Since A(§) defined by (4.1.2) is the sharp constant in the inequality

WO, < A®) /Il’(é;—ia’/a’t)vlzwL|v|2 dr. v e PR},
0

the function u(£; ) satisfies for all £ € R*~! the inequalities
WO, <A@ [ (1P € -id/dnuEnP + ol ds
0

(s =0,...,m, —1). Hence A(§) = ¢ for all ¢ € R"~!, and the estimate

AE) =2ImzE)|zE)) = c (1 + (s))(2s+1)m/mn

is satisfied for large ().

If P(§;7) is a properly elliptic polynomial of even order J, then J = 2, m, =
my, =m=J(@=1,...,n—1),1 = J/2 = 1, while the norms |¢| and ()
are equivalent in R”~!, and the estimate | Po(§;7)| = ¢ (|§]* + 12)1/2 holds for all
£ € R*~!. This means that in this case (4.2.14) follows from (4.2.13). O

‘We now turn to the main result of this subsection.

Theorem 4.2.3. Let P(§; 1) be a quasielliptic polynomial (4.2.1) of type | = 1, and
let Po(§) = 1. The estimate

o\
<< ati‘» n =€ (IPD)ul® + ul?), u e CPRY), (4.2.16)
B1/2

(s =0,...,m, — 1), holds true if and only if
B(®) (1 n (g)@”l)’"/’"") <const a.e. in R"L. 4.2.17)

In particular, if P(§;71) is a properly elliptic polynomial of even order J, then the
estimate (4.2.16) with s = 0, ..., J — 1 is valid if and only if

B(E) (1 + [E/*T") < const a.e. inR"™!. (4.2.18)
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This theorem follows immediately from Theorem 4.1.1 and Propositions 4.2.1
and 4.2.2.

Remark 4.2.4. The quasiellipticity condition for the polynomial P (§; t) and the re-
quirement / > 1 cannot, in general, be omitted in the formulation of Theorem 4.2.3.
This is demonstrated by the following examples.

a -1 92
1. Let P(D) = % + Z > be the backward heat operator, let s = 0, and let
R(&;7) = 1. The polynom1al P(§;7) = it —|£|? is quasielliptic, (my = --- =
Mp—1 = 2,m, = 1,m = 2),butits root t = —i|&|? (here P(£; 1) = Po(£; 7))
lies in the half-plane Im ¢ < 0, if |§| # 0. Since, P(§; 7) = it —|£|?, we obtain
for |£] — oo the equalities:

Hi(50) = —it — (E]* + VY2, H_(&7) =it — (E]* + D2,
TiEn) =1, TEo) =2 —(&* + 12,
A) = (E]* + D2~ [g]? = 0(E] ).

Thus, A () does not satisfy inequality (4.2.13) (in this example we have || =
(&)

9 92
2. Let P(D) = 1— — Z be the Schrodinger operator, and let s = O.
The polynomial P(S r) -7+ |§|2 is generalized homogeneous, (m; =

- = muy—1 = 2, my = 1, m = 2), but not quasielliptic, since its root

T = |£|? is real. It can be verified directly that Hy(§;7) = —1 + |§]> + 1,
H_ (E )= -1+ > —i, T1(§;7) = 1, Tr(§;7) =i, and A(£) = 1. Hence,
in this example A(§) again does not satisfy (4.2.13) (similarly to the above
example, we have |&] = (£)).

4.2.3 The estimate (4.2.19) for quasielliptic polynomials of type / > 1

In this subsection, we show that (4.2.19) holds for quasielliptic polynomials P(&; 1)
of type [ > 1 if and only if (4.2.20) is fulfilled a.e. in R*~! (see Theorem 4.2.5).

Theorem 4.2.5. Let P(€; 1) be a quasielliptic polynomial (4.2.1) of type | = 1, and
let po(§) = 1. The estimate

where s = 0, ..., my, holds true if and only if

Su
ots

C (IP(D)u)* + |[ull?), u e CPRYL), (4.2.19)

B(®) (1 + (s)zs’"/’"n) < const (4.2.20)
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for almost all £ € R"™Y. In particular, if P(&;71) is a properly elliptic polynomial of
even order m, then the estimate (4.2.19), where s = 0, ..., m, holds if and only if

B(€) (1 + |€**) < const (4.2.21)
a.e. in R*71,

Proof. Necessity. Let u(&;t) be the function considered in the proof of Proposition
4.2.2. Since it tends exponentially to zero as ¢ — oo, the estimate

3(5)7
0

with s = 0,...,m, holds a.e. in R”~!. This means that B(£) < const a.e. in R"*™!,
and for large values of (£) the inequality B(£)|z(£)|?>® < const holds true. Taking
into account (4.2.15), we obtain (4.2.20).

Sufficiency. We estimate the left-hand side of (4.1.19). First, we show that for a
quasielliptic polynomial P satisfying conditions 1-4,

Bu(g:r)
ots

2 oo
ar < ¢ [ (1P @=id/anunf + ol ar
0

.E2s

sup ——————— < const[d(§)]26) (4.2.22)
e [PEDP 1

2s

MT”H < COl’lSt, if <$) < 1. Since

Indeed, we have sup, cp1
TZS 2m(s/mp—1)
su = (§) n~ su
o B 1 e L4 T 4 (E) 2

2s
71

les
1+ ™ 4 (g)=2m

and sup, g1 < const for (§) > 1, we see that the inequality

2s

T
sup

< const[d (§)¢ 7" 4223
cerl (E)2M 4 2mn 41 const[d ()] ( )

is fulfilled for all £ € R"~1.
On the other hand, the quasiellipticity of the polynomial P implies the estimate

|P(§:7)| = const ((§) + ™), (4.2.24)

provided that (§)™ + |t|™* = c;, where ¢ is a constant depending only on the
numbers m, and the coefficients a, of the polynomial P. Since obviously

.L,2s

sup — < const,
Emtirimn<e, |PE D +1

(4.2.22) follows from (4.2.23) and (4.2.24).
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Let us show that

dtdn < const[d(£)]*S, (4.2.25)

7’7 ALE D, P + |Ag(Es . D)
J ] PEDP+DIPEOP+ D

where A and A are the polynomials defined in Theorem 4.1.9. Let
mpu mn
HiE) =Y hpa®.  PED = pm—i®)".
k=0 k=0

and let Q(&; 1, 7) be the polynomial (4.1.18). Dividing °1n* — n°t* by (n — 1), we
find that

QEn ) =) ¢iEns/ (4.2.26)
j=1
where R(§;1) = t° and

Jj—1

=Y hm O 1< s,
k=0
mn

> bk EFE L s+ 1< <my.
k=j

pj:in.s) = (4.2.27)

Let Ty, T»; be the quotient and the reminder of the division of the polynomial
(of ) /7Y H_(&; 1) by P(£; 7). According to Proposition 4.2.1,

iy 2 2

/Ile(S:f)l + 172 (5:7)

PER 14T S constld@®P (4.2.28)

From the estimates (4.2.6) for ps(§) we get the inequality |P(§;7)]> + 1 =
const(n?™ + 1) provided that ¢ is a sufficiently large constant and || = cd(§). Let
1;(§) and I, (£) be the intervals defined in the proof of Proposition 4.2.1. It follows
from (4.2.22) that

— __dn < const stk—j—mn)+1, (4.2.29)
|[P&;n)*+1

I (§)

On the other hand, in view of the choice of ¢ we have

7]2(S+k_j) n2(é‘+k—j)
/—dnSconst/ —_dp

PE > +1 2mn 41
o |P(&:n)l it n (4.2.30)

< const[d (£)]2He—/—mm+1
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Based on (4.2.26) and (4.2.27), we see that (4.2.25) follows from the estimates
(4.2.28)—(4.2.30) and the inequality (4.2.7) for hs(&). It remains only to note that the
estimates (4.2.22) and (4.2.25) imply (4.1.8). O

Remark 4.2.6. In the formulation of Theorem 4.2.5, the condition / = 1 cannot, in

general, be omitted. For example, condition (4.2.20) for the backward heat operator
2

g nzl 9
P(D) = o T le @ can be written as

B(€) (1 + [€[*) <const (s =0,1). (4.2.31)

The polynomial P(§; 1) = it — |£|? is quasielliptic, but for £ # 0 it has no roots in
the half-plane Im ¢ > 0, { = t + io. We claim that the inequality

BE)(1+|E)* * <const (s=0,1) (4.2.32)

is necessary and sufficient for the validity of the estimate (4.2.19) for this operator.
Indeed, setting P(£;1) = it — |£]?, we get
2s

sup (1+ 184", (4.2.33)

e |[PEDP+HT

On the other hand, from the definition of A; and A, we obtain directly that
Ar=(1+EY7. A=i(1+ 5% [ISIZ —(1+ |§|4)”2]. (4.2.34)

Now from (4.2.33) and (4.2.34) it follows that (4.1.8) is equivalent to (4.2.32).

4.3 Homogeneous polynomials with simple roots

In this section we study criteria for the validity of (4.2.16) and (4.2.19) in the case
where P(£;7) = t/ + p1(§)r/ ™! + --- + ps(£) is a polynomial (of 7) and its
coefficients are continuous, positive homogeneous functions of the variable £ € R”~!
such that deg py (§) = k and ps(§) # O for & #£ 0.

We assume that the t-roots z;(£), ..., zy () are pairwise distinct for all £ # 0.
Suppose that for all o = 1,. .., J the functions Im z, (£) either vanish identically, or
preserve the sign on the unit sphere $” 2. It is also assumed thatforallp = 1,...,J
one of the following two conditions holds: either P(§;Z,(§)) = 0or P(§;Z,(8)) # 0
forall £ # 0.

We will use the following inequalities, which follow directly from the assumptions
made above:

<z B < clgl, THEI< 1z (6) — 2z (©)] < el

4.3.1
(G #i, jr=1,...,J). ( )
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It is also obvious that the t-roots of the polynomial P (£; 7) can be enumerated in
such a way that for all £ # O the following conditions are satisfied:

Imz,(§) =0 (r <ky);

Imz,(§) <0 and P(§z,(8) #0 (k1 <r < ka);
Imz,(§) >0 and P(§Z,(8) #0 (k2 <r < k3);
Imz,(§) >0 and P(&;2,(6))=0 (ks <r < ky).

Forks <r < J weset z,(§) = Zr—,+k5 (§)-

4.3.1 Asymptotic representations of the t-roots of the polynomial
H,(§57)as |§| - oo

The main results of this subsection, i.e., the criteria for the validity of (4.2.16) and
(4.2.19), are established with the help of some estimates of the function A(§), de-
fined by (4.1.2), and the left-hand side of inequality (4.1.19). These estimates are
deduced from the following asymptotic representations of the r-roots of the polyno-
mial H4(§;7) as || — oo.

Lemma 4.3.1. Let P(§; 1) be a polynomial (of ) having all properties listed above.
Then each t-root zy(§) of the polynomial P (&; T) corresponds to a t-root {,(§) of the
polynomial H (§; T) such that for |E| — oo the following asymptotic representations
hold:

Lo(§) = zo(§) +ico)IEI"™ + O(EI"™) (0 < ki) 4.3.2)
Lo(€) = Zo(8) + co(D)EI" + O(EI"™*) (ki <o <ka): 4.3.3)
Lo(€) = 2o(8) + co(D)EI"2 + O(E]"™*) (k2 <0 < k3); (4.3.4)
Lo(8) = 2o(E) + co(OIEI"™ + O(IE]'™2) (ks < 0 < ka); (4.3.5)

5o (§) = Zg—kytks (6) + co(DEI"™ + O(IE]'"?) (ke <0< /) (43.6)

here co(0) # 0 are continuous functions on S"~2 such that c,(6) = const > 0 for

0 < kyand® =§/[§|

Proof. Set ré’,(é) = {,(€)|&|7L. Since P(£; 1) is a homogeneous function of degree
J wrt. (§; 1), we have

P(60:7,(£)P(6: 7)) + €] > = 0. (4.3.7)

Suppose that k1 < o < k». We expand the first term in (4.3.7) in powers of (z,(§) —
Zo(0)). From the continuity of the function P and inequalities (4.3.1) it follows that

I[P P(0;Z,())]
0t

IP(0:2,(0))

> const > 0.
ot

' = [P(0:Z,(0))]
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[P P(0:Z,(0
Dividing both parts of (4.3.7) by L2 02O L biain (4.3.3).
T
Let k» < o < kz. The same arguments as in the previous case show that
[P P(0;z,(0))]
at
(4.3.7) in powers of (ré’) (§) — z0(0)). Dividing both sides of the resulting inequality
[P P(0:Z,(0
by PP (0))

> const > 0 for all § € S""2. We expand the first term in

3 , we establish (4.3.4).
T
Next, let k3 < 0 < k4. Since P(§;z,(8)) = P(§;2,(§)) = 0, we have

[P P(0;20(0))]
0T

From the definition of k3, k4 and inequalities (4.3.1) it follows that

= 0.

AP (0;2,(0))
T

922 P > const > 0
T T

(PP (8:20(9)) ' _, ‘ 0P (6:25(6))

for all # € S™"2. We expand the first term of (4.3.7) in powers of (r‘/_)(é) — 20(0))
02[PP(0;z,(0
and divide (4.3.7) by 1 ; Zo(©))]
T

resulting equality, we establish (4.3.6). Eq. (4.3.2) is proved in the same way.

Finally, let k4 < 0 < J. We expand the first term in (4.3.7) in powers of (z,(£) —
Zo(0)). Repeating the arguments used in the proof of (4.3.5) (and replacing z, (9) by
Zo(0)), we arrive at (4.3.6).

. Taking the square root of both sides of the

Remark 4.3.2. From (4.3.2)—(4.3.6) it follows that for large values of |&| the T-roots
of the polynomial H (§; ) satisfy the estimates

cTHEI< L@ <clsl A<r<J);
cTHEN <18 () = & (B)] < clE]
(J #1i, ] & (ks ka], r & (k3. ka], |J — 7| # ka — k3);
cTHENTT <18 () = Cikata B S €T (ks < < ka).
The last of these inequalities is based on the obvious fact that [¢; (0)—c¢ 4k, —k;(0)] =

const > 0 (k3 < j < k4). In particular, it follows from (4.3.8) that the 7-roots ¢, (§)
are pairwise distinct for large values of |£|.

(4.3.8)

4.3.2 Necessary and sufficient conditions for the validity
of the estimate (4.2.16)

In this subsection we obtain necessary and sufficient conditions for the validity of the
estimate (4.2.16) in the case where P(§; 7) is a polynomial possessing the properties
listed at the beginning of Section 4.3.
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Lemma 4.3.3. Let R(§;1) = 1°, and let A(§) be the function defined by (4.1.2). If
the t-roots of the polynomials P and H are simple, then

J
AE) = Y hoGo®). L@ 2P (GO, (43.9)

v,0=1

where

l_[ (20(8) = £ (8)) ﬂ (2x(8) = &0 (8))

v = (4.3.10)
Avo(ze(8). L (§)) = H (2 (8) — 20(E) n €& -2,;©)

Jj#e

This lemma follows immediately from Corollary 4.1.5.
We now turn to the study of conditions for the validity of (4.2.16).

Theorem 4.3.4. Let P(£;7) =t/ 4 p1(§)t/ ™' + - + ps(€) be a polynomial of ©
such that its coefficients and its t-roots satisfy all requirements listed at the beginning
of Section 4.3. The estimate (4.2.16) with s = 0, ..., J — 1 is valid if and only if the
following conditions are fulfilled:
1. If Imz,(0) > O holds for at least one value of o (1 < o < J) then the
inequality
B(£) (1 + |E)* ! < const (4.3.11)
is satisfied a.e. in R" 1.

2. If Imz,(0) = O for at least one value of 0 (1 < 0 < J) andImzy,(0) < 0
(1<o<J), then

B(E) (14 |E)* T < const ae inR"™'. 4.3.12)

3. Iflmz,(0) <0(0=1,...,J), then
BE) (1 + €D T2 <const ace. in R\ (4.3.13)

Proof. Let A(§) be defined by (4.1.2). Since the hyperplane ¢ = 0 is not character-
istic for the operator P (D), Proposition 4.2.1 ensures the validity of the inequality
AE) < c(1 + |E))*! for almost all £ € R*™!. Hence, the function A(§) is lo-
cally bounded. Starting from (4.3.9), (4.3.10), and the asymptotic representations
(4.3.2)-(4.3.6) we estimate A (&) from above for large values of |&].

First, we observe that inequalities (4.3.1) and (4.3.8) imply the estimates

cleP’72, if v <ks,

[[G-z22]]@-)= e . (4.3.14)

o ity if k3 <v<J.
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From the same inequalities and the representations (4.3.2)—(4.3.6) it follows that

clel'™, ifo<kiorks<o<l,

120 (6) — Lo (®) < { c|g|'™2, ifky < 0 < ko, 4.3.15)
clél. ifkr < 0 < ka,
and
[T -] < {Cm: ) ?fg <K (4.3.16)
j#o clg]™, ifks<os<J.
Therefore, for v # ¢ we have
J ¢, if o < ki,
[[Ge—Cn|<qclEl™, ifhi<oshkiorka<o<, (4.3.17)
= clel’.  ifka <o <k,
[TG—%)| < {Cm:l’ ?fgsh orks<e=J, (4.3.18)
x#0 cl§|77,  ifks <o < ka,
clg]™, ifv<kjorkz<v<lJ,
[1Ge—2)| < clEl™, ifk <v <k (4.3.19)
“re clel’7t ity < v < ks,

Let Avo(§) = Avo(20(§), 0 (§)) be the functions given by (4.3.10). Taking into ac-
count inequalities (4.3.14), (4.3.17)-(4.3.19), we obtain:
cle™™7, ifo<kjorks<o<J,
Moo < { clg]'™2, ifky <o < ks, (4.3.20)
cl|, ifky < 0 < ky;
If v # o, then we have
cle|'™, ifo<kik,<v<Jorv<ky, ky<o <k
el ifo.v<kiorki <o<ky ky<v<lJ
orkys <o <kq ki <v<kyorksy<o<J,
kr, <v < J;
Ave) < 3 cle]'™3, ifo<ki, ki <v <k,ork; <o <k,
v<kjorks<o<J,v <k
clE'*, ifky <o, v<kyorks<o<J,
k1 <v <k
clé|, ifky <o <ky, ky<v<J.

(4.3.21)
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The estimates (4.3.20)—(4.3.21) combined with (4.3.1) and (4.3.8) imply the fol-
lowing assertions.
Suppose Im z,(0) > 0 for at least one o (1 < ¢ < J). Then

AE) S c(1+ gD (4.3.22)

Next, suppose Imz,(0) < 0foro = 1,...,J, and Imz,(6) = O for at least one
o(1 <o<J). Then

A§) S c(L+[gh>H1. (43.23)

Finally, let Imz,(0) < Oforo = 1,...,J. Then
AE) < (1 + g1 (4.3.24)

We show that in all these cases the function A(§) satisfies the opposites of the
respective estimates (4.3.22)—(4.3.24), respectively.

Suppose that v(&;¢) = exp (in(§)z), where n(£) is a function satisfying Im n(§) >
const > 0 for all £ € R"™!. Since v(£;¢) tends exponentially to zero as t — oo for
all £ € R"™!, it satisfies the inequality

2

> v(§;1)
ots

<A@ [ [IP @-id/dno@oP + ool ] ar
0

t=0

This yields the estimate

2@ Imn(§) < AG + [PEE) L] (4.3.25)

The definition of n(§) for large values of |£]| is given in accordance with the dis-
tribution of the t-roots of the polynomial P(§; 7).

Suppose that Imz,(0) > 0 for at least one value of o (1 < o < J). Setting
n(€) = zo(&), we find in view of (4.3.25) that 2|z,(£)|*Im z,(§) < A(£). Then,
the first estimate in (4.3.1) and the homogeneity of the function Im z,(§) yield the
inequality

AE) = c(1 + |E)>TL (4.3.26)

Next, suppose that Im {,(6) = O for at least one value of o (1 < o < J) and
Img,(0) < 0(0 = 1,...,J). We denote by ,(§) the t-root of the polynomial
H (&; v) which corresponds (see (4.3.2)) to the root z,(§) satisfying Imz,(§) = 0,
and put n(§) = {,(§). It follows immediately from (4.3.2)—(4.3.6) that [{,(§) —
zj(§)| < clélfor j # 0, |5p(8) —2o(§)] < c[€]'7, and Im &, (§) = c|§]'~7. Hence,
|P(§;80(5)) = ‘]_[,Jtl({g(é) —z; (E)‘ < ¢. Moreover, it follows from (4.3.8) and
(4.3.25) that

AE) = c(1 + |g])2H1, (4.3.27)

Finally, let Imz,(0) < Oforall o = 1,...,J. We define n(§) by the equality
n(€) = ¢o(§), where {,(§) is an arbitrary t-root of the polynomial H (§; 7). From
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(4.3.3) it follows that Im ¢, (§) = C|€| and | P(£; {,(£))| < C(1 + |£])”. Taking into
account (4.3.8), we obtain from (4.3.25) the estimate

Ag) = C(1+[g)>+172. (4.3.28)
If |£| is a bounded quantity, then the validity of (4.3.26)—(4.3.28) follows from
(4.3.25) and the inequality Im () = const > 0. Thus, all assertions of Theorem

4.3.4 follow from Theorem 4.1.1 and the estimates (4.3.22)—(4.3.24) and (4.3.26)—
(4.3.28). O

4.3.3 Necessary and sufficient conditions for the validity
of the estimate (4.2.19)

In this subsection we establish criteria for the validity of the estimate (4.2.19) in our
particular class of polynomials P(§; 7).

Theorem 4.3.5. Let the polynomial P(&; 1) be as in Theorem 4.3.4. The estimate
4.2.19)withs = 0, ..., J isvalid if and only if the following conditions are satisfied:

1. IfImz,(0) = 0 for at least one value of o (1 < 0 < J), then

B() (1 + |&))* < const a.e. inR"\. (4.3.29)
2. Iflmzy(0) <Oforallo(o=1,...,J), then
B(E) (1 + €)% < const a.e. in R (4.3.30)

Proof. Necessity. Let 1n(€) be the function defined in the proof of the estimates
(4.3.26)—(4.3.28). Substituting the function v(&;¢) = exp (in(§)t) into the inequality

B(é)]o
0

we obtain

Bv(&;r)
ots

2 o0
dr <€ [ [IP@-ia/anvoP + ool i
0

BE)n@)* < CIPE:nE)> + 1]. (4.3.31)

From (4.3.31) and the condition Im (§) = const > 0 it follows that B(£) < const
a.e. in R"~!, provided |£| is a bounded quantity. Inequalities (4.3.29) and (4.3.30) are
deduced from (4.3.31) for large |£]| in exactly the same way as inequalities (4.3.26)—
(4.3.28) were obtained above.

Sufficiency. We estimate the left-hand side of (4.1.19). First, we show that if
Imz,(0) = O for at least one o (1 < ¢ < J), then

2s

ci(1+|€)* < sup < o1+ €)%, (4.3.32)

T
cert [PE D +1
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while if Imz,(0) # O forallp =1, ..., J, then
.E2s

sup —————— < ¢3(1 + |§))2¢7). (4.3.33)
cert! [PEDP+1

Let ¢ be a sufficiently large constant, and let I;(§) = {r € R! : |t] < (1 +
IED), I(E) = R\ I,(£). Since pr(§) < const(l1 + [EDF (k = 1,...,J), the
estimate |P(&;7)|?> = constt?/ holds on the set I5(£), provided ¢ is sufficiently
large. Therefore,

‘L'ZS

sup —————— < const. (4.3.34)
el @) | PE D] +

Suppose that for a given o (1 < o < J) we have Imz,(0) = 0. Then, it follows
from the definition of 7, (§) and the inequality | P(&;7)|?> = O that

.E2s

sup ————— < const(1 + |£])*. (4.3.35)
cen@) 1PE D +

Taking into account (4.3.34) and (4.3.35), we obtain the upper bound of (4.3.32). To
prove the lower bound, it suffices to put T = z,(§) and Im z,(6) = 0.

LetImz,(0) # Oforallo = 1,..., J. Then, obviously | P(§; 7)|* = const(z? +
|€|?)” . Therefore, the estimate (4.3.33) is a particular case of (4.2.22) for m = m, =
J, (§) = [§].

We estimate the second term on the left-hand side of (4.1.19). It suffices to estab-
lish such estimate for large values of |£]|. Indeed, if |&] is bounded and B(§) < const,
then the inequality

drs

2 [o¢]
dt < c/ [|P(§;—id/dt)u(t)|2+ e (7)] ]dz u e CE(RY)
0

is trivial. We denote by E(§) the second term on the left-hand side of (4.1.19). Note
that, for large values of |£|, not only the 7-roots of the polynomial P (£; ), but also
the 7-roots of the polynomial H (§; t) are pairwise distinct. Using the definition of
the polynomials A; and A, that figure in (4.1.19), and applying Corollary 4.1.5 we
obtain

QE 7. 20E) QE . &,
E(§) = / Z To®) 2 n|?((§)z,)|2(in1§ €) 4, (4.3.36)

oo V=1
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where A,,(§) = Avo(zo(§), v (§)) are the functions (4.3.10) and Q2(&;7n.7) = (n —
)" Hy(E;:n)t* — Hy(§:;7)n°]. Using the equalities

ey AT IE
Hy(&:n) k=1 _l;lk(fk(é) =i ENMm =)
j

QEn&E) _ _LEOP
Hy (§:m) n—2&w(§)

we conclude after calculation of the integral on the right-hand side of (4.3.36) that

J
EE =211 Y Ao Quok O @G (E)). (4.3.37)

v,0,k=1

where B
l;lk(fg(é) = (©)
Q. = 7 - _ (4.3.38)
ok (5) (&u (&) — $x(8)) _l;lk(ik(é) —¢;(®)
J

Let k1, k2, k3, k4 be the natural numbers defined at the beginning of this section.
Using the asymptotic representations (4.3.2)—(4.3.6) and the estimates (4.3.8), we
obtain for large |£| the following inequalities:

16| = clEl.  ifv £k, (4.3.39)

- e, ifv <k,
180 (&) = & (8)] = {Cm’ k<< ) (4.3.40)

_ _ clEl?Y, ifk < ks,
!Ec@k@)—z,(s»\ > {Cm_l’ <k <) (43.41)

Combining (4.3.39)-(4.3.41), we see that
c, ifv=k <k
_ _ _ k < J,

160 — & @)1] [T ® - 5] = ey (4342)

ik clg)?, ifky <v =k <ks
ork < ksandv # k.

Let us estimate the numerator of the right-hand side of (4.3.38). From equations
(4.3.2)—(4.3.6) and the estimates (4.3.8) we obtain for o = k the inequality

_ J—l’ ifo<k K <7
|H(EQ($)_§](§))| s C|E| 1 Q 3 Or 4<Q

-1 . (4.3.43)
<
j#e clg|™,  ifks <o < ks,
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and for o # k the inequality

cl&l™, if o < ky,

clgl’ 1, ifo<ksorksy <o<J,
|7, ifky < 0 < ks,
cle|172 ifks < 0 < ky.

The estimates (4.3.42)—(4.3.44), (4.3.20), and (4.3.21) immediately yield

| [TG® -5 < (4.3.44)

J#k

E(§) < const(1 + |£])**, (4.3.45)
if Im z,(6) = 0 for at least one o, and
E(§) < const(l + [§)> 727, (4.3.46)

iflmz,(0) <Oforallo (o =1,...,J).
Thus, the sufficiency of conditions of Theorem 4.3.5 follows from Theorem 4.1.9
and the estimates (4.3.32), (4.3.33), (4.3.45), and (4.3.46). O

4.4 Some classes of nonhomogeneous polynomials
with simple roots

Let P(&;:7) = v/ + p1(&)t/ ' + -+ + ps(£) be a polynomial of T with measurable
coefficients that are locally bounded in R”~! and grow no faster than some power of
|€] as |£] — oo. We assume that its T-roots z1(£), ...,z (£) satisfy a.e. in R*~! the
condition

|zj(§) —zr(§)| = const >0 (j #r, jr=1,....J). 4.4.1)

In this section the criteria from Theorems 4.1.1 and 4.1.9 are studied for the three
classes of polynomials defined by the conditions

Imz;j(§) =0, Imz;(§) <const<0, Imz;(§) = const>0 4.4.2)

(j =1,...,J), respectively.
Instead of (1.0.1) and (1.0.2) we will consider the estimates

(RDYU)%1 < C (N2P(DYu)? + [u]?), ueCORL), (4.4.3)

IR(D)ullGr/ < C (N2 PPl +|uf?), u€CPRY).  (444)
where N > 0 is a sufficiently large constant, depending only on J and on the con-
stants from the estimates (1.4.1)—(1.4.2). It is obvious that the estimate (4.4.3) is
equivalent to (4.0.1), while the estimate (4.4.4) is equivalent to (4.0.2). We also note
that, w.r.t. (4.4.3)—(4.4.4), Hy (§;7) is a polynomial of t such that its t-roots lie in
the half-plane Im¢ > 0, ¢ = 1 +io, and |H4(£;7)|*> = N?|P(&;7)|? + 1. This
notation will be used throughout the whole Section 4.4.
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4.4.1 A formula for the function A(&)

In this subsection, equation (4.4.5) will be established for the function A(£), de-
fined in (4.1.2) by the polynomial N P. Furthermore, from (4.4.5) we will derive the
asymptotic representations of A(§) as N — oo. On the basis of these representations,
criteria for the validity of (4.0.1) and (4.0.2) will be obtained.

Lemma 4.4.1. Let P(§;1) and Hy(§;7T) be the polynomials with simple t-roots
z; = zj(§) and §; = (;(§). Let A(§) be the function defined in (4.1.2) by the
polynomial NP. Then
J ——
AE) =iN"? > R(:z)RE 2)
Jj,0,v=1
J _ (4.4.5)
[T —20)
k=1

G- 2 TG =20 [ Ge =20 [T =0
J

k#o k#v

Proof. Using Corollary 4.1.5, we obtain the equation

J ﬁ (Zo =) T1 (Zx— &)
MG =i Y RELIRE D T e T oo
ov=1 Ko k 0 i v k
Applying the Lagrange interpolation formula, we get
RE:G) = 30—
R

Substituting the right-hand side of (4.4.7) in (4.4.6) and using the equality
P(£:8,)P(£:¢,) = —N 2, we can finally convert (4.4.6) to the form (4.4.5). O

(4.4.6)

J

(4.4.7)

4.4.2 Asymptotic representations as N — oo for the t-roots §; (§) of
the polynomial H, (¢; 1)

Lemma 4.4.2. Suppose that the t-roots z ; (§) of the polynomial P(§; t) satisfy (4.4.1)
andImz;(§) = 0(j = 1,...,J). Then each t-root z j(§) corresponds to a t-root
i (&) of the polynomial H (§; t) such that the uniform w.r.t. § asymptotic equality
-1
i
———[1+O0NYH (G=1,....J) (448
IP(§:2,(8))

§i(§) =z;(5) +
‘ dt

is satisfied as N — oo.
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Proof. By hypothesis, the coefficients of the polynomial P(§; t) are real. Therefore,
the 7-roots of the polynomial H (£; v) must satisfy one of the relations P (&;(€)) F
iN~1! = 0, or, what is the same, one of the relations

9k
N (MG T
FEL® = PES )

k=2
0t 0t

Let ¢; > 0 be a constant such that the estimate

‘BP(E;Zj(E)) FPE:z;(9)] _

(—z;(6) == (4.4.9)

—k

ot atk =

holds foralmostall §¢ € R"~!.2 One can assume that the number N satisfies the inequal-
ity Nlog (1 + ¢;’!) > 2. Let C be a number from the interval (2, N log (1 + ¢;1)).
We set Z = { — z;(§) and rewrite (1.4.9) as Z = f(Z). Since C > 2, the function
f maps the disc

-1

IP(§:2;(5))

CN™!
ot

ZEC1:|Z|$'

into itself. On the other hand, the inequality

S k=1 p—(k-1)
C*'N -
|f/(Z)| < Z WC’] < Cl(ecN 1 . 1) <1
k=2 ’

holds true for all Z belonging to this disc. Therefore, for almost all £ € R"! the
equation Z = f(Z) has a unique solution in this disc. Thus, we found a unique
t-root £ (&) of the polynomial H, (§; t) which satisfies the inequality

IP(&;z;(§))
0t

The asymptotic representation (4.4.8) of the root {; (&) (here Im ¢;(§) > 0) fol-
lows from equation (4.4.9) and the obvious estimate

)kakP(é;Zj(E))

-1

18;(§) =z (®)] < CN~.

I (i) —z;(§)

atk
2 aP@az, ©)
T
J K1oP(E:z; (€)1 0% P(&:2j(9))
Xz: T atk ‘
< const —BP(E;ZJ- ©) - N2, 0
at

2Existence of such constant obviously follows from (4.4.1).
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Lemma 4.4.3. Let the t-roots z;(§) of the polynomial P(&; ) satisfy (4.4.1), and
let Imz;(§) < const < 0 (j = 1,...,J) ae. in R"". Then each t-root z;(§)
corresponds to a t-root  j (§) of the polynomial H (§; v) such that the uniform w.r.t.
& asymptotic equality
N2 >
§i(§) =2;(§)— [1+O(N7)] (j=1....J) (44.10)
’ ’ 0P (§:Z;(6))
P(£:Zj(§)) 3,

is satisfied as N — oo.

Proof. Consider the equation

¢ —Z;(8) N
—Zj —
0
P(§; ](S))M
kIPP(E:Z; 4.4.11
2J (g_gj(g))ka [PP(£:Z;(8))] ( )

otk
IP(§:Z;(5)
dat

k=2 kIP(§:Z;(5)

and note that, in the studied case, the T-roots of the polynomial H (§; t) satisfy this
equation. From (4.4.1) and the inequalities Imz;(§) < const <0 (j =1,...,J)it
follows that

KPP (E:Z;(8))]
otk

P(&:2;(8)

M <const (k=2,....J)
dt

a.e. in R*~!. Therefore (cf. the proof of Lemma 4.4.2), the right-hand side of (4.4.11)
represents a contracting mapping of the disc

IP(§:2;(6)

CN—2
ot

P&z

{C HE =2 @) <

to itself, and the unique fixed point of this mapping determines a t-root {; (£) of the
polynomial H4 (&; ) for which (4.4.10) holds. O

Lemma 4.4.4. Let the t-roots zj(§) of the polynomial P(§; ) satisfy (4.4.1), and
let Imz;(§) = const > 0 (j = 1,...,J) ae. in R""L. Then each t-root z;(§)
corresponds to a t-root  j (§) of the polynomial H (§; v) such that the uniform w.r.t.
& asymptotic equality

N—2
P
Pt LSO

is satisfied as N — oo.

§i(€) =z;(8)— MI+O0ON"] (=1,....J) (44.12)
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Proof. Noting that the t-roots of the polynomial H (§; 7) satisfy the equation

I[PP(E: z;(8))]

t—2(6) = N AL T

—zj a |
P& ](S))w k=2 kIP(E; ’(S))w

we can repeat the proof of Lemma 4.4.3 with appropriate modifications. O

Remark 4.4.5. Tt follows from (4.4.8), (4.4.10), and (4.4.12) that for sufficiently large
N the t-roots of the polynomial H (£; 7) are paarwise distinct a.e. in R*~!, if the
conditions of one of Lemmas 4.4.2—4.4.4 are satisfied.

4.4.3 An asymptotic representation of the function A(§) as N — oo
for polynomials P with the real t-roots

Proposition 4.4.6. Let the t-roots of the polynomial P(§; 1) satisfy (4.4.1), and let
the equalitiesImzj(§) =0 (j = 1,...,J) hold. Then the function A(§), defined by
(4.1.2) for the polynomial N P, admits for N — oo the asymptotic representations

J

2
A§) = IZ §§;@§?)') [1+ oWl (4.4.13)
0T
2 7 NS
Ag) = N,T / N2|'§((§.’f))|'2 —dell+ O], (4.4.14)

that are uniform w.r.t. §.

Proof. First, weestablish (4.4.13). Using (4.4.8), (4.4.1), and the relations Im z ; (§) =
0(j =1,...,J),weobtain

J J
[T -2 =]]-z2)
k=1 k=1

DN+ ON ) [P 2;) »
= ‘aP(s;z» [ e oW )]’
0t
0P(E;z;
[T —=0 = 252

k#j

l_[(zj _Zg) = l_I(Zk _Zg) — (_1)]—1%'
k#o k#o0 T
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Hence we can transform (4.4.5) into the form

. i R(&:2))R(E 20) [N~ + O(N72)]

A = 8P (E.2,) 9P (8:25) |0P(E:2g)
T T 0t
-1
IP (& 2p) R i[N"! + O(N7?)]
X(_ aTQ +0(N 1)); ZV—Z]‘+ ‘3P(3;‘;Zv)
0t
-1
i[N~! + O(N~2)] IP(E:zy) )
| =%t T ToRE L) x (T + oW 1)) -
‘ at
(4.4.15)

We denote by A1 () the group of the terms on the right-hand side of (4.4.15) for
the values 1 < j = v = p < J. Itis clear that

1R(E; z0(9) >
Z 0P (§:2,(8))
at

On the other hand, it follows from (4.4.1) and (4.4.15) that A(§) — A1 (§) satisfies the
estimate

A (§) = (1+O0NY). (4.4.16)

IAGE) — A1(§)] < CN™2 Z R(S’ZJ(S))ﬁ(S’ZQ(S)) (4.4.17)
J

” IP(&;2;(5)) dP(§:2,(8)) |
e

at at
Relation (4.4.13) now follows from (4.4.16) and (4.4.17).

Let us proceed to the proof of (4.4.14). Using the residue theorem and (4.4.7), we
get
o0
1 IRE: DI
NZIP(E; )2 +1

-2 R(&;z;)R(E; 2p)
" Q]XV: LG =) =) TT(zj —zi) T1 (2o — 2k) (4.4.18)
k#j k#o
1
5 —
[TG =& TG —3%)

kv k=1
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Each term on the right-hand side of (4.4.18) differs from the related term from the
right-hand side of (4.4.5) by the factor

J J
agy = (17 [T =80 @ —2z07"

k=1 k=1

Taking into account (4.4.8), we can write o, as

aP(&;zy)
P ' dat
ov — .
(N~1 + O(N2)) (L(gf’z”) + O(N—l))
‘8P($;Zg)
X af .
(N=1 + O(N-2)) (81)(85—:@) + O(N—l))

Hence, ago = N?(1+ O(N™1)), and for v # p we have |a,,| = N2(1+ O(N ™).
Combination of this equation with (4.4.16) and (4.4.17) gives (4.4.14). O

4.4.4 Necessary and sufficient conditions for the validity of the
estimates (4.0.1), (4.0.2) for a polynomial P with real 7-roots

As an immediate consequence of Theorem 4.1.1 and Proposition 4.4.6 we obtain
Theorem 4.4.7. Let the t-roots of the polynomial P(§;7) satisfy (4.4.1), and let

Imz;j(§) =0( =1,...,J). The estimate (4.0.1) holds true if and only if one of the
equivalent inequalities

2
B(S)Z |§1§§;§:2))|) < const, (4.4.19)
ot
2
B(§) / | P'g(é)? |+ ~d < const (4.4.20)

is satisfied a.e. in R"~ 1,
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Further we study, under the same assumptions, a criterion for the validity of the
estimate (4.0.2).

Theorem 4.4.8. Let P(&; t) be the same polynomial as in Theorem 4.4.7. The esti-
mate (4.0.2) holds if and only if

B(e) sup | REDP

— > < const foralmostall§ € R"1. 4.4.21)
cer! |PEDP + 1

Proof. The necessity of (4.4.21) follows from Theorem 4.1.9.

Let us prove the sufficiency. Let E (&) be the second term on the left-hand side
of (4.1.19), which corresponds to the polynomial NP. From the definition of the
polynomials A and A; figuring in (4.1.19) and equation (4.4.14) it follows that

(o, olNe o]

_ N QEno P .
E@) = — //'H+(E;n)m drdy[l+ O(N7YH],  (44.22)

—00 —00

with Q& n. 1) = (0 — 1) '[He(§E:nR(E; 1) — He(§: 1) R(E: )]

We set in Corollary 3.2.8, Chapter 3 K(§;7) = R(§;7t) and L(§;7) = Hy(€: 7).
Then (4.2.16) can be rewritten as

. |R(§; 7)]?
N(1 + O(N")E() < constrseuﬂs1 W

which shows that (4.1.19) is equivalent to (4.4.21). O

4.4.5 An asymptotic representation of the function A(§) as N — oo
for a polynomial P with the t-roots lying in the half-plane
Im¢ <0

Proposition 4.4.9. Let the t-roots of the polynomial P(§; 1) satisfy (4.4.1), and let
Imz;(§) < const < 0(l < j < J). Then the function A(§), defined by (4.1.2) for
the polynomial N P, admits for N — oo the asymptotic representation

_ L[| RED)
o=z | 7

2
dt(14+ O(N™?)), (4.4.23)

which is uniform w.r.t. &.
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Proof From (4.4.10), (4.4.1), and the inequalities Imz;(§) < const < 0 (j =
, J) it follows that

[Tz = CLIN2 4+ OV (aﬂs;zg

5 +0(N‘2)),
k=1 P(£:5,) BP(E ZQ)

T 2 = ap(iz”)ww—z).
k#v

It is also clear that
IP(§;2)) . 0P (£:2,)
[1G -20=—"  []G-2)=D""'——=.
: ot ot
k#j k#e

Therefore, (4.4.5) can be transformed to the form

o R(Eizf')R(S:Zg)( PEiZ) | O(N‘Z)) (N2 4+ O(N™%)
AE) = —
N2 0,j=1 P (&:2;) IP (& Zg) Pz )aP(E 1 Zo)
ot ot o
—1
| N2+ 0N
x Z Z,—z; —
v=1 P(g’ v)aP(E Zv)
-1
_ . NZ24+O0(NH IP(€:2,) L)
X\|zy—2zp— aP(SZ) o7 + O(N™) .
P(£;7,) —2"=

(4.4.24)
Denote by A1(£) the group of terms on the right-hand side of (4.4.24) for those
1 < v =0 < J holds. Itis clear that

L R(&:2)R(E ) (1 + O(N72))
Ai(§) = Z_ 3 P2 PETY (4.4.25)
rest (Fe—2)) Jat Jat
and

31’(57 zj) 0P (£:Zp)
0T 0T

5e=1 (Ea_zj)
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where

g = [P(E:Z)]7 Y

[aﬂs;zv) )
v#Q

1
o } [(zv—z)) ' =Gy —Zp)7 ", (4.4.27)

Since the t-roots z; (§) satisfy (4.4.1) and Imz;(§) < const < 0 (j = 1,...,J),
we have |ag;| < const (0, j = 1,...,J). Therefore, relations (4.4.25) and (4.4.26)
imply

J

A® =iN2 Y R(E2))R(E Z0)(1+ O(N2)

(4.4.28)
e oP(:z)) 8P(§ ZQ)(_ )
0T
In view of
i R(E:Z)RE: 2)) :i R(E:Z)REZ,)
=) IP(5:Z,) IP(E: Z;)( —zy ol p(eiz )31’(5 )
at at fem 2 Ze
RE D
= 27 / ‘P(E 7)
we can transform (4.4.28) to the form (4.4.23). O

4.4.6 Necessary and sufficient conditions for the validity of the
estimates (4.0.1), (4.0.2) for a polynomial P with the
T-roots lying in the half-plane Im¢ < 0

From Theorem 4.1.1 and Proposition 4.4.9 we deduce

Theorem 4.4.10. Let the t-roots of the polynomial P(§; 1) satisfy (4.4.1), and let
Imz;j(§) < const < 0(1 < j < J) The estimate (4.0.1) holds true if and only if
inequality (4.4.20) is satisfied a.e. in R" !,

Indeed, from (4.4.23) and the conditions Imz;(§) < const < 0 it follows that
(4.1.2) is equivalent to (4.4.20).

Under the same assumptions, one can formulate a criterion for the validity of the
estimate (4.0.2) as follows:

Theorem 4.4.11. Let P(§; 1) be the same polynomial as in Theorem 4.4.10. The
estimate (4.0.2) holds true if and only if inequality (4.4.21) is satisfied a.e. in R" 1,

This theorem is derived from Theorem 4.4.10 in the same way as Theorem 4.4.8
is derived from Theorem 4.4.7.
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4.4.7 An asymptotic representation of the function A(§) as N — o
for a polynomial P with the t-roots lying in the half-plane
Im¢ >0

Proposition 4.4.12. Let the t-roots z;(§) of the polynomial P(&; 1) satisfy (4.4.1),
and let Imz;(§) = const > 0 (1 < j < J). Then the function A(§), defined by
(4.1.2) for the polynomial N P, admits for N — oo the asymptotic representation

1 [ AE: D)2
A@:E/‘@ﬂ

dt(1+ O(N7?)), (4.4.29)

P(&;7)

which is uniform w.r.t. §. Here A(§;7) is the remainder of the division (w.r.t. T) of
the polynomial RP by P.

Proof. From (4.4.12), (4.4.1), and the inequalities Imz;(§) = const > 0 (j =

. J)itfollows that [T{_; (& —Z,) = (—=1) P(§:Z) + O(N~2) and [T, (§y —
_w@m
'L'

L) + O(N 2). Therefore, one can rewrite (4.4.5) as

i REZ)RE ) (P(E:Z,) + O(N72))
A= -3 2 OP(£:2;) BP (£:2,)
0t 0t

0,j=1

-1

J _ _
N24+0ON*
XE Zy —Zj — + ( )

P& D)BP(E $Zy)
-1
_ N2+ O(N% (ap(g;zv) . )—‘
x|zy—2 —2 L ON?| .
e P(E, l))BP(E 1 Zy) ot
(4.4.30)

Denote by A1(£) the group of terms on the right-hand side of (4.4.30) for those
1 <v =j < J holds. Itis obvious that

J

. R(E:zj)P(&:2))R(E: 2o) P(§:Z,)
AME =i 2
ei=l (2 _EQ)BP(S:ZJ') AP (§:Zp)

(1+O0(N7?) (4431

T T
and
L R(Ez)P(E2)RE 29 P(E: Z,)
AGE) — A _iN2 . 24 J 4 4
() — Ay (E) =i g;ﬂw L PE)IPET  wan
(ZJ Q) 97 97

x (1 4+ O(N7?)),
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where
e\ LGED - -
IBQj = [P(Sszj)] ! Z [Tv [(Zv —Z]) 1_ (Zv —ZQ) 1]- (4433)
v#j
Inequalities Imz;(§) = const > 0 (1 < j < J) and condition (4.4.1) imply
the estimates |B,;| < const (0, j = 1,...,J). Therefore, in view of (4.4.31) and
(4.4.32) we obtain

J

; Z R(&;:2,)P(§:2))R(E:2o) P(§:Z,)
St (2, 3, PE2) BP(E:Zy)
Rk It (4.4.34)
< A(E;2))A(E: Z,) >
=1L e iraag OV
R C ) at at

A§) = (1+O0(N7?)

where A(£; 7) is the remainder of the division (w.r.t. T) of the polynomial RP by P.
It remains only to note that (4.4.34) can be transformed to the form (4.4.29) in the
same way as (4.4.28) was transformed to the form (4.4.23). (When using the residue
theorem one should take into account that Im z, < 0). O

4.4.8 Necessary and sufficient conditions for the validity of the
estimates (4.0.1), (4.0.2) for a polynomial P with the
t-roots lying in the half-plane Im¢ > 0

Theorem 4.1.1 and Proposition 4.4.12 imply the following assertion.
Theorem 4.4.13. Let the t-roots z; (§) of the polynomial P (&; v) satisfy (4.4.1), and
letImz; (&) = const > 0 (1 < j < J). The estimate (4.0.1) holds true if and only if t

B(£) / |P|é($)|fz)|j_1dr$const ae. inR"L. (4.4.35)

Here A(E; 1) is the remainder of the division (w.r.t. T) of the polynomial RP by P.

Indeed, from the condition Imz;(§) = const > 0 (1 < j < J) and equation
(4.4.29) it follows that inequality (4.1.2) is equivalent to (4.4.35).
We now turn to establishing a criterion for the validity of (4.0.2).



216 4 Estimates for a maximal operator

Theorem 4.4.14. Let P(§;1) and A(§;T) be the same polynomials as in Theorem
4.4.13. The estimate (4.0.2) holds true if and only if the inequality

IR D) EE D)2
dtd
PGP +1 //(IP(S D+ D(PE P+ D

(4.4.36)
const
<
B(§)
with
EEn )= -0 He(EnAE T) — Hi (50 AE )] (4.4.37)

is satisfied a.e. in R" 71,

Proof. Denote by E(§) the second summand of the left side of (4.1.19) which cor-
responds to the polynomial NP. From the definition of the polynomials A, A,
figuring in (4.1.19) and equation (4.4.29) it follows that

EEn 0P
F& = / / (NPE P+ DIPEoP (4.4.38)

x (1 + O(N7?)).

Since Imz;(§) = const > 0 (1 < j < J), (4.4.38) implies the equivalence of
(4.1.19) and (4.4.36). O

A more simply formulated sufficient condition for the validity of (4.0.2) gives

Theorem 4.4.15. Let P(§;7) and A(E; 1) be the same polynomials as in Theorem
4.4.13. If
[AE: D)

B(£) sup ————"—— < const a.e. in R"™1, (4.4.39)
cert P& D)2+ 1

then the estimate (4.0.2) holds.
Proof. We put in Corollary 3.2.8 of Chapter 3 K(§;7) = A(§;7) and L(§;7) =

H (£ 1), and suppose that & (§; 1, 7) is the polynomial (4.4.37). Then (4.2.16) takes
the form

7’7’ JAGER dedn < const sap JAEDE
J L WPEnrFDPEoP+ T R PE P+ T
(4440

R
On the other hand, it follows from the definition of A(§; ) that 7 % = ﬁ
where Q = Q(£; 1) is the quotient of the division (w.r.t. T) of the polynomial R P by
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P. By assumption, the roots of the polynomials P and P lie in the half-planes Im ¢ >
0 and Im¢ < 0, { = 7 + io, respectively. Therefore, according to Katsnelson’s
theorem (see Remark 3.3.7, Chapter 3), there exists a constant ¢ > 0, depending only
onord P = J, such that

A . -
sup |—=| < c sup ! ae. inR"1, (4.4.41)
TeR! TeR!
Thus, we obtain
’ ’ AP
sup |—| <constsup |—| < constsup ———.
T€R! TeR! T€R! |P|2 +1

From here, taking into account (4.4.40), one can see that condition (4.4.39) is suffi-
cient for the validity of (4.0.2). O

4.5 Second-order polynomials of

In this section we establish criteria for the validity of the estimates (4.2.16), (4.2.19)
in the case, where P(§;7) = po(§)t? + p1(§)T + p2(£) is a polynomial of the
second order w.r.t. T with measurable coefficients, that are locally bounded in R*~!
and grow no faster that some power of |&| as |§] — oo. We assume that po(§) # 0
a.e. in R"~!. We restrict ourselves to the following three cases:

L. p1(§) =0,
2. Impe(§) =0 (k=0,1,2),
3.Rep1(§) =0, Impr(§) =0 (k=0,2).

The proofs of the main results are based on Theorems 4.1.1, 4.1.9, Proposition 4.1.2
and Lemmas 4.5.1, 4.5.2.

4.5.1 Preliminary results

In this subsection, we add to the results of Section 4.1 two more necessary and suffi-
cient conditions for the validity of the estimates (4.0.1) and (4.0.2). These assertions
(Lemmas 4.5.1, 4.5.2) will be used later to treat of the estimates (4.2.16), (4.2.19) for
the second-order (w.r.t. T) operator P(§; 7).

Lemma 4.5.1. Let Hy(§;1) be a polynomial with the simple t-roots {1(€),...,
C7(§), and let B = {Py,($o(8).80(8))} be a positive definite J x J matrix with
the entries

. P(&:8(5)P(§:8v(6) + 1
Pv s Sy = = ov=1,...,J). 4.5.1
ov (8(£). v (8)) =1 £ — 2. ) (o,v ). (45.1)
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Furthermore, let B~ = {P,,(£)}. The estimate (4.0.1) holds if and only if

J
B(§) Y Po(®) R(E (o)) RE:£y(§)) <comst ae inR™.  (452)

o,v=1

Proof. Let A(£) be defined by (4.1.2). For any fixed £ € R"~! we can compute A(£)
by the formula (2.1.55), Chapter 2. Solving equation (2.1.56), Chapter 2, we find that
in the studied case

o (€) = (9(6)) = (Z Pov(E)R(E: zg@))) (45.3)

o=1

Using the formula (2.1.55), Chapter 2, we obtain

J
AE) = Y Pp@RELE) RELE)).

o,v=1

Thus, condition (4.1.2) takes the form (4.5.2). O

Lemma 4.5.2. Let the assumptions of Lemma 4.5.1 be satisfied. The estimate (4.0.2)
holds if and only if

CIREDP ———RE L) RE:£,(6) _ const
+ v
[PEOP+1 QVZI O 0 ey - BO

a.e inR"1!,
(4.5.4)
Proof. Let A1(&;1n,7) and A,(§;n, T) be the same as in Theorem 4.1.9. Applying

(4.5.3) to the polynomial (of 7) 2(§; 1, 7) defined by (4.1.18), and using the definition
(4.1.2) of A(§), we find that

7 AL E D, P + |Ag(Es . D)

J
PEDE T dv =21 ) Pon(®) QE1.5,6)

o,v=1
x (&1, 8v(§)).

On the other hand, it is easy to see that

[Hi €] QERGLE) = 0= GE)TRELE) (1<v<)

and -
/ (1= E(€) " (1 — £ (6) " dn = 2760 (€) — Lo(E)) "

Thus, inequalities (4.5.4) and (4.1.19) are equivalent. O
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4.5.2 The case p;(§) =0

In this subsection, we specify necessary and sufficient conditions for the validity of
the estimates (4.2.16), (4.2.19) in the case where P(£;7) = po(£)t? + p2(§).

Theorem 4.5.3. Let P(£;7) = po(§)t% + pa(§), let po(§) # O a.e. in R"™1, and let
po(&), p2(§) be measurable functions that are locally bounded in R"~' and grow no
faster than some power of |&| as || — oco. The estimate (4.2.16) with s = 0, 1 holds
true if and only if

B(E)(1 + | p2])* T2 < const| po|* /2 (4.5.5)
for almost all £ € {&€ : Re (pop2) = 0} and

B(E)[1+ [Im (|po| ™" pop2)[)(1 + | p2)* /% < const| po[*+!/? (4.5.6)

for almost all £ € {&€ : Re (pop2) < 0}.
Proof. Let ¢1(§), £2(§) be the T-roots of the polynomial Hy (§; 7). Since
|Hi (507 = | pol>t* + 2Re (pop2)T> + | p2* + 1,

we have

5 . b4 b4
=a £ pPi, 0<ar <=, —=<ar <,
51,2 B gl ) ) g 4.5.7)

a = —[po| ?Re (pof2), B = Ipol{Ipol® + [Im (pop2)[*}'/*
This means that £ (§) # {>(€), and so we can apply Lemma 4.5.1. It is easy to see
that il VP 28 nd Pry = Poy = 0 are th
a = — = —— an = = 0 are the
Y PEPHT T T PERP v
entries of the matrix B~!. Therefore, setting R(£;7) = ¥, we can write (4.5.2) in
the form
Im &y |6 > Im §5(8,]>
[P )P +1 0 [PE: )+ 1
It follows from (4.5.7) that |1 = |5]? = (@2 + B2)*/? = |po|~* (1 + | p2|?)*/?
and |P(§:81)|- | P(&;C2)| = 1. Hence, we get

[91s |52]?
IPECOP+1  [PER)IP+1

Calculating Im ¢; and Im &, on the basis of (4.5.7), we get

B(§) |: ] < const. (4.5.8)

= |pol (1 + [ p2|?)*/2. (4.5.9)

1/2

1
Im¢; =Im¢ = 5[(“2 + B2 —a] (4.5.10)

= 27121 po| M| pol(1 + | P21 /2 + Re (po p2)] /2.
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From (4.5.9) and (4.5.10) it follows that (4.5.8) can be written in the form
B(E)|pol ™ (1 4 2| pol(1+ | p2 )" + Re (po p2)]/? < const. (4.5.11)
Let Re (pop2) = 0. Then

c1lpol(1 4 [p2]) < [pol(1 + [p21)? + Re (po p2) < 2| pol(1 + | p2)),

and (4.5.11) is equivalent to (4.5.5).
Let Re (pop2) < 0. Then

|pol* + [Im (po p2)|?
|pol(1 4 |p21?)1/2 —=Re (pop2)’
c1lpol(1+ [p2]) < [pol(1 + [ p2])Y? = Re (pop2) < c2|pol(1 + |p2l).

|pol(1 + |p2/»)'? + Re (pop2) =

and (4.5.11) is equivalent to (4.5.6) O

Theorem 4.5.4. Let the polynomial P(€;t) be the same as in Theorem 4.5.3. The
estimate (4.2.19) with s = 0, 1,2 holds if and only if the inequality

B(E)(1 + |p2|)® < const|pol® a.e. in R" L, (4.5.12)

Proof. Set R(§;t) = 7° in the estimate (4.5.4). Calculating the entries of the matrix
B! (cf. the proof of Theorem 4.5.3), we can write (4.5.4) in the form

> IS1s 52> const
—+ —+ 5 < . (4.5.13)
PGP +1  [PEP+T  [PERIP+T  BE)
It can be verified directly that
sup 1 _(pol?+ D7, if Re (pop2) > 0.
rert [PEDE+1 | [Ip2?[Im (p2/po)|* + 117", if Re (pop2) < 0.
(4.5.14)
-1
p —© (LtlpP)2 ||l o F
= 0 2 9
cert | PETD?+1 | Pol | Pol
(4.5.15)
4 Ipol™, ifRe(pop2) =0,

sup

— 2 -2 2 2171 (4.5.16
s ey = | (2 Dlpol 21+ [poPlim (p2/ po)P1 ", 45.16)

if Re (po p2) < O.

Equations (4.5.9) and (4.5.14)—(4.5.16) imply the equivalence of (4.5.13) and (4.5.12).
O
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4.5.3 The case Im px(§) =0(k =0,1,2)

In the next two theorems, we study conditions for the validity of the estimates (4.2.16),
(4.2.19) for polynomials of the second order w.r.t. T with real coefficients.

Theorem 4.5.5. Let P(£;7) = po(§)t% + 2p1(§)T + p2(§) be a polynomial with
real measurable coefficients that are locally bounded in R"~' and grow no faster than
some power of |§| as |&| — oo. Suppose that r = py' (pop2—p?) and po(§) # O a.e.
in R"™1. The estimate (4.2.16) with s = 0, 1 holds true if and only if the inequality

B()(P? + |pol + |pop2])® < const|po|* /21 + |r|)~/2 (4.5.17)

is satisfied for almost all € € {& : pop> — p? = 0} and the inequality

B(E)(pT + |pol + [pop2l)® < const|po[>*1/2(1 4 [r)'/? (4.5.18)
is satisfied for almost all € € {& : pop> — p? < O}.

Proof. Represent the polynomial P(§;7) in the form P(§;7) = po(r + q)* + 1,
where ¢ = py!p1and r = py'(pop2 — p?). Let 1 (&), {2(&) be the t-roots of the
polynomial H (£; ). Since |H+(£:7)|? = | pol*(t +q)* +2por(t +q)*> +r? +1,
we have

2 _ g1 i 0 rrz ;
(C12+q) a+ i, 0 <arg($) +9g) < D) <arglo+q) < (4.5.19)

a=—py'r. B=Ipol".

Thus, we obtain the relation ¢; # {,, and we can apply Lemma 4.5.1. Since the co-
efficients of the polynomial P (§; 7) are real, we see that [P (£;¢1)]? = [P(£:8))? =
—1.

On the other hand, P(§;82) = po(o — Bi)2 + r = P(&:¢1) and, similarly,
P(§:81) = P(§;8). Therefore, P(§;81) P(§:¢2) + 1 = Oand P(§:8) P(§:81) +
1 = 0. Hence, the entries of the matrix B! are &1, = Im{;, P, = Im{, and
Py = P51 = 0. Since R(€; 1) = ¥, we conclude that (4.5.2) and the inequality

B(&)[Im &[> + Im &[5 [**] < const (4.5.20)

are equivalent.
Relations (4.5.19) yield

Imé& =Imé = 27Y2(Ipo| = (1 + r2) V2 + pgtr)/2, (4.5.21)

1617 + 181* = 2pg 23 + [p2 + (pop2 — pD)HY?). (4.5.22)
This means that

NG + 16213 < (P2 + [pol + [popaDlpol 2 < c((G1? + 1627),  (4.5.23)
¢c'mg; < |pol P+ |rDY2 < cIm;,  if popa—pl =0, (4.524)
¢c'mg; < |pol P+ |r)TV2 <eImiy, if popa—pi<0.  (4525)
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It follows from (4.5.23)—(4.5.25) that inequality (4.5.20) is equivalent to (4.5.17) for
pop2 — pi =0, and to (4.5.18) for pop, — p7 < 0. O

Theorem 4.5.6. Let a polynomial P(€; 1) be the same as in Theorem 4.5.5. The
estimate (4.2.19) with s = 0, 1,2 holds true if and only if the inequality

B(&)[|pol + p? + |pop2|l® < const p2*  ae inR"'. (4.5.26)

Proof. Set R(§;t) = t° in the estimate (4.5.4). Then one can write (cf. the proof of
Theorem 4.5.5) inequality (4.5.4) in the form

2s const
4+ (0> +15*)’ < . 4.5.27)
|P(E;T)>+1 B(§)
A direct check shows that
1 r2+1)71, if —-p?=0
sup —————— = ( ) v pob2 p; (4.5.28)
cert [PE D+ 1 1, if popa — py <0;

(t+q)? _ _ _
= [pol 7 (L + )2 polpo T A + PV 42 + 117

e [PE DR+ 1
(4.5.29)
wp T { P’ fpopr=—pi 20 o
cept |[PED2+1 po(L+7r?),  if popo — pi <O.
(In (4.5.28)—~(4.5.30) we have ¢ = py! p1 and r = py1(pop2 — p?)).
On the other hand, one can write (4.5.22) as
6117 + 1621? = 2[g® + [pol 7 (1 + %)), (4.5.31)
Combining (4.5.27)—(4.5.30) and (4.5.31), we find that
2s . 5
rseuﬂs1 PEOPT1 < const(|41]* + 22]%)°. (4.5.32)
This means that (4.5.27) is equivalent to the inequality
BE)(81)” + 182/*)* < const. (4.5.33)
d

4.5.4 The estimate (4.2.16) in the case Re p1(§) = 0, Im p(§) = 0
(k=0,2)

Finally, we consider a class of the second-order polynomials w.r.t. t, for which the
criterion from Lemma 4.5.1 allows a more explicit formulation.
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Theorem 4.5.7. Let P(§;7) = po(§)t>+ip1(§)t+p2(§), let pp(§) (k =0,1,2)
be real measurable functions that are locally bounded in R~ and grow no faster
than some power of |E| as |£| — oo, and let po(§) # 0 a.e. in R"™\. The estimate
(4.2.4) with s = 0 holds if and only if the inequality

B() < const[|po|"2(1 + [p2)) ™2 + [p1](1 + | p2)) 7] (4.5.34)

is satisfied for almost all § € {§ : pop1 = 0, pop2 = 0}; the inequality

B() < const[|pol"2(1 + [p2)'? + | p1 |7 (1 + | p2)] (4.5.35)

is satisfied for almost all § € {§ : pop1 = 0, pop2 < 0}; the inequality

BE)[|pol"(1 + |p2)? + | p1]] < const | po] (4.5.36)

is satisfied for almost all § € {§ : pop1 <0, pop2 = 0}; and the inequality

B®)[|pol"*(1 + |p2)™"? + | p1]] < const| po| (4.5.37)

is satisfied for almost all € € {¢€ : pop1 <0, pop2 < 0}.
Proof. Let A(§) be defined by (4.1.2). We show that

AE) = |pol " [P + 2| pol(1 + P92 4+ 2po p2]"* — po ' p1. (4.5.38)

Indeed, since the estimate (4.2.4) is considered for s = 0 (R(&; ) = 1), one can use
Corollary 4.1.3 to calculate A(§). Let z1(§), z2(§), £1(§), £2(€) be the t-roots of the
polynomials P(&;t) and H4 (€; 1), respectively. It is obvious that Im (z; + z5) =
—pg ' p1. Therefore, equation (4.1.6) can be written in the form

AE) = —p3'p1 + Im&1 (§) + Im &5 (§). (4.5.39)

Calculating Im &1 (§) + Im &, (§), we consider two cases.
Let pt + 4p? pop2 — 4p3 < 0. Then the relation

|Hy(8:7)> = pot* + (p] + 2pop2)t> + p3 + 1 (4.5.40)

yields

T T
Zo=a+pi, O<argl; <=, = <argl,<m,
1.2 Bo1 =g T e (4.5.41)

o =-2""ps%Q2pop2 + p}). B =2""ps*(4p3 — 4p}pop2 — P2
Therefore,
(Im61)? = (Im&)? = 27'[(@> + )12 — o
= 47" po [P} + 2Ipol(1 + p3)'/> + 2pop2].
Thus, (4.5.42) and (4.5.39) yield (4.5.38).

(4.5.42)



224 4 Estimates for a maximal operator
Let p{ + 4p? pop> — 4p3 = 0. Then
Ga=atb, b=2""p%(p{ +4pipop2 —4p3)"", (4.5.43)

where « is defined by (4.5.41). It is obvious that « < 0 and 0 < b < |«|. Hence
¢1 = |a+b|"?iand &, = |o — b|/2i, and (4.5.39) can be recast as

[AE) + pg'p1]? = |a + b| + | — b| + 2(a® — b?) V2. (4.5.44)
From (4.5.41) and (4.5.43) we get
o + b + | = b| = [2a| = pg>Q2pop2 + p).
o® —b* = pg2(p5 + ).

Combining (4.5.44) and (4.5.45), we obtain (4.5.38). A direct check shows that the
following upper and lower bounds for A (§) follow from (4.5.38):

A = (1+ [p2DIIpal + [pol 21 + [ p2)'/?] < A, (4.5.46)
provided that py ' p1 = 0 and po p> = 0;

(4.5.45)

'A< {Ipol P+ 12D + I l(1+ [p2] 7" < eA, (4.5.47)
provided that p, 'p1 = 0and pgpr < 0;
¢ A < Ipol 21+ 122 + Ipalllpol ! < A, (4.5.48)
provided that py ' p; < 0 and pop> = 0;
¢ A < {lpol P (1 + 12D + [ palllpol ! < eA, (4.5.49)

provided that py ! p1 < 0 and po p> < 0.
Thus, the assertions of the theorem to be proved follow from Theorem 4.1.1 and
the estimates (4.5.46)—(4.5.49). O

Theorem 4.5.8. Let the polynomial P(€;t) be the same as in Theorem 4.5.7. The
estimate (4.2.4) with s = 1 holds true if and only if the inequality

BE)[p7 + [pol(1 4 |p2])®] < const|poll|p1]* + | po*>(1 + | p2))*?]  (4.5.50)
is satisfied for almost all § € {§ : pop1 = 0, pop2 = 0}; the inequality

B(¢) < const|polll p1] + | po > (1 + [ p2) 7] 45.51)
is satisfied for almost all £ € {€ : pop1 = 0, pop2 < 0}, the inequality
BEIIp1l® + |pol>*(1 + | p2)*'?] < const| po|* (4.5.52)

is satisfied for almost all § € {§ : pop1 <0, pop2 = 0}; the inequality

BE)Ip1l + pol">(1 +1p2)"21[pT + (1 + | p2])| poll < const[pol*  (4.5.53)
is satisfied for almost all £ € {£ : pop1 <0, pop2 < 0}.
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Proof. Let A(§) be defined by (4.1.2). We show that

= |pol3[p? + 2| pol(1 + p2)? + 2po p2]'2[p? + | pol(1 + p3)'/?]

— 5> P1lpt + 2lpol(1 + p3)'* + popal.
(4.5.54)
To this end we use Proposition 4.1.2. Let £1(£), {>(§) be the 7-roots of the polyno-

mial Hy(§;7), so that Hi(§;7) = po(§)t? — po(§)(&1 + &)t + po(§)§12 and
H_(&;t) = H4+(§; 7). Then we find from the representation tH_ = PT; + T that

Ta(E:7) = —[polita +ip1(51 + &) + p2 + py ' pilT

- (4.5.55)
+ p2(81 +82) —ipy p1p2.

Let S(&; 7) be the remainder of the division of the polynomial 1T, by H.. It follows
immediately from (4.5.55) that the leading coefficient of the polynomial S is equal to

—ipy ' p1p2 + potila(Cr + &) —ip1 (G + 82)* — (& + L) py ' p3

Hence, in accordance with Proposition 4.1.2,

A§) = Im[ipy>p1p2 — 616261 + ) +ipy ' (& +82)* + po > pi (61 + 8.
(4.5.56)
Consider two cases. Let p} + 4p? popa — 4p3 < 0. Then (4.5.41) yields

&+ & = 2ilm¢&; =il pol~'[p] + 2| pol(1 + P%)l/z +2pop2)'/?,
G182 = —|0 > = —|pol ™' (1 + p3 2,

Thus, (4.5.56) and (4.5.57) imply (4.5.54).

Let p‘l‘ + 4pfp0p2 - 4p(2) > 0. Then (4.5.57) also follows from (4.5.43). Hence
(4.5.54) is again true in this case.

Suppose now that py ! py < 0. Then (4.5.54) yields the following upper and lover
bounds for the function A(§):

(4.5.57)

YA < [polllpa P+ polP (1 + [p2)*?] < e, (4.5.58)

if pop> = 0; and

¢ A < ol llpal+ [po M2 (1+ 1 p2)721PT + [pol(1+ | p2D)] < cA, (4.5.59)

if pop2 < 0.
Let py ! p1 = 0. Then (4.5.54) can be transformed as follows:
= [pol !PT + 2Ipol (1 + P> + 2popa(1 + p))]
< {[p} + 2|pol(1 + p})"? + 2pop2]?[pF + Ipol(1 + p3)'/?]  (4.5.60)
+ |p1llpT + 2l pol(1 + p3)'? + popalt ™.
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From (4.5.60) it follows that

—1) < 3+ |pol(1+ p2)?
|pol(1p11? + | pol?/2(1 + | p21))3/2

< cA, (4.5.61)

if pop1 = 0; and

¢'A < pol M Ipal + 1pol (1 + [ p2) VAT < A, (4.5.62)

if pop> = 0.
Thus, the statements of the theorem to be proved follow from Theorem 4.1.1 and
the estimates (4.5.58), (4.5.61) and (4.5.62). O

4.6 On the space of traces of functions belonging to the
domain of the maximal operator

In this section we return to the questions considered in Section 2.3 and study them
for the case N = 2, P1(§;7) = P(§;7), and P>(§;7) = 1. As in Section 2.3, we
assume that R(§;t) and P(€; 7) are polynomials of the variable (§;7) € R”, and,
consequently, R(D) and P (D) are differential operators with constant coefficients.
Following Proposition 2.3.4, Chapter 2, we define an open set 2 C R*7l,
mes,_1(R"1\ E) = 0 with the following properties:
1. The orders of the polynomials R(&; t) and H4 (§; 7) are constant forall £ € E.

2. The roots t = £ (&) of the polynomial Hy (§; t) are analytic, and their multi-
plicities are constant in each component 2, of the set E.

Denote by P the maximal operator, defined in L(R”.) by the differential poly-
nomial P (D). Its domain is

P(P)={u:ueL*R%); P(D)ue L*(R")},

and P (D) is understood in the sense of distributions.

In Subsection 4.6.1 we show that P is the closure of its restriction to Cg°(R’} ).
Thus, in the case where P(&; t), R(&; T) are polynomials of the variables (§; 1) € R”
and B(§) = 1, all results of this chapter related to the estimate (4.0.2) can be con-
sidered as criteria for the embedding Z(P) C Z(R) of the domains of the maximal
operators P and R.

The result of Subsection 4.6.2 is a strengthening of the result of Subsection 2.3.2.
Here we show that the “trace space” R(D)u | o Of the elements u € 2(P) coincides

with the closure of the linear span of the set of functions ¢ € C{°(R"™!) satisfying

«90»3\_1/2 = f %dé < oo in the topology given by the norm «'»A—I/Z' A(§)
RrRnr—1

is the function defined by formula (4.1.2).
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4.6.1 The maximal operator as closure of its restriction on the set of
functions infinitely differentiable up to the boundary

Proposition 4.6.1. For the differential polynomial P(D) with constant coefficients,

the maximal operator P in L? (R%) coincides with the closure of its restriction on
Ceo ().

Proof. Letu(x;t) € Y(P), g(x;t) = P(D)u(x;t), and let wg(z) be an infinitely
differentiable function supported in the interval 0 < z < §andsuchthat [ ws(z)dz =

R
1. We set

ug(x;z) = /wg(z—t)u(x;t)dt, u‘g(x;z) = /wg(t—z)u(x;t)dt.
R} R}

Let ¢(x;t) be an arbitrary infinitely differentiable function with compact support in

the half-space {(x;¢) : x € R*™!, t > 0}. It is obvious that the function s (x; z) has
the same properties. Therefore,

/g(x;z)(pg(x;z)dxdz = /u(x;z)P(D)gog(x;z)dxdz

n n
R R

= /u(x;z)P(Dx;Dz)/a)g(z—t)(p(x;t)dtdxdz
Rn

R n
= /u(x;z)/wg(z—t)P(Dx;Dt)go(x;t)dtdxdz
RY R}'_

= / P(D)go(x;t)/wg(z—t)u(x;z)dzdxdt

n 1
R+ R+

= / P(D)op(x; )’ (x:1)dxdt.
R,

Similarly, we have

/g(x;z)(pg(x;z)dxdz = /¢(x;t)g8(x;t)dxdt.

n n
R"} R

Hence u®(x;t) € 2(P) and P(D)u® = g®. It follows from the properties of the
kernel wg (y; z) that the functions u® (x; ) are infinitely differentiable and

lim {e? =32, + 1D =10) 2| = 0.
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Let 7% (£;¢) be the Fourier transform of % (x;¢). Define a sequence of infinitely
differentiable cut-off functions yx (£¢) by
0, if|&] =2k

xi(§) =40, if§ e H,
I, if|§| <k and & ¢ Hy

(here, as in Section 2.3, Hj is a neighborhood (in R*1) of the closed set H =
1

R"~1\ & such that mes,_; Hy < A (k = 1,2,...)). Setal (&:1) = x(E)ihs(E:1).

Then

hm {”“k@ 1) — S(E;t)”iZ(Ri)

+Hp(g;_id/dt)(ﬁi(ézt)— (& )>’

LZ(R" ) %

Let& € R"~!beapointfrom support Zj of the function yx (£). Since P(§; —id /dt)
is an ordinary differential operator of order J, the norm
1/2
L2RY) %

(uniform w.r.t. Zj) is equivalent to the norm ||#% (¢; t)||W21 ®))- Now define a se-

{naf*(g;z)u;(w P iaaniden)|

quence of infinitely differentiable cut-off functions v, (¢) as follows:

0, ifr=2r,

1) =
yr (@) {1, ifo<t<r (r=12,...).

Since the set of compactly supported functions is dense in WJ (R ), the equality
. ~8 (5. —
Jim (7 (5:0) = 8 €0V Ol a1, = 0

holds true (uniformly w.r.t. & € Zy). Setting vkr(é 1) = up (&)Y, ) (k,r =
1,2,...), we arrive at

. NI 2
Jlim {Ilvk,(é, )= 8 € Do

+ | P &s—iazan (o, &0 - >))

L2(RY) ;

Let v,‘ir (x;t) be the inverse Fourier transform of ﬁ,‘zr(é ;1) wort. €. This function
is infinitely differentiable w.r.t. x and ¢ and compactly supported w.r.t. . Moreover,
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as a function of x, it converges to zero (together with all its derivatives) faster than
any power of |x|~! as |x| — oo.

Now define a sequence of infinitely differentiable cut-off functions 7s(x) by the
formula
() = 0, if|x| = 2s,

BEZ01 it <s s=1,2,..0)

and set w,‘z ) = v,‘z ~(x;0)ns(x). Using Parseval’s identity and the properties of
the functions v,‘z (x;1), we obtain

: 8 . 8 (. 2
tim {lwf,, (o) = (2013 2

§ ) 8¢ 2 _
+ 1P(D) (s (ri0) = (i) I 2y )} = 0.
Therefore, ukrs(x 1) € Cg°(R}) and

. 2 ) 2 _
Jim e, —ulGage + 1PD) (why ) 2y =0 O
§—0

4.6.2 Description of the ‘“trace space”

In this subsection, we formulate two theorems (an embedding theorem, and a continu-
ation theorem), which provide a complete description of the trace space R(D)u

li=o

0 of the elements of the domain of the maximal operator.
Theorem 4.6.2. Let A(§) be defined by (4.1.2). Then the estimate
d§
/ R (&;—id/dt)a(E;1)],—|? NG < PDyul® + [[u)? (4.6.1)

Rl’l
holds for all u € C5°(R'}).

This statement follows directly from Theorem 2.3.7 and Remark 2.1.4, Chapter 2.

Remark 4.6.3. Using Theorem 4.6.2 and Proposition 4.6.1, one can give a meaning
to the expression R (§;—id/dt)1|,—, for any function u(x;t) € Z(P). Namely,
approximating u(x;t) € Z(P) by a sequence ug(x;t) € Cg°(R’}) such that
limgs o0 (Jue — ull? + | P(D) (ux — w)||?) = 0, we find that

2 d§

k,lriinoo |R (§:—id/dt) (g (§:1) — ur(§:1))=ol NG

Rr—1

Therefore, the expression R (§;—id/dt)u(§;t)|,—, can be defined for u € Z(P)
by means of the condition

Jim / IR (§:—id/dt)u(€:1)],=o — R (§:—id/dr)i(§:1)],—|"

R

dE
AG)
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Understanding the expression R (§;—id /dt)u(§;t)|,—, foru € Z(P) in this sense,
one can strengthen the formulation of Theorem 4.6.2 as follows: the estimate (4.6.1)
holds true for all u(x;t) € Z(P), if A(§) is defined by (4.1.2).

Now we formulate a continuation theorem. Its statement is sharper than the cor-
responding result from Section 2.3.

Theorem 4.6.4. Suppose that the function A(§) is defined a.e. in R"~! by formula
(4.1.2). Then for any function ¢ € C§°(R"™1) such that

o
(ohovs = [ e <o 462)

Rr—1

there exists a function u € P (P) satisfying the following conditions:

R (§:—id/dt)i(§:1)|;=0 = ¢(§). (4.6.3)

PPl + ul® = (@) 31/ (4.6.4)

Proof. Following the proof of Theorem 2.3.8, Chapter 2, we first determine the func-
tion ¢? a.e. on the set E from the relations

J kv(§)-1

ROELE) = S Poouy (€: (8. 6 (600, )

v=1 y=0
(0=1,....J, 0=0,....kyE)—1),

where

(D7 +0)!
(Go(®) ~ T )+t

Poovy (§:80(6).5v(5)) =i |:

Y Z, (—1)7h Ccs C;’(V —g+o—-m_u @) -
" 3 PW(E L E)P T (6:C,(6)
g;)hX:(:) (8o(§) =&, (£))y—&Fo—h+1 §:80(8) £:2,(5))

Then
J ky()—1
AE =) Y RVELE)D, E).
v=1 y=0
Set
A 0
<p,,},($):M wv=1,....J, y=0,..., k(&) -1).

A(§)
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It may be assumed (cf. Proposition 2.3.6, Chapter 2) that the functions A() and
¢yy (&) are infinitely differentiable in each component &, C &. Consider the func-
tion
J ko(§)-1
AED =Y Y @) exp (i, (E)1)

v=1 y=0

1d
(here £ € E,1t € RL), and put 9(¢;¢) = P (5; T u(&;t). Arguing in the same
i

way as in the derivation of the second assertion in the proof of Theorem 2.3.8, Chapter
2, we obtain

2

/ dt / (19017 + [ 01P) dt = (o)a /s 46.5)
0

RrRn—1

Hence, by (4.6.2), we conclude that 71(§;1), 0(§:1) € L*(R%).

Let n(x;t) be an infinitely differentiable function with compact support in the
half-space {(x;7) : x € R*!,t > 0}, and let /(£; 1) be its Fourier transform w.r.t. x.
Integrating by parts with respect to 7, we get

/ a [ (80P & <1 dDAE Ndi
0

RrRr—1

o0 o0
— [ @ [ P@-idjanagoiEna = [ a¢ [o@oiEnd.
RrRn—1 0 RrRn—1 0
Let u(&;¢) and v(§;1) be the inverse Fourier transforms of the functions #(§;¢)
and 0(§;1) wrt. &, respectively. Then, by the Parseval identity, we have u,v €
L*(R%) and

/u(x;t)P(D)n(x;t)dxdt = /v(x;t)P(D)n(x;t)dxdt.

Rn

n
n R

+

Thus, u € Z(P), the equality P(D)u = v holds in the sense of distributions, and
(4.6.4) follows from (4.6.5). Relation (4.6.3) is obtained in the same way as the first
statement in the proof of Theorem 2.3.8, Chapter 2. (|

Finally, we give two results concerning the trace space of functions belonging to
the domain of the maximal operator for some differential polynomials of concrete
types. Propositions 4.2.1, 4.2.2 and Theorems 4.6.2, 4.6.4 imply
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Corollary 4.6.5. Let P(D) be a partial differential operator of order J = 1 with
constant coefficients such that the relations

J
PET) =Y pra®t*.  po®) #0
k=0

hold forall § e R" ' and0 <s < J — 1.

1. If P(€; 1) is a polynomial with generalized homogeneous principal part (4.2.2),
then the mapping

?*u

o’

u—

, (4.6.6)
t=0

acting from C§°(R") to C§°(R"~1), can be extended to a continuous homo-
morphism of the space 2(P) into the closure of C{°(R"™') in the topology

/ 9
Rn—l (1 + <i:))(2s+1)m/]
space dual to the Slobodeckii space

m 1 Mpy— 1
W;,Z(aRi)’ l: (71 (S+ E)""7 il] ! (S+§))7

see [Slo58]).3

1/2
given by the norm ( dé) (in other words, to the

2. If P(&; 1) is a quasielliptic polynomial of type | = 1, then the homomorphism
(4.6.6) defined in item 1 is surjective.

3. If the hyperplane t = 0 is not characteristic for the operator P(D), then
the mapping (4.6.6) acting from C5°(R") to C*° (R"=1) can be extended to a
continuous homomorphism of the space 2 (P) into the space . s_;>(IR7).

4. If P(§; 1) is a properly elliptic polynomial of even order, then the homomor-
phism (4.6.6) constructed in item 3 is surjective.

From the estimates (4.3.23), (4.3.27), established in the proof of Theorem 4.3.4,
and Theorems 4.6.2, 4.6.4, we deduce the following assertion.

Corollary 4.6.6. Let P(£;7) =t/ + pi(§)t! 1 + --- + ps(§) be a homogeneous,
hyperbolic in the sense of Petrovsky polynomial of order J = 1, and let R(§;1) = ©°
(s =0,...,J —1). Then the mapping (4.6.6) acting from C;°(R") to CE (R
can be extended to a continuous surjective homomorphism from the space 2 (P) onto
FZAYNEING)3)

3Here, m1,...,mu—_1,my, = J, m are the integers defined at the beginning of Section 4.2, and (-) is the
norm (4.2.3).
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4.7 Notes

The results of this chapter were established by the authors in the papers [MG79] and
[GM74]. Some of these results were announced in [GM72] and [GM75].

The question of whether a maximal operator is the closure of its restriction to the
set of functions that are infinitely differentiable up to the boundary of a domain, was
studied in the works of many authors (M. S. Birman [Bir53], F. Browder [Bro58],
L. Hormander [H58], [H61], L. P. Nizhnik[Niz59], J. Peetre[Pee59]) under various
assumptions on the type of the operator, its coefficients, and on the domain in R”,
where the functions u are given. Among the other works on this topic, we would like
to mention the paper by C. Baiocchi [Bai69], where a representative bibliography is
provided. The result of Subsection 4.6.1 was established by the authors ([(GM74],
Lemma 12).

In connection with the issues discussed in Section 4.6, and, in particular, in con-
nection with the results of Corollary 4.6.5, we mention the work of Ch. Goulauic and
P. Grisvard [GouGri70]. In this paper, for differential operators P(x; D) in a domain
@ C R" it is proved that the corresponding traces on 2 of the elements u € Z(P)
belong to the space 77 ;_1/,(9S2) provided that the coefficients of P(x; D) and the
boundary 02 are sufficiently smooth and satisfy some other conditions (in particular,
it is assumed that <2 is in all points not characteristic for the polynomial P).

In the case of an elliptic polynomial P, item 4 of Corollary 4.6.5 evidently fol-
lows from the theorem on the complete collection of homeomorphisms for elliptic
operators (see, for example, [Roi71], p. 225-256, and references therein).






Notation

R% upper half-space {(x,7) : x € R""! ¢ > 0} of the space R".

oR", boundary of the half-space R’} (hyperplane ¢ = 0).

N unit sphere in R”~1,

dx Lebesgue measure in R”.

mesy, E n-dimensional Lebesgue measure of a set E.

CyP(R™) space of infinitely differentiable functions with compact
support in R”.

Cy°(0, +00) space of infinitely differentiable functions with compact

support in (0, +00).
CoP(RY) space of restrictions of functions from C°(R") to R’} .

CP(R%) (CP(R"™1)) space of m-dimensional vector-valued functions with
components belonging to C5°(R’}) (C° (R"=1y).

cm complex m-dimensional unitary space.
|- | norm in C™.

-1l norm in LZ(R?F) or in the direct product of m copies

of L2(R%).

() norm in L?(dR" ) or in the direct product of N copies
of L2(dR7%).

u, ) Fourier transform of the function u(x, 1) € C§°(R’})

(or the vector-valued function u(x, 1) € C§°(R’})) w.r.t.
the x-variable:

(g 1) = 2m)I=2 [ ey (x, t)dx,
Rn—l
x-E=xibr +x26 4+ -+ xpibut.

B measurable function on R”~!, which is positive almost
everywhere. !

I-llg1/2 norm defined by

W2 = [ [ BOEDPdrde:

RrRr—1 0

I The requirement of positivity almost everywhere the function B is introduced in this book only for reasons
of simplicity. Instead, we can assume that B(§) = 0. Then, in all propositions, the assumptions involving B
must be satisfied almost everywhere on the set {§ : B(§) > 0}.
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(S P

P(D)

supp u

D(x

=

m’t*

m’tc

tr N
det 9N

y:

norm defined by
(g2 = B®lE:0)Pds:
Rn—l

operator: differential operator with respect to ¢ and
pseudo-differential operator with respect to x,
fieﬁned in C§° (Ri) (or in C5° (R} )) by a Fourier
integral representation formula

P(D)u = 2m)=m/2 [ 8P (&, —id/dt)n(E;1)dE.
RrRr—1
(closed) support of a function u.
multiindex, i.e., an n-tuple of nonnegative integers
n
(1,02, ...,0,); the sum > oy will be denoted
k=1
by [ec].

differential operator D" -+ D", where
D,=—-i0/0xp,p=1,...,n—1,and D, = —id/0t.

complex conjugate matrix M = {M; } of a matrix
M = {M;;} with complex entries.

conjugate transpose of a matrix 0 (IM* = M7, where
9T denotes the transpose of ON).

inverse of a matrix 9J1.

square matrix whose rows consist of the algebraic
complements of the column entries of a square
matrix 1.

trace of a matrix 1.
determinant of a matrix 1.

rank of a matrix &.

nullspace (kernel) of a matrix &.

identity matrix of order m x m.

Kronecker symbol.

number of y-combinations from a given set
of s element (binomial coefficient).

various positive constants which appear in estimates
and do not depend on the (vector)-functions u.



deg f(§,7)
ord R(&,7)
R(j)(f, 7)
arg§

sgné§

1)

Notation

degree of a homogeneous function f of the variables
(&, 7) e R

order of a polynomial R, with coefficients depending
onéf € R 1, with respect to the variable 7.

partial derivative of order j with respect to 7.
argument of a complex number (.

the sign function, equal to 1 if £ > 0, 0if £ = 0, and
—1if& < 0.

empty set.
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