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Abstract. We prove the existence of positive solutions with optimal local
regularity to the homogeneous equation of Schrödinger type,

−div(A∇u) − σu = 0 in Ω,

under only a form boundedness assumption on σ ∈ D′(Ω) and ellipticity as-
sumption on A ∈ L∞(Ω)n×n, for an arbitrary open set Ω ⊆ Rn.

We demonstrate that there is a two way correspondence between the form
boundedness and the existence of positive solutions to this equation, as well
as weak solutions to the equation with quadratic nonlinearity in the gradient,

−div(A∇v) = (A∇v) · ∇v + σ in Ω.

As a consequence, we obtain necessary and sufficient conditions for both the
form-boundedness (with a sharp upper form bound) and the positivity of the
quadratic form of the Schrödinger type operator H = −div(A∇·) − σ with
arbitrary distributional potential σ ∈ D′(Ω), and give examples clarifying the
relationship between these two properties.

1. Introduction

1.1. The goal of this paper is to present an existence and regularity theory for
positive solutions to the equation of Schrödinger type:

−div(A∇u) − σu = 0 in Ω,(1.1)

on an arbitrary open set Ω ⊆ Rn, n ≥ 1, under the standard ellipticity assumptions
on A ∈ L∞(Ω)n×n, and the sole condition of form boundedness on the real-valued
distributional potential σ ∈ D′(Ω):

|〈σ, h2〉| ≤ C

∫

Ω

(A∇h) · ∇h dx, for all h ∈ C∞
0 (Ω).(1.2)

Simultaneously, a corresponding theory will be developed for (possibly sign
changing) weak solutions to the equation with quadratic growth in the gradient:

−div(A∇v) = (A∇v) · ∇v + σ in Ω.(1.3)

In displays (1.1)–(1.3), A : Ω → Rn×n is a real n × n (possibly non-symmetric)
matrix-valued function on Ω, so that there exist m,M > 0 such that, for a.e. x ∈ Ω:

m|ξ|2 ≤ A(x)ξ · ξ, and |A(x)ξ| ≤M |ξ|, for all ξ ∈ Rn\{0}.(1.4)

It has been a long standing problem to extend the existing theory to general
classes of σ, including highly oscillating, singular or distributional potentials, where
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the separation of the positive and negative parts of σ is impossible due to the
interaction between them. In our framework of distributional σ, positive solutions
to the Schrödinger equation are not locally bounded, and consequently standard
PDE tools based on Harnack’s inequality, and the classical iterative techniques of
Moser [Mos60] and Trudinger [Tru73], or their extension due to Brezis and Kato
[BK79], are no longer available.

A primary result of the present paper is the following principle: For any form
bounded potential σ with the upper form bound strictly less than 1, one can find a
positive solution of (1.1) which lies in the local Sobolev space L1,2

loc(Ω). This reg-
ularity for positive solutions of (1.1) is in fact optimal in the generality of the
potentials considered here, as demonstrated by examples discussed below. Further-
more, there is a two way correspondence between the existence of positive solutions
u ∈ L1,2

loc(Ω) of (1.1) satisfying an additional logarithmic Caccioppoli-type condition,
and the form boundedness of the potential σ; see Theorem 1.1.

As a consequence, necessary and sufficient conditions will be established for both
the form-boundedness and the positivity of the quadratic form of the Schrödinger
type operator H = −div(A∇·)−σ with arbitrary distributional potential σ ∈ D′(Ω).
The form boundedness property (1.2) is known to be equivalent to the boundedness
of the operator H : L1, 2

0 (Ω) → L−1,2(Ω) from the homogeneous Sobolev space
L1, 2

0 (Ω) into its dual. It is therefore a natural class of potentials in which to study
the Schrödinger equation. In a wide class of domains Ω, it has been characterized
by the second and third authors [MV02a, MV06].

Our results for the equations (1.1) and (1.3) in turn provide an alternative proof
(with a sharp upper form bound) of the characterization of (1.2) established in
[MV02a, MV06], where harmonic analysis and potential theory methods were em-
ployed. In addition, we obtain a characterization of potentials σ ∈ D′(Ω) sat-
isfying the corresponding semi-boundedness property, so that the operator H is
non-negative:

〈σ, h2〉 ≤

∫

Ω

(A∇h) · ∇h dx, for all h ∈ C∞
0 (Ω).(1.5)

Both equations (1.1) and (1.3), as well as the quadratic form properties of H
(1.2) and (1.5) are of fundamental importance to partial differential equations,
spectral theory, and mathematical physics. Consequently, these questions have
attracted the attention of many authors, starting from the foundational work of
Bôcher, Hartman, Hille, and Wintner on the Sturm-Liouville theory (see e.g., [Hi48],
[Har82], Chapter 11), followed by seminal contributions of Agmon [Ag83], Aizen-
man and Simon [AS82], Ancona [An86], Brezis and Kato [BK79], Chung and Zhao
[CZ95], Maz’ya [Maz85], Murata [Mur86] et al. in the multi-dimensional case. A
recent survey of this rich area has been given by Pinchover [Pin07]. We also re-
fer to [Maz69, CFKS89, NP92, BNV94, BM97, RS98, RSS94, SW99, Fit00, MS00,
Sha00, Mur02, DN02, DD03] and references therein for equation (1.1) and form-
boundedness properties (1.2), (1.5), and [AHBV09, Ev90, FM98, FM00] for equa-
tion (1.3).

Given the wealth of the previous literature, it is important to stress what is
novel about our approach. In all the papers listed above, various assumptions on
the potential σ ensure the validity of Harnack’s inequality for positive solutions of
the Schrödinger equation or some form of compactness properties of H. Moreover, σ
is usually decomposed into the sum of its positive and negative parts: σ = σ+−σ−,
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which are treated separately, with more stringent assumptions on σ+ than σ−. In
many of these results σ+ is assumed to belong to the Kato class of potentials,
while σ− to the local Kato class (see [AS82], [CZ95]). The corresponding positive
solutions are continuous, and the existence of a positive solution is equivalent to
the positivity of the quadratic form of H. In the mathematical physics literature
the latter is known as the Allegretto-Piepenbrink theorem (see e.g. [CFKS89], Sec.
2). All these tools are not available for general potentials σ.

The primary technical hurdles of our approach in comparison with the existing
literature arise from the following essential characteristics of σ satisfying (1.2):

(1) σ in general does not lie globally in a dual Sobolev space, i.e. σ 6∈ L−1,s(Ω)
for any s > 0;

(2) there are no local compactness conditions on σ.

From the first item above, it is clear that one cannot follow standard methods
to achieve global estimates which would yield the existence of solutions of (1.1).
Indeed, there are simple examples of σ so that a solution u of (1.1) does not lie
in L1(Ω). On the other hand, as a result of the second item, finding the correct
quantity to work with in order to prove local estimates becomes a subtle issue.

We will see that the two inequalities contained in (1.2) are responsible for two
distinct aspects of the existence of solutions to (1.1) and (1.3). Let us therefore
consider the following upper and lower bounds of the quadratic form 〈σ, h2〉:

〈σ, h2〉 ≤ λ

∫

Ω

(A∇h) · ∇h dx, for all h ∈ C∞
0 (Ω),(1.6)

and

〈σ, h2〉 ≥ −Λ

∫

Ω

(A∇h) · ∇h dx, for all h ∈ C∞
0 (Ω).(1.7)

In what follows, a positive function u on Ω is defined to be a function u ∈ L1,2
loc(Ω)

such that u > 0 quasi-everywhere in Ω. Let us now state our first theorem:

Theorem 1.1. Let Ω ⊆ Rn, n ≥ 1, be an open set. Let σ ∈ D′(Ω), and A :
Ω → Rn×n be a matrix function satisfying the ellipticity conditions (1.4). Then
the following statements hold:

(i) Suppose σ obeys (1.6) with an upper form bound λ < 1, and (1.7) with a

lower form bound Λ > 0. Then σ ∈ L−1,2
loc

(Ω), and there exists a positive solution

u ∈ L1,2
loc

(Ω) of the equation

−div(A∇u) = σ u in D′(Ω),(1.8)

so that the following logarithmic Caccioppoli inequality holds:
∫

Ω

|∇u|2

u2
φ2dx ≤ C0

∫

Ω

|∇φ|2dx, for all φ ∈ C∞
0 (Ω),(1.9)

with C0 = C0(n,m,M,Λ) > 0.

(ii) Suppose σ ∈ L−1,2
loc

(Ω), and there exists a solution u ∈ L1,2
loc

(Ω) satisfying (1.9)

for a constant C0 > 0. Then there exists a solution v ∈ L1,2
loc

(Ω) of the equation

−div(A∇v) = A(∇v) · ∇v + σ in D′(Ω),(1.10)

such that:
∫

Ω

|∇v|2 φ2dx ≤ C0

∫

Ω

|∇φ|2dx, for all φ ∈ C∞
0 (Ω).(1.11)
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(iii) Suppose (1.10) has a solution v ∈ L1,2
loc

(Ω) satisfying (1.11) for a positive
constant C0 > 0. Then σ satisfies the lower form bound (1.7) for a positive constant
Λ = Λ(C0,m,M) > 0, and the upper form bound (1.6) with:

(a) λ = 1 if A is symmetric.

(b) λ =
(M

m

)2

if A is non-symmetric.

In the case where σ is a positive measure, the relationship between positive
superharmonic supersolutions of (1.8) and the validity of (1.6) has been discussed
in a general framework using probabilistic methods by Fitzsimmons in [Fit00].
This work was in turn building on the important paper of Ancona [An86]. In
our framework, as we are considering oscillating potentials, one cannot rely on the
theory of superharmonic functions, and we need to prove sharper estimates in order
to obtain the stronger L1,2

loc regularity. Without this it is not obvious how to even
make sense of solutions to the equation (1.1).

The sharpness of Theorem 1.1 is exhibited by well known examples. One such
example is included in Sec. 7 for the convenience of the reader. Here it is also
shown that in general there exist positive solutions u of (1.1) which lie in the space

L1,1
loc(Ω), but not L1,2

loc(Ω), and that statement (i) of Theorem 1.1 fails in general if
λ = 1. One should also note that in statement (iii), in the case of a non-symmetric
matrix A, the constant λ must in general depend on M and m, see Sec. 7.

1.2. In Theorem 1.1, it was seen that the lower form bound (1.7) on the potential
σ is necessary in order to obtain solutions satisfying the regularity conditions (1.9)
and (1.11). These conditions are of importance in our application of Theorem 1.1
in characterizing the inequality (1.2), and are also of classical interest in partial
differential equations.

However, if one is solely interested in the existence of solutions to (1.1) and
(1.3), then condition (1.7) can be relaxed to a local condition stated in terms of
dual Sobolev spaces: when n ≥ 3, suppose

σ = div(~G) in Ω, where ~G ∈ L2,n−2
loc (Ω)n.(1.12)

Here L2,n−2
loc (Ω) is the local Morrey space defined in Sec. 2; see (2.2) and (2.11)

below. This condition is significantly weaker than (1.2). In dimensions n = 1, 2 we

only require σ ∈ L−1,2
loc (Ω).

The following theorem should be compared to statements (i) and (ii) of Theorem
1.1 above:

Theorem 1.2. Let Ω ⊆ Rn be an open set, and suppose that A : Ω → Rn×n is
a matrix function satisfying the ellipticity conditions (1.4). Let σ ∈ D′(Ω) satisfy
(1.6) with a constant 0 < λ < 1, and in addition suppose:

(a) n = 1, 2, and σ ∈ L−1,2
loc

(Ω);
(b) n ≥ 3, and σ satisfies the local condition (1.12).

Then there exists a positive solution u ∈ L1,2
loc

(Ω) of (1.1), and a solution v ∈ L1,2
loc

(Ω)
of (1.3).

A crude sufficient condition for (1.12) is σ ∈ L
n/2
loc (Ω) + L−1,n

loc (Ω), but much
more general σ are admissible for (1.12). We emphasize that condition (1.12) is
considerably weaker than the usual local Kato class condition. It is not necessary
for the existence of a positive solution u ∈ L1,2

loc(Ω) of (1.1). However, it is the sharp
condition to obtain solutions u of (1.1) so that log(u) ∈ BMOloc(Ω).



EXISTENCE AND REGULARITY OF POSITIVE SOLUTIONS 5

To prove Theorems 1.1 and 1.2, we make crucial use of certain Caccioppoli-type
inequalities. As was mentioned above, the classical iterative techniques used in
[Mos60, Tru73, BK79, AS82, CFG86, MZ97] are not available.

Instead, we interpolate between a Caccioppoli inequality and an estimate on
the mean oscillation of the logarithm to obtain uniform doubling properties on an
approximating sequence. See Proposition 3.8, which constitutes a key part of the
argument. From this doubling property, one can deduce local uniform gradient
estimates. This technique yields the optimal regularity for solutions of (1.1) in the
generality of potentials satisfying (1.2) or (1.12).

Along the way, we obtain a characterization of when a nonnegative weight func-
tion satisfying a weak reverse Hölder inequality is doubling (see Sec. 2.2 for def-
initions). Our main hard analysis tool here is Proposition 2.3 which may be of
independent interest.

1.3. Let us now turn to discussing applications of Theorem 1.1. As a first ap-
plication, we deduce an alternative approach to the results of the second and
third authors in [MV02a], regarding the characterization of the inequality (1.2).
It avoids the heavy harmonic analysis and potential theory machinery that was
used in [MV02a], and is considerably more elementary. This program is carried out
in Sec. 4. In particular, if Ω = Rn and with A the identity matrix, we will show that
the form boundedness condition (1.2) is equivalent to the following representation
of σ:

σ = div(~Γ), with

∫

Rn

h2|~Γ|2dx ≤ C1

∫

Rn

|∇h|2dx, for all h ∈ C∞
0 (Ω).(1.13)

Moreover, (1.13) with C1 = 1
4 implies (1.2) with C = 1. Conversely, (1.2) with

C < 1 (or more precisely, (1.6) with λ < 1 and (1.7) with Λ > 0) implies (1.13).
In Section 5, we consider distributions σ ∈ D′(Ω) satisfying the semi-boundedness

property (1.5). In the case of the Laplacian, it means

〈σ, h2〉 ≤

∫

Ω

|∇h|2 dx, for all h ∈ C∞
0 (Ω).(1.14)

Our main result in this regard is the following. (See Theorem 5.1 below for a similar
criterion concerning the general operator divA(∇·) in place of the Laplacian.)

Theorem 1.3. A real-valued distribution σ ∈ D′(Ω) satisfies (1.14) if and only if

there exists ~Γ ∈ L2
loc

(Ω)n, so that:

σ ≤ div(~Γ) − |~Γ|2 in D′(Ω).(1.15)

The inequality in (1.15) can not in general be strengthened to an equality. Such
conditions have their roots in classical Sturm-Liouville theory in one dimension, see
e.g. [Har82] (Chapter 11, Theorem 7.2).

It had been conjectured that a condition characterizing (1.14) was the following:

σ ≤ div(~Φ), where

∫

Ω

|h|2|~Φ|2dx ≤ C

∫

Ω

|∇h|2dx, for all h ∈ C∞
0 (Ω),(1.16)

for some ~Φ ∈ L2
loc(Ω)n and C > 0. In other words, this means that ‘half’ the

condition (1.13) found in [MV02a] should characterize semi-boundedness. However,
it is proved below that, for any C > 0, condition (1.16) is not necessary for (1.14)
to hold, although it is obviously sufficient when C = 1

4 .
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Proposition 1.4. Let Ω = Rn, n ≥ 1. Let σ be the radial potential defined by:

σ = cos r +
n− 1

r
sin r − sin2 r,

where r = |x|. Then σ satisfies (1.14), but cannot be represented in the form (1.16).

This is the content of Proposition 7.1 in Sec. 7, where additional examples are
exhibited to help clarify our results.

Theorem 1.3 above concerned the case when λ = 1 in (1.6), so that the Schröding-
er operator fails to be coercive in the homogeneous Sobolev space. In the case when
σ is a positive measure, one can instead consider superharmonic supersolutions of
the equation (1.1) in this critical case. This is a sharpening of [Fit00] mentioned
above. Indeed:

Proposition 1.5. Suppose that Ω is an open set, and let σ be a positive Borel
measure defined on Ω. Let A be a symmetric matrix function satisfying (1.4).
Then σ satisfies:

∫

Ω

h2dσ ≤

∫

Ω

A(∇h) · ∇h dx, for all h ∈ C∞
0 (Ω),(1.17)

if and only if there exists a positive superharmonic function u so that:

−divA(∇u) ≥ σu in Ω.

In Proposition 1.5, the notion of superharmonicity is the one associated to the
operator A, see e.g. [HKM06]. This is proved in Section 3.8 below.

In Section 6, we consider a recent result of Frazier, Nazarov and the third author
[FNV10] on positive solutions with prescribed boundary values. Let us recall one
of their main theorems. Suppose Ω is a bounded NTA domain, and that σ is a
nonnegative measure in Ω. Then, under precise necessary and sufficient conditions
on σ up to the boundary, a positive minimal solution u (called the gauge in the
probabilistic literature, see e.g. [CZ95]) to the equation

{

−∆u = σu in Ω,

u = 1 on ∂Ω,
(1.18)

is constructed in [FNV10] (see Theorem 6.1 below). The solution is understood in
the sense that

u(x) =

∫

Ω

G(x, y)u(y) dσ(y) + 1,

where G(x, y) is Green’s function of the Laplacian. In this paper, we will adapt the

approach taken in the proof of Theorem 1.1 to show that in fact u ∈ L1,2
loc(Ω); see

Theorem 6.2 below. This regularity is again optimal under the assumptions of the
theorem.

In conclusion, we remark that our approach outlined above is nonlinear in na-
ture, and an extension to general quasilinear operators of p-Laplacian type will be
presented in a forthcoming paper [JMV10], where the Lp-analogue of (1.2) will be
characterized.
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2. Preliminaries

2.1. Notation and function spaces. For an open set Ω ⊆ Rn, n ≥ 1, we
denote by C∞

0 (Ω) the space of smooth functions with compact support in Ω. The
energy space L1, 2

0 (Ω) is then the completion of C∞
0 (Ω) with respect to the Dirichlet

norm ‖∇h‖L2(Ω). The majority of estimates in this paper are local; we say that

h ∈ L1,2
loc(Ω) if hφ ∈ L1, 2

0 (Ω) whenever φ ∈ C∞
0 (Ω).

For test function arguments it will be useful to introduce the space L1,2
c (Ω). We

say that h ∈ L1,2
c (Ω) if h ∈ L1, 2

0 (Ω) has compact support.

Define L−1,2(Ω) to be the dual of L1, 2
0 (Ω). Then a distribution σ ∈ L−1,2

loc (Ω) if
φσ ∈ L−1,2(Ω) for any φ ∈ C∞

0 (Ω).
We will write V ⊂⊂ U , for two open sets U, V ⊂ Rn, if there exists a compact

set K ⊂ Rn so that V ⊂ K ⊂ U .
Throughout the paper, we use the usual notation for the integral average:

−

∫

E

· · · dx =
1

|E|

∫

E

· · · dx.

For an open set U , we say u ∈ BMO(U) if there is a positive constant DU so that:

−

∫

B(x,r)

|u(y) −−

∫

B(x,r)

u(z) dz|2dy ≤ DU , for any ball B(x, 2r) ⊂ U.(2.1)

In addition, u ∈ BMOloc(Ω) if for each compactly supported open set U ⊂⊂ Ω,
there is a positive constant DU > 0 so that (2.1) holds.

Let us next introduce the local Morrey space: we say f ∈ Lp,q
loc(Ω) if, for each

compactly supported set U ⊂⊂ Ω, there exists a constant CU so that:
∫

B(z,s)

|f |p dx ≤ CUs
q, for all balls B(z, 2s) ⊂ U.(2.2)

We conclude with the definition of a multiplier (see [MSh09]). Let X and Y be
two normed function spaces, and let Z be a dense subset of X . We say that g is a
multiplier from X to Y , written as g ∈M(X → Y ), if g · f ∈ Y for all f ∈ Z, and
there is a positive constant C > 0 so that the following inequality holds:

‖g · f‖Y ≤ C ‖f‖X , for all f ∈ Z.

In what follows X and Y will be L1, 2
0 (Ω) and L2(Ω) respectively, and Z will be

C∞
0 (Ω).

2.2. On weak reverse Hölder inequalities and BMO. In this section we
characterize the weak reverse Hölder weights that are doubling. This forms a key
tool in our argument. First, let us introduce some notation.

Definition 2.1. Let U ⊂ Rn be an open set, and let w be a nonnegative measurable
function. Then w is said to be doubling in U if there exists a constant AU > 0 so
that,

−

∫

B(x,2r)

w dx ≤ AU−

∫

B(x,r)

w dx, for all balls B(x, 4r) ⊂ U.(2.3)

Let w be a nonnegative measurable function. Then w is said to satisfy a weak
reverse Hölder inequality in U if there exists constants q > 1 and BU > 0 so that:

(

−

∫

B(x,r)

wqdx
)1/q

≤ BU−

∫

B(x,2r)

w dx, for all balls B(x, 2r) ⊂ U.(2.4)
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Remark 2.2. The following simple consequence of the doubling property will prove
useful. Let U be an open set, and suppose w is doubling in U . Then, whenever
B(x, 4r) ⊂ U and z ∈ B(x, r) with B(z, 4s) ⊂ U , it follows:

−

∫

B(x,r)

w(y)dy ≤ C(AU , s, r)−

∫

B(z,s)

w(z)dz.

This principle will be used in a Harnack chain argument in Proposition 3.8.

Our argument hinges on the following result:

Proposition 2.3. Let U be an open set, and suppose w satisfies the weak reverse
Hölder inequality (2.4) in U . Then w is doubling in U , i.e. (2.3) holds, if and only
if log(w) ∈ BMO(U) (see (2.1)).

In particular, if w satisfies (2.4) and

−

∫

B(x,s)

| logw(y) −−

∫

B(x,s)

logw(z)dz|2dy ≤ DU , for all balls B(x, 2s) ⊂ U.(2.5)

Then there is a constant C(AU , DU ) > 0, so that for any ball B(x, 4r) ⊂ U :

−

∫

B(x,2r)

w dx ≤ C(AU , DU )−

∫

B(x,r)

w dx.(2.6)

Only the the sufficiency direction is required in what follows; however, since this
characterization does not seem to appear explicitly in the literature we prove the
full statement. To prove Proposition 2.3, we use the following lemma:

Lemma 2.4. Let U ⊂ Rn be an open set. Suppose that there exist s > 1 and
w ≥ 0, along with a constant C1 > 0 so that the following inequality holds:

(

−

∫

B(x,r)

ws dx
)1/s

≤ C1−

∫

B(x,2r)

w dx, whenever B(x, 2r) ⊂ U.

Then, for any t > 0, there exists a constant Ct = C(t, C1) > 0 so that:

(

−

∫

B(x,r)

ws dx
)1/s

≤ Ct

(

−

∫

B(x,2r)

wt dx
)1/t

, whenever B(x, 2r) ⊂ U.

This lemma had been used in proving estimates for quasilinear equations by G.
Mingione [Min07]. A proof can be found in Remark 6.12 of [Giu03]. Let us now
turn to proving the proposition.

Proof of Proposition 2.3. Let us first prove the necessity, suppose that w satisfies
the weak reverse Hölder inequality (2.4), and in addition that w is doubling in U .
Then, for each ball B(x, 4r) ⊂ U :

(

−

∫

B(x,r)

wqdx
)1/q

≤ BU−

∫

B(x,2r)

w dx ≤ AUBU−

∫

B(x,r)

w dx.

It follows that w satisfies a reverse Hölder inequality in U , and is therefore a Muck-
enhoupt A∞-weight. It follows (see Chapter 5 of [St93]) that log(u) ∈ BMO(U).

Let us now turn to the converse statement. Suppose w satisfies (2.5) and (2.4).
From (2.5), it is a well known consequence of the John-Nirenberg inequality that
there exists a constant 0 < t ≤ 1 so that wt is an A2-weight in U , i.e. there
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exists a positive constant A > 0 (depending on DU in (2.5)) so that for all balls
B(z, 2s) ⊂ U :

−

∫

B(z,s)

wt dx ≤ A
(

−

∫

B(z,s)

w−t dx
)−1

.(2.7)

Indeed, from the John-Nirenberg inequality (see [St93]), there exists a constant
t = t(DU ) so that for any ball so that B(z, 2s) ⊂ U :

−

∫

B(z,s)

exp
(

t
∣

∣

∣
log(w)(y′) −−

∫

B(z,s)

log(w(y))dy
∣

∣

∣

)

dy′ ≤ C(DU ).(2.8)

Inequality (2.8) clearly implies the two inequalities:

−

∫

B(z,s)

exp
(

log(wt(y′)) −−

∫

B(z,s)

log(wt(y))dy
)

dy′ ≤ C(DU ), and:

−

∫

B(z,s)

exp
(

log(w−t(y′)) + −

∫

B(z,s)

log(wt(y))dy
)

dy′ ≤ C(DU ).

Multiplying these two inequalities together, one obtains (2.7).
It follows from (2.7) and Jensen’s inequality that, if B(z, 4s) ⊂ U :

−

∫

B(z,2s)

wt dx ≤ A2n(−

∫

B(z,s)

w−t dx
)−1

≤ A2n−

∫

B(z,s)

wt dx.(2.9)

Let B(z, 8s) ⊂ U , then, applying Lemma 2.4 with this choice of t:

−

∫

B(z,2s)

w dx ≤ CU,t

(

−

∫

B(z,4s)

wt dx
)1/t

≤ C̃U,t

(

−

∫

B(z,s)

wt dx
)1/t

≤ C̃U,t−

∫

B(z,s)

w dx.

The second inequality in the chain follows from the doubling of wt, and the last
inequality follows from Hölder’s inequality. By a standard covering argument, the
factor of 8 in the enlargement of the ball can be replaced by 4, which yields (2.6).
This completes the proposition. �

2.3. Preliminaries for distributional potentials σ. Let Ω be an open set in
Rn, with n ≥ 2. Let A : Ω → Rn×n satisfying (1.4). For a real-valued distribution
σ defined on Ω, we define the multiplication operator by:

〈σh, h〉 := 〈σ, h2〉, for all h ∈ C∞
0 (Ω).

Suppose now σ satisfies (1.2) for a positive constant C > 0, and let us write:

||h||A =
(

∫

(A∇h) · ∇hdx
)1/2

, for h ∈ C∞
0 (Ω)

It is easy to see that (1.2) is equivalent to the inequality:

|〈σg, h〉| ≤ C||g||A||h||A for all g, h ∈ C∞
0 (Ω),(2.10)

with C > 0 the same constant that appears in (1.2). Furthermore, by the bound-
edness and ellipticity assumptions (1.4) on the operator A, we can extend (2.10) by
continuity, so that (2.10) is valid for all g, h ∈ L1, 2

0 (Ω). We denote this extension
again by σ. This simple observation will be used several times in the sequel.

We now state some simple lemmas regarding the local character of the distribu-
tional potentials we will consider. Let us begin with an alternative way of stating
the local condition (1.12):
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Lemma 2.5. Suppose that n ≥ 3 and σ ∈ D′(Ω). If σ satisfies (1.12) then the
following condition holds:

For each open set U ⊂⊂ Ω, there exists a constant CU > 0,

such that whenever B(z, 2s) ⊂ U :

|〈h, σ〉| ≤ CUs
(n−2)/2||∇h||L2(B(z,s)), for all h ∈ C∞

0 (B(z, s)).

(2.11)

The two conditions (2.11) and (1.12) are in fact equivalent, but we omit the
proof of the converse statement to Lemma 2.5, as we will not use it, and its proof is

slightly lengthy. To prove the lemma, note that if σ = div(~G), with |~G| satisfying
(1.12), then it follows directly from differentiation that (2.11) holds.

We next prove a key local property of distributions σ satisfying (1.2), namely
that (1.2) is a stronger condition than the condition (2.11). We define the capacity
cap(E,Ω) of a compact set E by:

cap(E,Ω) = inf{||∇h||2L2(Ω) : h ∈ C∞
0 (Ω), h ≥ 1 on E}.(2.12)

Lemma 2.6. Suppose that σ satisfies (1.2), and let V ⊂⊂ Ω. Then σ ∈ L−1,2(V ),
and:

||σ||L−1,2(V ) ≤MC · cap(V,Ω)1/2.(2.13)

Here M and C are as in (1.4), and (1.2) respectively. In particular, for each ball
B(x, r) so that B(x, 2r) ⊂ Ω:

||σ||L−1,2(B(x,r)) ≤ C1(C,M)r(n−2)/2.(2.14)

From display (2.14), it follows that (1.2) is stronger than the local condition
(2.11).

Proof. Let h ∈ C∞
0 (V ), and let g ∈ C∞

0 (Ω), so that g ≡ 1 on V . Then by (2.10)
and (1.2):

|〈σ, h〉| = |〈σg, h〉| ≤ C||g||A||h||A ≤MC||∇g||2||∇h||2.

Therefore σ ∈ L−1,2
loc (Ω), and minimising over such g yields (2.13) by definition

of capacity. The second estimate is a special case of (2.13) and follows from well
known estimates for the capacity of a ball, see e.g. [Maz85]. �

It will be convenient to use a mollification of the potential σ. Let us fix a smooth
radial approximate identity φ, i.e. φ ∈ C∞

0 (B(0, 1)), so that φ ≥ 0 on B1(0), with
||φ||L1 = 1. For ǫ > 0, we denote φǫ = ǫ−nφ(x/ǫ). Then, denote the convolution of
the distribution by σǫ = φǫ ∗ σ. We will write dσǫ = σǫdx. The next two lemmas
show that the mollification does not effect σ in terms of form boundedness.

Lemma 2.7. Let Ω be an open set, and let V ⊂⊂ Ω. In addition let ǫ ≤ d(V, ∂Ω)/2.
Suppose that σ ∈ D′(Ω) so that (5.1) holds. Then, it holds:

∫

V

h2dσǫ ≤

∫

V

(Aǫ∇h) · ∇hdx, for all h ∈ C∞
0 (V ).(2.15)

where:
Aǫ(x) = (φǫ ∗ A)(x),

In the notation of Lemma 2.7, the mollified matrix Aǫ satisfies the bounds (1.4)
inside of V , with the same constants ellipticity constants m and M . This will be
used often in the sequel.
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Proof. Let h ∈ C∞
0 (V ). We first note that by the interchange of mollification and

the distribution (see Lemma 6.8 of [LL01]):

〈σ, φǫ ∗ h
2〉 =

∫

B(0,ǫ)

φǫ(t)〈σ, h(· − t)2〉dt.

By elementary geometry, h( · − t) ∈ C∞
0 (Ω) for all t ∈ B(0, ǫ), and hence:

〈σǫ, h
2〉 ≤

∫

B(0,ǫ)

φǫ(t)
(

∫

Ω

(A(x)∇h(x − t)) · ∇h(x − t)dx
)

dt

=

∫

Ω

Aǫ(x)∇h(x) · ∇h(x)dx,

(2.16)

which proves the lemma. �

Our second mollification lemma says that if σ satisfies the local condition (2.11),
then so does the mollification of σ. Let us introduce the notation Uǫ = {x ∈ Rn :
dist(x, U) < ǫ}.

Lemma 2.8. Suppose n ≥ 3 and σ ∈ D′(Ω) is a real valued distribution satisfying
(2.11). Let V ⊂⊂ Ω, then if ǫ < d(V, ∂Ω/2), the mollified potential σǫ satisfies
(2.11) for all open sets U ⊂⊂ V , with constant CUǫ

.

Proof. Let U ⊂⊂ V be a compactly supported open set. Then, for B(x, 2r) ⊂ U
and h ∈ C∞

0 (B(x, r)), h(· − x) ∈ C∞
0 (Ω) for all x ∈ Bǫ(0). Hence, for all such h:

∣

∣

∣

∫

Ω

hdσǫ

∣

∣

∣
≤

∫

Bǫ(0)

φǫ(x)|〈σ, h(· − x)〉|dx

≤ CUǫ
r(n−2)/2

∫

Bǫ(0)

φǫ(x)||∇h(· − x)||L2dx ≤ CUǫ
r(n−2)/2||∇h||L2 .

(2.17)

This completes the proof. �

3. The proofs of Theorems 1.1 and 1.2

In this section we prove our primary existence theorems, as well as prove the
connections between the solutions of the equations (1.1) and (1.3) with the validity
of (1.2). Throughout this section we will suppose without loss of generality Ω ⊂ Rn

is a connected open set; note that in the case of an arbitrary open set, our arguments
apply to each connected component. This assumption is used in a Harnack chain
argument.

The most substantial argument will be the assertion of statement (i) in Theorem
1.1, and its refinement Theorem 1.2. We restate these two results as propositions
for convenience. In light of Lemma 2.5, the existence result for equation (1.1) in
Theorem 1.2 follows from:

Proposition 3.1. Let A : Ω → Rn×n be a possibly non-symetric matrix function
satisfying (1.4). Suppose that σ is a real-valued distribution satisfying the local dual
Sobolev condition (2.11), and the upper boundedness condition (1.6) for a constant
0 < λ < 1. Then there is a positive solution u ∈ L1,2

loc
(Ω) of (1.1).

The second proposition concerns the case when σ in addition satisfies (1.7):
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Proposition 3.2. Suppose A : Ω → Rn×n is a possibly non-symetric matrix func-
tion satisfying (1.4). In addition, suppose that σ is a real-valued distribution satis-
fying (1.7) for a positive constant Λ > 0, and (1.6) for a constant 0 < λ < 1. Then
there is a positive solution u ∈ L1,2

loc
(Ω) of (1.1). Furthermore, u satisfies:

∫

Ω

|∇u|2

u2
φ2 dx ≤ C

∫

Ω

|∇φ|2 dx for all φ ∈ C∞
0 (Ω).(3.1)

It was seen in Lemma 2.6 that if σ satisfies (1.6) and (1.7), then the condition
(2.11) holds. Hence the existence part of Proposition 3.2 follows from Proposition
3.1.

3.1. An approximating sequence. To prove Propositions 3.1 and 3.2, we use
local properties of σ to find a solutions to a mollified variant of equation (1.1) in a
sequence of subdomains of Ω. We will then prove a uniform gradient estimate on
this sequence.

Suppose that σ satisfies (1.6) with 0 < λ < 1. Let Ωj , for j ≥ 1 be an exhaustion
of Ω by smooth domains, that is, Ωj ⊂⊂ Ωj+1, and Ω =

⋃

j Ωj. In addition, let
us fix a ball B so that its concentric enlargement 4B ⊂⊂ Ω1. Let ǫ0 = 1, and
ǫj = min(ǫj−1/2, d(Ωj , ∂Ωj+1)/2, 2

−j) for j ≥ 1. With this notation, define:

σj = φǫj
∗ σ, and Aj = φǫj

∗ A.

Define uj to be the solution of:






−div(Aj∇uj) = σjuj in Ωj ,
∫

B

u2
jdx = 1, uj ≥ 0 q.e.

(3.2)

Furthermore, uj satisfies the Harnack inequality in Ωj .

Proof of existence and uniqueness of (3.2). We will see that the existence of (3.2)
is a simple consequence of the Lax-Milgram lemma. Define the bilinear form L on
L1, 2

0 (Ωj) × L1, 2
0 (Ωj) by:

L(w, h) =

∫

Ωj

(Aj∇w) · ∇hdx− 〈σjw, h〉, with w, h ∈ L1, 2
0 (Ωj).

Then, by the assumptions on σ, the following properties hold:

|L(w, h)| ≤ (M + C(n)||σj ||L∞(Ωj)|Ωj |
2/n) ‖∇w‖2 ‖∇h‖2 , and:

L(w,w) ≥ m(1 − λ) ‖∇w‖2 .

The first inequality follows from (1.4) along with the Sobolev inequality. The second
inequality is a combination of Lemma 2.7 and (1.4). Hence the hypothesis of the
Lax-Milgram lemma are satisfied.

Applying the Lax-Milgram lemma, there exists a unique w ∈ L1, 2
0 (Ωj) so that:

L(w, h) = 〈σj , h〉.

Let vj = w+ 1. Let us next show that vj ≥ 0 q.e. To see this, let w = vj , and note
that w− = min(w, 0) ∈ L1, 2

0 (Ωj). By testing (3.2) with the valid test function w−,
it follows:

∫

Ωj

Aj(∇w
−) · ∇w− = 〈σjw

−, w−〉 ≤ λ

∫

Ωj

Aj(∇w
−) · ∇w−.(3.3)
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Since 0 < λ < 1, it follows from (1.4) that w− = 0 q.e. Let us now define:

uj =
(

−

∫

B

vjdx
)−1

vj .

Then uj solves (3.2). The validity of Harnack’s inequality for uj follows from
classical elliptic regularity theory, see e.g. [Tru73], since σj is smooth. �

3.2. Caccioppoli and Morrey estimates for the approximating sequence.
We next turn to proving two estimates on the gradient of the approximating se-
quence. The first estimate is a Caccioppoli inequality:

Lemma 3.3. Suppose that σ satisfies (1.6) with 0 < λ < 1, and let {uj} be the
sequence constructed in (3.2). Let ψ ∈ C∞

0 (Ωj), then for any k ≥ j:
∫

Ωj

|∇uk|
2 ψ2 dx ≤ C(M,m, λ)

∫

Ωj

u2
k |∇ψ|

2 dx.(3.4)

Proof. Let us fix k and j as in the statement of the lemma, and let v = uk. With
ψ ∈ C∞

0 (Ωj), ψ ≥ 0, test the weak formulation of (3.2) with vψ2 ∈ L1, 2
0 (Ωj). Using

(1.6), it follows:
∫

Ωj

((Ak∇v) · ∇v)ψ
2 dx ≤ 〈σkv, ψ

2v〉 + 2M

∫

Ωj

v ψ |∇v| |∇ψ| dx

= 〈σk(ψv), ψv〉 + 2M

∫

Ωj

v ψ |∇v| |∇ψ | dx

≤ λ

∫

Ωj

Ak(∇(vψ))(∇(v ψ)) dx+ 2M

∫

Ωj

v ψ |∇v| |∇ψ| dx.

Here we have used Lemma 2.7 and 〈σkv, ψ
2v〉 = 〈σk(vψ), vψ〉. By Cauchy’s in-

equality, it follows that for any ǫ > 0 there exists a constant Cǫ, depending on ǫ, λ,
M and m, so that:

(1 − λ)

∫

Ωj

(Ak∇v) · ∇v ψ
2 dx ≤ ǫ

∫

Ωj

|∇v|2ψ2 dx+ Cǫ

∫

Ωj

v2|∇ψ|2 dx.

Choosing ǫ < (1 − λ)m and rearranging, we recover (3.4). �

The second estimate we use relates a uniform bound on the gradient logarithm
with uniform properties on the ‘negative part’ of the distribution σ:

Lemma 3.4. With {uj} the sequence constructed in (3.2), the following estimate
holds for all ψ ∈ C∞

0 (Ωj):
∫

Ωj

|∇uj |
2

u2
j

ψ2 dx ≤ −C(M,m)

∫

Ωj

ψ2 dσj + C(M,m)

∫

Ωj

|∇ψ|2 dx.(3.5)

Proof. Let h = ψ2/uj, with ψ ∈ C∞
0 (Ωj), ψ ≥ 0. Since uj satisfies the Harnack

inequality in Ωj , there exists a constant c > 0 so that uj > c on the support of
ψ. It follows that h is a valid test function for the weak formulation of (3.2). This
yields:

−

∫

Ωj

(Aj∇uj) · ∇
(ψ2

uj

)

dx = −
〈

σj , ψ
2
〉

(3.6)
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On the other hand:

m

∫

Ωj

|∇uj |
2

u2
j

ψ2dx ≤ −

∫

Ωj

(Aj∇uj) · ∇
(ψ2

uj

)

dx+ 2M

∫

Ωj

|∇uj |

uj
|∇ψ|ψdx,

and therefore, by Cauchy’s inequality:
∫

Ωj

|∇uj |
2

u2
j

ψ2dx ≤ −

∫

Ωj

(Aj∇uj) · ∇
(ψ2

uj

)

dx+ C(M,m)

∫

Ωj

|∇ψ|2dx.(3.7)

Combining (3.6) and (3.7), we deduce (3.5). �

From Lemma 3.4, we deduce two estimate, depending on the addition properties
of σ. First, we deduce that the so-called logarithmic Cacciopolli inequality holds if
σ in addition satisfies (1.7).

Lemma 3.5. Suppose that the real-valued distribution σ satisfies (1.7) with con-
stant Λ > 0, and let {uj}j be as in (3.2). Let ψ ∈ C∞

0 (Ωj), then for any k ≥ j:
∫

Ωj

|∇uk|
2

u2
k

ψ2dx ≤ C(M,m,Λ)

∫

Ωj

|∇ψ|2dx(3.8)

Proof. From Lemma 3.4, it clearly suffices to show that, for all ψ ∈ C∞
0 (Ωj):

−

∫

Ωj

ψ2dσj ≤MΛ

∫

Ωj

|∇ψ|2dx.

But this follows in precisely the same manner as Lemma 2.7. �

An immediate corollary of Lemma 3.5, and the definition of capacity in (2.12),
is:

Corollary 3.6. Under the hypotheses of Lemma 3.5, there exists a positive constant
C = C(Λ,m,M), so that whenever F ⊂⊂ Ωj, it follows:

∫

F

|∇uk|
2

u2
k

dx ≤ Ccap(F,Ωj), for all k ≥ j.(3.9)

In the case when σ only satisfies (2.11), a local Morrey space estimate holds,
which is a weakened version of (3.8):

Lemma 3.7. Suppose n ≥ 3, and that σ satisfies (2.11). Consider the sequence
{uj} as in (3.2). Then for each ball B(x, r) so that B(x, 2r) ⊂ Ωj, it follows that
for all k > j:

∫

B(x,r)

|∇uk|
2

u2
k

dx ≤ C(Ωj ,M,m)rn−2.(3.10)

Proof. Fix such a ball B(x, r) as in the statement of the lemma, and let ψ ∈
C∞

0 (B(x, 2r)) such that ψ ≡ 1 on B(x, r), 0 ≤ ψ ≤ 1 and |ψ| ≤ C/R. The lemma
follows from estimating (3.5) with this choice of ψ. It suffices to prove, for all k > j:

∣

∣

∣

∫

Ωk

ψ2 dσk

∣

∣

∣
≤ C(Ωj)r

n−2.(3.11)

Picking U = Ωj in the definition of (2.11), we deduce from Lemma 2.8 that:
∣

∣

∣

∫

Ωk

ψ2dσk

∣

∣

∣
≤ C(Ωj)ǫk

rn−2||∇(ψ2)||L2(Ωj) ≤ 2C(Ωj)ǫj
||∇ψ||L2(B(x,2r)).
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The last inequality follows since 0 ≤ ψ ≤ 1. Here (Ωj)ǫj
is the ǫj-neighbourhood

of Ωj . Note that (Ωj)ǫj
⊂ Ωj+1, and since ǫk < ǫj, it follows (Ωj)ǫk

⊂ (Ωj)ǫj
and

hence by definition in (2.11): C(Ωj)ǫk
≤ C(Ωj)ǫj

.

The display (3.11) now follows from the estimate on the gradient of ψ. �

In the case n = 1 or 2; note that if σ ∈ L−1,2
loc (Ω), then for all k > j:

∫

B(x,r)

|∇uk|
2

u2
k

dx ≤ C(Ωj ,M,m) whenever B(x, 2r) ⊂ Ωj .(3.12)

In fact this estimate holds for all dimensions, but it is not strong enough to provide
us with a uniform bound in higher dimensions. The estimate (3.12) follows from
display (3.5) in Lemma 3.4. Indeed, for k > j, just pick the test function ψ in (3.5)
so that ψ ≡ 1 on Ωj , and ψ ∈ C∞

0 (Ωj+1). Then:
∫

Ωj

|∇uk|
2

u2
k

dx ≤ C(Ωj ,M,m, ||σ||L−1,2(Ωj+1)).

Here we are using the fact that the mollification does not effect the local dual
Sobolev norm within Ωj , this can be establish precisely as in Lemma 2.8. The
estimate (3.12) clearly follows from the previous display.

3.3. A local gradient estimate. The key estimate is the following:

Proposition 3.8. Suppose σ is a real-valued distribution defined on Ω, satisfying
(1.6) with 0 < λ < 1, and in addition suppose that (2.11) holds. Let {uj} be the
sequence in (3.2). Then, whenever ω ⊂⊂ Ωj, the following estimate holds:

∫

ω

|∇uk|
2dx ≤ C(ω, λ,Λ,m,M,B,Ωj), for all k > j.(3.13)

Note that the estimate (3.13) is independent of k for k ≥ j. This is the key to
allow us to deduce the existence of positive solutions to (1.1).

Proof. Fix j, and k, as in the statement of the proposition, and let v = uk. It
suffices to prove that whenever B(x, 8r) ⊂⊂ Ωj, there exists a positive constant
C > 0, depending on n, λ, Λ, m, M , B, B(x, r) and Ωj such that:

∫

B(x,r)

|∇v|2dx ≤ C.(3.14)

The reader should keep in mind that all constants will be independent of k. Fix such
a ball B(x, 8r) ⊂⊂ Ωj . To prove (3.14), we will employ Proposition 2.3 in U = Ωj

to show that v2 is doubling in Ωj , with constants independent of k. To verify the
hypothesis of Proposition 2.3, we first show that v2 satisfies a weak reverse Hölder
inequality, i.e. that (2.4) holds in Ωj . To this end, let us fix B(z, 2s) ⊂⊂ Ωj .
Suppose first n ≥ 3. Then by Sobolev’s inequality, for any ψ ∈ C∞

0 (Ωj):

(

∫

Ωj

v
2n

n−2 |ψ|
2n

n−2 dx
)

n−2

2n

≤ C
(

∫

Ωj

|∇v|2ψ2 dx
)1/2

+C
(

∫

Ωj

v2 |∇ψ|2 dx
)1/2

.

(3.15)

Applying Lemma 3.3 in the first term on the right hand side of (3.15), we deduce:
(

∫

Ωj

v
2n

n−2 |ψ|
2n

n−2 dx
)

n−2

n

≤ C

∫

Ωj

v2|∇ψ|2dx.(3.16)
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Specialising (3.16) to the case ψ ∈ C∞
0 (B(z, 2s)), with ψ ≡ 1 in B(z, s), and

|∇ψ| ≤ C/s, it follows:

(

−

∫

B(z,s)

(v2)
n

n−2 dx
)

n−2

n

≤ C−

∫

B(z,2s)

v2 dx.(3.17)

The constant in C > 0 in (3.17) depends on n,M,m, and λ. Hence, if n ≥ 3, (2.4)
holds in U = Ωj , with w = v2 and q = n/(n− 2).

If n = 2, we slightly modify the above argument. The following Sobolev in-
equality is standard (see e.g. [MZ97], Corollary 1.57): for each q < ∞, and for all
f ∈ C∞

0 (B(z, 2s)),

(

−

∫

B(z,2s)

|f(y)|q dy
)1/q

≤ C(q)
(

∫

B(z,2s)

|∇f(y)|2 dy
)1/2

.(3.18)

Using (3.18) as in (3.15) and following the argument through display (3.17), it
follows in the case n = 2 that (2.4) holds in U = Ωj , with w = v2 for any choice
q < ∞. Note that in the case n = 1 even stronger Sobolev inequalities are at our
disposal, and so the estimate (2.4) continues to hold; we leave this to the reader.

To apply Proposition 2.3, it remains to show log(v) ∈ BMO(Ωj). For this, note
that it follows from Poincaré’s inequality that whenever B(z, 2s) ⊂ Ωj :

−

∫

B(z,s)

| log v −−

∫

B(z,s)

log v|2 dx ≤ Cs2−n

∫

B(z,s)

|∇uk|
2

u2
k

dx.

First suppose n ≥ 3. Then from Lemma 3.7,
∫

B(z,s)

|∇uk|
2

u2
k

dx ≤ C(M,m,Ωj)s
2−n.(3.19)

Hence,

−

∫

B(z,s)

| log v −−

∫

B(z,s)

log v|2dx ≤ C(M,m,Ωj).(3.20)

In the case n = 1, 2; we apply the weaker estimate (3.12) in combination with
Poincaré’s inequality, to conclude (3.20) remains true in these cases. From (3.20),
we conclude that (see (2.1)), that log v ∈ BMO(Ωj), with BMO-norm depending
only on n,m,M,Ωj . In particular, v2 satisfies both (2.4) and (2.5) in Ωj . From
Proposition 2.3, it follows that v2 is doubling in Ωj , with constants depending on
n,m,M,Ωj, λ and Λ, see (2.6).

Since Ωj is a smooth connected set, one can find a Harnack chain from B(x, 2r)
to the fixed ball B ⊂⊂ Ω1. In other words, one can three positive constants c0, c1
and N > 0, depending on the smooth parameterization of Ωj , along with points
x0, . . . xN and balls B(xi, 4ri) ⊂ Ωj so that:

(1) B(x0, r0) = B(x, 2r), and B(xN , rN ) = B;
(2) ri ≥ c0 min(r0, rN ), and |B(xi, ri)∩B(xi+1, ri+1)| ≥ c1 min(r0, rN )n for all

i = 0 . . .N − 1.

Since v2 is doubling in Ωj , it follows from the chain construction above, along with
a Harnack chain argument (see Remark 2.2) that:

−

∫

B(x,2r)

v2dx ≤ C(B(x, r),m,M,Ωj , B, λ,Λ)−

∫

B

v2dx.
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It therefore follows from the normalization on v2 that:

−

∫

B(x,2r)

v2dx ≤ C(B(x, r),m,M,Ωj , B, λ,Λ).(3.21)

To complete the proof, combine the Caccioppoli inequality (Lemma 3.3) with the
estimate (3.21) to conclude:

∫

B(x,r)

|∇v|2dx ≤
C

r2

∫

B(x,2r)

v2dx ≤ C,

for a constant C > 0, depending on n, m, M , B, Λ, λ, Ωj and B(x, r). Hence
(3.14) is proved for a constant independent of k. �

3.4. Proof of Propositions 3.1 and 3.2. We begin by proving Proposition 3.1,
before moving on to prove Proposition 3.2, and with it statement (i) of Theorem
1.1.

Proof of Proposition 3.1. Let Ωj be an exhaustion of Ω by smooth domains. We
will use Proposition 3.8 repeatedly in each Ωj to deduce the existence of a solution
of (1.1). Fix a ball B ⊂ Ω1, with 4B ⊂ Ω1, and note that the construction of the
approximate sequence from (3.2) is valid under the present assumptions on σ, and
the gradient estimate (3.13) holds.

First, by (3.13) with j = 1, along with weak compactness and Rellich’s theorem,

we pass to a subsequence u
(1)
j of uj so that u

(1)
j → u(1) weakly in L1,2

loc(Ω1), and

u
(1)
j → u(1) a.e. in Ω1. Let ǫj,1 be the corresponding sequence from (3.2). Since

σ ∈ L−1,2(Ω1), it follows that whenever h ∈ C∞
0 (Ω1):

〈σu
(1)
j , h〉 = 〈σ, u

(1)
j h〉 → 〈σ, u(1)h〉 = 〈σu(1), h〉.(3.22)

Note also, by combining the uniform bound (3.13), with convergence of the molli-
fication:

|〈σǫj,1
u

(1)
j , h〉 − 〈σu

(1)
j , h〉| ≤ ||σǫj,1

− σ||L−1,2(Ω1)||∇(u
(1)
j h)||L2

≤ C||σǫj,1
− σ||L−1,2(Ω1) → 0 as j → ∞.

We conclude:

〈σj,1u
(1)
j , h〉 → 〈σu(1), h〉.(3.23)

Similarly, by linearity and boundedness of the operator A, we deduce that:
∫

Ω1

A∇u
(1)
j · ∇h dx→

∫

Ω1

A∇u(1) · ∇h dx.

From the uniform bound (3.13), along with standard convergence properties of the
mollification in L2:

∣

∣

∣

∫

Ω1

(Aj,1 −A)∇u
(1)
j · ∇h dx

∣

∣

∣
→ 0 as j → ∞.

It therefore follows that the limit function u(1) ∈ L1,2
loc(Ω1) satisfies:

−div(A∇u(1)) = σu(1) in D′(Ω1).(3.24)

Given {u
(j)
k }k, let us apply estimate (3.13) in Ωj+1 to obtain a subsequence u

(j+1)
k

of u
(j)
k and u(j+1) ∈ L1,2

loc(Ωj+1) with:

u
(j+1)
k → u(j+1) weakly in L1,2

loc(Ωj+1), and u
(j+1)
k → u(j+1) a.e. in Ωj+1.
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Note that by Lemma 2.6, it follows that σ ∈ L−1,2(Ωj). As in the argument leading

to (3.24), we see that u(j+1) satisfies

−div(A∇u(j+1)) = σu(j+1) in D′(Ωj+1).(3.25)

By construction, uj = uj+1 in Ωj . Hence one can define u ∈ L1,2
loc(Ω) by: u = uj in

Ωj . By (3.25) it follows that:

−div(A∇u) = σu in D′(Ω).

Next, let us demonstrate that u is not the zero function. To see this note that:
∫

B

(uℓ
j)

2dx = 1, for all j, ℓ.(3.26)

Since uℓ
j → u in Lq

loc(Ωℓ), whenever q < 2n/(n − 2), we may pass to the limit

in (3.26). A standard application of Mazur’s lemma shows that the limit solution
u ≥ 0. On the other hand, for any k > 0 from Lemma 3.4 and weak compactness
there exists v ∈ L1,2

loc(Ω) so that log(uk
j ) → v a.e., but then v = log(u) a.e. and it

follows that log(uk
j ) converges weakly to log(u) in L1,2

loc(Ωk) (see e.g. Theorem 1.32
of [HKM06]). Hence u > 0 q.e. and u is a positive weak solution of (1.1). �

We now move onto Proposition 3.2.

Proof of Proposition 3.2. Let us keep the notation from the proof of Proposition
3.1. The existence of a positive solution u ∈ L1,2

loc(Ω) of (1.1) follows from Propo-

sition 3.1. It was proved above in addition that log(u) is well defined in L1,2
loc(Ω),

and in each Ωk, log(u) is the weak limit of a sequence log uk
j . From Lemma 3.5, it

follows that, for all ψ ∈ C∞
0 (Ωk):

∫

Ω

|∇uk
j |

2

(uk
j )2

ψ2 dx ≤ C(M,m,Λ)

∫

Ω

|∇ψ|2 dx.(3.27)

Since ∇ log uk
j converges to ∇ log u weakly in L2

loc(Ωk), we deduce from weak lower

semi-continuity of the L2 norm that for all ψ ∈ C∞
0 (Ωk):

∫

Ω

|∇u|2

u2
ψ2 dx ≤ C(M,m,Λ)

∫

Ω

|∇ψ|2 dx.(3.28)

Since (3.28) holds for each k, the estimate (3.1) holds. �

3.5. A logarithmic change of variable: solutions of (1.3) from solutions
of (1.1). This section is concerned with deducing solutions of (1.3) from solutions
of (1.1) by a logarithmic substitution. This substitution is classical, for instance it
appears in the study of ODEs in [Hi48], and there are examples that show it can
be delicate, see e.g. [FM00]. In [AHBV09], there is a rather comprehensive account
of the connection between these two types of equations when σ is a finite measure.
We will prove the following lemma, from which statement (ii) in Theorem 1.1 and
the remainder of Theorem 1.2 follows.

Lemma 3.9. Let Ω be an open set, and let A : Ω → Rn×n satisfy (1.4). Suppose

that σ ∈ L−1,2
loc

(Ω), and that there exists a positive solution u of (1.1). Then v =

log(u) ∈ L1,2
loc

(Ω) is a solution of (1.3).
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Proof. The first step in Lemma 3.9 is to prove that for each φ ∈ C∞
0 (Ω):

∫

Ω

|∇u|2

u2
φ2dx ≤ C(φ, σ, n, p).(3.29)

Let ǫ > 0. Then for h ∈ C∞
0 (Ω), test the weak formulation of (1.1) with ψ =

h(u+ ǫ)−1 ∈ L1,2
c (Ω). This yields:

∫

Ω

A(∇u)

u+ ǫ
· ∇h dx =

∫

Ω

A(∇u) · ∇u

(u + ǫ)2
hdx+ 〈σ

u

u+ ǫ
, h〉.(3.30)

Let us now estimate the third term on the right. Let U be an open set, compactly
supported in Ω, and containing supp(h). By assumption σ ∈ L−1,2(U), and hence

there exists ~Γ ∈ (L2(U))n so that σ = div(~Γ) in U . Therefore:

〈σ
u

u + ǫ
, h〉 =

∫

Ω

∇u · ~Γ

u+ ǫ

( ǫ

u+ ǫ

)

hdx+

∫

Ω

u

u+ ǫ
∇h · ~Γdx.(3.31)

Since ǫ/(u+ ǫ) ≤ 1, it follows from Cauchy’s inequality, that for any δ > 0:

|〈σ
u

u + ǫ
, h〉| ≤ δ

∫

Ω

|∇u|2

(u+ ǫ)2
hdx+ Cδ

∫

Ω

|~Γ|2hdx+

∫

Ω

|∇h||~Γ|dx.(3.32)

Letting h = φ2 for φ ∈ C∞
0 (Ω), φ ≥ 0 in (3.30) and rearranging, using the ellipticity

and boundedness assumptions (1.4), we obtain:

m

∫

Ω

|∇u|2

(u + ǫ)2
φ2 dx ≤ 2M

∫

Ω

|∇u|

u+ ǫ
|∇φ|φdx

+ δ

∫

Ω

|∇u|2

(u+ ǫ)2
φ2 dx+ Cδ

∫

Ω

|~Γ|2φ2 dx+ 2

∫

Ω

|∇φ| |~Γ|φdx.

(3.33)

Here the bound (3.32) has also been used. Appealing to Cauchy’s inequality again
in (3.33), we obtain:

∫

Ω

|∇u|2

(u + ǫ)2
φ2 dx ≤ C(φ, σ, n, p).

Letting ǫ→ 0, (3.29) follows from Fatou’s lemma.
Now, let us again look at (3.30). It follows from (3.29) that as ǫ→ 0:

∫

Ω

A∇u

u+ ǫ
· ∇h dx→

∫

Ω

A∇u

u
· ∇h dx, and

∫

Ω

(A∇u) · ∇u

(u + ǫ)2
h dx→

∫

Ω

(A∇u) · ∇u

u2
h dx.

To handle the last term in (3.30), note that from (3.29) and the dominated conver-
gence theorem:

∇
( u

u+ ǫ

)

=
( ǫ

u+ ǫ

)

·
∇u

u+ ǫ
→ 0 in L2

loc(Ω) as ǫ→ 0,

on the other hand, it is clear that:

u

u+ ǫ
→ 1 in L2

loc(Ω) as ǫ→ 0.

Thus it follows:
u

u+ ǫ
→ 1 in L1,2

loc(Ω) as ǫ→ 0.
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But since σ ∈ L−1,2(V ) for any V ⊂⊂ Ω, we conclude:

〈σ
u

u+ ǫ
, h〉 = 〈σ,

u

u+ ǫ
h〉 → 〈σ, h〉, as ǫ→ 0.

It follows that v = log(u) is a solution of (1.3). �

Proof of Theorem 1.1, statement (ii). This is nothing more than a restatement of
Lemma 3.9 above, along with the trivial observation that if u satisfies (1.9), then
v = log(u) satisfies (1.11). �

We may now also complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.5 and Proposition 3.1, it follows that under
the hypothesis of Theorem 1.2, there exists a position solution u ∈ L1,2

loc(Ω) of (1.1).

By Lemma 3.9, setting v = log(u), we see that v ∈ L1,2
loc(Ω) is a solution of (1.3). �

We did not use (1.7) in the previous lemma, doing so allows us to conclude that
the solution satisfies an additional multiplier condition.

Lemma 3.10. Under the assumptions of Lemma 3.9, if in addition σ satisfies
(1.7) for a positive constant Λ > 0, then there exists a solution v ∈ L1,2

loc
(Ω) of (1.3)

satisfying (1.11).

Proof. We will keep the notation from the proof in Lemma 3.9. It is left to prove
that v satisfies (1.11). To this end, let us again test (1.1) with φ2/(u + ǫ), for
a smooth test function φ ∈ C∞

0 (Ω), φ ≥ 0. There exist constants C1, C2 > 0
depending on m and M , so that:

∫

Ω

|∇u|2

(u+ ǫ)2
φ2dx ≤ C1

∫

Ω

|∇φ|2dx− C2

〈

σφ

√

u

u+ ǫ
, φ

√

u

u+ ǫ

〉

.(3.34)

Indeed, as in display (3.30), one obtains by testing equation (1.1) the following
identity:

2

∫

Ω

φ
A(∇u)

u+ ǫ
· ∇φdx =

∫

Ω

A(∇u) · ∇u

(u + ǫ)2
φ2dx + 〈σ

u

u+ ǫ
, φ2〉(3.35)

Hence, from the ellipticity and boundedness assumptions (1.4):

m

∫

Ω

|∇u|2

(u+ ǫ)2
φ2 dx ≤M

∫

Ω

|∇u|

u+ ǫ
φ · |∇φ| dx − 〈σ

u

u + ǫ
, φ2〉.(3.36)

From an elementary application of Cauchy’s inequality in (3.36), display (3.34)
follows. One can pick, for instance, C1 = (M/m)2 and C2 = 2/m.

Next, applying (1.7), it follows that the second term on the right hand side in
(3.34) is bounded by a constant multiple of:

Λ

∫

Ω

|∇u|2

u2

( ǫ

u+ ǫ

)2

φ2dx+ Λ

∫

Ω

u

u+ ǫ
|∇φ|2dx.(3.37)

The first term in (3.37) converges to zero as ǫ → 0, by virtue of (3.29) and the
dominated convergence theorem. Again by dominated convergence, the second
term in (3.37) converges to:

∫

Ω

|∇φ|2dx, as ǫ→ 0.

Substituting these estimates into (3.34), we deduce that (1.11) holds. �
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3.6. Existence of solutions to (1.3) implies the validity of (1.2).

Proof of Theorem 1.1, statement (iii). This will follow immediately from Lemmas
3.11 through 3.13 below. �

Lemma 3.11. Let Ω be an open set, and suppose that σ is a distribution defined
on Ω. Let A be an n × n real-valued symmetric matrix defined on Ω satisfying
(1.4). Suppose there exists a supersolution v ∈ L1,2

loc
(Ω) of (1.3), then (1.6) holds

with λ = 1.

Proof. Suppose that there exists a solution v of (1.3), and let φ ∈ C∞
0 (Ω), then

testing (1.3) with φ2, yields:

〈σφ, φ〉 = 〈σ, φ2〉 ≤ 2

∫

Ω

|φ||(A(∇v)) · ∇φ|dx −

∫

Ω

(A∇v) · (∇v)φ2dx.

Under the present assumptions, A is a symmetric positive definite matrix. It follows
that for ξ, η ∈ Rn,

|(Aξ) · η| ≤ ((Aξ) · ξ)1/2((Aη) · η)1/2.(3.38)

Thus:

2

∫

Ω

|φ||(A(∇v)) · ∇φ|dx ≤ 2

∫

Ω

|φ|((A∇v) · ∇v)1/2((A∇φ) · ∇φ)1/2dx

≤

∫

Ω

φ2((A∇v) · ∇v) +

∫

Ω

((A∇φ) · ∇φ)dx.

(3.39)

Therefore (1.6) holds with λ = 1. �

On the other hand, if symmetry is not assumed, one may still conclude the
validity of (1.6) and (1.7) from (1.3). Indeed:

Lemma 3.12. Let Ω be a connected open set, and suppose that A : Ω → Rn×n,
satisfying (1.4). Suppose that v ∈ L1,2

loc
(Ω) is a supersolution of (1.3), then (1.6)

holds with:

λ =
(M

m

)2

.

Proof. Let us first show that (1.6) holds with the given choice of λ. To this end,
let φ ∈ C∞

0 (Ω) and test the weak formulation (1.1) with the valid test function φ2.
Together with the assumptions (1.4), this yields:

〈σφ, φ〉 = 〈σ, φ2〉 ≤M2

∫

Ω

|∇v||φ||∇φ|dx −m

∫

Ω

|∇v|2φ2dx

≤
M2

m

∫

Ω

|∇φ|2dx ≤
(M

m

)2
∫

(A∇φ) · ∇φ,

(3.40)

where Young’s inequality was used in the last line. �

We conclude this section by showing that if the solution v of (1.3) in addition
satisfies (1.11), then σ satisfies (1.7) for a positive constant Λ > 0.

Lemma 3.13. Under the assumptions of either Lemma 3.11 or Lemma 3.12, if
one in addition assumes the solution v ∈ L1,2

loc
(Ω) satisfies (1.11), then σ satisfies

(1.7) for a positive constant Λ > 0.
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Proof. Let φ ∈ C∞
0 (Ω) and test the weak formulation (1.1) with the valid test

function φ2. Then:

〈σφ, φ〉 = 2

∫

Ω

((A∇v) · ∇φ)φdx −

∫

Ω

|∇v|2φ2dx

≥ −(M + 1)

∫

Ω

|∇v|2φ2 −

∫

Ω

|∇φ|2dx ≥ −
Λ

m

∫

Ω

|∇φ|2dx,

(3.41)

for a suitable choice of constant Λ > 0. Appealing to (1.4), the result follows. �

3.7. On the equation (1.3). In this section, we make a few comments regarding
our results for the equation (1.3) in comparison to existing literature, as the intro-
duction of this paper focussed rather more on the Schrödinger type equation (1.1).
First, we will restate a theorem which has been proved for reference:

Theorem 3.14. Let Ω be an open set. Let σ ∈ D′(Ω) be a real-valued distribution.
Suppose A : Ω → Rn is a symmetric real-valued matrix function satisfying (1.4).
The the following two statements hold:

(i) Suppose that σ satisfies (1.7) for a positive constant Λ > 0, and (1.6) for a

constant 0 < λ < 1, then there exists a positive solution v ∈ L1,2
loc

(Ω) of (1.3) so that
(1.11) holds. In addition, the constructed solution has the exponential integrability

property: ev ∈ L1,2
loc

(Ω).

(ii) Conversely, if there exists a solution v ∈ L1,2
loc

(Ω) of (1.3) so that (1.11)
holds, then σ satisfies (1.7) for a positive constant Λ > 0, and (1.6) with λ = 1.

In [FM98], solutions of (1.3) are proved in the global energy space L1, 2
0 (Ω) are

proved when Ω is a bounded domain, under the assumption that σ ∈ Ln/2(Ω).
They explicitly note that this condition on σ is used to guarantee that (1.2) is
valid. Theorem 3.14 therefore compliments their theorem with a more local result
in nature, and therefore one which requires less restriction on σ. As was noticed
in [FM98, FM00], there exist classes of solutions of (1.3) that are exponentially
integrable. One can trace this principle back to the employment of certain nonlinear
test functions in proving the existence of solutions to (1.3) (see e.g. [Ev90, FM00]).
A refinement of this argument is what is also employed in the current paper, since
we deduce Theorem 3.14 from our considerations of the Schrödinger type equation
via a logarithmic substitution.

The local exponential integrability in statement (i) is sharp, as can be seen from
the example discussed in Section 7. The paper [FM00] concerns quasilinear equa-
tions of p-Laplacian type, and we will consider such equations in our forthcoming
paper [JMV10].

3.8. On the critical case λ = 1. In this subsection we briefly discuss the limiting
case when λ = 1. We aim to prove the following proposition:

Proposition 3.15. Suppose that Ω is an open set, and suppose A is a symmetric
bounded matrix function defined on Ω. Then (1.17) holds if and only if there exists
a positive superharmonic function u such that:

−div(A∇u) ≥ σu in Ω.(3.42)

Proof. Let us assume that Ω is connected. The necessity is well known, and holds
even in very general potential theoretic frameworks, see e.g. [Fit00]. For the con-
verse, let λj ∈ (0, 1) be a sequence such that λj → 1. Applying a very special case
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of Theorem 1.1 above, we find a sequence of positive functions {uj}j ∈ L1,2
loc(Ω) of:

−div(A∇uj) = λjσuj , with −

∫

B

uj dx = 1.(3.43)

Here B ⊂⊂ Ω is a fixed ball. We may assume that uj is superharmonic. Next,
let us fix a smooth connected subdomain U of Ω, so that B ⊂⊂ U . For a fixed
q < n/(n− 1), we will prove that for any ball B(x, r) ⊂⊂ U :

∫

B(x,r)

|∇uj |
q dx ≤ C(m,M,U, q,B(x, r)).(3.44)

To this end, note that, by the property (1.9):
∫

Ω

|∇uj|
2

u2
j

h2 dx ≤ C(m,M)

∫

Ω

|∇h|2dx for all h ∈ C∞
0 (Ω).(3.45)

Display (3.45) is also a standard property of superharmonic functions, as a con-
sequence of Moser’s work [Mos60]. From (3.45) and the Poincaré inequality, one
readily deduces as in Proposition 3.8 that uj ∈ BMO(U). Therefore, as in Proposi-
tion 2.3, from the John-Nirenberg inequality we find a constant c = c(m,M,n) > 0,
0 < c < 1, such that uc is doubling in U (see (2.3)), with doubling constants de-
pending on m,M , and n. From a Harnack chain argument, we deduce that, for any
B(x, r) ⊂⊂ U ;

∫

B(x,r)

ucdx ≤ C(B(x, r), U,B,m,M)

∫

B

ucdx ≤ C(B(x, r), U,B,m,M),(3.46)

where in the last equation, we have used normalization of uj in (3.43). Let us now
note that following inequality superharmonic functions, essentially due to Moser
[Mos60]: for 1 < q < n/(n− 1), there exists a constant C = C(n, q) such that:

∫

B(x,r)

|∇uj |
q dx ≤ C inf

B(x,r)
uj .(3.47)

Combining (3.47) and (3.46), the display (3.44) follows. Note that from (3.47) and
Rellich’s theorem, we deduce that there exists u such that: uj → u a.e in Ω, and:

∫

B

u dx = 1.

Furthermore, u can be chosen to be superharmonic, by standard convergence prop-
erties, see [KM92].

Our aim is to show that u = lim infj→ uj q.e. To this end, let v = lim infj→∞ uj,
and denote by v∗ the lower semi-continuous regularization of v. By the fundamental
convergence theorem for superharmonic functions, v∗ is superharmonic, and v∗ =
lim infj→∞ uj quasi-everywhere (see Theorem 7.4 of [HKM06]). Since v∗ = u a.e.
and they are both superharmonic, we have that u = v∗ everywhere. The claim
follows.

Let us now conclude the argument. Since σ satisfies (1.17), it does not charge sets
of capacity zero. Therefore, by Fatou’s lemma, it follows that for any φ ∈ C∞

0 (Ω)
with φ ≥ 0:

lim inf
j→∞

∫

Ω

ujφdσ ≥

∫

Ω

uφdσ.

Combining this last display with the weak convergence of the Riesz measure for
superharmonic functions, see e.g. [HKM06], we conclude that (3.42) holds. �
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4. Form boundedness

In this section we apply Theorem 1.1 to deduce a new proof of Theorem 4.1
below, which was the primary theorem in [MV02a] (see also [MV06]). Let us
consider the case Ω = Rn, n ≥ 3, since the case of a general domain, under certain
mild restrictions on Ω, can be reduced to the entire space, as was explained in
[MV02a].

Theorem 4.1. Let σ ∈ D′(Rn), n ≥ 3. Then the following statements hold.
(i) The quadratic form inequality

|〈σ, h2〉| ≤ C ||∇h||2L2(Rn), for all h ∈ C∞
0 (Rn),(4.1)

is valid if and only if σ can be represented in the form

σ = div ~Γ,(4.2)

where ~Γ ∈ L2
loc(R

n)n obeys
∫

Rn

h2|~Γ|2 dx ≤ C1 ||∇h||
2
L2(Rn), for all h ∈ C∞

0 (Rn).(4.3)

(ii) If σ satisfies (4.1), then (4.2) holds with ~Γ = ∇(∆−1σ), where ∆−1σ ∈
BMO(Rn), and

∫

Rn

h2|∇(∆−1σ)|2 dx ≤ C1 ||∇h||
2
L2(Rn), for all h ∈ C∞

0 (Rn).(4.4)

(iii) If (4.3) holds with C1 = 1
4 then (4.1) holds with C = 1. Conversely, if σ

satisfies (1.6) with the upper form bound λ < 1, and (1.7) with the lower form bound
Λ > 0, then (4.4) holds with a constant C1 which does not depend on σ.

Proof of Theorem 4.1. The sufficiency part of statement (i) with C1 = C2/4 in
inequality (4.3) follows using integration by parts and Cauchy’s inequality: if σ =

div ~Γ, then

|〈σ, h2〉| = 2

∣

∣

∣

∣

∫

Rn

~Γ · ∇hh dx

∣

∣

∣

∣

≤ 2 ||h~Γ||L2(Rn)||∇h||L2(Rn) ≤ C ||∇h||2L2(Rn).

To deduce the remainder of the theorem, we apply part (ii) of Theorem 1.1 with
σ̃ := σ/(λ + ǫ), where λ is the upper form bound of σ, and ǫ > 0, so that the

corresponding upper form bound λ̃ of σ̃ satisfies λ̃ < 1. This yields the existence
of a weak solution Ψ ∈ L1,2

loc(R
n) of the multi-dimensional Riccati equation:

−∆Ψ = |∇Ψ|2 + σ̃ in D′(Rn).(4.5)

Using h2, where h ∈ C∞
0 (Rn), as a test function in this equation, and integrating

by parts, we estimate:
∫

Rn

h2 |∇Ψ|2dx = 2

∫

Rn

∇Ψ · ∇hh dx− 〈σ̃, h2〉

≤ 2 ||h∇Ψ||L2(Rn)||∇h||L2(Rn) + Λ̃ ||∇h||2L2(Rn),

where Λ̃ = Λ/(λ+ ǫ) is the lower form bound of σ̃. From this it follows:
∫

Rn

h2 |∇Ψ|2dx ≤ (1 +
√

Λ̃)2 ||∇h||2L2(Rn), for all h ∈ C∞
0 (Rn).(4.6)
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In other words, |∇Ψ| ∈ M(L1,2
0 (Rn) → L2(Rn)), where M(L1,2

0 (Rn) → L2(Rn))

is the space of pointwise multipliers from the homogeneous Sobolev space L1,2
0 (Rn)

into L2(Rn) defined in Sec. 2.1. Hence, σ̃ can be represented in the form

σ̃ = −div∇Ψ − |∇Ψ|2, |∇Ψ| ∈M(L1,2
0 (Rn) → L2(Rn)).

Moreover, one can deduce from (4.1) that ∆−1 σ̃ is well defined in the sense of the
weak-⋆ BMO convergence (see details in [MV06]):

∆−1(ψN σ̃)
weak−⋆
−→ ∆−1σ̃ ∈ BMO(Rn),

where ψN (x) = ψ(|x|/N), and ψ ∈ C∞
0 (R) is a standard cut-off function. It follows

from (4.6) that ∆−1 (|∇Ψ|2) ∈ BMO(Rn), and hence

Ψ = −∆−1 (|∇Ψ|2) − ∆−1σ̃ ∈ BMO(Rn).(4.7)

Thus, σ̃ can be represented in the form

σ̃ = div ~Γ, ~Γ = ∇∆−1 σ̃, in D′(Rn),(4.8)

where

∆−1 σ̃ = −Ψ − ∆−1 (|∇Ψ|2) ∈ BMO(Rn).(4.9)

To complete the proof of statements (ii) and (iii), it remains to verify

∇∆−1 σ̃ ∈M(L1,2
0 (Rn) → L2(Rn)).

Let
g = (−∆)−

1
2 |∇Ψ|2 ≥ 0.

In other words, g is the Riesz potential of order 1 of |∇Ψ|2, so that

|∇∆−1 (|∇Ψ|2)(x)| ≤ c(n) g(x) a.e. on Rn.

Since |∇Ψ| ∈M(L1,2
0 (Rn) → L2(Rn)), it follows (see Theorem 1.7 in [Ver99]) that

g ∈ M(L1,2(Rn) → L2(Rn)). Hence, ∇∆−1 (|∇Ψ|2) ∈ M(L1,2
0 (Rn) → L2(Rn)).

Thus,
~Γ = ∇∆−1 σ̃ ∈M(L1,2

0 (Rn) → L2(Rn)).

This is equivalent to (4.4), which completes the proof of the theorem. �

5. Semi-boundedness

Let Ω ⊆ Rn be an open set, and suppose A is a matrix function satisfying
(1.4). In this section, we will consider real-valued distributions σ ∈ D′(Ω) which
are semi-bounded; that is, the quadratic form of the operator H = −div(A∇·) − σ
is non-negative:

〈σ, h2〉 ≤

∫

Ω

(A∇h) · ∇h dx, for all h ∈ C∞
0 (Ω).(5.1)

It had been conjectured that a necessary and sufficient condition for (5.1) to

hold is the following condition: there exist ~Γ ∈ L2
loc

(Ω)n and a constant C > 0 so
that

σ ≤ div(~Γ), and

∫

Ω

|h|2|~Γ|2 dx ≤ C

∫

Ω

(A∇h) · ∇h dx for all h ∈ C∞
0 (Ω).

(5.2)

A simple estimate using integration by parts and Cauchy’s inequality in the form
(3.38) shows that condition (5.2) with C = 1

4 is sufficient for (5.1) to hold. However,
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it is not necessary, with any C > 0, for (5.1). We defer the proof of this fact
to Proposition 7.1 below. On the other hand, the following theorem provides a
characterization of semi-bounded distributions.

Theorem 5.1. Let Ω be an open set, and let σ ∈ D′(Ω) be a real valued distribution.
In addition, let A be a symmetric matrix function defined on Ω satisfying (1.4).

Then (5.1) holds if and only if there exists a vector field ~Γ ∈ L2
loc

(Ω) so that:

σ ≤ div(A~Γ) − (A~Γ) · ~Γ in D′(Ω).(5.3)

There is an extension of Theorem 5.1 to non-symmetric matrices A. Indeed the
necessity of the condition (5.3) extends to the non-symmetric case, see Proposition
5.3 below. On the other hand, a repetition of the proof of Lemma 3.12 shows: if
(5.3) holds, then (5.1) holds with a constant (M/m)2 introduced in the right hand
side. Here m and M are the ellipticity constants from (1.4).

Remark 5.2. The proof of Theorem 5.1 shows that (5.1) holds if and only if there
exist solutions to the differential inequality:

−div(A∇u) − (A∇u) · ∇u ≥ σ in Ω.(5.4)

The inequality in (5.4) cannot be strengthened to an equality for general distribu-

tions σ ∈ D′(Ω). Indeed, if there exists a solution v ∈ L1,2
loc(Ω) of the equation

−divA∇u = (A∇u) · ∇u+ σ in Ω,

then it follows that σ ∈ L−1,2
loc (Ω) + L1

loc(Ω). For instance, when n ≥ 3, one can
pick σ = −δx0

for x0 ∈ Ω, then obviously (5.1) holds but σ does not lie in the
aforementioned class. In fact, in the special case when σ is a measure, it is known
that σ ∈ L−1,2

loc (Ω) + L1
loc(Ω) if and only if σ does not charge sets of capacity zero

(see Theorem 2.1 of [BGO96]).

Let us now move onto proving the Theorem:

Proof of Theorem 5.1. The sufficiency of (5.3) for (5.1) is a repetition of the proof
of Lemma 3.11. The necessity of (5.3) is somewhat more involved, and follows from
Proposition 5.3 below. �

Proposition 5.3. Let Ω be an open set, with A a (possibly non-symmetric) matrix
function defined on Ω satisfying (1.4). Let σ ∈ D′(Ω) satisfying (5.1). Then there

exists ~Γ ∈ L2
loc

(Ω)n so that:

σ ≤ div(A~Γ) − (A~Γ) · ~Γ in D′(Ω).(5.5)

Proof of Proposition 5.3. Without loss of generality, we may assume that Ω is con-
nected. Otherwise, we simply repeat the argument which follows in each compo-
nent.
Step 1 (Approximation). Let Ωj be an exhaustion of Ω by bounded smooth con-
nected domains. Let λj ∈ (0, 1) be any sequence so that λj → 1, and:

ǫj < 1/2 min(d(Ωj , ∂Ωj+1), 2
−j).

Consider σj = λjφǫj
∗ σ, and denote by Aj = φǫj

∗ A. Then from Lemma 2.7, it
follows that σj satisfies:

∫

Ωj

|h|2dσj ≤ λj

∫

Ωj

Aj(∇h) · ∇h dx, for all h ∈ C∞
0 (Ωj).(5.6)
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In addition to (5.6), note that we can also estimate, for any h ∈ C∞
0 (Ωj):

∫

Ωj

|h|2dσj ≥ −||σj ||L∞(Ωj)

∫

Ωj

|h|2dx ≥ −C||σj ||L∞(Ωj)|Ωj |
2/n||∇h||22,(5.7)

the last inequality here follows from Sobolev’s inequality. By (1.4), we conclude
that:

∫

Ωj

|h|2dσj ≥ −C||σj ||L∞(Ωj)|Ωj |
2/n

∫

Ωj

Aj∇h · ∇h dx.(5.8)

From (5.6) and (5.8), we see that the hypothesis of Theorem 1.1 are satisfied in
Ωj with potential σj . It therefore follows from Theorem 1.1 that there exists vj ∈

L1,2
loc(Ωj) so that:

−div(Aj∇vj) = Aj∇vj · ∇vj + σj , in D′(Ωj).(5.9)

By addition of a suitable constant, we may assume that, for a fixed ball B ⊂⊂ Ω1:
∣

∣

∣

∫

B

vjdx
∣

∣

∣
= 1, for all j.(5.10)

Step 2 (A uniform bound). Fix 1 ≤ j ≤ k. Our aim is to show that vk ∈ L1,2
loc(Ωj),

with constants independent of k. Let h ∈ C∞
0 (Ωj), by testing the weak formulation

of vk in (5.9) with h2, we deduce from (1.4) that:

m

∫

Ωk

|∇vk|
2h2dx ≤M

∫

Ωk

2h|∇vk||∇h| −

∫

Ωk

h2dσk.

Applying Cauchy’s inequality in the first term on the right hand side:

m

∫

Ωk

|∇vk|
2h2dx ≤

m

2

∫

Ωk

|∇vk|
2h2dx+ 2

M2

m

∫

Ωk

|∇h|2dx−

∫

Ωk

h2dσk,

and hence, as λk ∈ (0, 1):
∫

Ωk

|∇vk|
2h2dx ≤ C

∫

Ωk

|∇h|2dx+ C|〈φǫk
∗ h2, σ〉|.(5.11)

Next from standard distribution theory (see e.g. [Str03], Chapter 8), it follows that:

|〈φǫk
∗ h2, σ〉| ≤ C,

for a constant C depending on σ, the support of h and ||∂αℓh||L∞ for some collection
of multi-indices α1, . . . , αN . (One can see this from either the structure theorem,
or by the definition of continuity). In conclusion, for any h ∈ C∞

0 (Ωj):
∫

Ωk

|∇vk|
2h2dx ≤ C(σ, h).(5.12)

This proves the claim that vk ∈ L1,2
loc(Ωj), with constants independent of k.

Step 3 (Conclusion). This will be quite similar to Section 3.4. Indeed, consider
first Ω1. Then from (5.12) and weak compactness, we find a subsequence vj,1 of

vj , and v1 ∈ L1,2
loc(Ω1) so that vj,1 → v1 weakly in L1,2

loc(Ω1). From (5.10) and an
application of Rellich’s theorem, the limit function v1 is not identically infinite.

Let ~G ∈ (L2(Ω1))
n ∩ L∞, with compact support in Ω1. Note:

∫

Ω

Aj,1∇vj,1 · ~Gdx =

∫

Ω

((Aj,1 −A)∇vj,1) · ~Gdx+

∫

Ω

A∇vj,1 · ~Gdx.(5.13)
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The first term on the right of (5.13) converges to zero as k → ∞. Indeed, one can
estimate:

∣

∣

∣

∫

Ω

((Aj,1 −A)∇vj,1) · ~G dx
∣

∣

∣

≤ ||~G||∞
(

∫

supp(~G)

|∇vj,1|
2dx

)1/2(
∫

supp(~G)

|Aj,1 −A|2dx
)1/2

,

and the right hand side converges to zero by (5.12) and standard properties of
approximate identities. For the second term on the right hand side of (5.13), note
that by weak convergence:

∫

Ω

A∇vj,1 · ~Gdx→

∫

Ω

A∇v1 · ~Gdx, as j → ∞.

It follows that, for all ~G ∈ (L2(Ω1))
n ∩ L∞, with compact support in Ω1,

∫

Ω

Aj,1∇vj,1 · ~Gdx→

∫

Ω

A∇v1 · ~Gdx, as j → ∞.(5.14)

It is not difficult to see that one can extend (5.14) for all ~G ∈ (L2(Ω1))
n, with com-

pact support in Ω1. In other words, that Aj,1∇vj,1 → A∇v1 weakly in L2
loc(Ω1)

n.
Let h ∈ C∞

0 (Ω1) so that h ≥ 0. We next claim that:

lim inf
j→∞

∫

Ω

(Aj,1∇vj,1) · ∇vj,1h dx ≥

∫

Ω

(A∇v1) · ∇v1h dx.(5.15)

To see this, denote by As the symmetric part of A, i.e. 2As = A+At. Then as be-
fore it follows (Aj,1)

s∇vj,1 → As∇v1 weakly in L2
loc(Ω1). In addition, by standard

properties of mollification, (Aj,1)
s → As in the weak-⋆ topology of L∞(Ω1). We

will repeatedly use the observation that the non-symmetric part does not contribute
toward the quadratic form. First note by weak convergence:
∫

Ω1

(A∇v1) · ∇v1hdx =

∫

Ω1

(As∇v1) · ∇v1hdx = lim inf
j→∞

∫

Ω1

(Aj,1)
s∇vj,1 · ∇v

1hdx.

By symmetry of the matrix (see (3.38)), we estimate for each j:
∫

Ω1

(Aj,1)
s∇vj,1 · ∇v

1hdx ≤
(

∫

Ω1

(Aj,1)
s∇vj,1 · ∇vj,1hdx

)1/2

·
(

∫

Ω1

(Aj,1)
s∇v1 · ∇v1hdx

)1/2

By taking the limit infimum of both sides, using the weak-⋆ convergence of the
convolution, one obtains (5.15). Here we are using the following elementary fact
for two bounded sequences (aj) and (bj):

If lim inf
j→∞

aj = a ≥ 0 and lim
j→∞

bj = b ≥ 0, then lim inf
j→∞

ajbj ≤ ab.

On the other hand, by standard properties of the convolution, and since λj → 1:

λj〈σ, φǫj
∗ h〉 → 〈σ, h〉, as j → ∞.

Keeping (5.9) and (5.14) in mind, we conclude that

−div(A∇v1) ≥ (A∇v1) · ∇v1 + σ in D′(Ω1).(5.16)
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For k ≥ 1, and given the sequence {vj,k−1}, a repetition of the above argument

yields a subsequence vj,k of vj,k−1 so that vj,k converges to vk ∈ L1,2
loc(Ωk) with:

−div(A∇vk) ≥ (A∇vk) · ∇vk + σ in D′(Ωk).(5.17)

Furthermore, as in Section 3.4, we may assert that vk = vk−1 in Ωk−1. One can

therefore define a function v ∈ L1,2
loc(Ω) so that

−div(A∇v) − (A∇v) · ∇v ≥ σ in D′(Ω).

To complete the proof, it suffices to let ~Γ = −∇v. �

6. The local regularity of solutions to the Schrödinger equation

with prescribed boundary values

The goal of this section is to apply the regularity techniques developed in this
paper to the recent work of Frazier, Nazarov and Verbitsky [FNV10]. The point
here is to prove regularity of a given solution with prescribed boundary values,
when we already know there exists a majorant of the given solution.

Let Ω ⊂ Rn be a bounded domain so that the boundary Harnack inequality is
valid (for instance a Lipschitz, or more generally a NTA domain). Let us now fix
x0 ∈ Ω, and let G(x, x0) be the Green’s function for the Laplace operator relative
to Ω. Then we define m(x) = min(1, G(x, x0)). If Ω is a C1,1 domain then m(x) is
pointwise comparable to dist(x, ∂Ω).

Let σ be a locally finite Borel measure in Ω. Then the following theorem is
proved:

Theorem 6.1. [FNV10] Suppose that σ satisfies the following embedding inequality:
∫

Ω

h2dσ ≤ λ

∫

Ω

|∇h|2dx, for all h ∈ C∞
0 (Ω),(6.1)

with 0 < λ < 1. In addition, suppose that there is a constant c > 0 so that:
∫

Ω

m(x) exp
( c

m(x)

∫

Ω

m(y)dσ(y)
)

dσ(x) <∞.(6.2)

Then there is a solution u1 of the equation:
{

−∆u1 = σu1 in Ω,

u1 = 1 on ∂Ω.
(6.3)

Conversely, if there is a solution of (6.3), then (6.2) holds for a positive constant
c = c(Ω), and (6.1) holds with λ = 1.

The solution constructed in Theorem 6.1 is interpreted in the potential theoretic
sense, i.e., u1 ∈ L1(Ω,mdσ), and

u1(x) =

∫

Ω

G(x, y)u1(y) dσ(y) + 1.

If Ω is a bounded C1,1 domain then u1 ∈ L1(Ω, dx)∩L1(Ω,mdσ), and is a solution
to (6.3) in the very weak sense (see [FNV10]).

Our primary result in this section is the following:

Theorem 6.2. Consider the solution u1 of (6.3) constructed in Theorem 6.1, then:

u1 ∈ L1,2
loc

(Ω).(6.4)
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Proof. Let Ωj be a exhaustion of Ω by smooth domains. Let φj ∈ C∞
0 (Ω) be such

that φj ≡ 1 on Ωj and 0 ≤ φj ≤ 1. Note that (as in Lemma 2.6) φjσ ∈ L−1,2(Ω).
Since (6.1) holds with constant 0 < λ < 1, we follow a similar argument to Section
3.1, using the Lax-Milgram lemma to obtain a unique vj ∈ L1,2(Ω) satisfying:

{

−∆vj = φjσvj ∈ Ω,

vj − 1 ∈ L1, 2
0 (Ω).

(6.5)

Note here that vj+1 ≥ vj .
Let B(x, 2r) ⊂⊂ Ω. By repeating the proof of Lemma 3.3, we deduce that there

is a constant C = C(n) so that:
∫

B(x,r)

|∇vj |
2 dx ≤

C

r2

∫

B(x,2r)

v2
j dx.(6.6)

From (6.6), one asserts, as in displays (3.15) through (3.17):
(

−

∫

B(x,r)

v
2n/(n−2)
j dx

)(n−2)/2

≤ C−

∫

B(x,2r)

v2
j dx.(6.7)

Since (6.7) holds for all balls B(x, 2r) ⊂⊂ Ω, we see that the hypothesis of Lemma
2.4 are valid. Applying the lemma with t < n/(n−2), one finds a constant C(t) > 0
so that:

(

−

∫

B(x,r)

v2
jdx

)1/t

≤ C(t)
(

−

∫

B(x,2r)

vt
jdx

)1/t

.(6.8)

Combining (6.8) with (6.6), we conclude:
∫

B(x,r)

|∇vj |
2dx ≤ C(t)rn−2

(

−

∫

B(x,2r)

vt
j dx

)1/t

.(6.9)

We now wish to show that vj ≤ u1. For a locally finite measure σ, denote by
Gσ(x, y) the minimal Green’s function of −∆ − σ (see [FV10]), i.e. the minimal
positive solution u(·, y) of the equation

−∆u(·, y) − σ u(·, y) = δy, y ∈ Ω.

Then u1 = 1 +
∫

Ω Gσ(x, y)dσ(y), and vj = 1 +
∫

Ω Gφjσ(x, y)φj(y)dσ(y) (recall

φjσ ∈ W−1,p′

(Ω), so this representation coincides with the unique solution). By
construction Gσ is monotone in σ (it can be represented by a Neumann series), and
since φjσ ≤ σ, it therefore follows that vj ≤ u1, for each j. Here u1 is as defined in
(6.3). Thus, from (6.9):

∫

B(x,r)

|∇vj |
2dx ≤ Crn−2

( 1

|B(x, 2r)|

∫

B(x,2r)

ut
1dx

)2/t

.(6.10)

Letting t < n/(n−2), and recalling the weak Harnack inequality (valid since σ ≥ 0),
we deduce the estimate:

∫

B(x,r)

|∇vj |
2 dx ≤ Crn−2

(

inf
B(x,r)

u1

)2

.(6.11)

Using (6.11), we readily deduce that there exists v ∈ L1,2
loc(Ω), so that vj increases

to v, and vj → v weakly in L1,2
loc. Furthermore, as in the proof of Proposition 3.2:

−∆v = σ v in D′(Ω).(6.12)
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Since vj ≤ u1, it follows v ≤ u1. On the other hand, we see that v = 1 on ∂Ω in
the potential theoretic sense. Indeed, with G(µ) denoting the Green’s function of
the Laplacian relative to Ω applied to µ, we see by (6.12) that:

v = G(σv) + h,(6.13)

where h is the greatest harmonic minorant of v. Clearly, h ≥ 1. On the other hand,
since v ≤ u1,

h− 1 ≤ v − 1 ≤ u1 − 1 = G(σu1).

Thus h− 1 is a nonnegative harmonic minorant of G(σu1). However, by the Riesz
decomposition theorem, the greatest harmonic minorant of G(σu1) is zero. Thus
h ≡ 1, and v = 1 on ∂Ω in the potential theoretic sense.

By minimality of u1, it thus follows that v = u1, and u1 ∈ L1,2
loc(Ω). �

7. Examples

Our first result in this section completes our discussion of the condition (5.2),
and that it does not provide a characterization of distributions satisfying (5.1).

Proposition 7.1. Let Ω = Rn, and A be the n × n identity matrix. Let σ be the
radial potential defined by:

σ(x) = cos r +
n− 1

r
sin r − sin2 r, r = |x|, x ∈ Rn.

Then σ satisfies (5.1), but cannot be represented in the form (5.2).

Proof. We first consider the case n = 1 and Ω = R+ = (0,+∞). Note that a
criterion of form boundedness takes the form [MV02a], [MV02b]: σ = Γ′ where

∫ ∞

a

|Γ|2dx ≤
C

a
, a > 0.(7.1)

Let σ = cosx− sin2 x. Then σ is semibounded by (5.3), i.e.,
∫

R+

h2 σ dx ≤

∫

R+

|h′|2 dx, h ∈ C∞
0 (R+),

but σ cannot be represented in the form

σ = Γ′ − µ, µ ≥ 0,(7.2)

where Γ satisfies (7.1) with any C > 0.
In fact, even a weaker condition

∫ a+1

a

|Γ(x)| dx = o(1) as a→ +∞(7.3)

cannot be satisfied if σ is of the form (7.2).
Indeed, suppose

cosx− sin2 x = Γ′ − µ, µ ≥ 0,(7.4)

Then

Γ(x) = sinx

(

1 +
1

2
cosx

)

−
x

2
+ φ(x),

where φ(x) is nondecreasing on R+.
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Let α0 = arccos
√

5−1
2 ≈ .904 < 1 so that cosα − sin2 α ≥ 0 for −α0 ≤ α ≤ α0,

and consequently Γ is nondecreasing in the interval [2πn− α0, 2πn+ α0]. Hence,
for a = α0

2 , it follows that

Γ(a+ 2πn) − Γ(2πn)

= sin a

(

1 +
1

2
cos a

)

−
a

2
+ φ(a + 2πn) − φ(2πn)

≥ sina

(

1 +
1

2
cos a

)

−
a

2
= C,

where C is independent of n. Here C > 0 since sinx
(

1 + 1
2 cosx

)

− x
2 is increasing

on (−α0, α0) and equals zero at the origin.
On the other hand, for α = a+ 2πn we have:

Γ(α) ≤
2

α0

∫ α+a

α

Γ(x) dx ≤
2

α0

∫ α+1

α

|Γ(x)| dx.

Similarly,

Γ(2πn) ≥
2

α 0

∫ 2πn

−a+2πn

Γ(x) dx.

Hence,

Γ(a+ 2πn) − Γ(2πn) ≤
2

α0

∫ a+2πn+1

a+2πn

|Γ(x)| dx +
2

α0

∫ −a+2πn+1

−a+2πn

|Γ(x)| dx.

By (7.3) the right-hand side of the preceding inequality tends to zero as n→ +∞.
This contradicts the estimate

Γ(a+ 2πn) − Γ(2πn) ≥ C > 0

obtained above.
We now are in a position to consider the multi-dimensional case Ω = Rn, n ≥ 3.

Let

σ = cos r +
n− 1

r
sin r − sin2 r, r = |x|, x ∈ Rn.(7.5)

Then by (5.3) with Γ = x
r sin r it follows that (5.1) holds.

Note that sin r
r satisfies the inequality
∣

∣

∣

∣

∫

Rn

h2 sin r

r
dx

∣

∣

∣

∣

≤ C ||∇h||2L2(Rn), h ∈ C∞
0 (Rn).(7.6)

Indeed, using polar coordinates and integration by parts, we obtain
∣

∣

∣

∣

∣

∫

Sn−1

∫

R+

h(rξ)2
sin r

r
rn−1drdξ

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Sn−1

∫

R+

2h(rξ)∇h(rξ) · ξ
cos r

r
rn−1 drdξ

∣

∣

∣

∣

∣

+(n− 2)

∣

∣

∣

∣

∣

∫

Sn−1

∫

R+

cos r h2(rξ) rn−3 drdξ

∣

∣

∣

∣

∣

≤ 2

(
∫

Rn

h(x)2

r2
dx

)
1
2

||∇h||L2(Rn)

+(n− 2)

∫

Rn

h(x)2

r2
dx ≤ C ||∇h||2L2(Rn),

by Cauchy’s inequality and Hardy’s inequality. Thus, (7.6) holds.
It remains to show that

σ1 = cos r − sin2 r
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does not satisfy the inequality
σ1 ≤ div Γ,

whenever Γ obeys (5.2), or equivalently (see [MV02a]), div Γ is form bounded. We
note that as was proved in [MV02a], we may always pick Γ = ∇Φ where div Γ = ∆Φ,
and

∫

Rn

h2 |∇Φ|2 dx ≤ C ||∇h||2L2(Rn), h ∈ C∞
0 (Rn),(7.7)

for some C independent of h.
Suppose now that

σ1 ≤ ∆Φ,(7.8)

where Φ satisfies (7.7). Since σ1 is radially symmetric, it follows by using the average
of Φ over the unit sphere that (7.8) holds with a radially symmetric Φ0(x) = φ(r)
so that

σ1(r) ≤ φ′′(r) +
n− 1

r
φ′(r), r > 0.

Moreover,

φ′(r) =
1

|Sn−1|

∫

Sn−1

n
∑

k=1

∂Φ

∂xk
(rξk) ξk dξ,

and hence

|φ′(r)|2 ≤
1

|Sn−1|

∫

Sn−1

|∇Φ(rξ)|2 dξ.

From this and (7.7) with a radially symmetric test function h, we deduce
∫

R+

h2(r) |φ′(r)|2 rn−1dr ≤
1

|Sn−1|

∫

Sn−1

∫

R+

|∇Φ(rξ)|2 h2(r) rn−1drdξ

≤ C

∫

R+

|h′(r)|2 rn−1 dr.

Consequently,
∫ a

0

|φ′(r)|2 rn−1 dr ≤ C an−2, a > 0.

We now let ψ(r) = φ′(r). It follows from the preceding estimate that
∫ a+1

a

|ψ(r)| dr ≤ C a−
1
2 , a > 0.

This implies
∫ +∞

a

|ψ(r)|

r
dr ≤ C a−

1
2 , a > 0.

Next, denote by g(r) the function:

g(r) = ψ(r) − (n− 1)

∫ +∞

r

ψ(r)

r
dr.

It is easy to see that g satisfies the same inequality as ψ:
∫ a+1

a

|g(r)| dr ≤ C a−
1
2 , a > 0.

Furthermore,

g′(r) = ψ′(r) +
n− 1

r
ψ(r) = φ′′(r) +

n− 1

r
φ(r) = ∆Φ(x).
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Thus,
σ1(r) = cos r − sin2 r ≤ g′(r), r > 0,

where g satisfies the condition
∫ a+1

a

|g(r)| dr = o(1), a→ +∞.

Hence, by the one-dimensional example on R+ considered above with g = Γ, we
arrive at a contradiction. �

In the following example we consider non-symmetric operators, with the aim
to show that the non-symmetric part can effect the constant appearing in the
form bound. In Theorem 1.1, it was shown that when one has a solution to the
Schrödinger equation (1.1), or Riccati equation (1.3), whose operator A is non-
symmetric, then σ satisfies (1.6) with λ depending on the ellipticity constants (1.4).
This example shows that such a conclusion is not artificial:

Example 7.2. Let n = 3, and suppose A = I+B, where B has zero entries except
for b1,2 = Ca(x1) for a constant C, and a(x1) a Lipschitz continuous function.
Suppose in addition b2,1 = −b1,2. If u(x) = 1 + |x|2, then u solves:

−div(A∇u) = σu(x), with σ =
−6 + 2x2Ca

′(x1)

1 + |x|2

On the other hand:
A(ξ) · ξ = |ξ|2.

It follows that in the case of non-symmetric matrices A, the constant in statement
(iii) of Theorem 1.1 depends on the constant C, and hence the operator A.

The next example (which is well known) demonstrates the sharpness of our
primary theorem for Schrödinger type equations. In particular we confirm the
assertions made in the introduction.

Example 7.3. Consider positive solutions u of:
{

−∆u = c
|x|2u in Rn,

infRn u = 0,
(7.9)

with c ≤ (n − 2)2/4. It is well known that (7.9) has positive solutions (up to
constant multiple) of the form u±(x) = |x|α± , where:

α± =
2 − n

2
±

1

2

√

(n− 2)2 − 4c.(7.10)

If c < (n − 2)2/4, then by Hardy’s inequality it follows that (1.6) holds with
0 < λ < 1. For 0 < c < (n − 2)2/4 we see that by choosing α+, there exists a

solution u+ ∈ L1,2
loc(Ω) of (7.9). Taking c arbitrarily close to (n− 2)2/4, we see that

the existence of a solution u+ ∈ L1,2
loc(Ω) of (7.9) is the optimal local regularity.

The same example shows that solutions need not be locally bounded, and therefore
positive solutions of (7.9) do not satisfy the Harnack inequality.

Choosing α− in (7.10), it follows that there exist positive solutions u− ∈ L1,1
loc(R

n)

of (7.9), which are not in L1,2
loc(R

n).
Finally, let c = (n− 2)2/4 in (7.9). The resulting unique positive solution does

not lie in L1,2
loc(R

n). This latter point shows the assumption 0 < λ < 1 in (1.6)
is necessary in order to prove statement (i) of Theorem 1.1. We remark that the
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uniqueness of the positive superharmonic solution in this case is known even for
quasilinear generalizations of (7.9), see [PS05].
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