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1. Introduction

During the last thirty years, in the works by R. Hunt, R. Wheeden, A. Calderón,
E. Fabes, B. Dahlberg, D. Jerison, C. Kenig, J. Pipher, G. Verchota et al., consid-
erable progress has been made in the study of elliptic boundary-value problems
on Lipschitz and more general non-tangentially accessible domains (see [Ken] for
a comprehensive survey of this development). In particular, classes of solvability
and estimates of solutions received considerable attention in this area.

The new issue we address in the present paper is an explicit description of
the asymptotic behavior of solutions near a point O of the Lipschitz boundary. As
corollaries of this description new results on the boundary behavior of solutions to
linear and non-linear elliptic equations in convex domains are obtained.

We consider the Lipschitz graph domain

G = {
x = (x ′, xn) ∈ Rn : xn > ϕ(x ′)

}
,

where ϕ(0) = 0. The sole a priori assumption on the function ϕ is the smallness of
its Lipschitz constant. We study solutions of an arbitrary strongly elliptic equation
of order 2m with constant complex-valued coefficients

L(∂x)u(x) = f(x) on B3 ∩ G (1)

complemented by zero Dirichlet data on (B3 ∩ ∂G) \ O. Here and elsewhere
Bρ = {x : |x| < ρ} and by ∂x we mean the vector of partial derivatives
(∂x1 , . . . , ∂xn ). We suppose that the operator L has no lower-order terms and
the coefficient in ∂2m

xn
is equal to (−1)m .
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In Theorem 1 we prove the existence of a solution z of the homogeneous
equation (1) which admits the asymptotic representation

z(x) = exp





−

∫

|x|<|y′|<1

ϕ(y′)∂m
yn

E(y′, 0)dy′ + O

( 1∫

|x|
�2(ρ)

dρ

ρ

)





×





(xn − ϕ(x ′))m + O




|x|m+1−ε

( 1∫

|x|
�(ρ)

dρ

ρ2−ε
+ 1

)









. (2)

Here ε is a positive constant,

�(ρ) = sup
|y′|<ρ

|∇ϕ(y′)| , (3)

and E is the Poisson solution of the equation L(∂x)E(x) = 0 in the upper half-space
R

n+, which is positive homogeneous of degree m − n and subject to the Dirichlet
conditions on the hyperplane xn = 0:

∂ j
xn

E = 0 for 0 ≤ j ≤ m − 2 , and ∂m−1
xn

E = δ(x ′) , (4)

where δ is the Dirac function.
In Theorem 2 we claim that a multiple of z is the main term in the asymptotic

representation of an arbitrary solution u if both u and f are subject to mild growth
conditions near O. The class of solutions dealt with in Theorem 2 includes those
having a finite Dirichlet integral.

Further, solutions with a singularity at O are studied. In Theorem 3 we present
a solution Z of the homogeneous equation (1) which is subject to the asymptotic
formula

Z(x) = exp






∫

|x|<|y′|<1

ϕ(y′)∂m
yn

E(y′, 0)dy′ + O

( 1∫

|x|
�2(ρ)

dρ

ρ

)





×





E(x ′, xn − ϕ(x ′)) + O




|x|m−n+1−ε

( 1∫

|x|
�(ρ)

dρ

ρ2−ε
+ 1

)









. (5)

Theorem 4, similar in spirit to Theorem 2, contains conditions on f and u
ensuring the asymptotic relation u ∼ CZ, where C is a constant factor.

Clearly, the asymptotic formulae (2) and (5) can be simplified under additional
conditions on �(ρ). Let, in particular,

∫ 1

0
�2(ρ)

dρ

ρ
< ∞ .

Then, in the special case of the polyharmonic equation (−∆)mu = 0 on B3 ∩ G,
any solution u satisfying |u(x)| = O(|x|m−n−1+ε) is subject to the following
alternatives:
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either

u(x) ∼ C
(xn − ϕ(x ′))m

|x|n exp
{

m
Γ(n/2)

πn/2

∫

|x|<|y′|<1
ϕ(y′)

dy′

|y′|n
}

(6)

or

u(x) ∼ C(xn − ϕ(x ′))m exp

{
− m

Γ(n/2)

πn/2

∫

|x|<|y′|<1
ϕ(y′)

dy′

|y′|n
}

(7)

(see Example 2 in Sect. 5.3).
Proofs of the results mentioned rely upon our recent paper [KM3] on the

asymptotic behavior near the origin of solutions to the Dirichlet problem for elliptic
equations with variable coefficients in Rn+.

In Sect. 6 we consider the Dirichlet problem for elliptic equations in plane
convex domains. The results obtained here were formulated in [KM2].

Boundedness of the first derivatives of solutions to the Dirichlet problem for the
Poisson equation in any n-dimensional convex domain is a classical fact. Also, it is
well known that the convexity of the domain implies the square summability of the
second derivatives of solutions to the same problem ([L], [Kad]). Both properties
fail in the presence of re-entrant corners. Recently, considerable progress was made
in the study of other differentiability properties of solutions to the Poisson equation
in arbitrary convex domains [A], [AJ], [F], [FJ]. But to our knowledge, no results
of the same nature have been obtained for higher-order elliptic equations so far.

We study solutions to the Dirichlet problem for elliptic equations of order
2m with constant coefficients in an arbitrary bounded plane convex domain Ω.
We prove that the m-th order derivatives of these solutions are bounded if the
coefficients of the equation are real. In the case of strongly elliptic operators with
complex coefficients we obtain the same result under the additional (and also
necessary in general) assumption that the angles on ∂Ω are sufficiently close to π.
As a corollary we establish the boundedness of the gradient of the velocity vector
satisfying the Navier–Stokes system, as well as the boundedness of the second
derivatives of solutions to the Dirichlet problem for the system of von Kármán
equations in Ω.

2. Preliminaries

2.1. Function spaces

Let 1 < p < ∞ and let Wm,p
loc (G \ O) denote the space of functions u defined on

G and such that ηu ∈ Wm,p(G) for all smooth η with compact support in G \ O.
Also let

◦
W

m,p

loc (G \ O) be the subspace of Wm,p
loc (G \ O), which contains functions

subject to

∇k u = 0 on ∂G \ O for k = 0, . . . , m − 1, (8)
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where ∇ku is the vector {∂α
x u}|α|=k. We introduce a family of seminorms in

◦
W

m,p

loc (G \ O) by

Mm
p (u; Gar,br) =

( m∑

k=0

∫

Gar,br

|∇ku(x)|p|x|pk−ndx

)1/p

, r > 0, (9)

where Gρ,r = {x ∈ G : ρ < |x| < r}, a and b are positive constants, a < b. One
can easily see that (8) implies the equivalence ofMm

p (u; Gar,br) and the seminorm

(∫

Gar,br

|∇mu(x)|p|x|pm−ndx

)1/p

.

With another choice of a and b we arrive at an equivalent family of seminorms.
Clearly,

Mm
p (u; Ga′r,b′r) ≤ c1(a, b, a′, b′)

∫ b′r/a

a′r/b
Mm

p (u; Gaρ,bρ)
dρ

ρ
, (10)

where c1 is a continuous function of its arguments.
We say that a function v belongs to the space

◦
W

m,q

comp(G \ O), pq = p + q, if

v ∈ ◦
W

m,q

loc (G \ O) and v has a compact support in G \ O. By W−m,p
loc (G \ O) we

denote the dual of
◦

W
m,q

comp(G \ O) with respect to the inner product in L2(G). We

supply W−m,p
loc (G \ O) with the seminorms

M
−m
p ( f ; Gar,br) = sup

∣∣∣
∫

G
f v |x|−ndx

∣∣∣ , (11)

where the supremum is taken over all functions v ∈ ◦
W

m,q

comp(G \ O) supported by
ar ≤ |x| ≤ br and such thatMm

p (v; Gar,br) ≤ 1. By a standard argument it follows
from (10) that

M
−m
p ( f ; Ga′r,b′r) ≤ c2(a, b, a′b′)

∫ b′r/a

a′r/b
M

−m
p ( f ; Gaρ,bρ)

dρ

ρ
, (12)

where c2 depends continuously on its arguments.
In the case G = Rn+ we shall denote Gr,ρ by Kr,ρ , i.e. Kr,ρ = {x ∈ Rn+ : ρ <

|x| < r}.

2.2. A mapping of Rn+ to G and its properties

Let ϕ be the Lipschitz function used in the definition of the domain G. We need
the extension of ϕ to Rn+ given by

Φ(ξ) =
∫

Rn−1
ν(τ)ϕ(τξn + ξ ′)dτ , (13)
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where ν(τ) = c exp((|τ|2 − 1)−1) for |τ| ≤ 1 and ν(τ) = 0 for |τ| > 1. The
constant c is chosen to satisfy

∫

Rn−1
ν(τ)dτ = 1. (14)

Clearly, the function Φ is continuous in Rn+ and belongs to C∞(Rn+), and also

∂x j = ∂ξ j − ∂ξ j Φ

1 + ∂ξn Φ
∂ξn . (15)

We introduce the mapping Rn+ 	 ξ → x = x(ξ) ∈ G by

x ′ = ξ ′ , xn = ξn + Φ(ξ). (16)

Lemma 1. Let the function � be defined by (3). The mapping (16) has the following
properties:

(i) Φ(ξ ′, 0) = ϕ(ξ ′) and |Φ(ξ) − ϕ(ξ ′)| ≤ c�(
√

2|ξ|)ξn.
(ii) For every ξ ∈ Rn+,

|Φ(ξ)| ≤ c�(
√

2|ξ|)|ξ|, (17)

with c independent of ξ .
(iii) For every ξ ∈ Rn+ and multi-indices α, |α| ≥ 1,

∣∣∂α
ξ Φ(ξ)

∣∣ ≤ cα�(
√

2|ξ|)ξ1−|α|
n , (18)

where the constants cα do not depend on ξ .
(iv) Let sup � < 1. Then transformation (16) is a bi-Lipschitz isomorphism of Rn+

onto G.
(v) Let u ∈ ◦

W
l,p

loc(G \O), where 1 < p < ∞ and l = 0, 1, . . . Suppose that sup �

does not exceed a sufficiently small absolute constant depending on n. Then

the function v(ξ) = u(x(ξ)) belongs to
◦

W
l,p

loc(R
n+ \ O) and, for r > 0,

‖v‖Wl,p (Ke−1r,r ) ≤ c‖u‖Wl,p(Ge−2r,er ), (19)

where c is a constant depending on n, l and p.
(vi) Let f ∈ W−l,p

loc (G \ O), where 1 < p < ∞ and l = 0, 1, . . . Suppose that
sup � does not exceed a sufficiently small constant depending on n. Then the
function g(ξ) = u(ξ ′, ξn + Φ(ξ)) belongs to W−l,p

loc (Rn+ \ O) and, for r > 0,

‖g‖W−l,p(Ke−1r,r ) ≤ c‖ f ‖W−l,p(Ge−2r,er ), (20)

where c is a constant depending on n, l and p.
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Proof. The assertion (i) is a direct consequence of (14) and the continuity of Φ.
Since

sup
|τ |≤1

|τξn + ξ ′|2 ≤ 2|ξ|2 ,

(ii) follows from (13). We turn to (iii). Using

∂ξ j ϕ(τξn + ξ ′) = ξ−1
n ∂τ j ϕ(τξn + ξ ′)

and

∂ξn ϕ(τξn + ξ ′) = ξ−1
n

n−1∑

j=1

τ j∂τ j ϕ(τξn + ξ ′),

we obtain

∂α
ξ Φ(ξ) = ξ1−|α|

n

n−1∑

j=1

∫

Rn−1
να j(τ)ϕ

( j)(τξn + ξ ′)dτ, (21)

where να j are smooth functions with supports in {ξ ′ : |ξ ′| ≤ 1} and ϕ( j)(ξ ′) =
∂ξ j ϕ(ξ ′). By

sup
|τ |≤1

|ϕ( j)(τξn + ξ ′)| ≤ ρ(
√

2|ξ|)
and by (21) we arrive at (18).

(iv) By (i) the restriction of (16) to ξn = 0: x ′ = ξ ′, xn = ϕ(ξ ′) maps ∂Rn+ into ∂G.
If ξn > 0 then

∂ξn xn(ξ) = 1 +
∫

Rn−1
ν(τ)

n−1∑

j=1

τ jϕ
( j)(τξn + ξ ′)dτ.

Therefore, |∂ξn xn(ξ) − 1| ≤ sup �. Hence, ∂ξn xn(ξ) ≥ 1 − sup �. Thus the function
xn(ξ) increases with respect to ξn . This proves that (16) is a one-to-one mapping
from Rn+ to G. Since |∂ξnΦ| ≤ sup �, the Jacobi matrix of transformation (16) is
invertible. This implies that the inverse mapping to (16) is Lipschitz.

(v) Let x and ξ be related by (16). Then |ξ|/e ≤ |x| ≤ e|ξ|. Let x → ξ = ξ(x) be
the inverse of (16). Clearly, ξ(Ke−1,r) ⊂ Ge−2r,er and by (iv) we have

‖v‖L p(Ke−1r,r ) ≤ c‖u‖L p(Ge−2r,er ). (22)

Using (18) we obtain, for l ≥ |α| ≥ 1,
∣∣∂α

ξ v(ξ)
∣∣ ≤ c

∑

β≤α

ξ−|α−β|
n |u(β)(x(ξ))|, (23)

where u(β)(x) = ∂
β
x u(x). Taking into account that u ∈ ◦

W
l,p

loc(G \ O) we can use
Hardy’s inequality

(∫

Ke−1r,r

(
ξ |β|−l

n |u(β)(x(ξ))|)p
dξ

)1/p

≤ c‖u‖Wl,p(Ge−2r,er ),

which, being combined with (22) and (23), leads to (19).
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(vi) Using (15) and (18) we check the estimate
∣∣∂α

x u(x)
∣∣ ≤ c

∑

β≤α

(xn − ϕ(x ′))−|α−β||v(β)(ξ(x))| ,

where v(β)(ξ) = ∂
β
ξ v(ξ). Now, reasoning in the same way as in (v), one obtains

‖u‖Wl,p(Ge−1r,r ) ≤ c‖v‖Wl,p(Ke−2r,er ) ,

which implies (20) by duality. The lemma is proved. ��

2.3. Transformation of the Dirichlet problem

Although we are interested in the local behavior of solution to equation (1) near
the origin, we assume (to simplify the notation) that the solutions are extended to
G as functions from

◦
W

m,p

loc (G \ O). This implies that f is also extended to G as an
element of W−m,p

loc (G \ O).
In order to give a weak formulation of the boundary-valueproblem we represent

the operator L(∂x) as

L(∂x) = (−1)m
∑

|α|,|β|=m

Lαβ∂α+β
x .

We suppose that f ∈ W−m,p
loc (G \ O), p ∈ (1,∞), and consider a weak solution u

of (1) in the space
◦

W
m,p

loc (G \ O). This means that
∫

G

∑

|α|,|β|=m

Lαβ∂β
x u(x)∂α

x v(x)dx =
∫

G
f v(x)dx, (24)

for all v ∈ ◦
W

m,q

comp(G \ O), pq = p + q. We characterize u and f by the functions
Mm

p (u; Gar,br) andM−m
p ( f ; Gar,br).

Since the functional determinant of mapping (16) is equal to 1 + ∂ξn Φ, the
variational equation (24) written in the new variables takes the form

∫

R
n+

∑

|α|,|β|=m

Lαβ∂α
x U(ξ)∂β

x V (ξ)(1 + ∂ξn Φ(ξ))dξ

=
∫

R
n+

f(x(ξ))V (ξ)(1 + ∂ξn Φ(ξ))dξ, (25)

with ∂x acting by (15), for all functions V ∈ ◦
W

m,q

comp(R
n+ \ O). Clearly, the solution

u of problem (24) is connected with the solution U of (25) by U(ξ) = u(x(ξ)).
Using (15) we define the sesquilinear form

∫

R
n+

∑

|α|,|β|≤m

Lαβ(ξ)∂α
ξ U(ξ)∂

β
ξ V (ξ)dξ

:=
∫

R
n+

∑

|α|,|β|=m

Lαβ∂α
x U(ξ)∂β

x V (ξ)(1 + ∂ξn Φ(ξ))dξ . (26)
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Thus, the Dirichlet problem (1) and (8) has been reduced to

L(ξ, ∂ξ )U(ξ) = F(ξ) in Rn+ (27)

∂k
ξn

u = 0 on ∂Rn+ \ O for k = 0, . . .m − 1, (28)

where F(ξ) = f(x(ξ))(1 + ∂ξnΦ(ξ) and

L(ξ, ∂ξ )U(ξ) =
∑

|α|,|β|≤m

(−∂ξ)
β
(
Lαβ(ξ)∂α

ξ U(ξ)
)
.

3. A particular solution to the homogeneous equation (1)

3.1. Formulation of the result

Theorem 1. Assume that the function � defined by (3) does not exceed a sufficiently
small constant depending on m, n, p and the coefficients Lαβ . There exist positive
constants c and C depending on the same parameters such that the following
assertion holds.

There exists z ∈ ◦
W

m,p

loc (G \ O) subject to L(∂x)z = 0 on G ∩ Bn
3 and satisfying

∂α
x z(x) = exp

(
−
∫ 1

|x|
Ξ(ρ)

dρ

ρ
+ ℘(x)

)

×
(

δ0
α′

m!
(m − |α|)! (xn − ϕ(x ′))m−|α| + |x|m−|α|Vα(x)

)
, (29)

where α = (α′, αn), |α| ≤ m, |x| < 1. The function Ξ is defined by

Ξ(ρ) = ρ

∫

|y′|=ρ

ϕ(y′)∂m
yn

E(y′, 0)dsy′ , (30)

and the function ℘ is subject to the inequalities

|℘(x)| ≤ c
∫ 3

|x|
�(ρ)2 dρ

ρ
. (31)

and

|∇℘(x)| ≤ c�(2|x|)
∫ 3

|x|
eC

∫ ρ
|x| �(s) ds

s �(ρ)
dρ

ρ2
. (32)

The functions Vα belong to
◦

W
1,p

loc (G \ O) and satisfy
(

r−n
∫

Gr/e,r

((
1 − δm

|α|
)|x||∇Vα(x)| + |Vα(x)|)p

dx

)1/p

(33)

≤ cr

{ ∫ 3

r
exp

(
C

∫ ρ

r
�(s)

ds

s

)
�(ρ)

ρ2
dρ + exp

(
C

∫ 3

r
�(ρ)

dρ

ρ

)}
,

where r < 1.

The remaining part of this section deals with the proof of Theorem 1.
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3.2. Preliminary version of the asymptotic formula (29)

Since z ∈ ◦
W

m,p

loc (G \ O), it suffices to obtain formula (29) for x in a small neigh-
borhood of the origin.

Owing to Lemma 1 (i) and (16) we note that

xn − ϕ(x ′) = ξn(1 + O(�(
√

2|ξ|))) (34)

and

|x| = |ξ|(1 + O(�(
√

2|ξ|))) . (35)

The smallness assumption on sup �, along with (18), implies

Ω�(r) := sup
|ξ|<r

( ∑

|α|=|β|=m

|Lαβ(ξ) − Lαβ| +
∑

|α+β|<2m

ξ2m−|α+β|
n |Lαβ(ξ)|

)

≤ c�(
√

2r) . (36)

Hence, Ω does not exceed a sufficiently small constant depending on m, n,
p and Lαβ , which is one of the conditions of Theorem 1 in [KM3]. We put
z(x) = Z(ξ(x)) where Z is the solution of the equation L(ξ, ∂ξ)Z(ξ) = 0 in
R

n+ ∩ Bn
e from Theorem 1(i) in [KM3]. By Corollary 5 in [KM3], for |ξ| < 1 there

holds

∂α
ξ Z(ξ) = c exp

(
−
∫ 1

|ξ|
Θ(ρ)

dρ

ρ
+ Ψ �(|ξ|)

)

×
(

δ0
α′

m!
(m − |α|)!ξ

m−|α|
n + |ξ|m−|α|vα(ξ)

)
. (37)

Here the function Θ is given by

Θ(ρ) = ρn
∫

Sn−1+

∑

|α|=|β|=m

(Lα,(0′,m)(ξ) − Lα,(0′,m))E(α)(ξ)dθξ

+ ρn
∫

Sn−1+

∑

|α|+k<2m

Lα,(0′,k)(ξ)
ξm−k

n

(m − k)! E(α)(ξ)dθξ, (38)

with ρ = |ξ|, θ = ξ/|ξ|. The function Ψ � satisfies the inequalities

|Ψ �(r)| ≤ c
∫ 2

r
�(ρ)2 dρ

ρ
, (39)

and

|∂rΨ
�(r)| ≤ c�(

√
2r)

∫ 2

r
eC

∫ ρ
r �(s) ds

s �(ρ)
dρ

ρ2
. (40)

The function vα is subject to
(

r−n
∫

Kr/e,r

(r|∇vα(x)| + |vα(x)|)pdx

)1/p

≤ cr1−ε

∫ 2e

r
�(ρ)

dρ

ρ2−ε
, (41)

for r < 1 and |α| < m. The term r|∇vα(x)| should be removed if |α| = m.
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3.3. Transformation of the exponential in (37)

By (26) we can rewrite (38) as

m!ρ−nΘ(ρ) =
∫

Sn−1+

∑

|α|=|β|=m

Lαβ∂β
x ξm

n ∂α
x E(ξ)(1 + ∂ξnΦ(ξ))dθξ

−
∫

Sn−1+

∑

|α|=|β|=m

Lαβ∂
β
ξ ξm

n ∂α
ξ E(ξ)dθξ . (42)

We simplify the expression on the right-hand side.

Lemma 2. (i) There holds:

m!ρ−nΘ(ρ) =
∑

|α|=|β|=m

∫

Sn−1+
Lαβ∂

β
ξ

(
ξm

n

) n∑

j=1

∂ξ j

∑

|γ |+|σ |=m

C( jα)
γσ ∂

γ
ξ Φ∂σ

ξ E(ξ)dθξ

− m
∑

|α|=|β|=m

∫

Sn−1+
Lαβ∂

β
ξ

(
Φ(ξ)ξm−1

n

)
∂α
ξ E(ξ)dθξ

+ ρ1−n O
(
�2(

√
2ρ)

)
. (43)

Moreover, the coefficients C(nα)
γσ are equal to zero for σ = (0, . . . , 0, m).

(ii) The function Θ satisfies
∫ 1

r
Θ(ρ)

dρ

ρ
=
∫

Cr

ϕ(ξ ′)∂m
ξn

E(ξ)|ξn=0dξ ′

+C +
∫ 1

r
O
(
�2(

√
2ρ)

)dρ

ρ
+ µ(r) , (44)

where Cr = {ξ ′ : r < |ξ ′| < 1} and

|µ(r)| + r|∂rµ(r)| ≤ c�(
√

2r) . (45)

Proof. (i) First, we check by induction that

∂β
x ξ |β|

n = ∂
β
ξ

(
ξ |β|

n − |β|Φ(ξ)ξ |β|−1
n

)+ O(�2(
√

2 |ξ|)). (46)

If |β| = 1 and ∂
β
x = ∂x j then, using (15) we obtain

∂x j ξn =
(

∂ξ j − ∂ξ j Φ

1 + ∂ξnΦ
∂ξn

)
ξn = ∂ξ j (ξn − Φ) + ∂ξ j Φ∂ξn Φ

1 + ∂ξn Φ
,

which implies (46) for |β| = 1. Let (46) be proved for a certain multi-index β.
Applying ∂x j to both sides of (46) and using (15) we arrive at

∂x j ∂
β
x ξ |β|+1

n = (|β| + 1)∂β
x

(
δn

jξ
|β|
n − ∂ξ j Φ ξ |β|

n + ∂ξ j Φ∂ξn Φ

1 + ∂ξn Φ
ξ |β|

n

)

= (|β| + 1)∂
β
ξ

(
δn

j

(
ξ |β|

n − |β|Φ(ξ)ξ |β|−1
n

)− ξ |β|
n ∂ξ j Φ

)
+O(�2(

√
2 |ξ|))

= ∂ξ j ∂
β
ξ

(
ξ |β|+1

n − (|β| + 1)Φ(ξ)ξ |β|
n

)
+ O(�2(

√
2 |ξ|)).

Thus, (46) is proved.
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Next, we show that

∂α
x E(ξ) = ∂α

ξ E(ξ) − ∂ξnΦ(ξ)∂α
ξ E(ξ)

+
n∑

j=1

∂ξ j

( ∑

|γ |+|σ |=m

C( jα)
γσ ∂

γ

ξ Φ(ξ)∂σ
ξ E(ξ)

)
+ Vα(ξ), (47)

where C(nα)
γσ = 0 for σ = (0, . . . , 0, m) and Vα(ξ) satisfies

∂
β
ξ Vα(ξ) = O

(
|ξ|m−n−|β|−|α|�2(

√
2|ξ|)

)
. (48)

Let |α| = 1, i.e. ∂α
x = ∂x j for some index j . Then

∂x j E(ξ) =
(

∂ξ j − ∂ξ j Φ

1 + ∂ξn Φ
∂ξn

)
E(ξ) = ∂ξ j E(ξ) − ∂ξnΦ(ξ)∂ξ j E(ξ)

+∂ξn (Φ∂ξ j E) − ∂ξ j (Φ∂ξn E) + ∂ξ j Φ∂ξn Φ

1 + ∂ξn Φ
∂ξn E. (49)

If we denote the last term on the right-hand side by Vα, then the above expression
implies (47), and estimate (48) follows from (18).

Suppose that (47) is proved for a certain α. In order to obtain an analogous
representation for ∂x j ∂

α
x E it suffices to differentiate (47) with respect to x j and use

(49) with E replaced by ∂α
ξ .

Now, using (46) and (47) one arrives at (43).

(ii) Let

M(ξ) =
∑

|α|=|β|=m

Lαβ∂
β
ξ

(
ξm

n

) n∑

j=1

∂ξ j

∑

|γ |+|σ |=m

C( jα)
γσ ∂

γ
ξ Φ∂σ

ξ E(ξ)

and
N(ξ) =

∑

|α|=|β|=m

Lαβ∂
β
ξ

(
Φ(ξ)ξm−1

n

)
∂α
ξ E(ξ) .

Then

m!
∫ 1

r
Θ(ρ)

dρ

ρ
=
∫

Kr,1

(M(ξ) − m N(ξ))dξ +
∫ 1

r
O
(
�2(

√
2ρ)

)dρ

ρ
.

Integrating by parts we obtain that the integral
∫

Kr,1
M(ξ)dξ is a linear combination

of the terms
∫

∂Kr,1

ν j∂
γ
ξ Φ∂σ

ξ E(ξ)dξ, (50)

with |γ |+|σ | = m. Here ν = (ν1, . . . , νn) is the outward normal to ∂Br . Moreover,
there are no terms in the linear combination with σ = (0, . . . , 0, m). A part of
the boundary ∂Kr,1 lies in the plane ξn = 0. Since the normal to this part is equal
to (0, . . . , 0, 1) and since ∂

q
ξn

E(ξ) = 0 for ξn = 0 and for q = 0, . . . , m − 1,
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it follows that the integral in (50) over the plane part of ∂Kr,1 is zero. Therefore,
integral (50) is equal to

∫

R
n+∩∂Bn

1

ν j∂
γ
ξ Φ∂σ

ξ E(ξ)dξ +
∫

R
n+∩∂Bn

r

ν j∂
γ
ξ Φ∂σ

ξ E(ξ)dξ.

Let us denote the integral overRn+ ∩ ∂Bn
1 by C. Taking into account (18) we arrive

at

m!
∫ 1

r
Θ(ρ)

dρ

ρ
= −m

∫

Kr,1

N(ξ)dξ + C +
∫ 1

r
O
(
�2(

√
2ρ))

)dρ

ρ
+ µ1(r),

where µ1(r) is subject to (45).
Repeatedly integrating by parts in the integral

∫
Kr,1

N(ξ)dξ , we represent this
integral as the sum I1 + I2 + I3 of integrals extended overRn+ ∩∂Bn

1 ,Rn+ ∩∂Bn
r and

Cr . Now, I1 = const and by (17) and (18) |I2| + r|I ′
2(r)| ≤ c�(

√
2r). Furthermore,

by (18) all terms in I3, containing derivatives of Φ(ξ), vanish, which implies

I3 = −(m − 1)!
∫

Cr

ϕ(ξ ′)∂m
ξn

E(ξ)|ξn=0dξ ′ .

Thus, we arrive at (44). The proof is complete. ��

3.4. Modification of the asymptotic formula (37)

Using (44) we write (37) in the form

∂α
ξ Z(ξ) = c exp

(
−
∫ 1

|ξ|
Ξ(ρ)

dρ

ρ
+ Ψ1(|ξ|)

)

×
(

δ0
α′

m!
(m − |α|)!ξ

m−|α|
n + |ξ|m−|α|v(1)

α (ξ)

)
. (51)

Here, the function Ξ is defined by (30), the function Ψ1 admits estimates (39) and
(40). Finally, v(1)

α is subject to (41). Note that v(1)
α depends both on vα and the last

term µ in (44).

3.5. End of the proof of Theorem 1

By (15) and (18)

∂α
x = ∂α

ξ +
∑

0<β≤α

πβ(ξ)∂
β
ξ , (52)

where

ξn |∇πβ(ξ)| + |πβ(ξ)| ≤ c�(
√

2|ξ|)ξ |β|−|α|
n . (53)
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Hence, and by (51),

∂α
x z(x) = c exp

(
−
∫ 1

|ξ|
Ξ(ρ)

dρ

ρ
+ Ψ1(|ξ|)

)

×
(

δ0
α′

m!
(m − |α|)!ξ

m−|α|
n + |ξ|m−|α|v(2)

α (ξ)

)
, (54)

where

v(2)
α (ξ) = v(1)

α (ξ) +
∑

0<β≤α

πβ(ξ)

(
δ0
α′

m!
(m − |α|)!ξ

m−|β|
n |ξ||α|−m + |ξ||α−β|v(1)

β (ξ)

)
.

Therefore, and by (53), the function v(2)
α satisfies the same estimate (41) as v(1)

α .
We set

℘(x) :=
∫ |ξ|

|x|
Ξ(ρ)

dρ

ρ
+ Ψ1(|ξ|),

and note that ℘ satisfies (31) and (32) owing to estimates (39) and (40) for Ψ1

combined with (35) and the definition of Ξ . We have arrived at formula (29) with

Vα(x) = |x||α|−m

(
δ0
α′

m!
(m − |α|)!

(
ξm−|α|

n − (xn − ϕ(x ′))m−|α|)+ |ξ|m−|α|v(2)
α (ξ)

)
.

Using (41) for v(2)
α , together with (34), (35) and other properties of the mapping

x → ξ obtained in Lemma 1, we check that Vα satisfies (33). The proof of
Theorem 1 is complete.

4. Asymptotic properties of solutions to the nonhomogeneous equation (1)

4.1. Asymptotic representation of solutions

In the next theorem we deal with a solution of (1) with zero Dirichlet data on
∂G. We assume that this solution has a somewhat weaker singularity than rm−n

near O and claim that it behaves asymptotically like a multiple of the solution z
constructed in Theorem 1.

Since z(x) = Z(ξ(x)), where Z is the same as in the proof of Theorem 1, the
following assertion directly results from Theorem 1(ii) in [KM3] by the mapping
x → ξ .

Theorem 2. Assume that �(r), defined by (3), does not exceed a sufficiently small
constant depending on m, n, p and the coefficients Lαβ. There exist positive con-
stants c and C depending on the same parameters such that the following assertions
hold.

Let f ∈ W−m,p(G \ O) such that

J f :=
∫ 9

0
ρm exp

(
C

∫ 1

ρ

�(s)
ds

s

)
M−m

p ( f ; Gρ/e,ρ)
dρ

ρ
< ∞ . (55)
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Further, let u be a solution of (1), (8) such that

(∫

Gr/e,r

|u(x)|p|x|−ndx

)1/p

= o

(
rm−n exp

(
− C

∫ 1

r
�(ρ)

dρ

ρ

))
as r → 0.

(56)

Then for x ∈ G ∩ Bn
1

u(x) = Cz(x) + w(x) , (57)

where z is the solution from Theorem 1. The constant C in (57) is subject to

|C| ≤ c (J f + ‖u‖L p(G1/3,3)) . (58)

The function w belongs to
◦

W
m,p

loc (G \ O) and satisfies

Mm
p (w; Gr/e,r) ≤ crm

{
r exp

(
C

∫ 1

r
�(ρ)

dρ

ρ

)
‖u‖L p(G1,e)

+ r
∫ 2e

r
ρm−2 exp

(
C

∫ ρ

r
�(ρ)

dρ

ρ

)
M−m

p ( f ; Gρ/e,ρ)dρ

+
∫ r

0
ρm−1 exp

(
C

∫ r

ρ

�(s)
ds

s

)
M−m

p ( f ; Gρ/e,ρ)dρ

}
, (59)

for all r < 1.

Remark. Needless to say, one can replace the constant C by an arbitrary larger
constant without violating the above theorem. An elementary argument shows that
(59) implies

M
m
p (w; Gr/e,r) = o

(
rm exp

(
− C

∫ 1

r
�(ρ)

dρ

ρ

))
, (60)

as r → 0. Comparing this estimate with (29) we see that w plays the role of the
remainder term provided C is taken sufficiently large.

4.2. Corollaries of Theorems 1 and 2

Corollary 1. Let u be a solution from Theorem 2. Then, for all r < 1, the estimate
holds:

Mm
p (u; Gr/e,r) (61)

≤ crm exp

(
−
∫ 1

r
�Ξ(ρ)

dρ

ρ
+ C

∫ 1

r
�2(ρ)

dρ

ρ

)
(J f + ‖u‖L p(G1/3,3)) ,

where J f is defined by (55). The constants c and C depend on n, m, p and the
coefficients Lαβ .
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Proof. Since the right-hand side of (33) is bounded, it follows from (29) that

M
m
p (z; Gr/e,r) ≤ crm exp

(
−
∫ 1

r
�Ξ(ρ)

dρ

ρ
+ C

∫ 1

r
�2(ρ)

dρ

ρ

)
. (62)

By (59), we obtain

Mm
p (w; Gr/e,r) ≤ crm exp

(
− C

∫ 1

r
�(ρ)

dρ

ρ

)
(J f + ‖u‖L p(G1/3,3)) . (63)

The result follows from (57) combined with (58). ��
Corollary 2. Let p > n and

∫ 1

0
�(ρ)2 dρ

ρ
< ∞ . (64)

Then the solution u from Theorem 2 satisfies

∂α
x u(x)

= exp
(

−
∫ 1

|x|
Ξ(ρ)

dρ

ρ

)(
Cδ0

α′m!
(m − αn)! (xn − ϕ(x ′))m−αn + o(|x|m−|α|)

)
,

for |α| ≤ m − 1 uniformly with respect to x/|x|. The same is true for |α| = m if
the notation g(x) = o(1) is understood in the sense r−n/p‖g‖L p(Gr/e,r ) = o(1). The
symbol o(1) is understood as in Theorem 2.

Proof. By (64) and (33) combined with the Sobolev embedding theorem, one has
Vα(x) = o(|x|m−|α|). Hence, and by Theorem 1, we arrive at (65) for ∂αz. The
result follows from (57), (60) together with the Sobolev embedding theorem. ��

5. Asymptotics of singular solutions

5.1. Main results

In this section we formulate analogs of Theorems 1 and 2 which concern solutions
with an infinite Dirichlet integral in a neighborhood of the origin. Their proofs
repeat those of Theorems 1 and 2. The only difference is that the references to
Theorem 1 and Corollary 5 in [KM3] should be replaced by those to Theorem 1
and Corollary 5 in [KM4].

Theorem 3. Assume that the function �(r) defined by (3) does not exceed a suf-
ficiently small constant depending on m, n, p and the coefficients Lαβ . There
exist positive constants c and C depending on the same parameters such that the
following assertion holds.
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There exists Z ∈ ◦
W

m,p

loc (G \O) subject to L(∂x)Z = 0 on G ∩ Bn
3 and satisfying

∂α
xZ(x) = exp

(∫ 1

|x|
Ξ(ρ)

dρ

ρ
+ ℘(x)

)

×
(
(∂α E)(x ′, xn − ϕ(x ′)) + |x|m−n−|α|Vα(x)

)
, (65)

where α = (α′, αn), |α| ≤ m, |x| < 1, Ξ is defined by (30), and the function ℘ and
Vα satisfy the same conditions as in Theorem 3.

Theorem 4. Assume that �(r) defined by (3) does not exceed a sufficiently small
constant depending on m, n, p and the coefficients Lαβ. There exist positive con-
stants c and C depending on the same parameters such that the following assertions
hold.

Let f ∈ W−m,p(G \ O) such that

J f :=
∫ 9

0
ρm+n exp

(
C

∫ 1

ρ

�(s)
ds

s

)
M−m

p ( f ; Gρ/e,ρ)
dρ

ρ
< ∞ . (66)

Further, let u be a solution of (1), (8) such that

(∫

Gr/e,r

|u(x)|p|x|−ndx

)1/p

= o

(
rm−n−1 exp

(
− C

∫ 1

r
�(ρ)

dρ

ρ

))
as r → 0.

(67)

Then, for x ∈ G ∩ Bn
1 ,

u(x) = CZ(x) + w(x) , (68)

where Z is the solution from Theorem 3. The constant C in (57) is subject to

|C| ≤ c (J f + ‖u‖L p(G1/3,3)) . (69)

The function w belongs to
◦

W
m,p

loc (G \ O) and satisfies

M
m
p (w; Gr/e,r) ≤ crm

{
exp

(
C

∫ 1

r
�(ρ)

dρ

ρ

)
‖u‖L p(G1,e)

+
∫ 2e

r
ρm−1 exp

(
C

∫ ρ

r
�(ρ)

dρ

ρ

)
M−m

p ( f ; Gρ/e,ρ)dρ (70)

+
∫ r

0
r−nρm+n−1 exp

(
C

∫ r

ρ

�(s)
ds

s

)
M−m

p ( f ; Gρ/e,ρ)dρ

}
,

for all r < 1.
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5.2. Corollaries of Theorems 3 and 4

The following two corollaries of Theorems 3 and 4 are similar to Corollaries 1
and 2, and are proved verbatim.

Corollary 3. Let u be a solution from Theorem 4. Then, for all r < 1, the estimate
holds:

Mm
p (u; Gr/e,r) (71)

≤ crm−n exp

(∫ 1

r
�Ξ(ρ)

dρ

ρ
+ C

∫ 1

r
�2(ρ)

dρ

ρ

)
(J f + ‖u‖L p(G1/3,3)) ,

where J f is defined by (66). The constants c and C depend on n, m, p and the
coefficients Lαβ .

Corollary 4. Let p > n and
∫ 1

0
�(ρ)2 dρ

ρ
< ∞ . (72)

Then the solution u from Theorem 2 satisfies

∂α
x u(x)

= exp
(∫ 1

|x|
Ξ(ρ)

dρ

ρ

)(
C(∂α E)(x ′, xn − ϕ(x ′)) + o(|x|m−n−|α|)

)
,

for |α| ≤ m − 1 uniformly with respect to x/|x|. The same is true for |α| = m if
the notation g(x) = o(1) is understood as r−n/p‖g‖L p(Gr/e,r ) = o(1). The symbol
o(1) is understood as in Theorem 2.

The last assertion of this section shows that the asymptotic formula (68) can be
improved if the right-hand side f satisfies (55) instead of (66).

Corollary 5. Let f ∈ W−m,p(G \ O) such that J f < ∞, where J f is defined by
(55). Further, let u be a solution of (1), (8) such that

(∫

Gr/e,r

|u(x)|p|x|−ndx

)1/p

= o

(
rm−n−1 exp

(
− C

∫ 1

r
�(ρ)

dρ

ρ

))
, (73)

as r → 0. Then for x ∈ G ∩ Bn
1

u(x) = C1 Z(x) + C2 z(x) + w(x) , (74)

where Z and z are the solutions from Theorem 1 and Theorem 3, respectively. The
constants C1 and C2 are subject to

|C1| + |C2| ≤ c (J f + ‖u‖L p(G1/3,3)) . (75)

The function w belongs to
◦

W
m,p

loc (G \ O) and satisfies (59).

Proof. Follows directly from Theorems 2 and 4. ��
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5.3. Examples

Example 1. The function Ξ in the asymptotic formulae (29) and (65), defined by
(30), takes a particularly simple form if n = 2 and L(x, ∂x) = L(∂x). Let us write
L(ξ) as L(ξ1, ξ2) and by ζ+

1 , . . . , ζ+
m and ζ−

1 , . . . , ζ−
m we denote the roots of the

polynomial L(1, ζ) = 0 with positive and negative imaginary parts, respectively.
By formula (11.6.22) in [KMR2] for x1 �= 0

∂m
x2

E(x1, 0) = −i

2πx2
1

m∑

k=1

(
ζ+

k − ζ−
k

)
. (76)

Hence

Ξ(ρ) = −i
m∑

k=1

(
ζ+

k − ζ−
k

)ϕ(ρ) + ϕ(−ρ)

2πρ
. (77)

If, for example, L(∂x) = a∂2
x1

+ 2b∂x1∂x2 + c∂2
x1

with real a, b and c one has

Ξ(ρ) =
√

ac − b2
ϕ(ρ) + ϕ(−ρ)

πρ
. (78)

Example 2. In the case L(∂x) = (−∆)m we have

∂m
ξn

E(ξ ′, ξn)

∣∣∣
ξn=0

= mΓ(n/2)π−n/2|ξ ′|−n ,

by Example 1, Sect. 11.6.4 in [KMR2]. Therefore,

Ξ(ρ) = mΓ(n/2)

πn/2ρ

∫

Sn−2
ϕ(ρθ ′)dθ ′ .

This, being combined with (29), (65) and Corollary 5, leads to the alternatives (6)
and (7) mentioned in the introduction.

Remark. S. Warschawski [W] obtained an asymptotic formula for conformal map-
pings of curvilinear strips under rather weak restrictions to their boundaries. Here
we state a corollary of Warschawski’s result.

Let G be the domain {z = x + iy : y > ϕ(x)} in the complex plane, where ϕ

is Lipschitz and ϕ(0) = 0. By w we denote a conformal mapping of G onto the
half-plane {w = u + iv : v > 0}, w(0) = 0. Suppose that ϕ′(x) → 0 as x → 0 and
that ∫ 1

0
(|ϕ′(ρ)|2 + |ϕ′(−ρ)|2)dρ

ρ
< ∞.

Then the imaginary part of ζ admits the asymptotic representation as z → 0:

u(z) ∼ c (y − ϕ(x)) exp
{

− 1

π

∫ 1

|z|
(ϕ(ρ) + ϕ(−ρ))

dρ

ρ2

}
, (79)

where c is a constant. This relation can be interpreted as an asymptotic represen-
tation of a solution to the Laplace equation in a neighbourhood of the origin with
zero Dirichlet data on the curve {z : y = ϕ(x)}. Warschawski’s proof of (79) is
based on methods of geometric function theory and cannot be extended even to
harmonic functions of n variables, n > 2. Note that Corollary 2 and (78) imply
(79).
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6. Boundedness of the m-th order derivatives of solutions to the Dirichlet
problem for elliptic equations of order 2m in plane convex domains

6.1. Local estimates

The case of a small local Lipschitz constant of the boundary. Let Ω be a bounded
plane domain in R2. We introduce a strongly elliptic operator with constant coef-
ficients

L(∂x) =
∑

0≤k≤2m

ak ∂k
x1

∂2m−k
x2

,

and by w we denote a weak solution to the Dirichlet problem

L(∂x)w = f , w ∈ ◦
W

m,2
(Ω) . (80)

If f ∈ W−m,2(Ω) this problem is uniquely solvable.
In the following we make use of the following asymptotic estimate for the

solution w of problem (80) in a neighborhood Bδ0 = {x ∈ R2 : |x| < δ0} of
the point O ∈ ∂Ω, which is contained in Corollary 1 and Example 1. We assume
that Ω ∩ B2δ0 is described by the inequalities x2 > ϕ(x1), |x| < 2δ0, where ϕ is
a Lipschitz function on [−2δ0, 2δ0] and ϕ(0) = 0. Note that here we do not require
the convexity of ϕ.

Lemma 3. Suppose that the Lipschitz norm of ϕ on [−2δ0, 2δ0] does not exceed
a certain constant depending only on the coefficients of L. Let f be equal to zero
in Ω ∩ B2δ. Then for all δ ∈ (0, δ0), x ∈ Ω ∩ Bδ and k = 1, . . . , m − 1,

|∇kw(x)| (81)

≤ c A(2δ)|x|m−k exp
(

− a
∫ δ

|x|
ϕ(ρ) + ϕ(−ρ)

ρ2
dρ + b

∫ δ

|x|
max
|t|<ρ

|ϕ′(t)|2 dρ

ρ

)
.

Here ∇k is the vector of all partial derivatives of order k. We use the notation

a = 1

2π
�
∑

1≤k≤m

(
ζ+

k − ζ−
k

)
,

where ζ+
1 , . . . , ζ+

m and ζ−
1 , . . . , ζ−

m are roots of the polynomial L(1, ζ) with positive
and negative imaginary parts, respectively. This value of a is best possible. By b
and c we denote a positive constant depending only on m and the coefficients of L,
and we put

A(δ) = δ−1−m‖w‖L2(Ω∩Bδ)
. (82)

Note that for the operator ∆m we have ζ±
k = ±i, which implies a = m/π.

The next assertion is a co-sequence of Lemma 3 when the function ϕ is convex.
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Lemma 4. Suppose that the function ϕ describing the domain Ω near the point
O is non-negative and convex, and |ϕ′(±2δ0)| does not exceed a sufficiently small
constant �0 depending on m and the coefficients of L(∂x). Furthermore, let f be
zero in Ω∩ B2δ and let w be a solution of (80), which is extended by zero outside Ω.
Then

‖∇mw‖L∞(Bδ) ≤ c A(8δ) , (83)

where δ < δ0/8 and A(δ) is given by (82).

Proof. Let x be a point of Ω ∩ Bδ situated at the distance r from ∂Ω. We shall use
the local estimate

‖∇mw‖L∞(Br/4(x)) ≤ c r−m‖w‖L∞(Br/2(x)) (84)

(see Sect. 15 in [ADN]). By (84) it is sufficient to prove the estimate

sup
x∈Ω∩B2δ

|w(x)|
dist(x, ∂Ω)m

≤ c A(8δ) . (85)

Denote by z the point in ∂Ω ∩ Bδ such that |x − z| = r. We are going to apply
Lemma 3, where the role of the origin is played by z. For simplicity, we preserve
the notation ϕ for the function describing the domain Ω in the Cartesian system
with the new origin z. Clearly, we may assume that ϕ is non-negative and convex.

By the convexity of ϕ we have, for τ ∈ (0, δ),

max
|t|≤τ

ϕ′(t)2 = max(ϕ′(τ)2, ϕ′(−τ)2) .

Taking into account the inequality

∫ δ

r

ϕ′(±ρ)2

ρ
dρ ≤ �0

(
ϕ(±δ) +

∫ δ

r

ϕ(±ρ)

ρ2
dρ

)

and using Lemma 3, we obtain

r−m |w(x)| ≤ c δ−1−m‖w‖L2(Ω∩B2δ(z)) ≤ cA(8δ),

which completes the proof of (85). The lemma is proved. ��
Perturbation of an angle. We introduce some notation. Let an angle K be given in
the polar coordinates (r, ψ) by

K = {(r, ψ) : 0 < r < ∞, 0 < ψ < α} .

Also let Kρ = {x ∈ K : ρ/e < |x| < ρ}.
We shall prove a pointwise estimate for solutions assuming that the domain is

a small perturbation of an angle. Here, no convexity assumption is required.
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Lemma 5. Let the coefficients of L(∂x) be real. We introduce the domain G de-
scribed in the polar coordinates r, θ by the inequalities

θ0(r) < θ < α + θ1(r), 0 < r < 8τ,

where α ∈ (0, π), the functions θ0 and θ1 are non-negative and Lipschitz on (0, 8τ],
θi(+0) = 0, for i = 0, 1. Let a positive number τ satisfy

|θi(r)| + r
∣∣θ ′

i(r)
∣∣ ≤ �1 for r ≤ 8τ ,

where �1 is a sufficiently small constant depending on α, m, q and the coefficients
of L(∂x). Furthermore, let f ∈ W1−m,q(G) with some q > 2 and let u be a solution
of L(∂x)u = f from Wm,2(G) subject to zero Dirichlet conditions on the arcs
θ = θ0(r) and θ = α + θ1(r). Then

|u(x)| ≤ C |x|m+β
(
τ−m−1−β‖u‖L2(G∩B4τ ) + τ−β−q/2‖ f ‖W1−m,q (G∩B4τ )

)
, (86)

for all x ∈ G ∩ Bτ . Here β and C are positive constants, depending on α, m, q and
the coefficients of L(∂x).

Proof. It suffices to prove (86) for τ = 1. We extend the functions θi by the values
θi(8) onto (8,∞) and define the domain G∞ = {x : θ0(r) < θ < α + θ1(r), 0 <

r < ∞}. We verify that there exists a function Θ(r, ψ) given on the angle K such
that Θ(r, 0) = θ0(r), Θ(r, α) = θ1(r), and subject to the estimate

∑

0≤k+�≤m

(αψ − ψ2)�
∣∣(r∂r)

k∂�
ψΘ(r, ψ)

∣∣ ≤ c(m)δ0, (87)

where c(m) is a constant depending only on m. In order to construct Θ we use the
following procedure. By the change of variables t = log r−1, ψ = ψ we map the
angle K onto the strip {(t, ψ) : t ∈ R, 0 < ψ < α}. Next, we extend the functions
θ0(e−t) and θ1(e−t) onto the half-planes ψ > 0 and ψ < α, respectively, by using
a standard extension operator (see, for instance, [MSh], Sect. 5.1.1). We call these
extensions by ζ0(t, ψ) and ζ1(t, ψ), and note that they are subject to

∑

0≤k+�≤m

(αψ − ψ2)�
∣∣∂k

t ∂
�
ψζi(t, ψ)

∣∣ ≤ c(m)δ0.

We introduce a smooth function η on [0, α] equal to one near zero and to zero
near ψ = α, and we set ζ = ηζ0 + (1 − η)ζ1. Now, the function Θ given by
Θ(r, ψ) = ζ(log r−1, ψ) satisfies the conditions required.

By the one-to-one mapping κ : (r, ϕ) → (r, ψ) defined by ϕ = ψ+Θ(r, ψ) we
transform G onto K . Let y = (y1, y2) be the point with the polar coordinates (r, ψ)

and let L(y, ∂y) be the operator L written in the coordinates y and interpreted in
the sense of the corresponding sesquilinear form. By (87) and Hardy’s inequality

we conclude that, for all v ∈ ◦
W

m,2
loc (K \ O),

‖(L − L)v‖W−m,2(Kρ) ≤ c�1‖v‖Wm,2(Kρ) .
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By A(λ) : ◦
W

m,2
(0, α) → W−m,2(0, α) we denote the pencil of the Dirichlet

problem for L(∂y) in the angle K defined by A(λ)u(ψ) = r2m−λL(∂y)(rλu(ψ)). We
need one more cut-off function Γ ∈ C∞

0 (B3), Γ = 1 on B2. We put U = (Γu)◦κ−1

and F = (L(∂x)(Γu)) ◦ κ−1.
From Theorem 1 in [Koz] (see also [KMR2], Sect. 8.4.2) it follows that the

strip m −2−σ ≤ �λ ≤ m +σ , where σ > 0 is a certain positive number, contains
no eigenvalues of A(λ). Since

M
−m
2 (F; Kρ) ≤ cM1−m

q (F; Kρ) ≤ cρ−m+1−2/q‖F‖W1−m,q (K ) , (88)

the function F satisfies
∫ ∞

0
ρm+1+σM

−m
2 (F; Kρ)dρ < ∞ ,

and we are in a position to apply Theorem 10.8.16 [KM1] with ω(t) = c�1 and gω

being Green’s function of the differential operator

(∂t + m + σ)(−∂t + 2 − m − σ) − c�1 on R,

subject to

gω(t, s) ≤ c e(m+σ−c0�1)(s−t) if t > s (89)

and

gω(t, s) ≤ c e(m−2−σ+c0�1)(s−t) if s > t. (90)

The theorem just mentioned along with (89), (90) and (88) guarantees the estimates

Mm
2 (U; Kr) ≤ c

(∫ r

0

( r

ρ

)m−2−σ+c0�1
ρ2mM

−m
2 (F; Kρ)

dρ

ρ

+
∫ ∞

r

( r

ρ

)m+σ−c0�1
ρ2m
M

−m
2 (F; Kρ)

dρ

ρ

)

≤ C(rm+1−2/q + rm−c0�1+σ/2)‖F‖W1−m,q (K ), (91)

for r < 3. Setting β = min{1 − 2/q,−c0�1 + σ/2} and using the standard local
estimate (see [ADN], Ch. 5, Sect. 15), we obtain

M
m
q (U; Kr) ≤ Crm+β‖F‖W1−m,q (K ).

Hence and by the Sobolev embedding theorem, |U(r, ψ)| is majorized by the
right-hand side of the last inequality. Coming back to the coordinates x we obtain

|u(x)| ≤ crm+β‖(L(∂x)Γu)‖W1−m,q (G∞)

≤ Crm+β(‖Γ f ‖W1−m,q (G∞) + ‖u‖Wm,q (G∩(B3\B2))) .

It remains to note that the second term on the right does not exceed

crm+β(‖Γ f ‖W−m,q (G∩(B4\B1)) + ‖u‖L2(G∩(B4\B1)))

(see Proposition 7.5.2/2 [MSh]). The result follows. ��
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The assertion of Lemma 5 can be improved if, additionally, the domain is
convex.

Lemma 6. Let G, u and f be the same as in Lemma 5 and let G be convex near
the origin. We assume that f(x) = 0 for |x| < 8τ , and τ is so small that, for all
r ≤ 8τ ,

|θi(r)| + r|θ ′
i | ≤ c∗ min(�0, �1),

where c∗ is a sufficiently small constant depending on α, m and the coefficients of
L(∂x). Then the estimate

|∇mu(x)| ≤ C|x|β τ−m−1−β‖u‖L2(G∩B4τ ) (92)

holds for x ∈ G∩ Bτ . Here β and C are positive constants, depending on α, m and
the coefficients of L(∂x).

Proof. It is sufficient to obtain (92) with τ = 1. By local estimate (84) we only
need to prove the inequality

|u(x)| ≤ C|x|βdist(x, ∂G)m ‖u‖L2(G∩B4), (93)

for all x ∈ G ∩ B1. Let c(α) be a sufficiently small constant depending only on α.
If dist(x, ∂G) ≥ c(α)|x|, estimate (93) follows from Lemma 5. Suppose that x
satisfies the opposite inequality dist(x, ∂G) < c(α)|x|. We denote by z the only
point at ∂G nearest to x. By Lemma 4

|x − z|−m |u(x)| ≤ C |x|−1−m‖u‖L2(G∩B|x|/2(z)) . (94)

We shall not violate this inequality replacing B|x|/2(z) by the disk B2|x| centered
at O. By Lemma 5

‖u‖L2(G∩B4|x|) ≤ C |x|m+β+1‖u‖L2(G∩B4) .

The proof is complete. ��

6.2. Estimates for Green’s function

In this section and elsewhere, we denote by G(x, y) Green’s function of problem
(80).

Theorem 5. Let Ω be an arbitrary bounded convex domain and let the coefficients
of L be real. Then for, all x, y in Ω,

∑

|α|=|β|=m

∣∣∂α
x ∂β

y GL(x, y)
∣∣ ≤ C |x − y|−2, (95)

where C is a positive constant depending on Ω.
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Proof. Let F be a fundamental solution of the operator L:

F(ξ) = P2m−2(ξ) log |ξ| + Q2m−2 ,

where P2m−2 is a homogeneous polynomial of degree 2m−2 and Q2m−2 is a positive
homogeneous function which is smooth onR2 \O (see [J]). Clearly, for any multi-
index α of order m − 1,

∂α
ξ F(ξ) = P(α)

m−1(ξ) log |ξ| + Q(α)
m−1(ξ) .

Here, P(α)
m−1 is a homogeneous polynomial of degree m − 1 and Q(α)

m−1 is a positive
homogeneous function of order m − 1.

We set

Rα(x, y) (96)

= ∂α
y G(x, y) − η

( x − y

d

)(
P(α)

m−1(x − y) log
|x − y|

d
+ Q(α)

m−1(x − y)

)
,

where d = dist(y, ∂Ω), η ∈ C∞
0 (B1/2) and η = 1 on B1/4.

The function x → Rα(x, y) solves problem (80) with

f(x) = −
[

L(∂x), η
( x − y

d

)](
P(α)

m−1(x − y) log
|x − y|

d
+ Q(α)

m−1(x − y)

)
,

where the square brackets denote the commutator. Obviously, f ∈ C∞
0 (Bd/2(y) \

Bd/4(y)) and
| f(x)| ≤ Cd−1−m,

with C independent of x and y. We have

‖∇m Rα‖L2(Ω) ≤ C‖ f ‖W−m,2(Ω) .

Let z0 be a point on ∂Ω such that d = |y − z0|. By a standard induction argument
one shows that the Hardy-type inequality

∫

Ω

|v(z)|2
|z − z0|2m

dz ≤
∫

Ω

|∇mv(z)|2dz, (97)

holds for all v ∈ ◦
W

m,2
(Ω). Hence,

‖ f ‖W−m,2(Ω) = sup
{∣∣∣
∫

Ω

f(z)v(z)dz
∣∣∣ : ‖v‖ ◦

W
m,2

(Ω)
= 1

}

≤ c dm‖ f ‖L2(Bd/2(y)) sup

{(∫

Bd(z0)

|v(z)|2
|z − z0|2m

dz

)1/2

: ‖v‖ ◦
W

m,2
(Ω)

= 1

}

≤ c1 dm‖ f ‖L2(Bd/2(y)) ≤ c2.

Therefore we have

‖∇m Rα(·, y)‖L2(Ω) ≤ c. (98)
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Let r = |x − y| and let dist(x, ∂Ω) < r/N, where N is a sufficiently large
positive fixed number. By Lemmata 4 and 6

∣∣∂β
x ∂α

y G(x, y)
∣∣ ≤ Cr−1−m

∥∥∂α
y G(·, y)

∥∥
L2(Ω∩Br/8(x)),

for all multi-indices |β| of order m. Hence, and by Hardy’s inequality (97),
∣∣∂β

x ∂α
y G(x, y)

∣∣ ≤ C r−1
∥∥∇m∂α

y G(·, y)
∥∥

L2(Ω∩Br/8(x)).

In the case dist(x, ∂Ω) ≥ r/N we use the classical interior local estimate (see
[ADN], Ch. 5, Sect. 15) in order to obtain

∣∣∂β
x ∂α

y G(x, y)
∣∣ ≤ C r−1

∥∥∇m∂α
y G(·, y)

∥∥
L2(Ω∩Br/8(x)).

Combining the two last inequalities with (96) and (98) we obtain
∣∣∂β

x ∂α
y G(x, y)

∣∣ ≤ c|x − y|−1, (99)

where |α| = m − 1 and |β| = m.
Now consider the function

y → Gβ(y) = ∂β
x G(x, y),

with |β| = m. It satisfies the Dirichlet problem in Ω for the equation

L(∂y)Gβ(y) = ∂β
x δ(x − y).

Using Lemmata 4 and 6, and the classical interior local estimate, once more we
arrive at the inequality

∣∣∂α
y Gβ(y)

∣∣ ≤ Cr−2‖∇m−1Gβ‖L2(Br/2(y)),

where |α| = |β| = m. The result follows from (99). ��
Theorem 6. Let L be an arbitrary strongly elliptic operator with complex coef-
ficients. Suppose that Ω is a bounded convex domain such that the jumps of all
angles between the exterior normal vector to ∂Ω and the x-axis be smaller than
a constant depending on m and the coefficients of L(∂x). Then for all x, y in Ω

estimate (95) holds.

Proof. This is the same as that of Theorem 5. The only difference is that Lemma 6
is not used in the present case. ��
Corollary 6. Let Ω be an arbitrary bounded convex domain in R2 and let the
coefficients of L(∂x) be real. Then the solution w of problem (80) with f ∈
W1−m,q(Ω), q > 2, satisfies

‖w‖Cm−1,1(Ω) ≤ C ‖ f ‖W1−m,q (Ω), (100)

where the constant C depends on Ω, m, q and the coefficients of L(∂x).
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Proof. We represent the right-hand side in (80) in the form

f =
∑

|γ |=m−1

∂γ fγ ,

where fγ ∈ Lq(Ω). Clearly, for almost all x ∈ Ω,

∂β
x w(x) = (−1)m−1

∑

|γ |=m−1

∫

Ω

∂β
x ∂γ

y G(x, y) fγ (y)dy , (101)

where β is any multi-index of order m and G is Green’s function of problem (80).
By Theorem 5 ∣∣∂β

x ∂γ
y G(x, y)

∣∣ ≤ c |x − y|−1 .

Hence, and by (101), the result follows. ��
Generally, this assertion does not hold for differential operators with complex

coefficients. More precisely, if there exists an angle vertex on the boundary of
a convex domain Ω, one can construct a second-order strongly elliptic operator
L(∂x) with complex coefficients such that the Dirichlet problem (80) with f ∈
C∞(Ω) has a solution with unbounded gradient ([Koz], Sect. 9, see also [KMR2],
Sect. 8.4.3). Our next result shows, in particular, that for L with complex coefficients
the statement of Theorem 7 holds if the jumps of the normal vector are absent or
small.

Corollary 7. Let Ω be a bounded convex domain in R2 such that all jumps of
the angle between the exterior normal vector to ∂Ω and the x-axis do not exceed
a sufficiently small constant depending on m and the coefficients of L(∂x). Then
the conclusion of Corollary 6 holds.

Proof. This is the same as that of Corollary 6, with Theorem 6 in the role of
Theorem 5. ��

6.3. The Dirichlet problem for the equations of hydrodynamics and elasticity in
plane convex domains

We deduce some corollaries concerning the differentiability of solutions to classical
problems of mathematical physics in a plane convex domain.

Stokes system. Let us start with the Dirichlet problem for the system:





−ν∆v + ∇ p = f in Ω

∇ · v = 0 in Ω

v = 0 on ∂Ω,

(102)

where f ∈ (W−1,2(Ω)
)2

and (v, p) ∈ ( ◦
W

1,2
(Ω)

)2 × L2(Ω).
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Proposition 1. Let Ω be a bounded convex two-dimensional domain and let f ∈
(Lq(Ω))2, for some q > 2. Then v ∈ (C0,1(Ω))2 and

‖v‖C0,1(Ω) ≤ C ‖f‖(Lq (Ω))2 ,

where C depends only on Ω.

Proof. Let v = (v1, v2). Introducing a stream function Φ by v1 = ∂x2Φ and
v2 = −∂x1Φ, we arrive at the Dirichlet problem

{−ν∆2Φ = ∂x2 f1 − ∂x1 f2 in Ω

Φ ∈ ◦
W

2,2
(Ω).

By Corollary 6, Φ ∈ C1,1(Ω) and

‖Φ‖C1,1(Ω) ≤ C‖f‖(Lq(Ω))2,

which completes the proof. ��
The Navier–Stokes system. Let (v, p) ∈ (

◦
W

1,2
(Ω))2 × L2(Ω) solve the Dirichlet

problem:





−ν∆v + ∇ p +∑2
k=1 vk∂xk v = f in Ω

∇ · v = 0 in Ω

v = 0 on ∂Ω,

(103)

where f ∈ (W−1,2(Ω))2.

Proposition 2. Let Ω be a bounded convex two-dimensional domain and let f ∈
(Lq(Ω))2, for some q > 2. Then v ∈ (C0,1(Ω))2.

Proof. By Sobolev’s embedding theorem the non-linear term in the Navier–Stokes
system belongs to (Ls(Ω))2, for all s < 2. We note that the operator f → v

corresponding to problem (102) continuously maps (Lt(Ω))2 into (
◦

W
1,2

(Ω))2 and
(Lq(Ω))2 into (W1,r(Ω))2 with arbitrary t > 1, q > 2 and r < ∞. (Continuity of
the former mapping is a consequence of the embedding Lt(Ω) ⊂ W−1,2(Ω), the
continuity of the latter follows from Proposition 1 even with r = ∞.) Interpolating,

one concludes that the operator f → v continuously maps (Ls(Ω)2 → (
◦

W
1,σ

(Ω))2

with an arbitrary σ < 2s/(2 − s). This implies v ∈ (
◦

W
1,σ

(Ω))2, with any σ < ∞.
Hence and by f ∈ (Lq(Ω))2, we conclude the proof by referring to Proposition 1.

��
Von Kármán equations. Now, we deal with the Dirichlet problem for the system
describing the non-linear bending of a thin plate whose boundary is clamped in the
transversal direction and free in the horizontal direction [Ciarlet]





∆2u1 = [u1, u2] + f1 in Ω

∆2u2 = [u1, u1] + f2 in Ω

u := (u1, u2) ∈ ( ◦
W

2,2
(Ω)

)2
, f := ( f1, f2) ∈ (W−2.2(Ω)

)2
,

(104)

where
[u, v] = ∂2

x1
u ∂2

x2
v + ∂2

x2
u ∂2

x1
v − 2∂x1∂x2 u ∂x1∂x2v .
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Proposition 3. Let Ω be a bounded convex two-dimensional domain and let f ∈
(W−1,q(Ω))2, for some q > 2. Then u ∈ (C1,1(Ω))2 .

Proof. Since

[u, v] = ∂x1

(
∂x1 u ∂2

x2
v − ∂x2 u ∂x1∂x2v

)+ ∂x2

(
∂x2 u ∂2

x1
v − ∂x1 u ∂x1∂x2v

)
,

the non-linear term in (104) belongs to (W−1,s(Ω))2, for all s < 2. It follows from
the embedding W−1,t(Ω) ⊂ W−2,2(Ω), for all t > 1, that the inverse operator of

the Dirichlet problem for ∆2 maps W−1,t(Ω) into
◦

W
2,2

(Ω). By Corollary 6 the

same inverse maps W−1,q(Ω) into
◦

W
2,r

(Ω), for all q > 2 and r < ∞. Interpolating

we obtain that this inverse continuously maps (W−1,s(Ω))2 into (
◦

W
2,σ

(Ω))2 with

an arbitrary σ < 2s/(2 − s). Hence u ∈ (
◦

W
2,σ

(Ω))2 with any σ < ∞. This, in
combination with f ∈ (W−1,q(Ω))2 and Corollary 6, completes the proof. ��
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