
Fast cubature of high dimensional biharmonic
potential based on Approximate Approximations

Flavia Lanzara ∗ Vladimir Maz’ya †‡ Gunther Schmidt §

August 29, 2018

Abstract. We derive new formulas for the high dimensional biharmonic potential
acting on Gaussians or Gaussians times special polynomials. These formulas can be
used to construct accurate cubature formulas which are fast and effective also in very
high dimensions. Numerical tests show that the formulas are accurate and provide the
predicted approximation rate O(h8) up to the dimension 107.
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1 Introduction
The present paper is devoted to the approximation of the high dimensional biharmonic
potential

Bn f (x) =
Γ(n/2)

4πn/2(n−2)(n−4)

∫
Rn

f (y)
|x−y|n−4 dy, x ∈ Rn, n≥ 3, n 6= 4, (1.1)

(cf. [11, p.235] or [15, p.100]) for integrable f , by using approximate approximations
(cf.[10] and the references therein). Approximate approximations allow to construct
efficient high order cubature formulas for convolution integral operators even with sin-
gular kernel functions ([9]). Due to the operation number proportional to h−n, where h
denotes size of a uniform grid on the support of the density, these methods are practical
only for small n. By combining approximate approximations with separated represen-
tations ([12, 13]) we derive a method for approximating volume potentials which is
accurate and fast in high dimensions. First results on the fast cubature of high dimen-
sional harmonic potential have been obtained in [3, 4]. The procedure has been applied
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in [5, 6] to advection-diffusion potentials and in [7] to parabolic problems. In [8] our
approach has been extended to the computation of the Schrödinger potential, where
standard cubature methods are very expansive due to the fast oscillations of the kernel.
In this paper we derive new formulas for the biharmonic potential acting on Gaussians
or special polynomial times Gaussians. These formulas can be used to construct fast
and accurate cubature formulas.

We construct an approximation of Bn f if we replace f by functions with ana-
lytically known biharmonic potential. Specifically, we approximate the density f ∈
CN

0 (Rn) with the approximate quasi-interpolant

fh,D (x) = D−n/2
∑

m∈Zn
f (hm)η

(
x−hm
h
√

D

)
, (1.2)

where h and D are positive and η is a smooth and rapidly decaying function of the
Schwarz space S (Rn). The generating function is chosen so that Bnη can be com-
puted analytically or efficiently numerically. If the generating function η satisfies the
moment condition of order N∫

Rn
xα

η(x)dx = δ0,α , 0≤ |α|< N , (1.3)

then ([10, p.21])

| f (x)− fh,D (x)| ≤ c(
√

Dh)N‖∇N f‖L∞
+

N−1

∑
k=0

εk(h
√

D)k|∇k f (x)|

with

0 < εk ≤ ∑
m∈Zn\{0}

|∇kFη(
√

Dm)|; lim
D→∞

∑
m∈Zn\{0}

|∇kFη(
√

Dm)|= 0

and

|∇k f (x)|= ∑
|α|=k

|∂ α f (x)|
α!

.

Here Fη denotes the Fourier transform of η

Fη(y) =
∫
Rn

η(x)e−2iπ〈x,y〉dx.

Hence, for any saturation error ε > 0, one can fix the parameter D > 0 so that

| f (x)− fh,D (x)|= O((
√

Dh)N + ε)‖ f‖W N
∞
,

where W N
∞ = W N

∞ (Rn) denotes the Sobolev space of L∞-functions whose generalized
derivatives up to the order N also belong to L∞. Then the linear combination

Bn fh,D (x) =
h4

Dn/2−2 ∑
m∈Zn

f (hm)Bnη

(
x−hm
h
√

D

)
(1.4)
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gives rise to a new class of semi-analytic cubature formulas with the property that, for
any prescribed accuracy ε > 0, one can fix the parameter D so that (1.4) differs in some
uniform or Lp-norm from the integral (1.1) by

O((
√

Dh)N +(
√

Dh)4
ε) as h→ 0 ,

where N is determined by (1.3). Estimates of the cubature error for general generating
functions are proved in Section 2.
Therefore, to construct cubature formulas for (1.1) it remains to compute the integral
Bnη . This can be taken analytically or transformed to a simple one-dimensional inte-
gral. If we choose the generating functions

η(x) = π
−n/2L(n/2)

M−1 (|x|
2)e−|x|

2

with the generalized Laguerre polynomials L(γ)
M then Bnη can be taken analytically. η

satisfies the moment conditions (1.3) with N = 2M and (1.4) gives rise to semi-analytic
cubature formulas for Bn f of order h2M modulo the saturation error. In Section 3
we describe these formulas when M = 1 that is for the exponential πn/2e−|x|

2
and, in

Section 4, when M > 1.
If the generating function is the tensor product of one-dimensional functions of the

form

η(x) =
n

∏
j=1

π
−1/2L(1/2)

M−1 (x
2
j)e
−x2

j ,

each of them satisfying the moment conditions (1.3) of order 2M, then Bnη is trans-
formed to a one-dimensional integral with a separable integrand, i.e., a product of func-
tions depending only on one of the variables. This is considered in Section 5 where we
obtain, for example, the integral representation

Bn(e−|·|
2
)(x) =

1
16

∞∫
0

e−|x|
2/(1+t)

(1+ t)n/2 t dt, n≥ 5.

These one-dimensional integrals with separable integrand in combination with a quadra-
ture rule lead to accurate separated representations of the potential acting on the gener-
ating function. In Section 6 for functions f with separated representations, i.e., within a
given accuracy they can be represented as a sum of products of univariate functions, we
derive formulas which reduces the n-dimensional convolution (1.1) to one-dimensional
discrete convolutions. Thus for the computation of (1.1) only one-dimensional oper-
ations are used. We derive formulas of an arbitrary order fast and accurate in high
dimensions. We provide results of numerical experiments which show the efficiency of
the method up to approximation order O(h8) and dimensions n = 107.

2 Cubature error
The estimate of the cubature error

Bn fh,D (x)−Bn f (x) = Bn( fh,D − f )(x)
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for the biharmonic potential (1.1) is a consequence of the structure of the quasi-interpolation
error, which is proved in general form in [10, Thm 2.28]. Suppose that f has general-
ized derivatives of order N. Using Taylor expansions of f for the nodes hm, m ∈ Zn,
and Poisson’s summation formula the quasi-interpolant can be written as

fh,D (x) =(−h
√

D)N fN(x)+
N−1

∑
|α|=0

(h
√

D)|α|

α!(2πi)|α|
∂

α f (x)σα(x,η ,D) (2.1)

with the function

fN(x) =
1

Dn/2 ∑
|α|=N

N
α! ∑

m∈Zn

(x−hm
h
√

D

)α

η

(x−hm
h
√

D

) 1∫
0

sN−1
∂

α f (sx+(1− s)hm)ds ,

containing the remainder of the Taylor expansions, and the fast oscillating functions

σα(x,η ,D) = ∑
ν∈Zn

∂
αFη(

√
Dν)e

2πi
h 〈x,ν〉 . (2.2)

It follows from (2.2) that due to the moment condition (1.3) the second sum in (2.1)
transforms to

f (x)+
N−1

∑
|α|=0

(h
√

D)|α|

α!(2πi)|α|
∂

α f (x)εα(x,η ,D) ,

where we denote

εα(x,η ,D) = ∑
ν∈Zn\0

∂
αFη(

√
Dν)e

2πi
h 〈x,ν〉 = σα(x,η ,D)−δ0|α| .

We denote by W N
p =W N

p (Rn) the Sobolev space of Lp = Lp(Rn) functions whose gen-
eralized derivatives up to order N belong to Lp, with the norm

‖ f‖W N
p
=

N

∑
l=0
| f |W l

p
, | f |W l

p
= ∑
|α|=l
‖∂ α f‖Lp .

If f ∈W N
p with N > n/p, 1≤ p≤ ∞, then fN can be estimated by

‖ fN‖Lp ≤CN | f |W N
p
, | f |W N

p
= ∑
|α|=N

‖∂ α f‖Lp ,

with a constant CN depending only on η , n, and p. Hence (2.1) leads to the representa-
tion of the quasi-interpolation error

fh,D (x)− f (x) = (−h
√

D)N fN(x)+
N−1

∑
|α|=0

(h
√

D)|α|

α!(2πi)|α|
∂

α f (x)εα(x,η ,D), (2.3)
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which implies in particular the error estimate in Lp

‖ f − fh,D‖Lp ≤CN(h
√

D)N | f |W N
p
+

N−1

∑
k=0

(h
√

D)k

(2π)k ∑
|α|=k

‖εα(·,η ,D)‖L∞
‖∂ α f‖Lp

α!
.

(2.4)

Thus the quasi-interpolation error consists of a term ensuring O(hN)-convergence
and of the so-called saturation error, which, in general, does not converge to zero as
h→ 0. However, due to the fast decay of ∂ αFη , one can choose D large enough to
ensure that

‖εα(·,D ,η)‖L∞
≤ ∑

ν∈Zn\0
|∂ αFη(

√
Dν)|< ε (2.5)

for given small ε > 0.
From Sobolev’s theorem we have that for n≥ 5, 1 < p < n/4, and q = np/(n−4p)

the integral (1.1) converges absolutely for almost every x and the operator Bn is a
bounded mapping from Lp into Lq (cf. [16, p. 119]). Hence

‖Bn fh,D −Bn f‖Lq ≤ Ap,q‖ fh,D − f‖Lp , (2.6)

where Ap,q denotes the norm of Bn : Lp→ Lq. Then, from (2.4) and (2.5),

Theorem 2.1. Let n ≥ 5, 1 < p < n/4, q = np/(n− 4p) and f ∈W N
p with N > n/p.

Then, for any ε > 0 there exists D > 0 such that

‖Bn fh,D −Bn f‖Lq ≤ Ap,q

(
CN(h

√
D)N | f |W N

p
+ ε

N−1

∑
k=0

(h
√

D)k

(2π)k ‖∇k f‖Lp

)
. (2.7)

We used the notation

‖∇k f‖Lp = ∑
|α|=k

‖∂ α f‖Lp

α!
.

It turns out, that under the conditions of Theorem 2.1 the cubature formula Bn fh,D
converges to Bn f . Since the biharmonic potential is a smoothing operator and by
(2.3) the saturation error of the quasi-interpolant is a small, fast oscillating function,
estimate (2.7) can be sharpened to the form that Bn fh,D approximates Bn f with the
error O(hN + εh4).

We denote by Hs
p = Hs

p(Rn) the Bessel potential space defined as the closure of
compactly supported smooth functions with respect to the norm

‖u‖Hs
p = ‖F

−1((1+4π
2| · |2)s/2Fu)‖Lp = ‖(1−∆)s/2u‖Lp .

We shall use the error estimate for the quasi-interpolant (1.2) in the spaces Hs
p obtained

in [10, p.83] which yields, in the case s =−4, the following result.
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Theorem 2.2. [10, p.83] Suppose that η ∈ S (Rn) satisfies the moments conditions
(1.3) of order N. Then, for any f ∈HL

p , 1 < p < ∞, L≥N ≥ 4 with L > n/p, there exist
constants cη and cp, not depending on f and h such that fh,D defined in (1.2) satisfies

‖ f − fh,D‖H−4
p
≤ cη(h

√
D)N‖ f‖HL

p
+ cph4

N−5

∑
k=0

(h
√

D)k

(2π)k+4 εk(D) ∑
|α|=k
‖∂ α f‖H4

p (2.8)

with the numbers
εk(D) = max

|α|=k
∑

ν∈Zn\0

∣∣∣∂ αFη(
√

Dν)
∣∣∣ .

Theorem 2.2 leads to the following error estimate for the quasi-interpolation pro-
cedure.

Theorem 2.3. Suppose that η ∈S (Rn) satisfies the moments conditions (1.3) of order
N. Let n≥ 5, 1 < p < n/4, q = np/(n−4p) and f ∈W L

p with L≥ N ≥ 4 and L > n/p.
Then there exist constants cη , cp and cq, not depending on f ,h,D , such that

‖Bn f −Bn fh,D‖Lq ≤ cη(h
√

D)N‖ f‖W L
p
+

h4
N−5

∑
k=0

(h
√

D)k εk(D)

(2π)k+2

4

∑
l=0

(
Ap,qcp| f |W l+k

p
+ cq| f |W l+k

q

)
.

Proof. Since
Bn f −Bn fh,D = Bn( f − fh,D )

we obtain, keeping in mind (2.6),

‖Bn( f − fh,D )‖Lq = ‖Bn(I−∆∆)(I−∆∆)−1( f − fh,D )‖Lq

≤ ‖Bn(I−∆∆)−1( f − fh,D )‖Lq +‖Bn∆∆(I−∆∆)−1( f − fh,D )‖Lq

≤ Ap,q‖(I−∆∆)−1( f − fh,D )‖Lp +‖(I−∆∆)−1( f − fh,D )‖Lq .

Since (1+ 4π2|ξ |2)2 can be bounded from above and from below by (1+ 16π4|ξ |4),
the norm in H−4

p is equivalent to

‖F−1((1+16π
4| · |4)−1Fu)‖Lp = ‖(1−∆∆)−1u‖Lp

and we deduce that

‖Bn( f − fh,D )‖Lq ≤ Ap,q‖ f − fh,D‖H−4
p

+‖ f − fh,D‖H−4
q

.

The condition p< n/4 ensures that W L
p is continuously embedded in W L−4

q ([16, p.124]).
Hence by the estimate (2.8) the assertion follows immediately.
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3 Action on Gaussians
Consider the generating function η2(x) = π−n/2e−|x|

2
. The moment conditions (1.3)

are fulfilled with N = 2. If we replace f in (1.1) by

fh,D (x) = (πD)−n/2
∑

m∈Zn
f (hm)e−|x−hm|2/(h2D) ,

then we obtain a cubature for (1.1)

Bn fh,D (x) =
(h
√

D)4

(πD)n/2 ∑
m∈Zn

f (hm)Φ2

(
x−hm
h
√

D

)
(3.1)

with
Φ2(x) := Bn(e−|·|

2
)(x).

Theorem 3.1. Let n ≥ 3,n 6= 4. The biharmonic potential acting on the Gaussian
allows the following representation

Bn(e−|·|
2
)(x) =

1
4(n−2)(n−4) 1F1(

n−4
2

,
n
2
,−|x|2) , (3.2)

where 1F1 denotes the Kummer or confluent hypergeometric function.

Proof. The cubature of the 3-dimensional biharmonic potential B3 f is considered in
[10, p.119]. To determine the action of the biharmonic potential on the Gaussian the
general formula

(Q∗ e−|·|
2
)(x) =

2πn/2 e−|x|
2

|x|n/2−1

∫
∞

0
Q(r)e−r2

In/2−1(2r|x|)rn/2dr (3.3)

with the modified Bessel functions of the first kind In ([1, p.374]) and Q(r) =−r/(8π)
is used. Then (3.3) gives

B3(e−|·|
2
)(x) =−e−|x|

2

8
−
√

π

16
erf(|x|)
|x|

(2|x|2 +1) . (3.4)

(3.4) can also be expressed by means of the confluent hypergeometric functions as

B3(e−|·|
2
)(x) =−1

4 1F1(−
1
2
,

3
2
,−|x|2) .

Let n ≥ 5. The convolution of two radial functions can be transformed to a one-
dimensional integral by using the Fourier transforms of the radial functions. Indeed
(cf. [10, (2.15) p.22])

∫
Rn

Q(|x−y|) f (|y|)dy =
2π

|x|n/2−1

∞∫
0

FQ(r)F f (r)Jn/2−1(2πr|x|)rn/2dr . (3.5)
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Since F (e−|·|
2
)(x) = πn/2e−π2|x|2 and F (| · |4−n)(x) = πn/2−4

Γ( n−4
2 )
|x|−4 (cf. [14, p.156])

we have from (3.5) that

Bn(e−|·|
2
)(x) =

πn/2−3

8|x|n/2−1

∞∫
0

e−π2r2
Jn/2−1(2πr|x|)rn/2−4dr ,

where we used the relation

Γ

(n
2

)
=

(n−2)(n−4)
4

Γ

(
n−4

2

)
.

This integral can be expressed by means of the Kummer or confluent hypergeometric
function 1F1(a,c,z) (cf. [2, (8.6.14)]). (3.2) follows.

In particular, for n = 5, (3.2) gives

B5(e−|·|
2
)(x) =

1
16

(
e−|x|

2

|x|2
+
√

π
erf(|x|)
2|x|3

(2|x|2−1)

)

and, for n = 6,

B6(e−|·|
2
)(x) =

e−|x|
2 −1+ |x|2

16|x|4

(cf. [1, 13.6]).
In dimension n = 4 the biharmonic potential has the form

B4 f (x) =− 1
4π2

∫
R4

ln |x−y| f (y)dy

and the following representation formula holds.

Theorem 3.2. The biharmonic potential acting on the Gaussian function admits the
representation

B4(e−|·|
2
)(x) =

1
16

(
e−|x|

2 −1
|x|2

−2log |x|−E1(|x|2)

)
(3.6)

where E1(r) is the exponential integral

E1(r) =
∫

∞

r

e−t

t
dt .

Proof. We use that the radial function g(r) = Φ2(x), r = |x|, is solution of the differ-
ential equation

1
r3

d
dr

(
r3 d

dr

(
1
r3

d
dr

(
r3 d

dr

)))
g(r) = e−r2

, r > 0 ,
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satisfying the conditions

g(r)≈−1
8

logr as r→ ∞ ,

g(0) =−1
4

∫
∞

0
r3 log(r)e−r2

dr =
γ−1

16
, g′(0) = 0

with the Euler constant γ . Denote by Ln the inverse of the Laplace operator, the har-
monic potential

(Ln f )(x) =−Γ(n/2−1)
4πn/2

∫
Rn

f (y)
|x−y|n−2 dy ,

which provides the unique solution of the Poisson equation

∆u = f in Rn, |u(x)| ≤ c|x|n−2 |x| → ∞ .

Hence we have
1
r3

d
dr

(
r3 d

dr

)
g = L4(e−|·|

2
)(x) .

From the relation (cf. [10, p.75])

L4(e−|·|
2
)(x) =

e−|x|
2 −1

4|x|2

we deduce that g solves

g′′(r)+3
g′(r)

r
=

e−r2 −1
4r2 , g(0) =

γ−1
16

, g′(0) = 0.

We obtain

g′(r) =
1
8

(
1
r3 −

e−r2

r3 −
1
r

)
and, finally

g(r) =
1
8

r∫
0

(
1
s3 −

e−s2

s3 −
1
s

)
ds+g(0) =

1
16

r2∫
0

(
1
t
− e−t

t
−1
)

dt
t

+g(0) =
1

16

(
e−r2 −1

r2 −E1(r2)−2logr

)

with the exponential integral E1 ([1, 5.1.1]).

(3.1), together with (3.2) and (3.6), gives rise to second order semi-analytic cuba-
ture formulas for the biharmonic operator in any dimension n≥ 3.
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4 Action on higher-order basis functions
Now we consider the biharmonic potential

Φ2M(x) := Bn(L
(n/2)
M−1 (| · |

2)e−|·|
2
)(x)

of the radial function L(n/2)
M−1 (|x|2)e−|x|

2
with the generalized Laguerre polynomials

L(γ)
k (y) =

eyy−γ

k!

(
d
dy

)k

(e−yyk+γ), γ >−1 .

The radial functions
η2M(x) = π

−n/2L(n/2)
M−1 (|x|

2)e−|x|
2

(4.1)

satisfy the moment conditions of order 2M ([10, p.56]) and give rise to approximation
formulas of order 2M modulo the saturation error. If we give an analytic formula for
Φ2M , then we obtain the following semi-analytic cubature for (1.1)

Bn fh,D (x) =
(h
√

D)4

(πD)n/2 ∑
m∈Zn

f (hm)Φ2M

(
x−hm
h
√

D

)
(4.2)

Theorem 4.1. For M > 1 we have

Φ2M(x) = Bn(e−|·|
2
)(x)+

1
16|x|n−2 γ(

n
2
−1, |x|2)+ e−|x|

2

16

M−3

∑
j=0

L(n/2−1)
j (|x|2)

( j+1)( j+2)

with the lower incomplete Gamma function

γ(a,x) =
∫ x

0
ta−1e−tdt .

Proof. We use the relation [10, (3.18)]

L(n/2)
M−1 (|x|

2)e−|x|
2
=

M−1

∑
j=0

(−1) j

j!4 j ∆
je−|x|

2
= e−|x|

2 − 1
4

∆e−|x|
2
+

M−1

∑
j=2

(−1) j

j!4 j ∆
je−|x|

2
.

Let Ln be the inverse of the Laplace operator, that is Ln∆ = I. Then Bn(∆e−|·|
2
) =

Ln(e−|·|
2
) and we have

Bn( L(n/2)
M−1 (| · |

2)e−|·|
2
)(x) = Bn(e−|·|

2
)(x)− 1

4
Ln(e−|·|

2
)(x)+

M−1

∑
j=2

(−1) j

j!4 j ∆
j−2e−|x|

2
.

From the relations ([10, p.75])

Ln(e−|·|
2
)(x) =− 1

4|x|n−2 γ(
n
2
−1, |x|2), n≥ 3 ,

with the lower incomplete Gamma function γ(a,x) and ([10, (4.24)])

M−1

∑
j=2

(−1) j

j!4 j ∆
j−2e−|x|

2
=

1
16

M−3

∑
s=0

(−1)s

4s(s+2)!
∆

se−|x|
2
=

e−|x|
2

16

M−3

∑
j=0

L(n/2−1)
j (|x|2)

( j+1)( j+2)

we conclude the proof.
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From the relation ([1, 6.5.16])

γ(
1
2
,x2) =

√
π erf(x)

and the recurrence relation ([1, 6.5.22])

γ(a+1,x2) = aγ(a,x)− e−xx2

we see that in the case of odd space dimension the biharmonic potential of the Gaussian
is expressed using the error function erf. In the case of even space dimension the
biharmonic potential of the Gaussian is expressed by elementary functions since ([1,
6.5.13])

γ(k,x) = (k−1)!

(
1− e−x

k−1

∑
j=0

x j

j!

)
, k ∈ N.

In particular we have

Φ2M(x) =−e−|x|
2

8
−
√

π|x|
8

erf(|x|)+ e−|x|
2

16

M−3

∑
j=0

L(1/2)
j (|x|2)

( j+1)( j+2)
for n = 3,

Φ2M(x) =− log |x|
8
− E1(|x|2)

16
+

e−|x|
2

16

M−3

∑
j=0

L(1)
j (|x|2)

( j+1)( j+2)
for n = 4,

Φ2M(x) =
√

π

16
erf(|x|)
|x|

+
e−|x|

2

16

M−3

∑
j=0

L(3/2)
j (|x|2)

( j+1)( j+2)
for n = 5,

Φ2M(x) =
1− e−|x|

2

16|x|2
+

e−|x|
2

16

M−3

∑
j=0

L(2)
j (|x|2)

( j+1)( j+2)
for n = 6.

Theorem 4.1 shows that Φ2M+2 can be obtained from Φ2M by adding some rapidly
decaying terms. We conclude that the approximation of the density f by the quasi-
interpolant (1.2) with the basis functions (4.1) leads to the semi-analytic approximation
of the biharmonic potential (4.2) and the corresponding analytic expression for Φ2M has
to be used.

5 Separated representation of the biharmonic potential
acting on Gaussians

In this section we take, as in [3], the tensor product generation function

η2M(x) =
n

∏
j=1

η̃2M(x j); η̃2M(x j) =
(−1)M−1

22M−1
√

π(M−1)!
H2M−1(x j)e

−x2
j

x j
, (5.1)

11



which satisfies the moment conditions of order 2M, where Hk are the Hermite polyno-
mials

Hk(x) = (−1)kex2
(

d
dx

)k

e−x2
.

The n-dimensional potential Bn applied to the basis function η2M can be transformed
to a one-dimensional integral with separable integrand, i.e., a product of functions
depending only on one of the variables. In Section 6 we will show how these one-
dimensional integrals, in combination with a quadrature rule, lead to accurate sepa-
rated representations of the potential acting on the generating function. Hence, for
functions f with separated representations, we derive fast formulas which reduces the
n-dimensional convolution (1.1) by one-dimensional discrete convolutions.

We start with second order approximations, i.e. M = 1.

Theorem 5.1. The biharmonic potential Bn(e−|·|
2
) admits the following one-dimensional

integral representation

B3(e−|·|
2
)(x) =−1

8

∞∫
0

e−|x|
2/(1+t)

(
1

(1+ t)3/2 +
t|x|2

(1+ t)5/2

)
dt , (5.2)

Bn(e−|·|
2
)(x) =

1
16

∞∫
0

e−|x|
2/(1+t)

(1+ t)n/2 t dt, n≥ 5 . (5.3)

Proof. We use the integral formula [1, 13.2.1]

1F1(a,c,z) =
Γ(c)

Γ(a)Γ(c−a)

1∫
0

ezτ
τ

a−1(1− τ)−a+c−1dτ, Re(c)> Re(a)> 0 .

(5.4)

Let n≥ 5. With the substitution τ = 1/(1+ t) we get

1F1(
n−4

2
,

n
2
,−|x|2) =

Γ( n
2 )

Γ( n
2 −2)

∞∫
0

e−|x|
2/(1+t) 1

(1+ t)n/2−3

t
1+ t

dt
(1+ t)2

=
(n−2)(n−4)

4

∞∫
0

e−|x|
2/(1+t)

(1+ t)n/2 t dt .

From (3.2) we get (5.3).
From the recurrence relation (cf. [1, 13.4.4]) we have

1F1(−
1
2
,

3
2
,−|x|2) = 1F1(

1
2
,

3
2
,−|x|2)+ 2

3
|x|21F1(

1
2
,

5
2
,−|x|2).

The integral formula (5.4) gives

1F1(
1
2
,

3
2
,−|x|2) = 1

2

∫ 1

0

e−|x|
2τ

τ1/2 dτ =
1
2

∫
∞

0

e−|x|
2/(1+t)

(1+ t)3/2 dt ,

12



1F1(
1
2
,

5
2
,−|x|2) = 3

4

∫
∞

0

e−|x|
2/(1+t)

(1+ t)5/2 t dt .

(5.2) follows from (3.2).

In the next theorem we derive one-dimensional integral representations for the po-
tential Bn acting on the basis functions (5.1).

Theorem 5.2. For M > 1 we have

B3(η2M(·))(x) =− 1
8π3/2

 ∞∫
0

3

∏
j=1

e−x2
j/(1+t)

√
1+ t

QM(x j, t)dt

+

∞∫
0

3

∑
i=1

e−x2
i /(1+t)
√

1+ t
RM(xi, t)

3

∏
j=1
j 6=i

e−x2
j/(1+t)

√
1+ t

QM(x j, t)t dt

 (5.5)

Bn(η2M(·))(x) = 1
16πn/2

∞∫
0

n

∏
j=1

e−x2
j/(1+t)

√
1+ t

QM(x j, t) t dt , n≥ 5 (5.6)

with η2M in (5.1) and

QM(x, t) =
M−1

∑
k=0

(−1)k

k!4k
1

(1+ t)k H2k

(
x√

1+ t

)
;

RM(x, t) =
M−1

∑
k=0

(−1)k

k!4k
1

(1+ t)k S2k

(
x√

1+ t

)
; (5.7)

Sk(y) = y2Hk(y)−2kyHk−1(y)+ k(k−1)Hk−2(y) . (5.8)

QM(x, t) and RM(x, t) are polynomials in x whose coefficients depend on t.

Proof. To get a one-dimensional integral representation of Bn(∏
n
j=1 η̃2M) we use the

relation ([10, p.55])

η̃2M(y) =
1√
π

M−1

∑
k=0

(−1)k

k!4k
d2k

dy2k e−y2
.

Let n≥ 5. The solution of the equation

∆∆u =
n

∏
j=1

η̃2M(x j)

13



is given by the integral

1
16

n

∏
j=1

1√
π

M−1

∑
k=0

(−1)k

k!4k
d2k

dx2k
j

∞∫
0

e−x2
j/(1+t)

(1+ t)n/2 t dt

=
1

16

∞∫
0

(
n

∏
j=1

1√
π

M−1

∑
k=0

(−1)k

k!4k
d2k

dx2k
j

e−x2
j/(1+t)

)
t dt

(1+ t)n/2

=
1

16

∞∫
0

(
n

∏
j=1

1√
π

M−1

∑
k=0

(−1)k

k!4k
e−x2

j/(1+t)

(1+ t)k+1/2 H2k

(
x j√
1+ t

))
t dt ,

that is (5.6).
Let n = 3. Keeping in mind (5.2), we get

B3(e−|x|
2
)(x) =− 1

8π3/2

3

∏
j=1

M−1

∑
k=0

(−1)k

k!4k
d2k

dx2k
j

∞∫
0

e−|x|
2/(1+t)

(1+ t)3/2 dt

− 1
8π3/2

3

∏
j=1

M−1

∑
k=0

(−1)k

k!4k
d2k

dx2k
j

∞∫
0

|x|2e−|x|
2/(1+t)

(1+ t)5/2 tdt.

The first term in the r.h.s is similar to that considered in the case n≥ 5.
Concerning the second term, we have

d2k

dx2k

(
x2

1+ t
e−x2/(1+t)

)
=

1
(1+ t)k

d2k

dy2k

(
y2e−y2

)
y=x/

√
1+t

=
e−x2/(1+t)

(1+ t)k S2k

(
x√

1+ t

)
with Sk(y) in (5.8). Then

M−1

∑
k=0

(−1)k

k!4k
d2k

dx2k

(
x2

1+ t
e−x2/(1+t)

)
= RM(x, t)e−x2/(1+t)

with RM(x, t) defined in (5.7). It follows that the second integral can be written as

3

∏
j=1

M−1

∑
k=0

(−1)k

k!4k
d2k

dx2k
j

∞∫
0

|x|2e−|x|
2/(1+t)

(1+ t)5/2 tdt

=

∞∫
0

3

∏
j=1

M−1

∑
k=0

(−1)k

k!4k
d2k

dx2k
j
|x|2e−|x|

2/(1+t) tdt
(1+ t)5/2

=

∞∫
0

3

∑
i=1

RM(xi, t)
3

∏
j=1
j 6=i

QM(x j, t)
e−|x|

2/(1+t)tdt
(1+ t)3/2 ,

which leads to (5.5).
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The polynomials QM(x, t) and RM(x, t) for M = 1,2,3,4 are given by

Q1(x, t) = 1 , Q2(x, t) =−
x2

(1+ t)2 +
1

2(1+ t)
+1,

Q3(x, t) = Q2(x, t)+
x4

2(1+ t)4 −
3x2

2(1+ t)3 +
3

8(1+ t)2 ,

Q4(x, t) = Q3(x, t)−
x6

6(1+ t)6 +
5x4

4(1+ t)5 −
15x2

8(1+ t)4 +
5

16(1+ t)3 ,

R1(x, t) =
x2

1+ t
, R2(x, t) =−

x4

(1+ t)3 +
x2

1+ t
+

5x2

2(1+ t)2 −
1

2(1+ t)
,

R3(x, t) = R2(x, t)+
x6

2(1+ t)5 −
7x4

2(1+ t)4 +
39x2

8(1+ t)3 −
3

4(1+ t)2 ,

R4(x, t) = R3(x, t)−
x8

6(1+ t)7 +
9x6

4(1+ t)6 −
65x4

8(1+ t)5 +
125x2

16(1+ t)4 −
15

16(1+ t)3 .

6 Implementation and numerical results
In this section we consider the fast computation of the biharmonic potential based on
(5.1). From (4.2) and (5.6) we derive the cubature formula

B
(n)
M,h f (x) =

(h
√

D)4

16(πD)n/2 ∑
m∈Zn

f (hm)

∞∫
0

n

∏
j=1

QM

(
x j−hm j

h
√

D
, t
)

t dt , n≥ 5 .

At the grid points hk = (hk1, ...,hkn) we obtain

B
(n)
M,h f (hk) =

(h
√

D)4

16 ∑
m∈Zn

f (hm)a(M)
k−m (6.1)

where

a(M)
k =

1
(πD)n/2

∞∫
0

n

∏
j=1

e−k2
j/(D(1+t))QM

(
k j√
D
, t
)

t dt . (6.2)

The product structure of the integrand leads to new cubature formulas if the density f
admits the so-called separated representation. The idea is the following. If f is given
as product of univariate functions

f (x) =
n

∏
j=1

f j(x j)

then the values on the grid hk of the cubature formula can be written as

B
(n)
M,h f (hk) =

(h
√

D)4

16(πD)n/2

∞∫
0

n

∏
j=1

∑
m j∈Z

f j(hm j)e−(k j−m j)
2/(D(1+t))QM

(
k j−m j√

D
, t
)

t dt .
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A suitable quadrature of this integral with nodes τs and quadrature weights ωs leads to

B
(n)
M,h f (hk)≈ (h

√
D)4

16(πD)n/2 ∑
s

ωs

n

∏
j=1

σ j(k j,τs)

with

σ j(k,τ) = ∑
m∈Z

f j(hm)e−(k−m)2/(D(1+τ))QM

(
k−m√

D
,τ

)
τ.

Then the value of the integral operator on the grid hk can be obtained by computing
one-dimensional sums, and therefore the computational complexity of the algorithm
scales linearly in the physical dimension.

We use an efficient quadrature based on the classical trapezoidal rule, which is
exponentially converging for rapidly decaying smooth functions on the real line. We
make the substitutions

t = eξ , ξ = a(σ + eσ ), σ = b(u− e−u)

with positive constants a and b proposed in [17] (see also [3, 4]). Then the integrals
(6.2) are transformed to integrals over R with integrands decaying doubly exponentially
in u. After the substitution we have

a(M)
k =

1
(πD)n/2

∞∫
−∞

n

∏
j=1

e−k2
j/(D(1+Φ(u)))QM

(
k j√
D
,Φ(u)

)
Φ(u)Φ′(u)du

with the functions

Φ(u) = exp(ab(u− e−u)+aexp(b(u− e−u)))) ,

Φ
′(u) = Φ(u)ab(1+ e−u)(1+ exp(b(u− e−u))) .

Thus the trapezoidal rule of step τ can provide very accurate approximations of the
integral for a relatively small number of nodes τs

a(M)
k ≈ τ

(πD)n/2 ∑
s

n

∏
j=1

e−k2
j/(D(1+Φ(τs)))QM

(
k j√
D
,Φ(τs)

)
Φ(τs)Φ′(τs)

Assume that f , within a prescribed accuracy, can be represented as sum of products of
one-dimensional functions

f (x) =
P

∑
p=1

βp

n

∏
j=1

f (p)
j (x j)+O(ε) (6.3)

with suitable functions f (p)
j chosen such that the separation rank P is small. We derive

the approximation of the convolutional sum (6.1) using one-dimensional operations

B
(n)
M,h f (hk)≈ (h

√
D)4

16(πD)n/2 τ

P

∑
p=1

βp ∑
s

Φ(τs)Φ′(τs)

×
n

∏
j=1

∑
m j

f (p)
j (hm j)

(
e−(k j−m j)

2/(D(1+Φ(τs)))QM

(
k j−m j√

D
,Φ(τs)

))
.
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We provide results of some experiments which show the accuracy and numerical order
of the method. We compute the biharmonic potential of the density

f (x) = 4e−|x|
2
(n(n+2)−4(n+2)|x|2 +4|x|4) , (6.4)

which has exact values Bn f (x) = e−|x|
2
. In Table 1 we compare the exact values of

Bn f and the approximate values B
(n)
4,0.025 f at some grid points (x1,0, ...,0) ∈ Rn for

space dimensions n = 5,10,102, ...,108.

n 5 10 100
x1 exact abs. error rel. error abs. error rel. error abs. error rel. error
0 0.100E+01 0.129E-09 0.129E-09 0.258E-09 0.258E-09 0.258E-08 0.258E-08
1 0.368E+00 0.286E-10 0.777E-10 0.760E-10 0.207E-09 0.930E-09 0.253E-08
2 0.183E-01 0.171E-11 0.933E-10 0.404E-11 0.220E-09 0.465E-10 0.254E-08
3 0.123E-03 0.112E-12 0.910E-09 0.943E-13 0.764E-09 0.381E-12 0.309E-08
4 0.113E-06 0.435E-13 0.386E-06 0.948E-14 0.843E-07 0.973E-14 0.864E-07

n 1000 10000 100000
x1 exact abs. error rel. error abs. error rel. error abs. error rel. error
0 0.100E+01 0.258E-07 0.258E-07 0.258E-06 0.258E-06 0.258E-05 0.258E-05
1 0.368E+00 0.947E-08 0.257E-07 0.948E-07 0.258E-06 0.949E-06 0.258E-05
2 0.183E-01 0.472E-09 0.257E-07 0.472E-08 0.258E-06 0.472E-07 0.258E-05
3 0.123E-03 0.324E-11 0.263E-07 0.319E-10 0.258E-06 0.318E-09 0.258E-05
4 0.113E-06 0.123E-13 0.110E-06 0.385E-13 0.342E-06 0.300E-12 0.266E-05

n 1000000 10000000 100000000
x1 exact abs. error rel. error abs. error rel. error abs. error rel. error
0 0.100E+01 0.258E-04 0.258E-04 0.258E-03 0.258E-03 0.258E-02 0.258E-02
1 0.368E+00 0.949E-05 0.258E-04 0.948E-04 0.258E-03 0.947E-03 0.258E-02
2 0.183E-01 0.472E-06 0.258E-04 0.472E-05 0.258E-03 0.472E-04 0.258E-02
3 0.123E-03 0.318E-08 0.258E-04 0.318E-07 0.258E-03 0.318E-06 0.258E-02
4 0.113E-06 0.291E-11 0.259E-04 0.290E-10 0.258E-03 0.290E-09 0.258E-02

Table 1: Exact value of Bn f (x1,0, . . . ,0), absolute error and relative error using B
(n)
4,0.025

In Table 2 we report on the absolute errors and approximation rates for the bihar-
monic potential Bn f (1,0, ...,0) in the space dimensions n = 5×10k, k = 0, ...,4. The
approximate values are computed by the cubature formulas B

(n)
M,h for M = 1,2,3,4. We

use uniform grids of size h = 0.1× 2−k, k = 1, ...,5. For high dimensional cases the
second order formula fails whereas the eighth order formula B

(n)
4,h approximates with

the predicted approximation rates. Table 3 shows that the cubature method is effective
also for much higher space dimensions and the approximation rate is reached. For all
calculations the same quadrature rule is used for computing the one-dimensional inte-
gral, the parameters are D = 5, a = 6 and b = 5, τ = 0.003 and 300 summands in the
quadrature sum.

In the remainder of this section we compute the 3-dimensional biharmonic potential
by means of the approximating formula (5.5). For functions of the form (6.3) we
obtain that, at the points of the uniform grid {hk}, the 3-dimensional integral B3 f is

17



M = 4
n 5 50 500 5000 50000

h−1 error rate error rate error rate error rate error rate
10 0.15E-05 0.25E-04 0.26E-03 0.26E-02 0.25E-01
20 0.70E-08 7.77 0.11E-06 7.81 0.12E-05 7.81 0.12E-04 7.81 0.12E-03 7.76
40 0.29E-10 7.94 0.46E-09 7.95 0.47E-08 7.95 0.47E-07 7.95 0.47E-06 7.95
80 0.15E-12 7.55 0.18E-11 7.99 0.19E-10 7.99 0.19E-09 7.99 0.19E-08 7.99

160 0.38E-13 2.02 0.10E-13 7.44 0.86E-13 7.75 0.84E-12 7.80 0.61E-11 8.26

M = 3
10 0.30E-04 0.60E-03 0.62E-02 0.58E-01 0.30E+00
20 0.53E-06 5.83 0.10E-04 5.86 0.11E-03 5.85 0.11E-02 5.74 0.11E-01 4.82
40 0.86E-08 5.96 0.17E-06 5.96 0.17E-05 5.96 0.17E-04 5.96 0.17E-03 5.94
80 0.13E-09 5.99 0.26E-08 5.99 0.27E-07 5.99 0.27E-06 5.99 0.27E-05 5.99

160 0.21E-11 5.97 0.41E-10 6.00 0.43E-09 6.00 0.43E-08 6.00 0.43E-07 6.00

M = 2
10 0.74E-03 0.15E-01 0.13E+00 0.36E+00 0.37E+00
20 0.49E-04 3.91 0.10E-02 3.89 0.10E-01 3.63 0.92E-01 1.98 0.35E+00 0.08
40 0.31E-05 3.98 0.63E-04 3.98 0.67E-03 3.96 0.66E-02 3.79 0.61E-01 2.50
80 0.20E-06 3.99 0.40E-05 3.99 0.42E-04 3.99 0.42E-03 3.98 0.42E-02 3.87

160 0.12E-07 4.00 0.25E-06 4.00 0.26E-05 4.00 0.26E-04 4.00 0.26E-03 3.99

M = 1
10 0.26E-01 0.37E+00 0.37E+00 0.37E+00 0.37E+00
20 0.68E-02 1.95 0.35E+00 0.07 0.35E+00 0.07 0.37E+00 0.00 0.37E+00 0.00
40 0.17E-02 1.99 0.20E+00 0.82 0.20E+00 0.82 0.37E+00 0.00 0.37E+00 0.00
80 0.43E-03 2.00 0.65E-01 1.61 0.65E-01 1.61 0.32E+00 0.22 0.37E+00 0.00

160 0.11E-03 2.00 0.17E-01 1.90 0.17E-01 1.90 0.14E+00 1.15 0.37E+00 0.01

Table 2: Absolute errors and approximation rates for Bn f (1,0, . . . ,0) using B
(n)
M,h.

M = 4
n 100000 1000000 10000000

h−1 error rate error rate error rate
10 0.49E-01 0.28E+00 0.37E+00
20 0.23E-03 7.71 0.23E-02 6.90 0.23E-01 4.02
40 0.95E-06 7.95 0.95E-05 7.95 0.95E-04 7.91
80 0.37E-08 7.99 0.37E-07 7.99 0.37E-06 7.99

160 0.13E-10 8.20 0.20E-09 7.58 0.11E-08 8.41

M = 3
10 0.36E+00 0.37E+00 0.37E+00
20 0.21E-01 4.08 0.16E+00 1.16 0.37E+00 0.00
40 0.35E-03 5.92 0.35E-02 5.57 0.33E-01 3.47
80 0.55E-05 5.99 0.55E-04 5.98 0.55E-03 5.92

160 0.86E-07 6.00 0.86E-06 6.00 0.86E-05 6.00

Table 3: Absolute errors and approximation rates for Bn f (1,0, . . . ,0) using B
(n)
M,h.

18



M = 4 M = 3
h−1 absolute error relative error ate absolute error relative error rate
10 0.236E-06 0.474E-05 0.822E-05 0.165E-03
20 0.965E-09 0.194E-07 7.93 0.137E-06 0.275E-05 5.91
40 0.381E-11 0.765E-10 7.99 0.217E-08 0.436E-07 5.98
80 0.150E-13 0.301E-12 7.99 0.341E-10 0.685E-09 5.99

160 0.438E-14 0.879E-13 1.77 0.538E-12 0.108E-10 5.99

M = 2 M = 1
h−1 absolute error relative error rate absolute error relative error rate
10 0.217E-03 0.435E-02 0.359E-02 0.722E-01
20 0.143E-04 0.287E-03 3.92 0.925E-03 0.186E-01 1.96
40 0.907E-06 0.182E-04 3.98 0.233E-03 0.468E-02 1.99
80 0.569E-07 0.114E-05 3.99 0.583E-04 0.117E-02 2.00

160 0.356E-08 0.715E-07 4.00 0.146E-04 0.293E-03 2.00

Table 4: Relative errors, absolute errors and approximation rates for B3 f (1,1,1) using B
(3)
M,h.

approximated by

B3 f (hk)≈− h4D5/2

8π3/2 τ

P

∑
p=1

βp ∑
s

Φ
′(τs)

×

(
3

∏
i=1

∑
mi

f (p)
j (hmi)e−(ki−mi)

2/(D(1+Φ(τs)))QM

(ki−mi√
D

,Φ(τs)
)

+Φ(τs)
3

∑
i=1

∑
mi

e−(ki−mi)
2/(D(1+Φ(τs)))RM

(ki−mi√
D

,Φ(τs)
)

f (p)
i (hmi)

×
3

∏
j=1
j 6=i

∑
m j

e−(k j−m j)
2/(D(1+Φ(τs)))QM

(k j−m j√
D

,Φ(τs)
)

f (p)
j (hm j)

)
.

In Table 4 we report on the relative and absolute errors, and the approximation rate for
the 3-dimensional biharmonic potential B3 f at the point (1,1,1) of the density (6.4),
which has exact value e−3. The numerical results confirm the h2M convergence of the
cubature formula when M = 1,2,3,4.
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