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Abstract. We find necessary and sufficient conditions for the LP-dissi-
pativity of the Dirichlet problem for systems of partial differential operators
of the first order with complex locally integrable coefficients. As a by-product
we obtain sufficient conditions for a certain class of systems of the second
order.

1 Introduction

The goal of the present paper is to find necessary and sufficient conditions for
the LP-dissipativity for systems of partial differential equations of the first
order (1 < p < o).

Previously we have considered a scalar second order partial differential
operator whose coeflicients are complex-valued measures [1]. For some classes
of such operators we have algebraically characterized the LP-dissipativity.
The main result is that the algebraic condition
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(for any & € R™) is necessary and sufficient for the LP-dissipativity of the
Dirichlet problem for the differential operator V(o7 V), where o is a matrix
whose entries are complex measures and whose imaginary part is symmetric.

We remark that conditions obtained in [1] characterizes the LP-dissipat-
ivity individually, for each p. Previous known results in the literature dealt
with the LP-dissipativity for any p € [1,+00), simultaneously. In the same
spirit we have studied the elasticity system and some classes of systems of
partial differential operators of the second order in [2, 3].

Our results are described and considered in the more general frame of
semi-bounded operators in the monograph [4].

The main result of the present paper concerns the matrix operator

Eu= 2"(2)0hu+ 2(2)u,

where %" (z) = {b};(x)} and @(x) = {d;;(z)} are matrices with complex
locally integrable entries defined in the domain Q of R™ and u = (uy, ..., uy)
(1<i,7<m, 1< h<n). Itstates that, if p # 2, E is LP-dissipative if, and
only if,

B"(x) = bp(x)] ae., (1)

by (x) being real locally integrable functions, and the inequality
Re{(p~'0n #"(z) = 2(2))¢,€) > 0

holds for any ¢ € C™, |(| = 1 and for almost any = € Q. If p = 2 condition
(1) is replaced by the more general requirement that the matrices 2" (x) are
self-adjoint a.e..

On combining this with the results we have previously obtained, we de-
duce sufficient conditions for the LP-dissipativity of certain systems of partial
differential operators of the second order.

2 Preliminaries

Let © be a domain of R™. By Cy(€2) we denote the space of complex valued
continuous functions having compact support in Q. Let C3(€2) consist of all
the functions in Cy(2) having continuous partial derivatives of the first order.
The inner product in C™ is denoted by (-, -) and, as usual, the bar denotes
complex conjugation.



In what follows, if ¢ is a m x m matrix function with complex valued
entries, then @* is its adjoint matrix, i.e., ¥* = ?t, @' being the transposed
matrix of ¥.

Let 2" and " (h =1,...,n) be m x m matrices whith complex-valued
entries b}, s € (Co(Q))* (1 < 4,5 < m). Let @ stand for a matrix whose

elements d;; are complex-valued distributions in (Cj(9))*.

We adopt the summation convention over repeated indices unless other-
wise stated.

We denote by #(u,v) the sesquilinear form

ZL(u,v) = /ﬂ(%’h O, v) — (€" u, Opv) + (D u,v)

defined in (C§(2))™ x (C3(2))™, where 0y, = 0/dzy,.
The integrals appearing in this definition have to be understood in a
proper way. The entries b?j being measures, the meaning of the first term is

/(%h Opu, v) :/Ui@hu]— db?j.
Q Q

Similar meanings have the terms involving ¥. Finally, the last term is
the sum of the actions of the distribution d;; € (C§(R2))* on the functions
u; U; belonging to C§ ().

The form & is related to the system of partial differential operators of
the first order:

Fu= %h 8hu + 8h(<5h u) +9u

Following [4], we say that the form & is LP-dissipative if

Re 2 (u, [u[P~*u)

u if p > 2; (2)
Re. & ([ul"?u,u)

<0
<0 ifl<p<?2 (3)
for all u € (CH(Q))™.

In the present paper, saying the LP-dissipativity of the operator E, we
mean the LP-dissipativity of the corresponding form &, just to simplify the
terminology.

Let us start with a technical lemma which is a particular case of a result
in [4, p.94]. The proof is mainly included here to keep the exposition as
self-contained as possible.



Lemma 1 The operator E is LP-dissipative in 2 if, and only if,

/Q ((1 —2/p)|v| 2 Re(" v,v) Re(v, Opv) — Re(B" O, v)+

(1 —2/p)|v| 2 Re(€" v,v) Re(v, Opv) + Re(€" v, 0v) — Re(P v, v>> >0
(4)

for any v € (CL(Q))™. Here and in the sequel the integrand is extended by
zero on the set where v vanishes.

Proof. Sufficiency. First suppose p > 2. Let u € (C3(Q))™ and set v =

lu|P=2/2y. We have v € (C}(Q))™ and u = |v|@P)/Py, |u[P~2y = |v]|P~2)/Py,
From the identities

(" Onu, [ul""*u) = —(1 = 2/p)|v| = (5" v, v)Onv] + (B" Onv, v),
(" u, On(|Jul""*u)) = (1 = 2/p)|v|~HF" v, v)0n|v| + (£" v, Ohv),
(Du, |ulP2u) = (g v,v), Onlv| = Jv| "' Re(v, Oyv)
we see that the left hand side in (4) is equal to — Z(u, |u[P~2). Then (2) is

satisfied for any u € (Cg(2))™.
If 1 < p <2 we may write (3) as

Re/ (") u, O (Jul"2u)) = ((€") Onu, |ul”u) + (2" u, Jul”"u)) <O
Q
for any u € (C}(2))™. The first part of the proof shows that

/Q ( — (1 =2/ |v| 2 Re((£")*v,v) Re(v, Opv) — Re((B")*v, Opv)+

—(1=2/p")|v| > Re((€") v, v) Re(v, dyv) + Re((¢") v, v) — Re(Z* v, v))
>0

(5)
for any v € (C}(Q))™. Since 1 — 2/p' = —(1 — 2/p), the last inequality
coincides with (4).

Necessity. Let p > 2 and set

g- = (> + )2, u. = g Mo,



where v € (C3(Q))™. We have

(A" Oue, JulP*u.) =
—(1=2/p)g-"|v["~*(B" v,v) Re(v, Opv) + -7 *[v[P~*(B" v, v),
(€" e, On(|uel""?ue)) = gPlo[P~H((1 = 2/p)(1 — p)|v*+
+(p = 2)2)(€" v,v) Re(v, dyv) + g2 P|olP~>(€" v, o),

(D u., |u€|p72us> = g;p+2|v‘p72<-@1}7 v),

on the set F' = {z € Q| |v(z)| > 0}. The inequality ¢g¢ < |v|* for a < 0,
shows that the right hand sides are majorized by L' functions. Since g. — |v|
pointwise as ¢ — 0T, an application of dominated convergence theorem gives

lim
e—0t

<<@h ahusa ]u€]p72u5)d:r; =

Q

= 2/lol 2" 0, 0) Relw, Oh0) + (2" Oh )
Q
lim (%h Ue, Oh(|ua|p_2u£)>dx
€~>0+ QO

/Q((l —2/p)|v| A& v, v) Re(v, Opv) + (€™ v, Opv))dz,

lim [ (D u., |u|P?u.)dr = /(@v,v)dz.
e—=0t Jo Q

These formulas show that the limit

lim <— Re X(Us, |u€|p72u8))

e—0t

is equal to the left-hand side of (4). The functions u. being in (C}(2))™, (2)
implies (4).

If 1 <p< 2, from (6) it follows that the limit

e—0t

lim (— Re $(|us|p,_2u€a U’€))

coincides with the left-hand side of (5). This shows that (3) implies (5) and
the proof is complete.

O



3 A result for a system of ordinary differen-
tial equations of the first order

The aim of this section is to obtain an auxiliary result (see Theorem 1 below)
concerning a particular system of ordinary differential equations of the first
order.

We start with an elementary result, which we prove for the sake of com-
pleteness.

Lemma 2 Let o, 5,7 and 0 be real constants such that

/(a cos® r + fBcoswsinx + ysin® ) (p*(z)) dx = /5 cos? z ?(x)dx  (7)
I I

for any real valued p € CY(I). Then a =~ and 3 =48 = 0.
Proof. Setting

A=acos’x+ Beosxsinz + ysin®z, B =dcos’z

we may write (7) as

/A(@Q)/da: = /Bcpzdx, Vi € CH(I).

1 1

By an integration by parts we get
/(B + A p?dr = 0, Vo € Cy(I).
I
Thanks to the arbitrariness of o, we find A’ = —B, i.e.

(v — ) sin(2x) + (8 + §/2) cos(2z) = —6/2

for any = € I. This implies v —a = 8+ 6/2 = —0/2 = 0 and this gives the
result. 0O

The next Theorem provides a criterion for the LP-dissipativity of one-
dimensional operators with complex constant coefficients and no lower order
terms.



Theorem 1 Let I C R be an open interval and B a constant complexr ma-
trix. We have that the operator Eu = v’ is LP-dissipative if, and only

of,
B=0>bl beR, ifp#2 (8)
B=5". ifp=2 (9)
Proof. Sufficiency. Let p = 2. We have to show that

—Re/(%v’,v) dr >0
I
for any v € (C*(I))™. The left hand side vanishes because

/<93v’,v)da::/<v’,93v>dx:—/(U,%U')dw:—/mdx.

1 1 1 1

If p # 2, in view of Lemma 1 we have to show that
/((1 —2/p)|v| ? Re(Bv,v) Re(v,v') —Re(Bv',v))dx >0 (10)
I

for any v € (C*(I))™. Condition (8) implies (Zv,v) = bv|* and (B V', v) =
b(v',v), the constant b being real. Therefore the left hand side of (10) is
equal to

b/ Re/lw, o)z = b/p /I(|v|2)/d1: ~0

and the sufficiency is proved.
Necessity. In view of Lemma 1 we have that F is LP-dissipative if, and
only if,

/(1 —2/p)|v| > Re(Z v, v) Re(v,v') do — /Re(,@v’,v} dr >0 (11)

I I

for any v € (C5(1))™.
Writing the condition (11) for the function v(—z) we find

/(1 —2/p)|v| 2 Re{Bv,v) Re(v,v') dov — /Re(%’v’,w de <0

I I
and then
/(1 —2/p)Jv| 2 Re{B v, v) Re(v,v') dox — /Re(%’v',w dr =0 (12)
I I

7



for any v € (C5(1))™.
Suppose now p # 2. Fix 1 < j < m and consider the vector v =
(v1,...,U) in which v, = 0 for k # j. Equality (12) reduces to

(1/2— 1/p) Reb,, / (oY di — / Re(by;0/75)d = 0.

I 1

(without summation convention) and since the first integral vanishes, we get
I

The arbitrariness of v; leads to

Fix 1 < h,j7 < m with h # j and consider the vector v = (vy,...,v,,)
in which vy = 0 for k # h,j. In view of (12) we have (without summation

convention

(1/2 — 1/]9) /(|’Uh’2 + ‘Uj|2)71 Re(bhh|vh|2 + bhjvjv_h + bjhvhv_j+ bjj|Uj|2)X
I

(fonl* + [v;*) dz +
— /IRea)th;Lm + bhjU;U_h + bjhU;LU_j + bJ]’U;@)dl’ = 0.
(14)
In particular, taking v, = « and v; = §, with o and f real valued

functions, integrating by parts in the last integral and taking into account
(13), we find

(1/2—1/p) /1(042 + 52)71(bhh042 + Re(bp; + bjn)afs + bjj52)<042 + 52)/d$+

—Re(by; — bjn) /Iozﬁ/dx =0
Taking now a(z) = p(x) cosx, B(x) = ¢(z)sinz, ¢ € C3(I), we obtain
(1/2 —1/p) /(bhh cos® x + bj; sin® v+
(Re(by; + bjn) —p/(p — 2) ]f%e(bhj — byp)) sinz cos z) (¢ () dz =

Re(bp; — jh)/cosgxgoQ(:v)d:v.
I



By Lemma 2 we get
bjj = bh}” Rebh]’ =0 (h 7é ]) (15)

Take now vy, = a, v; = if8 in (14). On account of (13), we have

(1/2 — 1/p) Re(i(by; — jhnt/ka2+-6zy*oiﬁa2%—BQde+

1

—Re(i(br; + bjn)) /aﬁ’d:c =0.
I
The same reasoning as before leads to

Tmby; = 0 (h # j).

Together with (13) and (15), this implies the result for p # 2.
An inspection of the proof just given, shows that, if p = 2, we have only:

]Imbjj:(), (]:1,,777/),
Re(bhj — jh) = O, ]Im(bhj + bjh) =0 (] 7é h),

and (9) is proved.

4 [P-dissipativity of systems of partial differ-
ential operators of the first order

Let us consider the system of partial differential operators of the first order
Eu= 2"(2)0hu+ 2(z)u. (16)

From now on %" (x) = {b};(x)} and @(x) = {d;;(x)} are matrices with
complex locally integrable entries defined in the domain Q of R (1 < 4,5 <
m, 1 < h < n). Moreover we suppose that also 0y, B" (where the derivatives
are in the sense of distributions) is a matrix with complex locally integrable
entries.

Theorem 2 The operator (16) is LP — dissipative if, and only if, the fol-
lowing conditions are satisfied:



A" (x) =bu(x) I,  ifp#2 (17)
#'(@) = (#") (@),  ifp=2 (18)
for almost any x € Q) and h = 1,...,n. Here by, are real locally inte-

grable functions (1 < h <n).

Re((p~'on B"(x) — 9(2))¢,¢) = 0 (19)
for any ¢ € C™, || =1 and for almost any x € €.

Proof. Sufficiency. In view of Lemma 1 we have to show that

/Q ((1 —2/p)|v|~? Re(@hv, v) Re(v, Opv) +
—Re(B" Opv,v) — Re(P v, v>>d:c >0

holds for any v € (C3(Q))™.
Let p = 2. In view of the self-adjointness of &, we have

Re/(,@hﬁhv,wdx: —Re/((@h@h)v,v)dm—Re/ (B" Opv,v)dx
Q Q Q

and then
2Re/<%’h3hv,v>dac— —Re/((@h%’h)v,@dm
Q Q

Consequently
—Re/(%hahv,v>dx—Re/(@v,v)dm:
Q Q
/(2_1 Re((0, B")v,v) — Re(@v,v))dx
Q

and the last integral is greater than or equal to zero because of (19).
Let now p # 2. Keeping in mind (17) we get

(1— 2/p)/ |v| "2 Re(B" v, v) Re(v, Opv)do+
Q
—/Re(%hahv,v>dx—/Re(@v,v)dx:
Q Q

p_l/(ﬁhbh) |v|2dx—/]Re<@v,v>dx.
Q 0

10



Condition (19) gives the result.
Necessity. Denote by B; the open ball {y € R™ | |y| < 1}, take ¢ €
(CH(By))™ and define

v(@) = P((z = x0)/e)

where z is a fixed point in © and 0 < e < dist(xg, 09Q).
Putting this particular v in (20) and making a change of variables, we
obtain

/B (1 = 2/p) ]2 Re( " (0 + ey )b, ) Re (), Dpd)dy

—/B Re(A" (w0 + ey)Optp, ¥)dy — 8/ Re(2 (w0 + ey)y, ¢¥)dy > 0.

By
Letting ¢ — 07 we find
/B (1= 2/p)]] > Re(B" (x0)), 1) Relts, Ot} dy-+

(21)
- /B Re( " (20)0nt, 9)dy > 0

for almost any z € 2 and for any ¢ € (C}(By))™.
Fix now 1 < k < n. Take a € (C}(R))™ and 8 € C}(R"!). Consider

ve(w) = al(zr = (zo)r) /) Byr),

where y; denotes the (n — 1)-dimensional vector (1, ..., Tk_1, Thi1,- .-, Tn).
Choose ¢, o and f in such a way spt . C €.
We have

S [ el R () ) R, B =
h=1

/R!a(t)l2Re<=%’k(xo)Oé(t)a@(t»Re(Oé(t),O/(f)>dt/ 18 () | dyi+

Rn—1

o> [ Relt a0 alnit [ B30T e

11



/Q Re(B" (w0)Ohife, o) dx =
4&@%@&&@»&/ 18 Pyt

Rn—1

=Y [ Re( o) ale). o)t [ Re(Bln) 04B00) di.

Rn-1
h#k
Therefore
lim (/(1 — 2/p)[t0e| 2 Re(B" (w0) Ve, Ve ) Re (e, Opthe)da+
e—0t Q

_/§2R6<<@h(x0)ah¢a7¢a>dx> =
Am—wmw%w%mmwmmkwmwww
4M¢mwwmmw/ 1B Py

Rn—1

and from (21) it follows

(1- 2/19)/R|04(7f)|_2 Re(%" (x0) a(t), a(t)) Re(a(t), o/ (1)) dt+

- /R Re (" (o) (1), a(t))dt > 0.

The arbitrariness of o shows that the operator with constant coefficients

B*(zo)u' is LP-dissipative. Theorem 1 applies and (17)-(18) is satisfied.

As we already proved in the sufficiency part, (17)-(18) implies that in-
equality (20) can be written as

/Q(p1 Re((0y, ,%’h)v, v) — Re(gv,v))dx > 0,

for any v € (C5(€2))™. Take

ve(x) = 2 (2 — o) /2)

where g € 2, ¢ € C™, |¢] = 1, p is a real scalar function in C} (R™), spt ¢ is

contained in the unit ball, ¢ is sufficiently small and

/n O*(x)dr = 1.

12



Putting v. in (22) and letting € — 07 we obtain (19) for almost any x, € .
0

Let us consider now instead of (16), the operator
B"(2)0hu + O (" (2)u) + 2(z)u, (23)

where 8", €", 9, 0, " and 0, €" are matrices with complex locally inte-
grable entries.

Theorem 3 The operator (23) is LP-dissipative if, and only if, the following
conditions are satisfied

1.
B (@) +¢"(x) =a(x) . ifp#2, (24)
B'(2) + 6" () = (#") (@) + (") (x),  ifp=2 (25
for almost any x € Q and h = 1,...,n. Here by are real locally inte-

grable functions (1 < h < n).

Re((p~'0p 2" (z) = 00 %" (2) = 2(2))C,€) 20 (26)
for any ¢ € C™, |¢| =1 and for almost any x € ).

Proof. It is sufficient to write the operator (23) as
(2" (2) + €"(2))0hu + (%" () u+ P(2)u
and apply Theorem 2, observing that

p oW B +E") - O =p OB —p O

13



5 Sufficient conditions for the L’-dissipativity
of certain systems of partial differential op-
erators of the second order

As a by-product of the results obtained in the previous section, we obtain now
sufficient conditions for the LP-dissipativity of a class of systems of partial
differential equations of the second order.

Theorem 4 Let E be the operator
Eu = 0p("(2)0pu) + B"(2)0hu + 9(z)u, (27)

where o7"(x) = {al;(x)} are m x m matrices with complex locally integrable
entries and the matrices "(x), 9(x) satisfy the hypothesis of Theorem 2.

If
]Re(,;th(zt))\, A)—(1— 2/p)2Re(,@%h(m)w,w)(Re()\,w))Q
—(1 = 2/p) Re({7"(z)w, ) — (7"(z)\, w)) Re(\,w) >0 (28)

for almost every x € Q0 and for every \,w € C", |w| =1, h=1,...,n, and
conditions (17)-(18) and (19) are satisfied, the operator E is LP-dissipative.

Proof. Theorem 2 shows that the operator of the first order
B, = #"(2)0hu + 2(x)u

is LP-dissipative. Moreover, inequality (28) is necessary and sufficient for the
LP-dissipativity of the second order operator

Ey = On(a/"(x)0hu) (29)
(see [4, Theorem 4.20, p.115]). Since E = Ey+ Ej, the result follows at once.
U

Consider now the operator (27) in the scalar case (i.e. m = 1)
O (a"(2)Opu) + " (2)Opu + d(z)u

(a",b" and d being scalar functions). In this case such an operator can be
written in the form

Fu=div(e/(z)Vu) + Z(z)Vu + d(x) u (30)

14



where o7 = {cux}, chn = a, cppy = 0 if h # k and 2 = {b"}. For such an
operator one can show that (28) is equivalent to

%@ewx,@ T (Res (e, m) — 2(1 — 2/p){Im e/ (2)E,m) > 0 (31)

for almost any = € Q and for any {,n € R™ (see [4, Remark 4.21, p.115]).
Condition (31) is in turn equivalent to the inequality:

p = 2| [(Im o7 (2), §)| < 2¢/p — 1 (Re o7 ()¢, €) (32)

for almost any = € Q and for any { € R" (see [4, Remark 2.8, p.42]). We
have then

Theorem 5 Let E be the scalar operator (30) where of is a diagonal matriz.
If inequality (32) and conditions (17)-(18) and (19) are satisfied, the operator
E is LP-dissipative.

More generally, consider the scalar operator (30) with a matrix o =
{apk} not necessarily diagonal. By using [4, Theorem 2.7, p.40], we get

Theorem 6 Let the matriz Im o be symmetric, i.e. Im o' = Im o7, If
inequality (32) and conditions (17)-(18) and (19) are satisfied, the operator
(30) is LP-dissipative.

Coming back to system (27), in case the main part of the operator (27)
has real coefficients, i.e. the matrices ¢7" have real locally integrable entries,
we have also

Theorem 7 Let E be the operator (27) where o7 are real matrices. Let us
suppose /" = (™)t and " > 0 (h = 1,...,n). If conditions (17)-(18)
and (19) are satisfied and

11\’
(5-3) 04+ o) < ) o) (33)
for almost everyx € Q, h=1,...,n, where u?(x) and p? () are the smallest

and the largest eigenvalues of the matriz o/"(x) respectively, the operator E
is LP-dissipative. In the particular case m = 2 condition (33) is equivalent
to

11\’
(5 — Z_?> (tr o™ (2))? < det 7" ()
for almost every x € Q, h=1,...,n.

15



Proof. Theorem 4.22 in [4, p.116] shows that (33) holds if and only if the
operator (29) is LP-dissipative. Combining this with Theorem 2 gives the
result. O

Results similar to Theorems 4, 6 and 7 holds for the operator
O (™ (2)Opu) + B"(2)Opu + O (€ (2)u) + D(x)u.

We have just to replace conditions (17), (18) and (19) by (24), (25) and (26)
respectively.

6 The LP-quasi-dissipativity

The operator F is said to be LP-quasi-dissipative if the operator £ — wl is
LP-dissipative for a suitable w > 0. This means that there exists w > 0 such
that

Re/(Eu, uP2updz < wull?
Q

for any v in the domain of E.
The aim of this section is to provide necessary and sufficient conditions for
the LP-quasi-dissipativity of a partial differential operator of the first order.

Lemma 3 The operator (16) is LP-quasi-dissipative if, and only if, there
exists w > 0 such that

(1-— 2/p)/ lv| "2 Re( %" v, v) Re(v, Opv)dx —Re/(%‘h Opv, v)dz+
Q 0
(34)
—Re/(@v,wdx > —w/ lv|2dz
Q Q
for any v € (C§(Q))™.

Proof. The result follows immediately from Lemma 1.

Theorem 8 Let E be the operator (16), in which the entries of & and the
entries of O, " belong to L°°(SY). The operator E is LP-quasi-dissipative if,
and only if, condition (17)-(18) is satisfied.

16



Proof. Necessity. Arguing as in the first part of the proof of Theorem 2,
we find that (34) implies that the ordinary differential operator %" (x¢)u’ is
LP-dissipative, for almost any xo € Q, k = 1,...,m. As we know, this in
turn implies that (17)-(18) is satisfied.

Sufficiency. As in the proof of Theorem 2, condition (17)-(18) gives

(1-— 2/p)/ lv| 2 Re( " v, v) Re(v, Opv)dx —Re/(@h Opv, v)dr =
0 Q
p_lRe/«@h%’h)v,v}da:.
Q

We define w by setting

w=max< 0, esssup Re((@(x) — p~ o, B"(x))(,C) p . (35)

TEQ
¢ceCm™, [¢]=1

The left hand side of (34) being equal to

Re [ (0710, 5" (2) = ()0,

inequality (34) follows from (35).

Remark. It is clear from the proof of Theorem 8 that, if

A= esssup Re((2(x) —p~'0, B"(2))C, ) <0,

zeQ
CeC™,|¢|=1

we have not only the LP-dissipativity of the operator F/, but also the stronger
inequality

Re/(Eu, JulP~?u)dr < Alull?
Q

with A < 0.

The next result follows from similar arguments to those above.

Theorem 9 Let E be the operator (23), in which the entries of 9, O, B"
and O, €" belong to L>(). The operator E is LP-quasi-dissipative if, and
only if, condition (24)-(25) is satisfied.
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7 The angle of dissipativity

Let E be the operator (16) and assume it is LP-dissipative. The aim of this
Section is to determine the angle of dissipativity of F. This means to find
the set of complex values z such that zF is still LP-dissipative.

What comes out is that the angle of dissipativity of E is always a zero-
sided angle, unless F/ degenerates to the operator & u.

We start recalling the following Lemma

Lemma 4 Let P and Q) two real measurable functions defined on a set 2 C
R™. Let us suppose that P(x) > 0 almost everywhere. The inequality

P(z) cosv — Q(x) sind >0 (¥ € [-m, 7))
holds for almost every x € ) if and only if

arccot [es:):seigrlf (Q(x)/P(x))] — m < ¥ < arccot [esssup (Q(z)/P(x))]

SIS

where 2 = {x € Q | P*(z) + Q*(x) > 0} and we set

+oo if P(x)
—oco if P(x)

0, Q(z) >0
0, Q(z) < 0.

Q(z)/P(x) = {

Here 0 < arccoty < 7, arccot(+o00) = 0, arccot(—o0) =7 and

essinf (Q(x)/ P(x)) = +00,  esssup (Qx)/P(r)) = —o0

TEE
if = has zero measure.

For a proof we refer to [2, p.236] (see also [4, p.138]).

Theorem 10 Let E be the operator (16) and suppose it is LP-dissipative.

Set
P(z,¢) = —Re(2(2)(, ),
Q(z,¢) = —Im{2(x))¢, Q)
E={(z,0)eQxC"|[(| =1, P*(z,¢)+Q*x,() > 0}.
If

B"(x)=0 ae (h=1,...,n), (36)
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the operator zE is LP-dissipative if, and only if,
I <argz < Uy, (37)

where

¥_ = arccot (?SSC)ian(x7 ¢)/P(x, C)) -7
z,0)EE
¥, = arccot (ess sup Q(z, )/ P(x, ()) :
(z,0)€=E
If condition (36) is not satisfied and there exist ( € C™ and x € Q) such that
Re((p~'0h #" (x) — 2(2))C. C) > 0, (38)

the angle of dissipativity of E s zero, i.e. zFE 1s dissipative if, and only if,
Imz=0, Rez > 0. Finally, if condition (36) is not satisfied and

Re((p~'0h #"(2) — 2(2))¢. ¢) = 0, (39)

for any ¢ € C™, |¢| = 1 and for almost any x € 2, the operator zE is
LP-dissipative if, and only if, Rez = 0.

Proof. Suppose (36) holds. It is obvious that zF satisfies condition (17)-
(18) for any z € C. Since E is LP-dissipative, P(x,() > 0 for any ¢ € C™,
|| =1 and for almost any = € Q (see (19)). In view of Lemma 4 we have

Re{—z 2(x))¢, ¢) = 0

if, and only if, (37) holds.
Assumue now that (36) is not satisfied. Condition (17)-(18) is valid for

all the matrices z 2" if, and only if, Im z = 0. Moreover, suppose that there
exist ¢ € C™ and z € ) such that (38) holds; therefore

Re (Re 2{(p™'0h 2" () — 2(2))¢.C)) > 0 (40)

for any ¢ € C™, |¢| =1 and for almost any z € Q if, and only if, Rez > 0.
Assume instead (39) for any ¢ € C™, |¢| = 1 and for almost any = € €;

then condition (40) holds for any z € C. This means that zE is LP-dissipative

if, and only if, Im z = 0. 0
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Remark. Suppose (36) is not satisfied and that (39) holds for any ¢ € C™,
|| = 1 and for almost any = € 2. In this case we have “two” zero sided angles
of dissipativity and not only one. This should not surprise. Indeef for such
operators we have the LP-dissipativity of both F and (—FE). This is evident,
e.g., for the operators with constant coefficients considered in Theorem 1.
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