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Abstract

We deal with eigenvalue problems for the Laplacian on noncompact Riemannian manifolds
M of finite volume. Sharp conditions ensuring Lq(M) and L∞(M) bounds for eigenfunctions
are exhibited in terms of either the isoperimetric function or the isocapacitary function of
M .

1 Introduction

We are concerned with a class of eigenvalue problems for the Laplacian on n-dimensional Rie-
mannian manifolds M whose weak formulation is:

(1.1)

∫
M
〈∇u ,∇v〉 dHn(x) = γ

∫
M
u v dHn(x)

for every test function v in the Sobolev space W 1,2(M). Here, u ∈W 1,2(M) is an eigenfunction
associated with the eigenvalue γ ∈ R, ∇ is the gradient operator, Hn denotes the n-dimensional
Hausdorff measure on M , i.e. the volume measure on M induced by its Riemannian metric, and
〈· , ·〉 stands for the associated scalar product.
Note that various special instances are included in this framework. For example, if M is a
complete Riemannian manifold, then (1.1) is equivalent to a weak form of the equation

(1.2) ∆u+ γu = 0 on M .

In the case when M is an open subset of a Riemannian manifold, and in particular of the
Euclidean space Rn, equation (1.1) is a weak form of the eigenvalue problem obtained on coupling
equation (1.2) with homogeneous Neumann boundary conditions.

Mathematics Subject Classifications: 35B45, 58G25.
Key words and phrases: Eigenfunctions, Laplacian, Riemannian manifold, isocapacitary inequalities, isoperimetric
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It is well known that quantitative information on eigenvalues and eigenfunctions for elliptic
operators in open subsets of Euclidean space Rn can be derived in terms of geometric quantities
associated with the domain. The quantitative analysis of spectral problems, especially for the
Laplacian, on Riemannian manifolds is also very classical. A great deal of contributions to this
topic regard compact manifolds. We do not even attempt to provide an exhaustive bibliography
on contributions to this matter; let us just mention the reference monographs [Cha, BGM], and
the papers [Bou, Br, BD, Che, CGY, DS, Do1, Do2, Es, Ga, Gr2, HSS, JMS, Na, SS, So, SZ, Ya].

The present paper focuses the case when

M need not be compact,

although
Hn(M) <∞ ,

an assumption which will be kept in force throughout. We shall also assume that M is connected.
We are concerned with estimates for Lebesgue norms of eigenfunctions of the Laplacian on

M . When M is compact, one easily infers, via local regularity results for elliptic equations,
that any eigenfunction u of the Laplacian belongs to L∞(M). Explicit bounds, with sharp
dependence on the eigenvalue γ, are also available [SS, SZ], and require sophisticated tools from
differential geometry and harmonic analysis. If the compactness assumption is dropped, then
the membership of u in W 1,2(M) only (trivially) entails that u ∈ L2(M). Higher integrability
of eigenfunctions is not guaranteed anymore.

Our aim is to exhibit minimal assumptions on M ensuring Lq(M) bounds for all q <∞, or
even L∞(M) bounds for eigenfunctions of the Laplacian on M . The results that will be presented
can easily be extended to linear uniformly elliptic differential operators, in divergence form, with
merely measurable coefficients on M . However, we emphasize that our estimates are new even
for the Neumann Laplacian on open subsets of Rn of finite volume.

The geometry of the manifoldM will come into play through either the isocapacitary function
νM , or the isoperimetric function λM of M . They are the largest functions of the measure of
subsets of M which can be estimated by the capacity, or by the perimeter of the relevant subsets.
Loosely speaking, the asymptotic behavior of νM and λM at 0 accounts for the regularity of the
geometry of the noncompact manifold M : decreasing this regularity causes νM (s) and λM (s) to
decay faster to 0 as s goes to 0.

The inequalities associated with νM and λM are called the isocapacitary inequality and the
isoperimetric inequality on M , respectively. Thus, the isoperimetric inequality on M reads

(1.3) λM (Hn(E)) ≤ P (E)

for every measurable set E ⊂M with Hn(E) ≤ Hn(M)/2, where λM : [0,Hn(M)/2]→ [0,∞).
In the isocapacitary inequality that we are going to exploit, the perimeter on the right-hand
side of (1.3) is replaced by the condenser capacity of E with respect to any subset G ⊃ E. The
resulting inequality has the form

(1.4) νM (Hn(E)) ≤ C(E,G)

for every measurable sets E ⊂ G ⊂ M with Hn(G) ≤ Hn(M)/2. Here, C(E,G) denotes the
capacity of the condenser (E;G), and νM : [0,Hn(M)/2] → [0,∞] (see Section 3 for precise
definitions).
Introduced in [Ma1], the isoperimetric function λM has been employed to provide necessary
and sufficient conditions for embeddings of the Sobolev space W 1,1(M) when M is a domain
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in Rn [Ma1], and in a priori estimates for solutions to elliptic boundary value problems [Ma2,
Ma6]. Isocapacitary functions were introduced and used in [Ma1, Ma3, Ma4, Ma5, Ma7] in the
characterization of Sobolev embeddings for W 1,p(M), with p > 1, when M is a domain in Rn.
Extensions to the case of Riemannian manifolds can be found in [Gr1, Gr2].

Both the conditions in terms of νM , and those in terms of λM , for eigenfunction estimates in
Lq(M) or L∞(M) that will be presented are sharp in the class of manifolds M with prescribed
asymptotic behavior of νM and λM at 0. Each one of these two approaches has its own advan-
tages. The isoperimetric function λM has a transparent geometric character, and it is usually
easier to investigate. The isocapacitary function can be less simple to compute; however its use
is in a sense more appropriate in the present framework since it not only implies the results in-
volving λM , but leads to finer conclusions in general. Typically, this is the case when manifolds
with complicated geometric configurations are taken into account.

As for the proofs, let us just mention here that crucial use is made of the isocapacitary
inequality (1.4) applied when E is any level set of an eigenfunction u. Note that customary
methods, such as Moser iteration technique, which can be exploited to derive eigenfunction
estimates in classical situations (see e.g. [Sa]), are of no utility in the present framework. In fact,
Moser technique would require a Sobolev embedding theorem for W 1,2(M) into some Lebesgue
space smaller than L2(M), and this will not be guaranteed under the assumptions of our results.

The paper is organized as follows. The main results are stated in the next section. The
subsequent Section 3 contains some basic definitions and properties concerning perimeter and
capacity which enter in our discussion. In Section 4 we analyze a class of manifolds of revolu-
tion, which are used as model manifolds in the proof of the optimality of our results and in some
examples. In particular, the behavior of their isoperimetric and isocapacitary functions is inves-
tigated. Proofs of our bounds in Lq(M) and in L∞(M) are the object of Section 5 and Section
6, respectively, where explicit estimates depending on eigenvalues are also provided. The final
Section 7 deals with applications of our results to two special instances: a family of manifolds
of revolution whose profile has a borderline exponential behavior, and a family of manifolds
with a sequence of clustering mushroom-shaped submanifolds. In particular, the latter example
demonstrates that the use of νM instead of λM can actually lead to stronger results when the
regularity of eigenfunctions of the Laplacian is in question.

2 Main results

Our results will involve the manifold M only through the asymptotic behavior of either νM , or
λM at 0. They are stated in Subsections 2.1 and 2.2, respectively.

Although the criteria involving λM admit independent proofs, along the same lines as those
involving νM , the former will be deduced from the latter via the inequality:

(2.1)
1

νM (s)
≤
∫ Hn(M)/2

s

dr

λM (r)2
for s ∈ (0,Hn(M)/2),

which holds for any manifold M (see the proof of [Ma7, Proposition 4.3.4/1]). Let us notice that
a reverse inequality in (2.1) does not hold in general, even up to a multiplicative constant.

The proofs of the sharpness of the criteria for λM and νM require essentially the same con-
struction. We shall again focus on the latter, and we shall explain how the relevant construction
also applies to the former.



4

2.1 Eigenvalue estimates via the isocapacitary function of M

We begin with an optimal condition on the decay of νM at 0 ensuring Lq(M) estimates for
eigenfunctions of the Laplacian on M for q ∈ (2,∞). Interestingly enough, such a condition is
independent of q.

Theorem 2.1 [Lq bounds for eigenfunctions via νM ] Assume that

(2.2) lim
s→0

s

νM (s)
= 0 .

Then for any q ∈ (2,∞) and for any eigenvalue γ, there exists a constant C = C(νM , q, γ) such
that

(2.3) ‖u‖Lq(M) ≤ C‖u‖L2(M)

for every eigenfunction u of the Laplacian on M associated with γ.

An estimate for the constant C in inequality (2.3) can also be provided – see Proposition
5.1, Section 5.

Let us note that condition (2.2) turns out to be equivalent to the compactness of the em-
bedding W 1,2(M) → L2(M) [CM]. Hence, in particular, the variational characterization of the
eigenvalues of the Laplacian on M entails that they certainly exist under (2.2).

Incidentally, let us also mention that, when M is a complete manifold, condition (2.2) is also
equivalent to the discreteness of the spectrum of the Laplacian on M [CM].

The next result shows that assumption (2.2) is essentially minimal in Theorem 2.1, in the
sense that Lq(M) regularity of eigenfunctions may fail under the mere assumption that

νM (s) ≈ s near 0.

Here, and in what follows, the notation

(2.4) f ≈ g

for functions f, g : (0,∞)→ [0,∞) means that there exist positive constants c1 and c2 such that

(2.5) c1g(c1s) ≤ f(s) ≤ c2g(c2s) for s > 0.

Condition (2.5) is said to hold near 0, or near infinity, if there exists a constant s0 > 0 such
that (2.5) holds for 0 < s ≤ s0 or for s ≥ s0, respectively.
As in (2.2), all criteria that will be presented are invariant under replacement of νM or λM with
functions ≈ near 0.

Theorem 2.2 [Sharpness of condition (2.2)] For any n ≥ 2 and q ∈ (2,∞], there exists an
n-dimensional Riemannian manifold M such that

(2.6) νM (s) ≈ s near 0,

and the Laplacian on M has an eigenfunction u /∈ Lq(M).

The important case when q = ∞, corresponding to the problem of the boundedness of
eigenfunctions, is not included in Theorem 2.1. This is the object of the following result, where
a slight strengthening of assumption (2.2) is shown to yield L∞(M) estimates for eigenfunctions
of the Laplacian on M .
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Theorem 2.3 [Boundedness of eigenfunctions via νM ] Assume that

(2.7)

∫
0

ds

νM (s)
<∞ .

Then for any eigenvalue γ, there exists a constant C = C(νM , γ) such that

(2.8) ‖u‖L∞(M) ≤ C‖u‖L2(M)

for every eigenfunction u of the Laplacian on M associated with γ.

An estimate for the constant C in inequality (2.8) is given in Proposition 6.1, Section 6.

Condition (2.7) in Theorem 2.3 is essentially sharp for the boundedness of eigenfunctions
of the Laplacian on M . In particular, it cannot be relaxed to (2.2), although the latter ensures
Lq(M) estimates for every q < ∞. Indeed, under some mild qualification, Theorem 2.4 below
asserts that given (up to equivalence) any isocapacitary function fulfilling (2.2) but not (2.7),
there exists a manifold M with the prescribed isocapacitary function on which the Laplacian
has an unbounded eigenfunction.
A precise statement of this result involves the notion of function of class ∆2. Recall that a non-
decreasing function f : (0,∞) → [0,∞) is said to belong to the class ∆2 near 0 if there exist
constants c and s0 such that

(2.9) f(2s) ≤ cf(s) if 0 < s ≤ s0.

Theorem 2.4 [Sharpness of condition (2.7) ] Let ν be a non-decreasing function, vanishing
only at 0, such that

lim
s→0

s

ν(s)
= 0 ,

but ∫
0

ds

ν(s)
=∞ .

Assume in addition that ν ∈ ∆2 near 0, and that either n ≥ 3 and

(2.10)
ν(s)

s
n−2
n

≈ a non-decreasing function near 0,

or n = 2 and there exists α > 0 such that

(2.11)
ν(s)

sα
≈ a non-decreasing function near 0.

Then, there exists an n-dimensional Riemannian manifold M fulfilling

(2.12) νM (s) ≈ ν(s) near 0,

and such that the Laplacian on M has an unbounded eigenfunction.

Assumption (2.10) or (2.11) in Theorem 2.4 is explained by the fact that, if M is compact, then

(2.13) νM (s) ≈

{
s
n−2
n if n ≥ 3,(

log 1
s

)−1
if n = 2,

near 0, and that νM (s) cannot decay more slowly to 0 as s→ 0 in general. The assumption that
ν ∈ ∆2 near 0 is due to technical reasons.
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2.2 Eigenvalue estimates via the isoperimetric function

The following criterion for Lq(M) bounds of eigenfunctions in terms of the isoperimetric function
λM can be derived via Theorem 2.1 and inequality (2.1).

Theorem 2.5 [Lq bounds for eigenfunctions via λM ] Assume that

(2.14) lim
s→0

s

λM (s)
= 0 .

Then for any q ∈ (2,∞) and any eigenvalue γ, there exists a constant C = C(λM , q, γ) such
that

(2.15) ‖u‖Lq(M) ≤ C‖u‖L2(M)

for every eigenfunction u of the Laplacian on M associated with γ.

An analogue of Theorem 2.2 on the minimality of assumption (2.14) in Theorem 2.5 is contained
in the the next result, showing that, for every q > 2, eigenfunctions which do not belong to Lq(M)
may actually exist when

λM (s) ≈ s near 0.

Theorem 2.6 [Sharpness of condition (2.14)] For any n ≥ 2 and q ∈ (2,∞], there exists an
n-dimensional Riemannian manifold M such that

(2.16) λM (s) ≈ s near 0,

and the Laplacian on M has an eigenfunction u /∈ Lq(M).

A condition on λM , parallel to (2.7), ensuring the boundedness of eigenfunctions of the
Laplacian on M follows from Theorem 2.3 and inequality (2.1).

Theorem 2.7 [Boundedness of eigenfunctions via λM ] Assume that

(2.17)

∫
0

s

λM (s)2
ds <∞ .

Then for any eigenvalue γ, there exists a constant C = C(λM , γ) such that

(2.18) ‖u‖L∞(M) ≤ C‖u‖L2(M)

for every eigenfunction u of the Laplacian on M associated with γ.

Our last result tell us that the gap between condition (2.17), ensuring L∞(M) bounds for
eigenfunctions, and condition (2.14), yielding Lq(M) bounds for any q <∞, cannot be essentially
filled.

Theorem 2.8 [Sharpness of condition (2.17) ] Let λ be a non-decreasing function, vanishing
only at 0, such that

lim
s→0

s

λ(s)
= 0 ,
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but ∫
0

s

λ(s)2
ds =∞ .

Assume in addition that

(2.19)
λ(s)

s
n−1
n

≈ a non-decreasing function near 0.

Then, there exists an n-dimensional Riemannian manifold M fulfilling

(2.20) λM (s) ≈ λ(s) near 0,

and such that the Laplacian on M has an unbounded eigenfunction.

Assumption (2.19) in Theorem 2.8 is required in the light of the fact that

(2.21) λM (s) ≈ s
n−1
n near 0

for any compact manifold M , and that λM (s) cannot decay more slowly to 0 as s → 0 in the
noncompact case.

3 Background and preliminaries

Let E be a measurable subset of M . The perimeter P (E) of E is defined as

P (E) = Hn−1(∂∗E) ,

where ∂∗E stands for the essential boundary of E in the sense of geometric measure theory,
and Hn−1 denotes the (n− 1)-dimensional Hausdorff measure on M induced by its Riemannian
metric ([AFP, Ma7]). Recall that ∂∗E agrees with the topological boundary ∂E of E when E
is sufficiently regular, for instance an open subset of M with a smooth boundary. In the special
case when M = Ω, an open subset of Rn, and E ⊂ Ω, we have that P (E) = Hn−1(∂∗RnE ∩ Ω),
where ∂∗RnE denotes the essential boundary of E in Rn.
The isoperimetric function λM of M is defined as

(3.1) λM (s) = inf{P (E) : s ≤ Hn(E) ≤ Hn(M)/2} for s ∈ [0,Hn(M)/2] .

The isoperimetric inequality (1.3) is just a rephrasing of definition (3.1). The point is thus to
derive information about the function λM , which is explicitly known only for Euclidean balls and
spheres [BuZa, Ci2, Ma7], convex cones [LP], and manifolds in special classes [BC, CF, CGL,
GP, MHH, Kl, MJ, Pi, Ri]. Various qualitative and quantitative properties of λM are however
available – see e.g. [BuZa, Ci1, HK, KM, La, Ma7]. In particular, since we are assuming that M
is connected,

(3.2) λM (s) > 0 for s ∈ (0,Hn(M)/2],

as an analogous argument as in [Ma7, Lemma 3.2.4] shows.
The Sobolev space W 1,p(M) is defined, for p ∈ [1,∞], as

W 1,p(M) = {u ∈ Lp(M) : u is weakly differentiable on M and |∇u| ∈ Lp(M) } .
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We denote by W 1,p
0 (M) the closure in W 1,p(M) of the set of smooth compactly supported

functions on M .
The standard p-capacity of a set E ⊂M can be defined as

(3.3) Cp(E) = inf

{∫
M
|∇u|p dx : u ∈W 1,p

0 (M), u ≥ 1 in some neighbourhood of E

}
.

A property concerning the pointwise behavior of functions is said to hold Cp-quasi everywhere
in M , Cp-q.e. for short, if it is fulfilled outside a set of p-capacity zero.
Each function u ∈ W 1,p(M) has a representative ũ, called the precise representative, which is
Cp-quasi continuous, in the sense that for every ε > 0, there exists a set A ⊂M , with Cp(A) < ε,
such that f|M\A is continuous in M \A. The function ũ is unique, up to subsets of p-capacity zero.
In what follows, we assume that any function u ∈W 1,p(M) agrees with its precise representative.

In the light of a classical result in the theory of capacity ([Da, Proposition 12.4], [MZ,
Corollary 2.25]), we adopt the following definition of capacity of a condenser. Given sets E ⊂
G ⊂M , the capacity Cp(E,G) of the condenser (E,G) relative to Ω is defined as
(3.4)

Cp(E,G) = inf

{∫
M
|∇u|p dx : u ∈W 1,p(M), u ≥ 1 Cp-q.e. in E and u ≤ 0 Cp-q.e. in M \G

}
.

Accordingly, the p-isocapacitary function νM,p : [0,Hn(M)/2]→ [0,∞] of M is given by

(3.5) νM,p(s) = inf {Cp(E,G) : E and G are measurable subsets of M such that

E ⊂ G ⊂M and s ≤ Hn(E) ≤ Hn(G) ≤ Hn(M)/2} for s ∈ [0,Hn(M)/2].

The function νM,p is clearly non-decreasing. In what follows, we shall always deal with the
left-continuous representative of νM,p, which, owing to the monotonicity of νM,p, is pointwise
dominated by the right-hand side of (3.5). Note that

(3.6) νM,1 = λM

as shown by an analogous argument as in [Ma7, Lemma 2.2.5].
When p = 2, the case of main interest in the present paper, we drop the index p in Cp(E,G)

and νM,p, and simply set
C(E,G) = C2(E,G) ,

and
νM = νM,2.

By (3.2) and (2.1), one has that

(3.7) νM (s) > 0 for s ∈ [0,Hn(M)/2].

For any measurable function u on M , we define its distribution function µu : R→ [0,∞) as

µu(t) = Hn({x ∈M : u(x) ≥ t}) for t ∈ R.

Note that here µu is defined in terms of u, and not of |u| as customary. The signed decreasing
rearrangement u◦ : [0,Hn(M)]→ [−∞,∞] of u is given by

u◦(s) = sup{t : µu(t) ≥ s} for s ∈ [0,Hn(M)].
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The median of u is defined by

med(u) = u◦(Hn(M)/2) .(3.8)

Since u and u◦ are equimeasurable functions, one has that

(3.9) ‖u◦‖Lq(0,Hn(M)) = ‖u‖Lq(M)

for every q ∈ [1,∞]. Moreover, by an analogous argument as in [CEG, Lemma 6.6], if u ∈
W 1,p(M) for some p ∈ [1,∞], then

(3.10) u◦ is locally absolutely continuous in (0,Hn(M)).

Given u ∈W 1,2(M), we define the function ψu : R→ [0,∞) as

(3.11) ψu(t) =

∫ t

0

dτ∫
{u=τ} |∇u| dHn−1(x)

for t ∈ R .

On making use of (a version on manifolds) of [Ma7, Lemma 2.2.2/1], one can easily show that if

(3.12) med(u) = 0 ,

then

(3.13) νM (Hn({u ≥ t})) ≤ 1

ψu(t)
for t > 0,

and

(3.14) νM (s) ≤ 1

ψu(u◦(s))
for s ∈ (0,Hn(M)/2).

4 Manifolds of revolution

In this section we focus on a class of manifolds of revolution to be employed in our proofs
of Theorems 2.2 and 2.4. Specifically, we investigate on their isoperimetric and isocapacitary
functions.

Let L ∈ (0,∞], and let ϕ : [0, L)→ [0,∞) be a function in C1([0, L)), such that

(4.1) ϕ(r) > 0 for r ∈ (0, L),

(4.2) ϕ(0) = 0 , and ϕ′(0) = 1 .

Here, ϕ′ denotes the derivative of ϕ. For n ≥ 2, we call n-dimensional manifold of revolution M
associated with ϕ the ball in Rn given, in polar coordinates, by {(r, ω) : r ∈ [0, L), ω ∈ Sn−1}
and endowed with the Riemannian metric

(4.3) ds2 = dr2 + ϕ(r)2dω2 .

Here, dω2 stands for the standard metric on Sn−1. Owing to our assumptions on ϕ, the metric
(4.3) is of class C1(M). Note that, in particular,

(4.4)

∫
M
u dHn =

∫
Sn−1

∫ L

0
uϕ(r)n−1 dr dσn−1 ,
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for any integrable function u : M → R. Here, σn−1 denotes the (n − 1)-dimensional Hausdorff
measure on Sn−1.

The length of the gradient of a function u : M → R is defined by |∇u| =
√
〈∇u ,∇u〉, and

takes the form

(4.5) |∇u| =

√(∂u
∂r

)2
+

1

ϕ(r)2
|∇Sn−1u|2,

where ∇Sn−1 denotes the gradient operator on Sn−1. Moreover, if u depends only on r, then

(4.6) ∆u =
1

ϕ(r)n−1

d

dr

(
ϕ(r)n−1du

dr

)
.

Thus, for functions u depending only on r, equation (1.2) reduces to the ordinary differential
equation

(4.7)
d

dr

(
ϕ(r)n−1du

dr

)
+ γϕ(r)n−1u = 0 for r ∈ (0, L).

The membership of u in W 1,2(M) reads

(4.8)

∫ L

0

(
u2 +

(
du

dr

)2)
ϕ(r)n−1dr <∞ .

Now, fix any r0 ∈ (0, L), set

(4.9) s0 =

∫ L

r0

dρ

ϕ(ρ)n−1
,

and define ψ : (0, L)→ R as

(4.10) ψ(r) =

∫ r

r0

dρ

ϕ(ρ)n−1
for r ∈ (0, L).

Under the change of variables
s = ψ(r),

v(s) = u(ψ−1(s)),

and
p(s) = ϕ

(
ψ−1(s)

)2(n−1)
,

equations (4.7) and (4.8) turn into

(4.11)
d2v

ds2
+ γp(s)v = 0 for s ∈ (−∞, s0),

and

(4.12)

∫ s0

−∞

(
v2p(s) +

(
dv

ds

)2)
ds <∞ ,

respectively.
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We finally note that if r ∈ (0, L) and B(r) = {(ρ, ω) : ρ ∈ [0, r), ω ∈ Sn−1}, a ball on M centered
at 0, then

(4.13) Hn−1(∂(M \B(r))) = Hn−1(∂B(r)) = ωn−1ϕ(r)n−1 ,

and

(4.14) Hn(M \B(r)) = ωn−1

∫ L

r
ϕ(ρ)n−1dρ ,

where ωn−1 = Hn−1(Sn−1).
The main result of this section is contained in the following theorem, which provides us (up

to equivalence) with the functions λM and νM for a manifold of revolution M as above. In what
follows, we set n′ = n

n−1 , the Hölder conjugate of n.

Theorem 4.1 Let L ∈ (0,∞] and let ϕ : [0, L) → [0,∞) be a function in C1([0, L)) fulfilling
(4.1) and (4.2) and such that:
(i) limr→L ϕ(r) = 0;
(ii) there exists L0 ∈ (0, L) such that ϕ is decreasing and convex in (L0, L);

(iii)
∫ L

0 ϕ(ρ)n−1 dρ <∞.
Then the metric of the n-dimensional manifold of revolution M built upon ϕ is of class C1(M),
and Hn(M) <∞. Moreover, let λ0 be the function implicitly defined by

(4.15) λ0

(
ωn−1

∫ L

r
ϕ(ρ)n−1dρ

)
= ωn−1ϕ(r)n−1 for r ∈ (L0, L) ,

and such that λ0(s) = λ0

(
ωn−1

∫ L
L0
ϕ(ρ)n−1dρ

)
for s ∈

(
0, ωn−1

∫ L
L0
ϕ(r)n−1dr

)
. Then

(4.16) λM (s) ≈ λ0(s) near 0 ,

and

(4.17) νM (s) ≈ 1∫Hn(M)/2
s

dr
λ0(r)2

near 0.

Proof The fact that M is a Riemannian manifold of class C1 follows from assumptions (4.1)
and (4.2). Furthermore, by (iii),

Hn(M) = ωn−1

∫ L

0
ϕ(ρ)n−1dρ <∞.

As for (4.16) and (4.17), let us begin by observing that, since ϕ is decreasing in (L0, L), the

function λ0 is increasing in
(
0, ωn−1

∫ L
L0
ϕ(r)n−1dr

)
. Moreover, there exists a constant C such

that

(4.18) λ0(s) ≤ Cs1/n′

for s ∈
(
0, ωn−1

∫ L
L0
ϕ(r)n−1dr

)
. Indeed, since limr→L ϕ(r) = 0 and −ϕ′(r) is a nonnegative

non-increasing function in (L0, L), one has that

−ϕ′(L0)

∫ L

r
ϕ(%)n−1d% ≥ −ϕ′(r)

∫ L

r
ϕ(%)n−1d%(4.19)

≥
∫ L

r
−ϕ′(%)ϕ(%)n−1d% =

1

n
ϕ(r)n for r ∈ (L0, L),
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whence (4.18) follows, owing to (4.15).
Define the map Φ : M \B(L0)→ Rn as

(4.20) Φ(r, ω) = (ϕ(r), ω) for (r, ω) ∈ (L0, L)× Sn−1.

Clearly, Φ is a diffeomorphism between M \B(L0) and Φ
(
M \B(L0)

)
.

Given any smooth function v : M \B(L0)→ R, we have that

∫
Φ(M\B(L0))

|∇(v ◦ Φ−1)|dx =

∫
Sn−1

∫ ϕ(L0)

0

√
(v ◦ Φ−1)2

% +
1

%2
|∇Sn−1(v ◦ Φ−1)|2 %n−1d%dσn−1

(4.21)

=

∫
Sn−1

∫ L

L0

√
1

ϕ′(r)2

(∂v
∂r

)2
+

1

ϕ(r)2
|∇Sn−1v|2 ϕ(r)n−1|ϕ′(r)|drdσn−1

≤ 2(1 + sup
r∈[L0,L)

|ϕ′(r)|)
∫
Sn−1

∫ L

L0

√(∂v
∂r

)2
+

1

ϕ(r)2
|∇Sn−1v|2 ϕ(r)n−1drdσn−1

= 2(1− ϕ′(L0))

∫
M\B(L0)

|∇v|dHn .

By approximation, the inequality between the leftmost side and the rightmost side of (4.21)
continues to hold for any function of bounded variation v, provided that the integrals of the
gradients are replaced by the total variations. In particular, on applying the resulting inequality
to characteristic function of sets, we obtain that

(4.22) Hn−1(∂(Φ(E))) ≤ CHn−1(∂E)

for every smooth set E ⊂ M \ B(L0), where C = 2(1 − ϕ′(L0)). Given any such set E, the
classical isoperimetric inequality in Rn tells us that

(4.23) n1/n′ω
1/n
n−1L

n(Φ(E))1/n′ ≤ Hn−1(∂(Φ(E))) ,

where Ln denotes the Lebesgue measure in Rn. On the other hand,

(4.24) Ln(Φ(E)) =

∫
Sn−1

∫ ϕ(L0)

0
χΦ(E)%

n−1d%dσn−1 =

∫
Sn−1

∫ L

L0

χEϕ(r)n−1|ϕ′(r)|drdσn−1 ,

where χE and χΦ(E) stand for the characteristic functions of the sets E and Φ(E), respectively.
Define Λ : [0, L)→ [0,Hn(M)] as

Λ(r) = ωn−1

∫ L

r
ϕ(ρ)n−1dρ for r ∈ [0, L),

whence, by (4.14), Λ(r) = Hn(M \B(r) for r ∈ [0, L). Since |ϕ′| = −ϕ′ in (L0, L), and −ϕ′ is a
non-increasing function in (L0, L),

(4.25)

∫
Sn−1

∫ L

L0

χEϕ(r)n−1|ϕ′(r)|drdσn−1 ≥
∫
Sn−1

∫ L

Λ−1(Hn(E))
ϕ(r)n−1|ϕ′(r)|drdσn−1

= ωn−1

∫ L

Λ−1(Hn(E))
ϕ(r)n−1(−ϕ′(r))dr =

ωn−1

n
ϕ(Λ−1(Hn(E)))n .
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Combining (4.22)-(4.25) yields

(4.26) Cϕ(Λ−1(Hn(E)))n−1 ≤ Hn−1(∂E)

for some positive constant C. By (4.15),

(4.27) ωnϕ(Λ−1(Hn(E)))n−1 = λ0

(
ωn−1

∫ L

Λ−1(Hn(E))
ϕ(ρ)n−1dρ

)
= λ0(Hn(E)) .

From (4.26) and (4.27) we obtain that

(4.28) Cλ0(Hn(E)) ≤ Hn−1(∂E) ,

from some constant C and any smooth set E ⊂M \B(L0).
Now, let L1 ∈ (L0, L) be such that Hn(B(L1)) > Hn(M)/2. Observe that B(L1) is a smooth

compact Riemannian submanifold of M with boundary ∂B(L1) diffeormorphic to a closed ball
in Rn. Thus, an isoperimetric inequality of the form

(4.29) CHn(E)1/n′ ≤ Hn−1(∂E)

holds for some constant C and for any set of finite perimeter E ⊂ B(L1). Moreover, there exists
a positive constant C such that

(4.30) Hn−1(E ∩ ∂B(L1)) ≤ CHn−1(∂E ∩B(L1))

for any smooth set E ⊂ B(L1) such that Hn(E) ≤ Hn(M)/2 (< Hn
(
B(L1)

)
, by our choice of

L1).
Owing to (4.28)-(4.30), for any smooth set E ⊂M such that Hn(E) ≤ Hn(M)/2

Hn−1(∂E) = Hn−1(∂(E ∩B(L1))) +Hn−1(∂(E ∩ (M \B(L1))))− 2Hn−1(E ∩ ∂B(L1))

(4.31)

≥ CHn(E ∩B(L1))1/n′ + Cλ0(Hn(E ∩ (M \B(L1)))− CHn−1(B(L1) ∩ ∂E)

≥ CHn(E ∩B(L1))1/n′ + Cλ0(Hn(E ∩ (M \B(L1)))− CHn−1(∂E) ,

for some positive constant C. Consequently, there exists a constant C such that

CHn−1(∂E) ≥ Hn(E ∩B(L1))1/n′ + λ0(Hn(E ∩ (M \B(L1)))(4.32)

for any smooth set E ⊂ M such that Hn(E) ≤ Hn(M)/2. Now, we claim that there exists a
constant C such that such that

(4.33) s1/n′ + λ0(σ) ≥ Cλ0

(s+ σ

2

)
for s, σ ∈ [0,Hn(M)/2].

Indeed, if σ ≤ s, then, by (4.18),

(4.34) s1/n′ ≥ Cλ0(s) ≥ Cλ0

(s+ σ

2

)
for some positive constant C, whereas, if s ≤ σ, then trivially

(4.35) λ0(σ) ≥ λ0

(s+ σ

2

)
.
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Coupling (4.32) and (4.33) yields

Cλ0(Hn(E)/2) ≤ Hn−1(∂E)(4.36)

for some positive constant C and for every smooth set E ⊂ M such that Hn(E) ≤ Hn(M)/2.
By approximation, inequality (4.36) continues to hold for every set of finite perimeter E ⊂ M
such that Hn(E) ≤ Hn(M)/2. Since λ0 is non-decreasing, inequality (4.36) ensures that

(4.37) λM (s) ≥ Cλ0(s/2) for s ∈ [0,Hn(M)/2].

On the other hand, equation (4.15) entails that λM (s) ≤ λ0(s) for small s, and hence there
exists a constant C such that

(4.38) λM (s) ≤ Cλ0(s) for s ∈ [0,Hn(M)/2].

Equation (4.16) is fully proved.
As far as (4.17) is concerned, by (2.1) and (4.37),

1

νM (s)
≤
∫ Hn(M)/2

s

dr

λM (r)2
≤ 1

C2

∫ Hn(M)/2

s

dr

λ0(r/2)2
(4.39)

≤ 2

C2

∫ Hn(M)/2

s/2

dr

λ0(r)2
for s ∈ (0,Hn(M)/2].

In order to prove a reverse inequality, set R = max{L0,Λ
−1(Hn(M)/2)}. Moreover, given s ∈

(0,Hn(M)/2), let r ∈ (R,L) be such that

(4.40) s = Hn(M \B(r)) = ωn−1

∫ L

r
ϕ(τ)n−1 dτ .

Let u = u(ρ) be the function given by

u(ρ) =


0 if ρ ∈ (0, R],∫ ρ
R

dτ
ϕ(τ)n−1∫ r

R
dτ

ϕ(τ)n−1

if ρ ∈ (R, r),

1 if ρ ∈ [r, L),

and let
E = M \B(r) and G = M \B(R).

Hence,

νM (s) ≤ C(E,G) ≤
∫
M
|∇u|2dHn(x) =

ωn−1∫ r
R

dτ
ϕ(τ)n−1

(4.41)

=
1∫ Λ(R)

s
dρ

λ0(ρ)2

≤ C∫Hn(M)/2
s

dρ
λ0(ρ)2

for s ∈ (0,Hn(M)/2],

for some constant C. Note that the second equality is a consequence of (4.15), owing to a change
of variable. Equation (4.17) follows from (4.39) and (4.41).
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From (4.16) and (4.17), it is easily verified that conditions (2.2) and (2.14) are equivalent for
manifolds of revolution as in Theorem 4.1. Moreover, these conditions can be characterized in
terms of the function ϕ appearing in its statement. The same observation applies to (2.7) and
(2.17). These observations are summarized in the following statement.

Corollary 4.2 Let ϕ be as in Theorem 4.1, and let M be the n-dimensional manifold of revo-
lution built upon ϕ. Then:
(i) Conditions (2.2), (2.14), and

lim
r→L

(∫ r

R

d%

ϕ(%)n−1

)(∫ L

r
ϕ(%)n−1d%

)
= 0

for any R ∈ (0, L) are equivalent.
(ii) Conditions (2.7), (2.17), and∫ L( 1

ϕ(r)n−1

∫ L

r
ϕ(ρ)n−1dρ

)
dr <∞

are equivalent.

The remaining part of this section is devoted to showing that, given functions ν and λ as in
the statements of Theorems 2.4 and 2.8, respectively, there do exist a manifold of revolution M
fulfilling νM ≈ ν and a manifold of revolution M fulfilling λM ≈ λ. This is accomplished in the
following Proposition 4.3, dealing with λ, and in Proposition 4.5, dealing with ν.

Proposition 4.3 Let n ≥ 2, and let λ : [0,∞)→ [0,∞) be such that

(4.42)
λ(s)

s1/n′
≈ a non-decreasing function near 0.

Then there exist L ∈ (0,∞] and ϕ : [0, L) → [0,∞) as in the statement of Theorem 4.1 such
that:
(i) the n-dimensional manifold of revolution M associated with ϕ fulfills (4.15) for some function
λ0 such that

(4.43) λ0 ≈ λ near 0;

(ii) the isoperimetric function λMof M fulfills

(4.44) λM ≈ λ near 0.

Moreover, L =∞ if and only if

(4.45)

∫
0

dr

λ(r)
=∞ .

Remark 4.4 If

(4.46)

∫
0

r

λ(r)2
dr =∞ ,

then (4.45) holds. Indeed, if (4.45) fails, namely if

(4.47)

∫
0

dr

λ(r)
<∞ ,

then lims→0
s

λ(s) = 0, and this limit, combined with (4.47), implies the convergence of the integral

in (4.46).
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Proof of Proposition 4.3. Let V be a positive number such that (4.42) holds in (0, V ); namely,
there exists a non-decreasing function ϑ such that

λ(s)n
′

s
≈ ϑ(s) for s ∈ (0, V ).

Thus, the function
λ1(s) = (sϑ(s))1/n′

satisfies
λ1 ≈ λ in (0, V ),

and

(4.48)
λ1(s)n

′

s
is non-decreasing in (0, V ).

Assumption (4.48) in turn ensures that, on defining

λ2(s) =

(∫ s

0

λ1(r)n
′

r
dr

)1/n′

for s ∈ (0, V ),

we have that λ2 ∈ C0(0, V ), λn
′

2 is convex in (0, V ), and λ2 ≈ λ1 ≈ λ in (0, V ). Similarly, on
setting

λ3(s) =

(∫ s

0

λ2(r)n
′

r
dr

)1/n′

for s ∈ (0, V ),

we have that λ3 ∈ C1(0, V ), λn
′

3 is convex in (0, V ), and λ3 ≈ λ2 ≈ λ1 ≈ λ in (0, V ).
Thus, in what follows we may assume, on replacing if necessary λ by λ3 near 0, that λ is a
non-decreasing function in [0, L) such that λ ∈ C1(0, V ), λ(0) = 0, and

(4.49) λn
′

is convex in (0, V ).

Define

(4.50) L = 2

∫ V/2

0

dr

λ(r)
,

and note that L =∞ if and only if (4.45) is in force. Next, set

R =

{
L/2 if L <∞,

1 if L =∞.

Let N : [R,L)→ [0, V/2] be the function implicitly defined by

(4.51)

∫ V/2

N(r)

dr

λ(r)
= r −R for r ∈ [R,L) .

Clearly, N ∈ C1(R,L) and N decreases monotonically from V/2 to 0. Define ϕ : [R,L)→ [0,∞)
as

(4.52) ϕ(r) =

(
λ(N(r))

ωn−1

) 1
n−1

for r ∈ (R,L) ,
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and observe that ϕ ∈ C1(R,L). Since,

(4.53) λ(N(r)) = −N ′(r) for r ∈ [R,L) ,

and N(L) = 0, one has that

(4.54)

∫ L

r
λ(N(ρ))dρ = N(r) for r ∈ [R,L) ,

whence

(4.55) λ

(∫ L

r
λ(N(ρ))dρ

)
= λ(N(r)) for r ∈ [R,L) ,

and finally, by (4.52),

(4.56) λ

(
ωn−1

∫ L

r
ϕ(ρ)n−1dρ

)
= ωn−1ϕ(r)n−1 for r ∈ [R,L) ,

namely (4.15) with λ0 replaced by λ.
Now, observe that the function ϕ is decreasing in (R,L) and limr→L ϕ(r) = 0. Furthermore, ϕ
is convex owing to (4.49). Indeed, by (4.53),

ω
1

n−1

n−1ϕ
′(r) =

(
λ(N(r))

1
n−1
)′

=
1

n− 1
λ′(N(r))λ(N(r))

1
n−1
−1N ′(r)(4.57)

= − 1

n− 1
λ′(N(r))λ(N(r))

1
n−1 for r ∈ (R,L).

Thus, since N(r) is decreasing, ϕ′(r) is increasing if and only if −λ′(s)λ(s)
1

n−1 is decreasing,

namely if and only if λ′(s)λ(s)
1

n−1 is increasing, and this is in turn equivalent to the convexity
of λ(s)n

′
.

Finally, let us continue ϕ smoothly to the whole of [0, L) in such a way that (4.1) and (4.2) are
fulfilled, and that

ωn−1

∫ R

0
ϕ(r)n−1 dr = ωn−1

∫ L

R
ϕ(r)n−1 dr = N(R) =

V

2
.

The resulting function ϕ fulfils the assumptions of Theorem 4.1. Hence, the conclusion follows.

Proposition 4.5 Let n ≥ 2, and let ν : [0,∞)→ [0,∞) be a function such that ν ∈ ∆2 near 0,
and either n ≥ 3 and

(4.58)
ν(s)

s
n−2
n

is equivalent to a non-decreasing function near 0,

or n = 2 and there exists α > 0 such that

(4.59)
ν(s)

sα
is equivalent to a non-decreasing function near 0.

Then there exist L ∈ (0,∞] and ϕ : [0, L) → [0,∞) as in the statement of Theorem 4.1, such
that:
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(i) the n-dimensional manifold of revolution M built upon ϕ fulfills (4.15) for some function λ0

such that λ0 ≈ λM near 0;
(ii)

(4.60) ν(s) ≈ νM (s) ≈ 1∫Hn(M)/2
s

dr
λM (r)2

near 0 .

Moreover, L =∞ if and only if

(4.61)

∫
0

dr√
rν(r)

=∞ .

Remark 4.6 If

(4.62)

∫
0

dr

ν(r)
=∞ ,

then (4.61) holds. This is a consequence of the fact that there exists an absolute constant C
such that (∫ 1

0
f(s)2ds

)1/2

≤ C
∫ 1

0
f(s)

ds√
s

for every non-increasing function f : (0, 1)→ [0,∞).

Proof of Proposition 4.5. Let us assume that n ≥ 3, the case when n = 2 being analogous.
Let V be a positive number such that ν ∈ ∆2 in (0, V ) and (4.58) holds in (0, V ). An analogous
argument as at the beginning of the proof of Proposition 4.3 tells us that on replacing ν, if
necessary, by an equivalent function, we may assume that ν ∈ C1(0, V ), ν ′(s) > 0 for s ∈ (0, V ),
and

(4.63) sν ′(s) ≈ ν(s) for s ∈ (0, V ).

Define λ : (0, V )→ (0,∞) by

(4.64) λ(s) =
ν(s)√
ν ′(s)

for s ∈ (0, V ).

Given any a ∈ (0, V ), we thus have that

(4.65)
1

ν(s)
− 1

ν(a)
=

∫ a

s

dr

λ(r)2
for s ∈ (0, V ),

and hence there exists s such that

(4.66)
1

2ν(s)
≤
∫ a

s

dr

λ(r)2
≤ 1

ν(s)
if 0 < s < s.

Moreover,

(4.67)
λ(s)

s1/n′
is non-decreasing in (0, V ).

Indeed, by (4.63) and by the ∆2 condition for ν in (0, V ),

(4.68)
λ(s)2

s
2
n′

=
ν(s)2

ν ′(s)s
2
n′
≈ ν(s)

s
n−2
n

for s ∈ (0, V ) .
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Owing to (4.68) and (4.58), the function λ fulfills the assumptions of Proposition 4.3. Let M
be the n dimensional manifold of revolution associated with λ as in Proposition 4.3. By (4.43),
(4.44), (4.16) and (4.17),

1

νM (s)
≈
∫ Hn(M)/2

s

dr

λ(r)2
near 0.(4.69)

On the other hand, by (4.66),

(4.70)

∫ Hn(M)/2

s

dr

λ(r)2
≈ 1

ν(s)
near 0.

Equation (4.60) follows from (4.69) and (4.70).
As for the assertion concerning (4.61), by Proposition 4.3 one has that L =∞ if and only if

the function λ given by (4.64) fulfils (4.45). One has that

(4.71)

∫ V

0

ds

λ(s)
=

∫ V

0

√
ν ′(s)

ν(s)
≥ C

∫ V

0

√
ν(Cs)√
sν(s)

ds ≥ C ′
∫ V

0

ds√
sν(s)

for suitable constants C and C ′, where the first inequality holds by (4.63) and the last one by
the ∆2 condition for ν. An analogous chain yields∫ V

0

ds

λ(s)
≤ C

∫ V

0

ds√
sν(s)

for a suitable positive constant C. Hence, equation (4.61) is equivalent to L =∞.

5 Lq bounds for eigenfunctions

We begin with the proof of Theorem 2.1 on Lq(M) bounds for eigenfunctions.

Proof of Theorem 2.1. Given s ∈ (0,Hn(M)) and h > 0, choose the test function v defined
as

(5.1) v(x) =


0 if u(x) < u◦(s+ h)

u(x)− u◦(s+ h) if u◦(s+ h) ≤ u(x) ≤ u◦(s)
u◦(s)− u◦(s+ h) if u◦(s) < u(x) ,

in equation (1.1). Notice that v ∈ W 1,2(M) by standard results on truncations of Sobolev
functions. We thus obtain that

(5.2)

∫
{u◦(s+h)<u<u◦(s)}

|∇u|2 dHn(x)

= γ

∫
{u◦(s+h)<u≤u◦(s)}

u(x)
(
u(x)−u◦(s+h)

)
dHn(x) +

(
u◦(s)−u◦(s+h)

)
γ

∫
{u>u◦(s)}

u(x) dHn(x) .

Consider the function U : (0,Hn(M))→ [0,∞) given by

(5.3) U(s) =

∫
{u≤u◦(s)}

|∇u|2 dHn(x) for s ∈ (0,Hn(M)).
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By (3.10), the function u◦ is locally absolutely continuous (a.c., for short) in (0,Hn(M)). The
function

(0,∞) 3 t 7→
∫
{u≤t}

|∇u|2 dHn(x)

is also locally a.c., inasmuch as, by the coarea formula,

(5.4)

∫
{u≤t}

|∇u|2 dHn(x) =

∫ t

−∞

∫
{u=τ}

|∇u|dHn−1(x)dτ for t ∈ R.

Consequently, U is locally a.c., for it is the composition of monotone locally a.c. functions, and

(5.5) U ′(s) = −u◦′(s)
∫
{u=u◦(s)}

|∇u|dHn−1(x) for a.e. s ∈ (0,Hn(M)).

Thus, dividing through by h in (5.2), and passing to the limit as h→ 0+ yield
(5.6)

−u◦′(s)
∫
{u=u◦(s)}

|∇u|dHn−1(x) = γ(−u◦′(s))
∫
{u>u◦(s)}

u dHn(x) for a.e. s ∈ (0,Hn(M)).

On the other hand, it is easily verified via the definition of signed rearrangement that

(5.7) (−u◦′(s))
∫
{u>u◦(s)}

u(x) dx = (−u◦′(s))
∫ s

0
u◦(r) dr for a.e. s ∈ (0,Hn(M)).

Coupling (5.6) and (5.7) tells us that

(5.8) − u◦′(r) =
−u◦′(r) γ∫

{u=u◦(r)} |∇u| dHn−1(x)

∫ r

0
u◦(%) d% for a.e. r ∈ (0,Hn(M)).

Let 0 < s ≤ ε ≤ Hn(M)/2. On integrating both sides of (5.8) over the interval (s, ε), we obtain
that

(5.9) u◦(s)− γ
∫ ε

s

(∫ r

0
u◦(%)d%

)(
− ψu(u◦(r))

)′
dr = u◦(ε) for s ∈ (0, ε),

where ψu is the function defined as in (3.11). Define the operator T as

(5.10) Tf(s) =

∫ ε

s

(∫ r

0
f(%)d%

)(
− ψu(u◦(r))

)′
dr for s ∈ (0, ε),

for any integrable function f on (0, ε). Equation (5.9) thus reads

(5.11) (I − γT )(u◦) = u◦(ε) .

We want now to show that, if (2.2) holds, then

(5.12) T : Lq(0, ε)→ Lq(0, ε),

and there exist an absolute constant C such that

(5.13) ‖T‖(Lq(0,ε)→Lq(0,ε)) ≤ CΘ(ε) ,
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where Θ : (0,Hn(M)/2]→ [0,∞) is the function defined as

(5.14) Θ(s) = sup
r∈(0,s)

r

νM (r)
for s ∈ (0,Hn(M)/2].

Set

(5.15) v = u−med(u),

and observe that

(5.16) med(v) = 0 ,

v◦ = u◦ −med(u) ,

and

(5.17)
(
ψu(u◦(s))

)′
=
(
ψv(v

◦(s))
)′

for s ∈ (0,Hn(M)).

Moreover,

(5.18) v◦(s) ≥ 0 if s ∈ (0,Hn(M)/2).

Given any q ∈ [2,∞), f ∈ Lq(0, ε) and 0 < s ≤ ε ≤ Hn(M)/2, the following chain holds:

|Tf(s)| =
∣∣∣∣∫ ε

s

(∫ r

0
f(%)d%

)(
− ψu(u◦(r))

)′
dr

∣∣∣∣(5.19)

=

∣∣∣∣∫ ε

s

(∫ r

0
f(%)d%

)(
− ψv(v◦(r))

)′
dr

∣∣∣∣
(by (5.17))

≤
∫ ε

s

(∫ r

0
|f(%)|d%

)
d

dr

(
−
∫ v◦(r)

0

dτ∫
{v=τ} |∇v| dHn−1(x)

)
dr

=

(∫ ε

s

d

dr

(
−
∫ v◦(r)

0

dτ∫
{v=τ} |∇v| dHn−1(x)

)
dr

)∫ s

0
|f(%)|d%

+

∫ ε

s

(∫ ε

%

d

dr

(
−
∫ v◦(r)

0

dτ∫
{v=τ} |∇v| dHn−1(x)

)
dr

)
|f(%)|d%

(by Fubini’s theorem)

=

(∫ v◦(s)

v◦(ε)

dτ∫
{v=τ} |∇v| dHn−1(x)

)∫ s

0
|f(%)|d%

+

∫ ε

s

∫ v◦(%)

v◦(ε)

dτ∫
{v=τ} |∇v| dHn−1(x)

|f(%)|d%

≤
(∫ v◦(s)

0

dτ∫
{v=τ} |∇v| dHn−1(x)

)∫ s

0
|f(%)|d%

+

∫ ε

s

∫ v◦(%)

0

dτ∫
{v=τ} |∇v| dHn−1(x)

|f(%)|d%
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(v◦(ε) ≥ 0 by (5.18))

= ψv(v
◦(s))

∫ s

0
|f(%)|d%+

∫ ε

s
ψv(v

◦(%))|f(%)|d%

≤ 1

νM (s)

∫ s

0
|f(%)|d%+

∫ ε

s

1

νM (%)
|f(%)|d%

(by (3.14) with u replaced by v).

Thus, if we show that there exist constants C1 and C2 such that

(5.20)

(∫ ε

0

(
1

νM (s)

∫ s

0
|f(r)|dr

)q
ds

)1/q

≤ C1

(∫ ε

0
|f(s)|qds

)1/q

and

(5.21)

(∫ ε

0

(∫ ε

s

1

νM (r)
|f(r)| dr

)q
ds

)1/q

≤ C2

(∫ ε

0
|f(s)|qds

)1/q

for every f ∈ Lq(0, ε), then we obtain that

(5.22) ‖Tf‖Lq(0,ε) ≤ (C1 + C2)‖f‖Lq(0,ε)

for every f ∈ Lq(0, ε) By standard weighted Hardy inequalities (see e.g. [Ma7, Section 1.3.1]),
inequalities (5.20) and (5.21) hold if and only if

(5.23) sup
s∈(0,ε)

s1/q′ ‖1/νM‖Lq(s,ε) <∞

and

(5.24) sup
s∈(0,ε)

s1/q ‖1/νM‖Lq′ (s,ε) <∞ ,

respectively. Furthermore, the constants C1 and C2 in (5.20) and (5.21) are equivalent (up to
absolute multiplicative constants) to the left-hand sides of (5.23) and (5.24), respectively.
The left-hand sides of (5.23) and (5.24) agree if q = 2. We claim that, if q ∈ (2,∞), then the left-
hand side of (5.23) does not exceed the left-hand side of (5.24), up to an absolute multiplicative
constant. Actually, since νM is non-decreasing,

sup
r∈(0,s)

r1/q ‖1/νM‖Lq′ (r,s) ≥ (s/2)1/q ‖1/νM‖Lq′ (s/2,s)(5.25)

≥ s

2νM (s)
for s ∈ (0,Hn(M)/2).
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Thus,

s
1
q′ ‖1/νM‖Lq(s,ε) ≤ s

1
q′

(
1

νM (s)

)1− q
′
q

‖1/νM‖
q′
q

Lq
′
(s,ε)

(5.26)

=

((
s

νM (s)

)q−2

s1/q ‖1/νM‖Lq′ (s,ε)

) 1
q−1

≤ 2
q−2
q−1 sup

r∈(0,ε)
r

1
q ‖1/νM‖Lq′ (r,ε)

≤ 2 sup
r∈(0,ε)

r
1
q ‖1/νM‖Lq′ (r,ε) for s ∈ (0, ε),

where the last but one inequality holds owing to (5.25). Thus, our claim follows. On the other
hand,

sup
s∈(0,ε)

s1/q ‖1/νM‖Lq′ (s,ε) = sup
s∈(0,ε)

s1/q

(∫ ε

s

(
r

νM (r)

)q′ dr
rq′

)1/q′

(5.27)

≤
(

sup
s∈(0,ε)

s

νM (s)

)
sup
s∈(0,ε)

s1/q

(∫ ε

s

dr

rq′

)1/q′

≤ 1

(q′ − 1)1/q′
Θ(ε) .

Hence, (5.13) follows as well.
On denoting by (I − γT )q the restriction of I − γT to Lq(0, ε), we deduce via a classical result
of functional analysis that the operator

(5.28) (I − γT )q : Lq(0, ε)→ Lq(0, ε)

is invertible, with a bounded inverse, provided that ε is so small that

(5.29) CγΘ(ε) < 1 ,

where C is the constant appearing in (5.13). Moreover,

(5.30) ‖(I − γT )−1
q ‖ ≤

1

1− CγΘ(ε)
.

The next step consists in showing that there exists an absolute constant C ′ such that also
the restriction (I − γT )2 of I − γT to L2(0, ε) is invertible, with a bounded inverse, provided
that

(5.31) C ′γΘ(ε) < 1 .

An analogous chain as in (5.26) tells us that

(5.32) s1/2 ‖1/νM‖L2(s,ε) ≤ 2 sup
r∈(0,ε)

r1/q ‖1/νM‖Lq′ (r,ε) for s ∈ (0, ε).

Consequently,

(5.33) sup
s∈(0,ε)

s1/2 ‖1/νM‖L2(s,ε) ≤ 2Θ(ε) .
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Hence, the invertibility of (I − γT )2 under (5.31) follows via the same argument as above.
Owing to assumption (2.2), both (5.29) and (5.31) hold provided that ε is sufficiently small. In
particular, one can choose

(5.34) ε = Θ−1
(
1/(2γC ′′)

)
,

where Θ−1 is the generalized left-continuous inverse of Θ, and C ′′ = max{C,C ′}.
We have that u◦ ∈ L2(0, ε), for u ∈ L2(M). Thus, since the constant function u◦(ε) trivially
belongs to Lq(0, ε) ⊂ L2(0, ε), from (5.11) we deduce that

(5.35) u◦ = (I − γT )−1
2 (u◦(ε)) = (I − γT )−1

q (u◦(ε)) .

Hence, u◦ ∈ Lq(0, ε), and, by (5.30) and (5.34),

(5.36) ‖u◦‖Lq(0,ε) ≤
‖u◦(ε)‖Lq(0,ε)
1− CγΘ(ε)

=
ε1/q|u◦(ε)|

1− CγΘ(ε)
≤ 2ε1/q|u◦(ε)| .

Since ε ≤ Hn(M)/2, one can easily verify that

(5.37) ‖u‖L2(M) ≥ ε1/2|u◦(ε)| .

From (5.36) and (5.37) one has that

(5.38) ‖u◦‖Lq(0,ε) ≤
2‖u‖L2(M)

ε
1
2
− 1
q

.

Next, observe that

(5.39) |med(u)| ≤ (2/Hn(M))1/2‖u‖L2(Ω).

By (5.37) and (5.39), there exists a constant C = C(Hn(M)) such that

‖u◦ −med(u)‖Lq(ε,Hn(M)/2) ≤ (u◦(ε)−med(u))
q−2
q ‖u◦ −med(u)‖

2
q

L2(ε,Hn(M)/2)
(5.40)

≤ C(ε
1
2
− 1
q + 1)‖u‖L2(M).

From (5.37), (5.39) and (5.40) we deduce that

‖u◦‖Lq(0,Hn(M)/2) ≤ ‖u◦‖Lq(0,ε) + ‖u◦ −med(u)‖Lq(ε,Hn(M)/2) + ‖med(u)‖Lq(ε,Hn(M)/2)(5.41)

≤ (ε
1
2
− 1
q + 1)‖u‖L2(M)

for some constant C = C(Hn(M)). Hence, there exists a constant C = C(Hn(M)) such that

‖u◦‖Lq(0,Hn(M)/2) ≤
C‖u‖L2(M)(

Θ−1
(
1/(γC)

)) 1
2
− 1
q

.(5.42)

A combination of (5.41) with an analogous estimate for ‖u◦‖Lq(Hn(M)/2,Hn(M)) obtained
via the same argument applied to −u, yields (2.3), since (−u)◦(s) = −u◦(Hn(M) − s) for
s ∈ (0,Hn(M)).
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An inspection of the proof of Theorem 2.1 reveals that, in fact, the following estimate for
the constant appearing in (2.3) holds.

Proposition 5.1 Define the function Θ : (0,Hn(M)/2]→ [0,∞) as

Θ(s) = sup
r∈(0,s)

r

νM (r)
for s ∈ (0,Hn(M)/2].

Then inequality (2.3) holds with

C(νM , q, γ) =
C1(

Θ−1(C2/γ)
) 1

2
− 1
q

,

where C1 = C1(q,Hn(M)) and C2 = C2(q,Hn(M)) are suitable constants, and Θ−1 is the
generalized left-continuous inverse of Θ.

Example 5.2 Assume that there exists β ∈ [(n − 2)/n, 1) such that the manifold M fulfils
νM (s) ≥ Csβ for some positive constant C and for small s. Then (2.2) holds, and, by Proposition
5.1, for every q ∈ (2,∞) there exists an constant C = C(q,Hn(M)) such that

‖u‖Lq(M) ≤ Cγ
q−2

2q(1−β) ‖u‖L2(M)

for every eigenfunction u of the Laplacian on M associated with the eigenvalue γ.

We now prove Theorem 2.2.

Proof of Theorem 2.2 Given q > 2 and n ≥ 2, we shall construct an n-dimensional manifold
of revolution M as in Theorem 4.1, fulfilling (2.6) and such that the Laplacian on M has an
eigenfunction u /∈ Lq(M).
In the light of the discussion preceding Theorem 4.1, in order to exhibit such eigenfunction it
suffices to produce a positive number γ and a smooth function p : R→ (0,∞) such that∫ s

−∞

√
p(%)d% <∞ for s ∈ R,

and ∫
R

√
p(%)d% =∞ ,

and a function v : R→ R fulfilling (4.11) and (4.12), and such that

(5.43)

∫
R
v(s)qp(s)ds =∞ .

The function ϕ in the definition of M is recovered from p by

(5.44) ϕ(r) = p(F−1(r))
1

2(n−1) for r > 0,

and ϕ(0) = 0, where F : R→ [0,∞) is given by

(5.45) F (s) =

∫ s

−∞

√
p(%)d% for s ∈ R.
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We define the function p piecewise as follows. Let s1 ≤ −1 ≤ 1 ≤ s2 to be fixed later, and
set

(5.46) p(s) =
1

s2
if s ≥ s2.

Let

0 < γ <
1

4
,

and

α =
1−
√

1− 4γ

2
.

With this choice of α, the function

(5.47) v(s) = sα

solves equation (4.11) in [s2,∞). On the other hand, if p is defined in (−∞, s1] by

(5.48) p(s) =


4e2s

γ(1−e2s) if n = 2,

(−s)
2n−2
2−n

(n−2)
2n−2
n−2 − γ(n−2)2

2n
(−s)

2
2−n

if n > 2,

then the function given by

(5.49) v(s) =

{
1− e2s if n = 2,

(n− 2)
2n−2
n−2 − γ(n−2)2

2n (−s)
2

2−n if n > 2,

solves equation (4.11) in (−∞, s1]. Next, given β > 0 and neighborhoods I−1 and I1 of −1 and
1, respectively, let p be defined in I1 ∪ I1 as

p(s) =

{
6

γ(β−(s−1)2)
for s ∈ I1,

6
γ(β−(s+1)2)

for s ∈ I−1.

Then the function v given by

v(s) =

{
β(s− 1)− (s− 1)3 for s ∈ I1,

−β(s+ 1) + (s+ 1)3 for s ∈ I−1,

is a solution to (4.11) in I1 ∪ I1. Moreover, v is convex in a left neighborhood of 1 and in a right
neighborhood of −1, whereas it is concave in a right neighborhood of 1 and in a left neighborhood
of −1. It is easily seen that, if β is sufficiently large, s2 and −s1 are sufficiently large depending
on β, and I1 and I−1 have a sufficiently small radius, then v can be continued to the whole of
R in such a way that:

v ∈ C2(R);

v′′ ≤ −C and v ≥ C in R \ (I−1 ∪ (−1, 1) ∪ I1), for some positive constant C;

v′′ ≥ C and v ≤ −C in (−1, 1) \ (I−1 ∪ I1), for some positive constant C.

Thus, p can be continued to the whole of R as a positive function in C2(R) in such a way that v
is a solution to equation (4.11) in R. Also, the function v fulfils (4.12) for every γ ∈ (0, 1

4), and
(5.43) provided that γ is sufficiently close to 1

4 .
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The manifold of revolution M built upon the function ϕ given by (5.44) satisfies the assumt-
pions of Theorem 4.1. Indeed, ϕ(r) > 0 if r > 0, and (4.2) holds, as a consequence of the fact
that

(5.50) lim
s→−∞

p′(s)

p(s)
3n−4
2n−2

= 2(n− 1) .

Assumptions (i)–(iii) of Theorem 4.1 are also fulfilled, since there exists b > 0 such that

ϕ(r) = be−
r

n−1 for large r.(5.51)

Finally, if λ0 denotes the function given by (4.15), then we obtain via (5.51) that

lim
s→0

s

λ0(s)
≈ lim

r→∞

1

ϕ(r)n−1

∫ ∞
r

ϕ(ρ)n−1dρ = 1.(5.52)

Hence, by (4.17),

lim
s→0

s

νM (s)
≈ lim

s→0
s

∫ Hn(M)/2

s

d%

λ0(%)2
≈ lim

s→0

s2

λ0(s)2
≈ 1.

Hence (2.6) follows.

We conclude this section by sketching the proofs of the results dealing with Lq(M) estimates
in terms of λM .

Proof of Theorem 2.5 By (2.14), given ε > 0, there exists sε such that s2

λM (s)2
< ε if 0 < s < sε.

By inequality (2.1), if 0 < s < sε, then

s

νM (s)
≤ s

∫ Hn(M)/2

s

dr

λM (r)2
≤ εs

∫ sε

s

dr

r2
+ s

∫ Hn(M)/2

sε

dr

λM (r)2
(5.53)

≤ ε+ s

∫ Hn(M)/2

sε

dr

λM (r)2
.

The rightmost side of (5.53) tends to ε as s→ 0. Hence (2.2) follows, owing to the arbitrariness
of ε. Inequality (2.15) in thus a consequence of Theorem 2.1.

Proof of Theorem 2.6 The proof is the same as that of Theorem 2.2. One has just to notice
that (5.52) and (4.16) imply (2.16).

6 Boundedness of eigenfunctions

Our main task in this section is to prove Theorem 2.3, which provides a condition on νM for
the boundedness of the eigenvalues of the Laplacian, and Theorem 2.4, showing the sharpness
of such condition. The proofs of the parallel results of Theorems 2.7 and 2.8 involving λM are
sketched at the end of the section.

Proof of Theorem 2.3 We start as in the proof of Theorem 2.1, define the operator T as in
(5.10), and, for ε ∈ (0,Hn(M)/2), we write again equation (5.9) as

(6.1) (I − γ T )(u◦) = u◦(ε) .
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We claim that, if (2.7) is satisfied, then

(6.2) T : L∞(0, ε)→ L∞(0, ε),

and

(6.3) ‖T‖(L∞(0,ε)→L∞(0,ε)) ≤
∫ ε

0

dr

νM (r)
.

To verify our claim, define v as in (5.15), recall (5.17), and note that

‖Tf‖L∞(0,ε) ≤ ‖f‖L∞(0,ε)

∫ ε

0

(∫ r

0
d%

)
d

dr

(
−
∫ v◦(r)

0

dτ∫
{v=τ} |∇v| dHn−1(x)

)
dr(6.4)

= ‖f‖L∞(0,ε)

∫ ε

0

∫ ε

%

d

dr

(
−
∫ v◦(r)

0

dτ∫
{v=τ} |∇v| dHn−1(x)

)
dr d%

= ‖f‖L∞(0,ε)

∫ ε

0

∫ v◦(%)

v◦(ε)

dτ∫
{v=τ} |∇v| dHn−1(x)

d%

≤ ‖f‖L∞(0,ε)

∫ ε

0

∫ v◦(%)

0

dτ∫
{v=τ} |∇v| dHn−1(x)

d%

= ‖f‖L∞(0,ε)

∫ ε

0
ψv(v

◦(%)) d%

≤ ‖f‖L∞(0,ε)

∫ ε

0

d%

νM (%)
.

Observe that we have made use of the inequality v(ε) ≥ 0, due to (5.18), in the last but one
inequality, and of (3.14) (with u replaced by v) in the last inequality. Now, define the function
Ξ : (0,Hn(M)/2]→ [0,∞) as

(6.5) Ξ(s) =

∫ s

0

dr

νM (r)
for s ∈ (0,Hn(M)/2].

If ε is sufficiently small, in particular

ε ≤ Ξ−1
(
1/(2γ)

)
,

where Ξ−1 is the generalized left-continuous inverse of Ξ, then we deduce from (6.3) that the
restriction (I − γ T )∞ of I − γ T to L∞(0, ε),

(6.6) (I − γ T )∞ : L∞(0, ε)→ L∞(0, ε)

is invertible, with a bounded inverse, and

(6.7) ‖(I − γ T )−1
∞ ‖ ≤

1

1− γ
∫ ε

0
d%

νM (%)

≤ 2 .

Since Ξ(ε) ≥ Θ(ε), where Θ is the function defined by (5.14), we infer from (5.33) and from the
proof of Theorem 2.1 that there exists an absolute constant C such that the restriction

(6.8) (I − γ T )2 : L2(0, ε)→ L2(0, ε)
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of I − γT to L2(0, ε) is also invertible, with a bounded inverse, provided that CΞ(ε) < 1. Set
C ′ = max{2, C}, and choose

ε = Ξ−1
(
1/(γC ′)

)
.

Since u◦ ∈ L2(0, ε) and u◦(ε) ∈ L∞(0, ε) ⊂ L2(0, ε), from (6.1) we deduce that

(6.9) u◦ = (I − γ T )−1
2 (u◦(ε)) = (I − γT )−1

∞ (u◦(ε)) .

Hence, u◦ ∈ L∞(0, ε), and

(6.10) ‖u◦‖L∞(0,ε) ≤
|u◦(ε)|

1− γ
∫ ε

0
d%

νM (%)

≤ 2|u◦(ε)| .

Since

(6.11) ‖u‖L2(M) ≥ ε1/2|u◦(ε)| =
(
Ξ−1

(
1/(γC ′)

))1/2|u◦(ε)| ,
we have that

(6.12) u◦(0) ≤ ‖u◦‖L∞(0,ε) ≤
2‖u‖L2(M)(

Ξ−1
(
1/(γC ′)

))1/2 .
The same argument, applied to −u, yields the same estimate for −u◦(Hn(M)). Since

‖u‖L∞(M) = max{u◦(0),−u◦(Hn(M))},

inequality (2.8) follows.

The following estimate for the constant in (2.8) is provided in the proof of Theorem 2.3.

Proposition 6.1 Assume that (2.7) is in force. Define the function Ξ : (0,Hn(M)/2]→ [0,∞)
as

Ξ(s) =

∫ s

0

dr

νM (r)
for s ∈ (0,Hn(M)/2].

Then inequality (2.8) holds with

C(νM , γ) =
C1(

Ξ−1(C2/γ)
) 1

2

,

where C1 and C2 are suitable absolute constants, and Ξ−1 is the generalized left-continuous
inverse of Ξ.

Example 6.2 Assume that there exists β ∈ [(n − 2)/n, 1) such that the manifold M fulfils
νM (s) ≥ Csβ for some positive constant C and for small s. Then (2.7) holds, and, by Proposition
6.1, there exists an absolute constant C such that

‖u‖L∞(M) ≤ Cγ
1

2(1−β) ‖u‖L2(M)

for every eigenfunction u of the Laplacian on M associated with the eigenvalue γ.
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Next, we give a proof of Theorem 2.4.

Proof of Theorem 2.4 By Proposition 4.5, if ν is as in the statement, then there exists a
function ϕ such that the associated n-dimensional manifold of revolution M (as in Section 4)
fulfils (2.12), and hence

(6.13) lim
s→0

s

νM (s)
= lim

s→0

s

ν(s)
= 0

and

(6.14)

∫
0

ds

νM (s)
=

∫
0

ds

ν(s)
=∞ .

In particular, the latter equation entails, via Remark 4.6, that (4.61) holds, and hence that
L = ∞ in Proposition 4.5. Thus, ϕ : [0,∞) → [0,∞). Now, recall that the function ϕ given by
Proposition 4.5 is defined in such a way that (4.2) holds. Hence,

(6.15)

∫ 1

0

dr

ϕ(r)n−1
=∞ ,

and

(6.16) lim
r→0

(∫ 1

r

dρ

ϕ(ρ)n−1

)(∫ r

0
ϕ(ρ)n−1dρ

)
= 0 .

Moreover,

(6.17)

∫ ∞
1

dr

ϕ(r)n−1
=∞ ,

since limr→∞ ϕ(r) = 0 by property (i) of Theorem 4.1.
Owing to Corollary 4.2, condition (6.13) is equivalent to

(6.18) lim
r→∞

(∫ r

1

d%

ϕ(%)n−1

)(∫ ∞
r

ϕ(%)n−1d%

)
= 0 ,

and condition (6.14) is equivalent to

(6.19)

∫ ∞( 1

ϕ(r)n−1

∫ ∞
r

ϕ(ρ)n−1dρ

)
dr =∞ .

By the discussion preceding Theorem 4.1, the conclusion will follow if we exhibit a number γ > 0
and an unbounded solution v : R → R to equation (4.11) fulfilling (4.12). Note that s0 = ∞ in
(4.9) owing to (6.17). Conditions (6.16) and (6.18) are equvalent to

(6.20) lim
s→−∞

s

∫ s

−∞
p(t)dt = 0 ,

and

(6.21) lim
s→∞

s

∫ ∞
s

p(t)dt = 0 ,

respectively. Condition (6.19) amounts to

(6.22)

∫ ∞
s p(s) ds =∞ .
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Assumptions (6.20) and (6.21) ensure that the the embedding

(6.23) W 1,2(R)→ L2(R, p(s)ds)

is compact – see e.g. [KK]. Here, L2(R, p(s)ds) denotes the space L2 on R equipped with the
measure p(s)ds. Consider the functional

(6.24) J(v) =

∫
R
(
dv
ds

)2
ds∫

R v
2 p(s)ds

.

By the compactness of embedding (6.23), there exists min J(v) among all (non trivial) functions
v ∈ W 1,2(R) such that

∫
R v p(s)ds = 0. Moreover, the minimizer v is a solution to equation

(4.11) with γ = min J .
By Hille’s theorem [Hi], condition (6.21) entails that equation (4.11) is nonoscillatory at

infinity, and hence that every solution has constant sign at infinity. Thus, we may assume that
v(s) > 0 for large s. Consequently,

d2v

ds2
< 0 for large s,

and hence v is concave near ∞. Now, assume by contradiction that v is bounded. Then there
exists lims→∞ v(s), and, on denoting by v(∞) this limit, one has that v(∞) ∈ (0,∞) . Moreover,

lim
s→∞

dv

ds
= 0 .

Integration of (4.11) and the last equation yield

dv

ds
= γ

∫ ∞
s

p(t)v(t)dt for large s.

Hence, there exists ŝ such that

dv

ds
≥ γ v(∞)

2

∫ ∞
s

p(t)dt for s ≥ ŝ.

By a further integration, we obtain that

v(∞)− v(ŝ) ≥ γ v(∞)

2

∫ ∞
ŝ

∫ ∞
s

p(t)dt ds = γ
v(∞)

2

(∫ ∞
ŝ

tp(t)dt− ŝ
∫ ∞
ŝ

p(t)dt

)
,

thus contradicting (6.22).

Proof of Theorem 2.7 Assumption (2.17) implies (2.7), via Fubini’s theorem. Hence, the
conclusion follows via Theorem 2.3.

Proof of Theorem 2.8 By Corollary 4.2, the same argument as in the proof of Theorem 2.4
provides a manifold M , fulfilling (2.14), but not (2.17), on which the Laplacian has an unbounded
eigenfunction.
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7 Applications

We conclude with applications of our results to two special instances. Both of them involve
families of noncompact manifolds. However, the former is less pathological, and can be handled
either by isoperimetric or by isocapacitary methods, with the same output. That isocapacitary
inequalities can actually yield sharper conclusions than those obtained via isoperimetric inequal-
ities is demonstrated by the latter example, which deals with a class of manifolds with a more
complicated geometry.

7.1 A family of manifolds of revolution with borderline decay

Consider a one-parameter family of manifolds of revolution M as in Section 4, whose profile
ϕ : [0,∞)→ [0,∞) is such that

(7.1) ϕ(r) = e−r
α

for large r,

and fulfills the assumptions of Theorem 4.1 (Figure 1). This theorem tells us that

M

Figure 1: A manifold of revolution

(7.2) λM (s) ≈ s
(

log(1/s))
)1−1/α

near 0,

and

(7.3) νM (s) ≈
(∫ Hn(M)/2

s

dr

λM (r)2

)−1

≈ s
(

log(1/s)
)2−2/α

near 0.

An application of Theorem 2.1 ensures, via (7.3), that all eigenfunctions of the Laplacian on M
belong to Lq(M), provided that

(7.4) α > 1.

On the other hand, from Theorem 2.3 and equation (7.3) one can infer that the relevant eigen-
functions are bounded under the more stringent assumption that

(7.5) α > 2.

The same conclusions can be derived via Theorems 2.5 and 2.7, respectively. Thus, as for any
other manifold of revolution of the kind considered in Theorem 4.1 (see Corollary 4.2), isoperi-
metric and isocapacitary methods lead to equivalent results for this family of noncompact man-
ifolds.
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Note that, if α > 1, then, by Proposition 5.1, there exist constants C1 = C1(q) and C2 =
C2(q) such that

‖u‖Lq(M) ≤ C1e
C2γ

α
2α−2 ‖u‖L2(M)

for any eigenfunction u of the Laplacian associated with the eigenvalue γ. Moreover, if α > 2,
then by Proposition 6.1,

‖u‖L∞(M) ≤ C1e
C2γ

α
α−2 ‖u‖L2(M)

for some absolute constants C1 and C2 and for every for any eigenfunction u associated with γ.
In both cases, the existence of eigenfunctions of the Laplacian is guaranteed by condition (2.2)
– see the comments following Theorem 2.1.

7.2 A family of manifolds with clustering submanifolds

Here, we are concerned with a class of non compact surfaces M in R3, which are patterned on an
example appearing in [CH] and dealing with a planar domain. Their main feature is that they
contain a sequence of mushroom-shaped submanifolds {Nk} clustering at some point (Figure 2).
Let us emphasize that the submanifolds {Nk} are not obtained just by dilation of each other.

M

( )FLAT N
k

N
k+1

2
-k+1

M O

Figure 2: A manifold with a family of clustering submanifolds

Roughly speaking, the diameter of the head and the length of the neck of Nk decay to 0 as 2−k

when k →∞, whereas the width of the neck of Nk decays to 0 as σ(2−k), where σ is a function
such that

lim
s→0

σ(s)

s
= 0.

The isoperimetric and isocapacitary functions of M depend on the behavior of σ at 0 in a way
described in the next result (Proposition 7.1). Qualitatively, a faster decay to 0 of the function
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σ(s) as s → 0 results in a faster decay to 0 of λM (s) and νM (s), and hence in a manifold M
with a more irregular geometry. Proposition 7.1 is a special case of Proposition 7.2, dealing with
the isocapacitary function νM,p of M for arbitrary p ∈ [1, 2], stated and proved below. We also
refer to the proof of Proposition 7.2 for a more precise definition of the manifold M .

Proposition 7.1 Let M be the 2-dimensional manifold in Figure 2. Assume that σ : [0,∞)→
[0,∞) is an increasing function of class ∆2 such that

(7.6)
sβ+1

σ(s)
is non-increasing

for some β > 0.
(i) If

s2

σ(s)
is non-decreasing,

then

(7.7) λM (s) ≈ σ(s1/2) near 0.

(ii) If
s3

σ(s)
is non-decreasing,

then

(7.8) νM (s) ≈ σ(s1/2)s−
1
2 near 0.

Owing to equation (7.8), one can derive the following conclusions from Theorems 2.1 and
2.3, involving the isocapacitary function νM . Assume that

(7.9) lim
s→0

s3

σ(s)
= 0 .

Then any eigenfunction of the Laplacian on M belongs to Lq(M) for any q < ∞. If (7.9) is
strengthened to

(7.10)

∫
0

s2

σ(s)
ds <∞ ,

then any eigenfunction of the Laplacian on M is in fact bounded.
Conditions (7.9) and (7.10) are weaker than parallel conditions which are obtained from an
application of Theorems 2.5 and 2.7 and (7.7), and read

(7.11) lim
s→0

s2

σ(s)
= 0 ,

and

(7.12)

∫
0

s3

σ(s)2
ds <∞ ,

respectively. For instance, if b > 1 and

σ(s) = sb for s > 0,
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then (7.9) and (7.10) amount to b < 3, whereas (7.11) and (7.12) are equivalent to the more
stringent condition that b < 2.

Since, by (7.8), νM (s) ≈ s
b−1
2 , from Examples 5.2 and 6.2 we deduce that there exists a constant

C = C(q) such that

‖u‖Lq(M) ≤ Cγ
q−2
q(3−b) ‖u‖L2(M)

for every q ∈ (2,∞] and for any eigenfunction u of the Laplacian associated with the eigenvalue
γ. The existence of such eigenfunction follows from condition (2.2), as explained in the comments
following Theorem 2.1.

Proposition 7.2 Let M be the 2-dimensional manifold in Figure 2. Let 1 ≤ p ≤ 2, and let
σ : [0,∞) → [0,∞) be an increasing function of class ∆2. Then there exist a constant C such
that

(7.13) νM,p(s) ≤ Cσ(s1/2)s−
p−1
2 near 0.

Assume, in addition, that

(7.14)
sβ+1

σ(s)
is non-increasing

for some β > 0, and

(7.15)
sp+1

σ(s)
is non-decreasing.

Then

(7.16) νM,p(s) ≈ σ(s1/2)s−
p−1
2 near 0.

Note that equation (7.7) of Proposition 7.1 follows from (7.16), owing to property (3.6),
whereas equation (7.8) agrees with (7.16) for p = 2.

One step in the proof of Proposition 7.2 makes use of Orlicz spaces. Recall that given a
non-atomic, σ-finite measure space (R,m) and a Young function A, namely a convex function
from [0,∞) into [0,∞) vanishing at 0, the Orlicz space LA(R) is the Banach space of those
real-valued m-measurable functions f on R whose Luxemburg norm

‖f‖LA(R) = inf

{
λ > 0 :

∫
R
A

(
|f |
λ

)
dm ≤ 1

}
,

is finite. A generalized Hölder type inequality in Orlicz spaces tells us that if Ai, i = 1, 2, 3, are
Young functions such that A−1

1 (r)A−1
2 (r) ≤ CA−1

3 (r), then there exists a constant C ′ such that

(7.17) ‖fg‖LA3 (R) ≤ C
′‖f‖LA1 (R)‖g‖LA2 (R)

for every f ∈ LA1(R) and g ∈ LA2(R) [On].

Proof of Proposition 7.2.
Part I. Here we show that, if (7.14) and (7.15) are in force, then there exists a constant C such
that

(7.18) νM,p(s) ≥ Cσ(s1/2)s−
p−1
2 for s ∈ (0,Hn(M)/2).
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Figure 3: An auxiliary submanifold

We split the proof of (7.18) is steps.
Step 1. Fixed ε0 > 0 and ε ∈ (0, ε0), let Nε = Q∪Pε ∪Rε be the auxiliary surface of revolution
in R3 depicted in Figure 3.

Let q = 2p
2−p if p < 2, and let q be a sufficiently large number, to be chosen later, if p = 2.

We shall show that

(7.19)

(∫
Q∪Pε

|u|qdH2

) p
q

≤ C

ε

(∫
Nε

|∇u|pdH2 +

∫
∂Nε

|u|pdH1

)
for every u ∈W 1,p(Nε), and for some constant C independent of ε and u.
Let (ρ, ϑ) ∈ [0, ρ̂− ε)× [0, 2π] be geodesic coordinates on Nε with respect to the point (0, 0, 1),
and 

x = φ(ρ) cos ϑ

y = φ(ρ) sin ϑ

z = ψ(ρ)

be a parametrization of Nε for some given smooth functions φ, ψ : [0, ρ̂ − ε] → [0,∞). In
particular, φ′(ρ)2 + ψ′(ρ)2 = 1 for ρ ∈ [0, ρ̂ − ε). The functions φ and ψ are independent of ε
in [0, ρ0] and (up to a translation, of lenght ε, in the variable ρ ) in [ρ − ε, ρ̂ − ε]; on the other
hand, since Pε is a flat annulus, we have that ψ(ρ) = 0 for ρ ∈ [ρ0, ρ− ε] and that φ is an affine
function in the same interval.
Thus, the metric on M is given by

ds2 = dρ2 + φ(ρ)2dϑ2 .

In particular, ∫
Nε

fdH2 =

∫ 2π

0

∫ ρ̂−ε

0
f φ(ρ) dρdϑ
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for any integrable function f on M . Moreover, if u ∈W 1,p(Nε),

(7.20) |∇u| =

√
u2
ρ +

u2
ϑ

φ(ρ)2
a.e. in Nε .

Define

(7.21) u(ϑ) =
1∫ ρ−ε

0 φ(ρ)dρ

∫ ρ−ε

0
u(ρ, ϑ)φ(ρ)dρ for a.e. ϑ ∈ [0, 2π] .

One has that

(7.22)

(∫
Q∪Pε

|u|qdH2

) p
q

≤ 2p−1

[(∫
Q∪Pε

|u− u|qdH2

) p
q

+

(∫
Q∪Pε

|u|qdH2

) p
q
]
,

where u is regarded as a function defined on Nε. It is easily verified that the function u− u has
mean value 0 on Q ∪ Pε. Thus, by a standard Poincaré inequality,

(7.23)

(∫
Q∪Pε

|u− u|qdH2

) p
q

≤ C
∫
Q∪Pε

|∇u|pdH2 ,

for some constant C independent of ε and u. This is a consequence of the fact that Q is inde-
pendent of ε, and Pε is an open subset of R2 (an annulus) enjoying the cone property for some
cone independent of ε.
Next, the following chain holds:(∫

Q∪Pε
|u|qdH2

) p
q

=

(∫ 2π

0

∫ %−ε

0

∣∣∣∣ 1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
u(r, ϑ)φ(r) dr

∣∣∣∣qφ(ρ)dρdϑ

) p
q

(7.24)

=

(∫ ρ−ε

0
φ(ρ)dρ

) p
q
(∫ 2π

0

∣∣∣∣ 1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
u(r, ϑ)φ(r)dr

∣∣∣∣qdϑ) p
q

≤
(∫ ρ−ε

0
φ(ρ)dρ

) p
q

(2π)
p
q sup
ϑ∈[0,2π]

∣∣∣∣ 1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
u(r, ϑ)φ(r)dr

∣∣∣∣p
≤ C

(∫ ρ−ε

0
φ(ρ)dρ

) p
q
[(∫ 2π

0

1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
|uϑ(r, ϑ)|φ(r)drdϑ

)p
+

(
1

2π

∫ 2π

0

1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
|u(r, ϑ)|φ(r)drdϑ

)p]

≤ C
(∫ ρ−ε

0
φ(ρ)dρ

) p
q
[(∫ 2π

0

1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
|∇u|φ(r)2drdϑ

)p
+

(
1

2π

∫ 2π

0

1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
|u(r, ϑ)|φ(r)drdϑ

)p]

≤ C
(∫ ρ−ε

0
φ(ρ)dρ

) p
q
[

max |φ|p
(∫ 2π

0

1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
|∇u|φ(r)drdϑ

)p
+

(
1

2π

∫ 2π

0

1∫ ρ−ε
0 φ(r)dr

∫ ρ−ε

0
|u(r, ϑ)|φ(r)drdϑ

)p]
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≤ C
(∫ ρ−ε

0
φ(ρ)dρ

) p
q
[

max |φ|p
(∫ 2π

0

(
1∫ ρ−ε

0 φ(r)dr

∫ ρ−ε

0
|∇u|pφ(r)dr

)1/p

dϑ

)p
+

(
1

2π

∫ 2π

0

(
1∫ ρ−ε

0 φ(r)dr

∫ ρ−ε

0
|u(r, ϑ)|pφ(r)dr

)1/p

dϑ

)p]

≤ C
(∫ ρ−ε

0
φ(ρ)dρ

) p
q
[

max |φ|p(2π)p−1∫ ρ−ε
0 φ(r)dr

∫ 2π

0

∫ ρ−ε

0
|∇u|pφ(r)drdϑ

+
1

2π
∫ ρ−ε

0 φ(r)dr

∫ 2π

0

∫ ρ−ε

0
|u(r, ϑ)|pφ(r)drdϑ

]
≤ C ′

[ ∫
Q∪Pε

|∇u|pdH2 +

∫ 2π

0

∫ ρ−ε

0
|u(r, ϑ)|pφ(r)drdϑ

]
,

for some constants C and C ′ independent of ε and u. Note that a rigorous derivation of the in-
equality between the leftmost and rightmost sides of (7.24) requires an approximation argument
of u by smooth functions. Since, for a.e. ϑ ∈ [0, 2π],

(7.25) u(ρ, ϑ) = u(ρ̂− ε, ϑ)−
∫ ρ̂−ε

ρ
uρ(r, ϑ)dr for ρ ∈ (0, ρ̂− ε),

we have that
(7.26)

|u(ρ, ϑ)|p ≤ C|u(ρ̂− ε, ϑ)|p + C

∫ ρ̂−ε

ρ
|uρ(r, ϑ)|pdr for a.e. (ρ, ϑ) ∈ (0, ρ̂− ε)× (0, 2π) ,

for some constant C independent of ε and u. Thus,

∫ 2π

0

∫ ρ−ε

0
|u(ρ, ϑ)|pφ(ρ)dρdϑ

(7.27)

≤ C
∫ 2π

0

∫ ρ̂−ε

0

(∫ ρ̂−ε

ρ
|uρ(r, ϑ)|pdr

)
φ(ρ)dρdϑ+ C

∫ 2π

0

∫ ρ̂−ε

0
|u(ρ̂− ε, ϑ)|pφ(ρ)dρdϑ

≤ C
∫ 2π

0

∫ ρ̂−ε

0

(∫ ρ̂−ε

ρ
|∇u(r, ϑ)|pdr

)
φ(ρ)dρdϑ+ C

∫ 2π

0

∫ ρ̂−ε

0
|u(ρ̂− ε, ϑ)|pφ(ρ)dρdϑ

= C

∫ 2π

0

∫ ρ̂−ε

0
|∇u(r, ϑ)|p

(∫ r

0
φ(ρ)dρ

)
drdϑ+ C

(∫ ρ̂−ε

0
φ(ρ)dρ

)(∫ 2π

0
|u(ρ̂− ε, ϑ)|pdϑ

)
≤ C

(
sup

r∈(0,ρ̂−ε)

∫ r
0 φ(ρ)dρ

φ(r)

)∫ 2π

0

∫ ρ̂−ε

0
|∇u(r, ϑ)|pφ(r)drdϑ

+ C

(∫ ρ̂−ε

0
φ(ρ)dρ

)(∫ 2π

0
|u(ρ̂− ε, ϑ)|pdϑ

)
≤ C ′ 1

φ((ρ̂− ρ)/2))

∫ 2π

0

∫ ρ̂−ε

0
|∇u(r, ϑ)|pφ(r)drdϑ+ C

(∫ ρ̂−ε

0
φ(ρ)dρ

)(∫ 2π

0
|u(ρ̂− ε, ϑ)|pdϑ

)
= C ′

1

ε/2

∫
Nε

|∇u|pdH2 +
C ′′

ε

∫
∂Nε

|u|pdH1 ,

for some constants C, C ′ and C ′′ independent of ε and u. Note that the last inequality holds
since φ is increasing in a neighborhood of 0.
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Inequality (7.19) follows from (7.22), (7.23), (7.24) and (7.27).
Step 2. Let Nε,δ be the manifold obtained on scaling Nε by a factor δ. Thus, Nε,δ is parametrized
by (x, y, z) = (δφ(ρ) cosϑ, δφ(ρ) sinϑ, δψ(ρ)).
Let u ∈W 1,p(Nε,δ). From (7.19) we obtain that

(7.28) δ
− 2p
q

(∫
Qδ∪Pε,δ

|u|qdH2

) p
q

≤ C

ε

(
δp−2

∫
Nε,δ

|∇u|pdH2 + δ−1

∫
∂Nε,δ

|u|pdH1

)
,

where Qδ and Pε,δ denote the subsets of Nε,δ obtained on scaling Q and Pε, respectively, by a
factor δ. Now, let A be a Young function whose inverse satisfies

(7.29) A−1(δ−2) ≈ δp−1

σ(δ)
for δ > 0.

Notice that such a function A does exist. Indeed, the function H : (0,∞) → [0,∞) given by

H(t) = t−
p−1
2

σ(t−
1
2 )

for t > 0 is increasing by (7.14), and the function H(t)
t is non-increasing by (7.15).

Thus, H−1(τ)
τ is a non-decreasing function, and, on taking

A(t) =

∫ t

0

H−1(τ)

τ
dτ for t ≥ 0,

equation (7.29) holds, inasmuch as A(t) ≈ H−1(t) for t ≥ 0. Next, we claim that a Young
function E exists whose inverse fulfils

(7.30) E−1(τ) ≈ A−1(τ)

τp/q
for τ > 0.

To see this, note that the function J(τ) = A−1(τ)

τp/q
is equivalent to an increasing function F (τ)

(for sufficiently large q, depending on β, if p = 2) by (7.14), and that the function J(τ)
τ = A−1(τ)

τ1+p/q

is trivially decreasing. Set J1(τ) = J(τ)
τ . Thus, F (τ)

τ ≈ J1(τ) for τ > 0. As a consequence, one

can show that F−1(t)
t ≈ 1

J1(F−1(t))
, an increasing function. Thus the function E given by

E(t) =

∫ t

0

dτ

J1(F−1(τ))
for t ≥ 0,

is a Young function, and since E(t) ≈ t
J1(F−1(t))

≈ F−1(t), one has that E−1(τ) ≈ F (τ) ≈

J(τ) = A−1(τ)

tp/q
, whence (7.30) follows.

Owing to (7.30), inequality (7.17) ensures that

(7.31) ‖|u|p‖LA(Qδ∪Pε,δ) ≤ C‖|u|
p‖Lq/p(Qδ∪Pε,δ)‖1‖LE(Qδ∪Pε,δ)

= C‖u‖pLq(Qδ∪Pε,δ)
1

E−1(1/H2(Qδ ∪ Pε,δ))
≤ C‖u‖pLq(Qδ∪Pε,δ)

1

E−1(C ′/δ2)
,

for some constants C and C ′ independent of ε, δ and u. Combining (7.28)–(7.31) yields

‖|u|p‖LA(Qδ∪Pε,δ) ≤
Cσ(δ)

εδ

∫
Nε,δ

|∇u|pdH2 +
Cσ(δ)

εδp

∫
∂Nε,δ

|u|pdH1 .(7.32)
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Now, choose

ε =
σ(δ)

δ
,

and obtain from (7.32)

(7.33) ‖|u|p‖LA(Qδ∪Pσ(δ)
δ

,δ
) ≤ C

∫
Nσ(δ)

δ
,δ

|∇u|pdH2 + Cδ1−p
∫
∂Nσ(δ)

δ
,δ

|u|pdH1 .

Note also that

(7.34) H1(∂Nσ(δ)
δ
,δ

) = 2πσ(δ),

a fact that will be tacitly used in what follows.
Step 3. Choose δk = 2−k for k ∈ N, and denote

Qk = Qδk , P k = Pσ(δk)

δk
,δk
, Nk = Nσ(δk)

δk
,δk
.

Define the manifold M in such a way that the distance between the centers of the circumferences
∂Nk and ∂Nk+1 equals 2−k+1. Given u ∈W 1,p(M), one has that

(7.35) ‖|u|p‖LA(∪k(Qk∪Pk) ≤
∑
k

‖|u|p‖LA(Qk∪Pk) ,

and

(7.36)

∫
∪kNk

|∇u|pdH2 =
∑
k∈N

∫
Nk

|∇u|pdH2 .

Now, notice that the manifold M is flat in a neighborhood of ∪kNk. For k ∈ N, let us denote
by Ωk the open set on M bounded by the circumference ∂Nk (having radius σ(δk)) and by the
boundary of the square on M , with sides parallel to the coordinate axes, whose side-length is
3σ(δk), and whose center agrees with the center of ∂Nk. Hence, in particular,

(7.37) H2(Ωk) ≤ 9σ(δk)
2.

Observe that

(7.38)

∫
∂Nk

|u|p dH1 ≤ Cσ(δk)
p−1

∫
Ωk

|∇u|pdH2 + Cσ(δk)
−1

∫
Ωk

|u|pdH2

for some constant C independent of k and u. Inequality (7.38) can be derived via a scaling
argument applied to a standard trace inequality for subsets of Rn with a Lipschitz boundary.
Thus, ∑

k∈N
δ1−p
k

∫
∂Nk

|u|p dH1(7.39)

≤ C
∑
k∈N

δ1−p
k σ(δk)

p−1

∫
Ωk

|∇u|pdH2 + C
∑
k∈N

δ1−p
k σ(δk)

−1

∫
Ωk

|u|pdH2 .

Assumption (7.14) ensures that

lim
δ→0

σ(δ)

δ
= 0 ,
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and hence, in particular, there exists a constant C such that

(7.40)
σ(δ)

δ
≤ C if 0 < δ ≤ 1.

Consequently,

(7.41)
∑
k∈N

δ1−p
k σ(δk)

p−1

∫
Ωk

|∇u|pdH2 ≤ C
∫
M
|∇u|pdH2

for some constant C. As far as the second addend on the right-hand side of (7.39) is concerned,
if 1 ≤ p < 2 by Hölder’s inequality and (7.37) one has that∑

k∈N
δ1−p
k σ(δk)

−1

∫
Ωk

|u|pdH2 =

∫
M

∑
k∈N

χΩkδ
1−p
k σ(δk)

−1|u|pdH2(7.42)

≤
(∫
∪kΩk

|u|
2p
2−pdH2

) 2−p
2 (

9
∑
k∈N

σ(δk)
2
(
δ1−p
k σ(δk)

−1
) 2
p

) p
2

≤ C
(∫
∪kΩk

|u|
2p
2−pdH2

) 2−p
2
(∫ 1

0

σ(δ)
2− 2

p

δ
3− 2

p

dδ

) p
2

,

for some constant C independent of k and u. If p = 2, then given a > 1 one similarly has that

∑
k∈N

δ−1
k σ(δk)

−1

∫
Ωk

|u|2dH2 ≤ C
(∫
∪kΩk

|u|2adH2

) 1
a
(∫ 1

0

σ(δ)2−a′

δ1+a′
dδ

) 1
a′

.(7.43)

Thanks to (7.14),
∫ 1

0
σ(δ)

2− 2
p

δ
3− 2

p
dδ <∞ if 1 ≤ p < 2, and

∫ 1
0
σ(δ)2−a

′

δ1+a′
dδ <∞ if p = 2, provided that

a is sufficiently large.
On the other hand, by our choice of δk and of the distance between the centers of ∂Nk and
∂Nk+1, any regular neighborhood of ∪k∂Nk in M , containing ∪kΩk, is a planar domain having
the cone property. Hence, by the Sobolev inequality, if 1 ≤ p < 2(∫

∪kΩk

|u|
2p
2−pdH2

) 2−p
2

≤ C
∫
M

(
|∇u|p + |u|p

)
dH2 ,

and, if p = 2, (∫
∪kΩk

|u|2adH2

) 1
a

≤ C
∫
M

(
|∇u|2 + |u|2

)
dH2

for some constant C independent of u. Altogether, we infer that there exists a constant C such
that

(7.44)
∑
k∈N

δ1−p
k σ(δk)

−1

∫
∂Nk

|u|pdH1 ≤ C
(∫

M
|∇u|pdx+

∫
M
|u|pdx

)
.

Combining (7.33), (7.35), (7.36) and (7.44) tells us that there exists a constant C such that

(7.45) ‖|u|p‖1/p
LA(∪k(Qk∪Pk))

≤ C
(
‖∇u‖Lp(M) + ‖u‖Lp(M)

)



42

for every u ∈W 1,p(M).
Step 4. Denote by Rσ(δ)

δ
,δ

the manifold obtained on scaling Rσ(δ)
δ

by the factor δ. We shall show

that inequality (7.45) continues to hold if ∪k(Qk ∪ P k) is replaced by ∪kRk, where

Rk = Rσ(δk)

δk
,δk
.

Let ρi, i = 1, . . . ,m, be such that ρ1 = ρ− ε, ρm = ρ̂− ε, the difference ρi+1− ρi is independent
of i for i = 1, . . . ,m− 1, and

(7.46) 1 ≤ ρi+1 − ρi
σ(δ)

≤ 2 for i = 1, . . . ,m− 1.

Let
Riδ = {(ρ, ϑ) ∈ Rσ(δ)

δ
,δ

: ρi ≤ ρ ≤ ρi+1} for i = 1, . . . ,m− 1.

Define

û(ρ) =
1

2π

∫ 2π

0
u(ρ, ϑ)dϑ for a.e. ρ ∈ (ρ− ε, ρ̂− ε).

We have that

(7.47) ‖|u|p‖LA(Rσ(δ)
δ

,δ
) ≤ 2p−1‖|u− û|p‖LA(Rσ(δ)

δ
,δ

) + 2p−1‖|û|p‖LA(Rσ(δ)
δ

,δ
) ,

where û is regarded as a function defined on Rσ(δ)
δ
,δ

, and A is the Young function introduced in

Step 2. Furthermore,

(7.48) ‖|u− û|p‖LA(Rσ(δ)
δ

,δ
) ≤

m−1∑
i=1

‖|u− û|p‖LA(Riδ)
.

The mean value of u−û over each Riδ is 0. The manifolds R2
δ , · · · , R

m−2
δ agree, up to translations,

with the same cylinder. The manifolds R1
δ and Rm−1

δ also coincide, up to isometries. Moreover,

H2(Riδ) ≈ σ(δ)2 ,

owing to assumption (7.46). An analogous scaling argument as in the proof of Step 2 tells us

(7.49) ‖|u− û|p‖LA(Riδ)
≤ C σ(δ)p−2

A−1(Cσ(δ)−2)
‖∇u‖p

Lp(Riδ)
,

for some constant C. Next, since

|û(ρ)|p ≤ C
(
|û(ρ̂− ε)|p +

(∫ ρ̂−ε

ρ−ε
|û′(r)|dr

)p)
for a.e. ρ ∈ (ρ− ε, ρ̂− ε),
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one has that

‖|û|p‖LA(Rσ(δ)
δ

,δ
)(7.50)

≤ C0|û(ρ̂− ε)|p‖1‖LA(Rσ(δ)
δ

,δ
) + C0

∥∥∥∥(∫ ρ̂−ε

ρ−ε

1

2π

∫ 2π

0
|uρ(ρ, ϑ)|dϑdρ

)p∥∥∥∥
LA(Rσ(δ)

δ
,δ

)

≤ C0

A−1(1/H2(Rσ(δ)
δ
,δ

))
|û(ρ̂− ε)|p + C0

∥∥∥∥(∫ ρ̂−ε

ρ−ε

1

2π

∫ 2π

0
|∇u|dϑdρ

)p∥∥∥∥
LA(Rσ(δ)

δ
,δ

)

≤ C0

A−1(1/H2(Rσ(δ)
δ
,δ

))
|û(ρ̂− ε)|p

+
C0

minρ∈(ρ−ε,ρ̂−ε) φ(ρ)p

∥∥∥∥(∫ ρ̂−ε

ρ−ε

1

2π

∫ 2π

0
|∇u|φ(ρ)dϑdρ

)p∥∥∥∥
LA(Rσ(δ)

δ
,δ

)

≤ C0

A−1(1/H2(Rσ(δ)
δ
,δ

))
|û(ρ̂− ε)|p +

C1

σ(δ)p

∥∥∥∥(∫
Rσ(δ)

δ
,δ

|∇u|dH2

)p∥∥∥∥
LA(Rσ(δ)

δ
,δ

)

≤ C0

A−1(1/H2(Rσ(δ)
δ
,δ

))
|û(ρ̂− ε)|p +

C1

σ(δ)p
H2(Rσ(δ)

δ
,δ

)p−1‖∇u‖pLp(Rσ(δ)
δ

,δ
)‖1‖LA(Rσ(δ)

δ
,δ

)

≤ C2

A−1(C3/(δσ(δ)))

(
1

σ(δ)

∫
∂Nσ(δ)

δ
,δ

|u|dH1

)p
+

C2δ
p−1σ(δ)p−1

σ(δ)pA−1(C3/δσ(δ))
‖∇u‖pLp(Rσ(δ)

δ
,δ

)

≤ C4

σ(δ)A−1(C3/(δσ(δ)))

∫
∂Nσ(δ)

δ
,δ

|u|pdH1 +
C2δ

p−1

σ(δ)A−1(C3/(δσ(δ)))
‖∇u‖pLp(Rσ(δ)

δ
,δ

) ,

for suitable constants Ci, i = 0, . . . , 4. Here, we have made use of the fact that

H2(Rσ(δ)
δ
,δ

) ≈ δσ(δ) .

An approximation argument for u by smooth functions is also required. Owing to (7.40), for any
C > 0, there exists a constant C ′ > 0 such that

(7.51)
σ(δ)p−2

A−1(C/σ(δ)2)
≤ C ′δp−1

σ(δ)A−1(C ′/(δσ(δ)))
.

Thus, from (7.47)–(7.51) one deduces that there exists a constant C > 0 such that

(7.52) ‖|u|p‖LA(Rσ(δ)
δ

,δ
)

≤ C

σ(δ)A−1(C/(δσ(δ)))

∫
∂Nσ(δ)

δ
,δ

|u|pdH1 +
Cδp−1

σ(δ)A−1(C/(δσ(δ)))

∫
Rσ(δ)

δ
,δ

|∇u|pdH2 .

Consequently,

‖|u|p‖LA(∪kRk) ≤
∑
k∈N
‖|u|p‖LA(Rk)

(7.53)

≤
∑
k∈N

C

σ(δk)A−1(C/(δkσ(δk)))

∫
∂Nk

|u|pdH1 +
∑
k∈N

Cδp−1
k

σ(δk)A−1(C/(δkσ(δk)))

∫
Rk
|∇u|pdH2 .



44

By (7.40) and (7.29),

(7.54)
δp−1
k

σ(δk)A−1(C/(δkσ(δk)))
≤

δp−1
k

σ(δk)A−1(C ′/δ2
k)
≤ C ′′ ,

for some positive constants C ′ and C ′′. Thus,

‖|u|p‖LA(∪kRk) ≤
∑
k∈N

C

δp−1
k

∫
∂Nk

|u|pdH1 + C‖∇u‖p
Lp(∪kRk)

,(7.55)

for some constant C. Hence, since σ(δk) is bounded for k ∈ Z, we deduce from (7.44) that

(7.56) ‖|u|p‖1/p
LA(∪kRk)

≤ C
(
‖∇u‖Lp(M) + ‖u‖Lp(M)

)
.

Step 5. A variant of [Ma7, Theorem 2.3.2], with analogous proof, tells us that given a (2-
dimensional) Riemannian manifold Z with H2(Z) <∞, and a Young function B, the inequality

(7.57) ‖|u|p‖1/p
LB(Z)

≤ C
(
‖∇u‖Lp(Z) + ‖u‖Lp(Z)

)
holds for some constant C and for every u ∈W 1,p(Z) if and only if

(7.58)
1

B−1(1/s)
≤ C ′νZ,p(s) for s ∈ (0,H2(Z)/2),

for some constant C ′. In Step 3 we have observed that a regular neighbourhood of ∪k∂Nk is
a planar domain fulfilling the cone property. Hence, the standard Sobolev inequality holds on

M \(∪kNk), and, consequently, (7.58) holds with Z = M \(∪kNk) and B(t) = t
2

2−p if 1 ≤ p < 2,
and with B(t) = ta for any a ≥ 1 if p = 2. Thus, since the right-hand side of (7.30) is equivalent
to a non-decreasing function, inequality (7.58) also holds with B = A. Hence, there exists a
constant C such that

(7.59) ‖|u|p‖1/p
LA(M\(∪kNk))

≤ C
(
‖∇u‖Lp(M\(∪kNk)) + ‖u‖Lp(M\(∪kNk))

)
for u ∈W 1,p(M). Combining (7.45), (7.56) and (7.59) tells us that

(7.60) ‖|u|p‖1/p
LA(M)

≤ C
(
‖∇u‖Lp(M) + ‖u‖Lp(M)

)
for some constant C and for every u ∈W 1,p(M). Hence,

(7.61)
1

A−1(1/s)
≤ CνM,p(s) for s ∈ (0,H2(M)/2)

and (7.18) follows, owing to (7.29).
Part II. Here we show that, if p ≥ 1 and σ is non-decreasing and is of class ∆2 near 0, then
inequality (7.13) holds. Consider the sequence of condensers (Qk ∪ P k, Nk). Let {uk} be the
sequence of Lipschitz continuous functions given by uk = 1 in Qk ∪ P k, uk = 0 in M \Nk and
such that uk depends only on ρ and is a linear function of ρ in Rk. For k ∈ N, we have that

(7.62) H2(Qk ∪ P k) ≈ δ2
k ,
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and

(7.63)

∫
M
|∇uk|pdH2 ≈ H

2(Rk)

δpk
≈ σ(δk)

δp−1
k

.

Thus, there exist constants C and C ′ such that

(7.64) νM,p(Cδ
2
k) ≤ Cp(Qk ∪ P k, Nk) ≤ C ′σ(δk)

δp−1
k

.

It is easily seen that (7.64) continues to hold with δk replaced by any s ∈ (0,Hn(M)/2). Hence
(7.13) follows.
The proof is complete.
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