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Abstract

We present an asymptotic analysis of waves of elastic stress in an
infinite solid whose boundary is subject to a rapid thermal load. The
problem under consideration couples the wave equation and the heat
equation, and the asymptotic approximation of the solution requires
three scaled variables. The asymptotic approximation is supplied with
a rigorous remainder estimate and illustrated numerically.

1 Introduction

Despite the fact that the heat equation is a classical topic discussed in ev-
ery textbook on partial differential equations, there are issues related to
rapid thermal processes, which are still considered in the modern research
literature. Examples include waves associated with dynamic thermal stress
and strain, and effects of rapid heating of boundaries, as discussed in [2]
and [3]. Another example is the paper [4], which addresses the problem of



thermal stress and transmission of heat in ceramic materials under thermal
shock loading. Thermoelastic waves in thick elastic plates, including thermo-
mechanical and thermal relaxation effects, are dealt with in the articles [5]
and [6].

A problem of uncoupled thermoelasticity for an elastic half-space under
instantaneous thermal load is referred to as the thermal shock elastic prob-
lem; a formula for the solution of this problem was derived in [7]. Needless
to say, every thermal load related to a realistic physical problem is sustained
during a non-zero interval of time. It is conventional (see [8]) to introduce a
characteristic “thermal time” defined by t = L?/k, where L is the character-
istic length and & is the thermal diffusivity constant. When % is fairly small
the effects of stress concentration become significant near the boundaries of
solids subjected to rapidly varying thermal loads!.

In the present paper we handle the one-dimensional problem of uncoupled
thermoelasticity on a semi-axis. It is assumed that the boundary is subjected
to a thermal load during a small time interval €. Although the solution of
the problem can be found analytically in the form of a multiple integral,
this representation is quite cumbersome and the asymptotic behaviour of the
solution (as € — 0) cannot be seen easily. In the present paper we give such
an asymptotic analysis.

The rigorous asymptotic formulae presented here give a three-scale asymp-
totic approximation for a solution of the thermo-elasticity problem associated
with a rapid thermal loading on the boundary of an elastic half-space z > 0.
We show that the thermal stress admits the following representation

o(z,t,e) =sH(t —x)n((t —x)/e)
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!This is especially pronounced for materials with relatively high thermal diffusivity,
for example germanium (k = 0.36cm?/s), gallium nitride (k = 0.43¢m?/s) or gallium
arsenide (x = 0.31cm?/s) widely used in modern electronics applications (see, for example,
http://www.carondelet.pvt.k12.ca.us/Family /Science/GroupI VA /germanium.htm). The
speed a of dilatational waves in germanium is around 5400m/s. Hence, one can deduce
that even if the duration of thermal loading is of order 10712 of a second, such a time
interval should not be treated as a negligibly small quantity if represented in terms of the
normalised time-variable 7 = a?t/k.

n((t — p)/e)p~ 2" P dp + po(x,t),




where s is a constant coefficient, H is the Heaviside function, and ¢ is a small
non-dimensional parameter characterising the length of the time-interval as-
sociated with the thermal load. By n we denote a function defining the profile
of the thermal load, and p. stands for the small remainder. The first term in
the above formula represents a plane wave of thermal stress propagating away
from the boundary, whereas the second term plays the role of the boundary
layer.

This work may prove useful for asymptotic studies of thermoelastic fields
in an elastic domain subject to a rapid fully three-dimensional thermal load.
Specifically, a similar scaling of space and time variables should occur in the
three-dimensional analysis of thermo-elasticity problems.

The plan of the paper is as follows. We begin with the formulation for a
rapid, impulse type thermal loading. A multi-scale asymptotic approxima-
tion of thermal stress is formally constructed and rigorously justified. It is
shown that this solution can be used in the analysis of thermal stress associ-
ated with a rapid increase of the boundary temperature, and the details of
this analysis are given in Section 3. The asymptotic solutions are supplied
with illustrative numerical examples and physical interpretation, which are
included in Section 4. Finally, Section 5 contains concluding remarks on the
range of applicability of the asymptotic formulae obtained in this paper.

2 Impulse type thermal loading

2.1 Governing equations

Consider a vector-function (7(z,t),o(x,t)), defined for non-negative = and
t. The functions 7" and ¢ are assumed to satisfy the diffusion equation

or o’T
- _ - t 1
5 a2 0, t>0, x>0, (1)
and the coupled equation of motion
Po %0 0T
— = S
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t>0, z>0, (2)

where s is a positive constant coefficient; compared to equations that occur
in physics the above equations have been normalised, so that the coefficients



have a particularly simple form. We note that t is considered as a time-like
variable, whereas x is a spatial variable.
In addition, we impose the following initial and boundary conditions

T(x,0)=0, =>0, (3)
T(0,t) = Ton(t/e), t>0, (4)
for the function 7", and
0
o(z,0) = 0, a—:(x,O) ~0, 2>0, (5)
0(0,t) =0, t>0, (6)

for the function o. Here € denotes a small positive non-dimensional param-
eter, and 7 is a measurable function vanishing for 7 > 1, and subject to the
inequality |n(7)| < 1] for almost all 7 > 0. Thus, we deal with the short time
change of temperature on the boundary.

Remark. For readers convenience, we note that the above equation (2)
follows from a classical setting of uncoupled thermo-elasticity. Indeed, let us
assume that the stress o(z,t), displacement u(z,t) and temperature 7'(z, t)
satisfy the equation of motion

do 0%u
S et 7
aaj p8t27 ( )
and the constitutive equation
ou
o=FE or VT, (8)

with positive coefficients p, F/,y being the material mass density, Young’s
modulus and a thermo-elastic constant, respectively. By differentiating (7)
with respect to x, differentiating (8) twice with respect to ¢, and subtracting
the second equation from the first one, we deduce
%0  10%  py0°T 0
ox2  c2ot2  E o2 )
Normalising the time variable ¢ in such a way that ¢ = 1 and using the
notation s = py/E we obtain (2). O
We seek a solution {o,7'} of problem (1)-(6), uniformly bounded in
{(z,t) : > 0,t > 0}, with the main aim of revealing its asymptotic structure
for the case of a rapid thermal loading.
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2.2 Asymptotic solution

The subsequent asymptotic analysis will require the following three scaled
variables defined by

E=x/Ve,T=t/cand X = x/e. (10)
We formulate and prove our main result.

Theorem 1. The solution (T, o) of problem (1)—(6) can be represented in

the form
T, /e o
T=T(r) =52 [ n(r—&pp e dp, (1)
and
o=o(x,te)=sToH(T — X)n(t — X)
T(]Sg T

_2\/%077

where the remainder term p. is O(e) uniformly in t and x.

_ _ 2
(1 —p)p~*2e ¢/ *dp + p_(2,1), (12)

Proof. (i) Evaluation of the temperature T. In the new scaled variables,
equation (1) becomes

or o°T
I | 13
or  0&2 ’ (13)
and is accompanied by the initial and boundary conditions
T(€,0) =0 when & >0, (14)
and
T(0,7) =Ton(t) when 7> 0. (15)

Here T} is a given constant, which defines the maximum value of the boundary
temperature. Solving this problem, we obtain (11) (see [1], Chapter 1).
(ii) Evaluation of the stress. The stress o is sought in the form

o(x,t,e) = —sT(z/\e, t/e) + sS(z/e, t/e) + pe(x,t), (16)

where T is the function defined by (11), and S(X, ) is a bounded solution
of the problem
oS 9%S

aXZ_ﬁZO, (X,T)GE, (17)




with the boundary condition
S =mn(r) when X =0,7 >0, (18)

and the initial conditions

oS
S=—=0 when 7=0,X >0. (19)
or
We will show that p. in (16) plays the role of the remainder term in the
asymptotic approximation of the stress.
The solution of (17)—(19) is a plane wave defined by

S(X,7)=H(t — X)n(t — X), (20)

where H denotes the Heaviside function.
Thus, the stress ¢ has the representation

o(x,t,e) = sToH(t — z)n((t — ) /¢e)

Tosx [t
2/ Jo 1
which is equivalent to (12). The remainder estimate is still to be given.

(i) Remainder estimate, for the case 0 < t < 2e. We would like to
prove that p. = O(e), uniformly in x and ¢. For the function p., we deduce
the inhomogeneous wave equation accompanied by homogeneous initial and
boundary conditions:

((t = p)/e)p™ 2™ ®dp + p.(x,1), (21)

Pp. . oT.

022 o ot
and
pe =0 at z =0,
pe = 0p:/O0t =0 at t=0.

Here T.(z,t) = T(x/\/e,t/<).
It is verified directly that

1 gt ati—ty 9T (1.1
s p(z,t) = —7/ dtl/ 1 Mdajl, (22)
2 Jo Tt ot,



where

1

Te(xla tl) - %

/0t1/$? n((t — x%p)/g)p_gﬂ exp(—1/4p)dp. (23)

The derivative 9T, /0t; is extended as an odd function for negative values of
x1. The formula (22) can be written in the equivalent form

1 T x1—x+t aT T+t T—x1+t aT
(1) = —= d / i / d / i
s~ pel.1) 2</xt o 0 oty 1+ . o 0 oty !

1 r—1+2¢ T

_ __</ T.(xy, vy —x + t)dry + T.(x1, 21 — x4 t)day
2 x—t T—t+2e

r+t—2e T+t
+/ To(ry, 0 — 21 +t)dr) +

r+t—2e

T.(z1, 0 — 21+ t)da:1>. (24)

Each of the above integrals will be estimated separately.
We recall that sup || = 1, and hence

1 0 _
IT(z,y)] < —2\/77/0 p 32 APy = 1.

The first and the fourth integrals in (24) have their absolute values within
the interval (0, 2¢). The second and third integrals have their absolute values
within the same range, provided 0 < t < 2. We need only to verify that the
second and third integrals in (24) are small when ¢ > 2e.

(iv) The case t > 2. Let us prove additional, more refined estimates for
the function T'(x,t).

We introduce the new variable p; = x*p/t and use the fact that sup || = 1
and n(7) = 0 when 7 > 1. Based on the representation (23), we derive

2| ! —3/2 _42/4
T.(x,t :—/ #H1 — #2/4tp1 g
2o, = 57 [ atet1 = py el e o

|| ! —3/2_—a2 /4t
— t 1 — o €T pld
2\/7% e/t |77( ( p1>/5)|p1 € P1

€|'/1:| 73/2 *1‘2/4Lp1
—_— . 2
— 2\/7t3/? 1_6%2ﬁg1 Lo (25)



Let
Ol t,py) = py e,

In what follows, estimating this function for 1 —e¢/t; < p; <1 and t > 2e,

we obtain
2 ex 22 /44
|T€(x7t)| S \/;2,:376 /4ta (26>

We note that for fixed = and ¢, the function ¢(z,t,p;) has the point of
maximum at p; = Pmaz = > /6t, and its maximum value is given by

O(,t, Pmaz) = (6ta:_2)3/2e_3/2.

Consider the following three cases of possible locations of the point p,q.:
(a) Pmagz S ]- - €/t, (b> 1 - €/t S Pmax S ]-a (C) Pmax 2 1

(a) When pye. < 1—¢/t the function ¢(x,t,p;) (where x and ¢ are fixed)
is decreasing on the interval (1 —e/t,1). In this case

= 1—
1—61/1}2Xm§1 ¢($7tap1) (b(I,t, €/t)

_ (1 B 8/t)—3/2€—x2/t(1—5/t) < 23/26—902/4:5'
(b) For the case 1 — €/t < prar < 1 we have

Lmax ol tpy) < (1— eft) e < g
(¢) Finally, when p,,,., > 1 the quantity ¢(x, ¢, p) increases (as a function
of p) on the whole range 1 — ¢/t < p <1, and it attains its maximum value
at p=1.
Taking into account the estimates just obtained and the inequality (25),
we deduce (26).
Let

I, = / |I1|($1 — T+ t)—3/2€—x%/4(x1—x+t)dxl’
r—t+2e

and T+t—2e
I, = / "L’1|(’L’ +t— 1,1)—3/26—95%/4(x+t—x1)d1,1.

After the substitution y = x1 — x + ¢, the integral I; takes the form
! 3/2 2
= [ ly+o—ty™ exp(~(y + o = 1)/4y)dy.
€
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First, consider the case when x — ¢t > 0. Then y + x — t is positive on the
whole interval of integration, and

L= [y exp(—(y -+ (o = 2y + 20 — 1)/4)dy

+ [y — ) exp(—(y + (o — 02y + 20 — 1)/4)dy

- t y_l/ge—y/4dy n /t (x B t)y_3/2€_(w_t)2/4ydy-
2e 2e

Setting y = 2% and (z — t)?/y = 2% in the first and second integrals in the
right-hand side of the above inequality, we find

Vi (2—1)/V2e
I, < 2/ e/ 4dy + 2 e l4dz
V2e (z—t)/V1

< 4/00 e Ady = 4y/7.
0

Next, let x —t < 0. In this case,

t—x
Il = /2 (t —xr — y)y73/2€7(t7m7y)2/4ydy

13
t

t—x

< t_w(t—x)y 32 (t-a—0) My gy, 4 t y V2wt gy

t—x

_Q/t WV (o ta) 27 /4dz+2/ —(t=a)/2)? /4

<4 / o= (—(t=2)/2)2/4 0, _ 4 / eVt 8T
0 —0

Consequently, the integral /; is uniformly bounded in x and ¢.
The integral I5 can be handled in a similar way:

I, = t y (x4t — y)e’(“t’y)Q/‘lydy
2e
<2 /_ (14 (x +1)/22) e ¥ dy
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< 4/ eV Ady — 8/7,
0

which implies the uniform boundness of I5 in z, t.
It follows from (22) and (26) that the remainder p. can be estimated in
the form

ool < 5 (14221 + 1)) (27)

Since both integrals I; and I in the right-hand side of (27) are uniformly
bounded with respect to ¢ and z, the remainder p. is O(e) uniformly in ¢ and
x. The proof is complete. O

3 Gradient field near the boundary of the half-space
under a rapid increase of the temperature

Previous analysis of impulse type loading enables one to construct an asymp-
totic approximation of a solution to a problem involving a rapid increase of
the temperature.

The boundary condition for temperature. We modify the boundary con-
dition in problem (1), (3), (4) by assuming that the temperature on the
boundary of the half-space increases from 0 to T, within a short time inter-
val, and then it remains constant:

T(0,t) = ¢(t/e)Th, (28)

where the boundary temperature ¢(7) is assumed to be smooth for all 7 > 0,
and
¢(t) =0, when 7 <0; ¢(7) =1 when 7 > 1,

max |¢(7)| = 1. (29)

The solution T' of this problem can be represented as the sum T = Ty, —
Timp wWhere Tj,,, is the temperature associated with the short-time thermal
impulse, as described in Section 2, and T}, is the term generated by an
instant change of the boundary temperature (we shall call it the thermal
shock temperature). The boundary values of Ty, and T, are given by the
formulae

Tsh(oa t) = H(t)T07 (3[))
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where H is the Heaviside function, and

Timp(0,) = n(t/e) = (H(t) = ¢(t/<))To. (31)

We note that the function 7n(7) is discontinuous at 7 = 0. The problem for
the field Ty,, modelling a thermal shock, is straightforward, and its solution
is

X
Ty = Toerfe(—=). 32
h 0cr C(2 \/F) (32)
The field T,,, is given by
T /€
V2r o

Tip(X, 7) n(r — X2€)E7 eV 4de, (33)

Asymptotic approximation of stress. The associated stress field can be
found as

T =0 — Timps (34)

where oy, and o0, are the stresses produced by the temperatures Ty, and
Timp, respectively. According to [7], the stress o, is

T :
o9 = —52—Oet (erfc(zf/l_f—\/g)e_x+erfc(2f/¥+\/g)e’:> +sToH (t—x)e' . (35)

The stress field 0y, can be written in the form (11). Hence we arrive at the
asymptotic representation for the whole stress field

o(z,t,¢) = sTyH(t — ) (etw 14 p((t—a) /5)) (36)
—1sTye (erfC(QiU/i —Vt)e ™ + erfc(zf/i — \/E)e’”)

sTyr [t t—
Yoy (1 —( p)>P_3/26"”2/4”dp +pe(,1)

2/ Jo 5

The remainder estimate in (36) follows the same pattern as in Section 2.
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4 Physical interpretation and numerical experiments

The impulse type loading. The formula (12) has a clear physical interpreta-
tion. In fact, the first term in (12) is the plane wave of stress, which prop-
agates away from the boundary of the half-space. The profile of the wave,
modulo the constant factor s, is the same as the profile n of the boundary
temperature (see (4)).

The second term in (12) is proportional to the temperature field T" in the
half-space. According to (26), it can be neglected when ¢ > const, since

T.(z,1)| < (2/7)%et™" max(ye ¥ /*) = 2e(x/2e"/21) . (37)
Furthermore, the second term in (12) is O(e) for > Conste'/2, as follows
from the estimate

T2 < (262V/7) " max(yPe /) = 3(6/m)" /e %, (38)

Hence, this term may be essential near the boundary (z = o(1)) only during
a short period of time (¢ = o(1)).

An advantage of the asymptotic formula (12), in contrast with the integral
representation of the exact solution, is that it shows explicitly the wave and
diffusion components of the thermal stress. In particular, one can see that
these components have opposite signs if the function 1 does not change its
sign.

We see from (37) and (38) that the stress produced by the thermal impulse
coincides asymptotically with the stress wave produced by the mechanical
pressure sTpn on the boundary of the half-space, provided the distance from
the boundary is sufficiently large (x > const).

Consider an example where the function 7 is given by

n(7) = 1(1 — cos(277)) as 7€ (0,1), (39)

and n(7) = 0 otherwise. Let the value of the small parameter ¢ to be 0.1.
In Fig. 1, we display (sTO)_loasymp, where 0,4ym, 1s the asymptotic solu-
tion
o-asymp(l', tv 8) = SS(I’/&‘, t/E) - ST(:E/\/E/ t/&‘), (4())
(see (12) and (16)).
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(0) x=0.03; (") x=0.1; (+) x=0.2

=
®

ois T,

Figure 1: Left: The surface plot of (STO)_loasymp. Right: Cross-sections of
the surface plot for fixed z.

In Fig. 2, we show the wave term (s7;)~'S with profile (39) and the
diffusion term —7}, 'T in representation (40).

Figure 2: Left: The wave term (s7p)~'S. Right: The diffusion term —T; 'T.
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The rapid growth of the boundary temperature. The asymptotic approxi-
mation of o in (36) can be written as

Tasymp(T,t,€) = ogn(z,t) + SToH (t — 2)(1 — (e (t — 2)))
25Ty [

e I (e e o) B (41)

The thermal shock stress is discontinuous at x = £, i.e. it has the jump s7j
across the wave front: the stress is compressive as t < z, and it becomes ten-
sile when ¢ > x. The second term in (41) is a plane elastic wave proportional
to the thermal boundary impulse. The third term, of diffusion type, is the
same as the term —s7" in (12), with n(7) = H(7)(1 — ¢(7)).

In the numerical example we use

0, as 7 <0,
n(t) =< Tor, as 0<7 <1,
Ty, as 7> 1.

In Fig. 3, we display the surface plots for (s7p) ™ o, and (sTo) ™' Tasymps
with the latter showing regularisation in the vicinity of x = t.

ol sT,

Figure 3: Left: The shock stress (sTp)~'og,. Right: The asymptotic approx-
imation of the total stress(s7p)  asymp-

The profiles of (sT0) ‘0 asymp(2,t,€) and (sTpy) togu(x,t), for a fixed x,
are presented in Fig. 4.
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Figure 4: For x = 0.14, the solid line corresponds to the thermal shock stress,
it is discontinuous at t = x. The dashed line gives the continuous function

(5T0) " Tasymp-

The magnitude of the stress wave increases while it propagates away
from the boundary of the half space until it reaches the value sTj. At a long
distance, away from the boundary the shape of the wave is determined by
the profile of the boundary temperature.

9 Concluding remarks on the range of applicability of
the asymptotic formula

Equations analysed in this paper are written in normalised variables. Despite
the fact that we did not consider particular physical applications, it is worth-
while estimating the range of values for the small parameter ¢ that would
be adequate for real life materials. For instance, the thermal diffusivity of
germanium is £ = 0.36cm?/s. We look at a normalised time xt/L?, where L
is a characteristic length scale. Taking formally L = 1em, we deduce that the
case of a fast heating during the time interval of 0.5s corresponds to ¢ = 0.18
in our model.

Although a rigorous remainder estimate has been derived for the asymp-
totic approximation of stress, it is also interesting to evaluate the error nu-
merically. We shall see that in numerical approximations the asymptotic
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formula (12) works so well, that it exceeds the expectations based on rigor-
ous estimates of the remainder terms.

max(lo /5 T,)
T

L L L L L L L L
0.1 02 03 0.4 05 06 0.7 08 03 1

Figure 5: The error of the asymptotic approximation. The diagram on the
left shows the maximum error as a function of ¢, and the diagram on the
right presents p. as a function of x and t for the case when ¢ = 0.1.

In Fig. 5 we give results of calculations of the normalised error term
pe/sTy. The first graph presents max(|p./sTo|) as a function of ¢; it is worth
mentioning that the actual numerical accuracy of the computation is consid-
erably better than the one predicted in Theorem 1. Even for the case ¢ = 0.9
(which is truly extreme) the absolute value of p./sTj is less than 0.2. The
second graph gives p./sTy as a function of x and ¢ for ¢ = 0.1. Here, the
error is localised and remains small, well within the limits predicted by the
asymptotic analysis of Section 2.

References

[1] J. Kevorkian, Partial Differential Equations. Analytical Techniques.
Brooks & Cole Mathematics Series, 1989.

[2] T. Ohyoshi, New stacking layer elements for analyses of reflection and
transmission of elastic waves to inhomogeneous layers. Mechanics research
communications. 20(1993), No 4, 353-359.

16



3]

D.W. Tang, B.L. Zhou, H. Cao and G.H. He, Thermal relaxation
behaviour in thin films under transient laser-pulse heating. Journal of
Applied Physics, 73(1993), 3749.

T. Nishikawa, T. Gao, M. Hibi, M. Takatsu and M. Ogawa,
Transmission during thermal shock testing of ceramics. Journal of Mate-
rials Science, 29(1994), 213.

J.N. Sharma, Propagation of thermoelastic waves in homogeneous
isotropic plates. Thermal Stresses’ 99, Third International Congress,
1999, 565-568.

R.L. Sharma and J.N. Sharma, Response of thermoelastic solid thick
plate subjected to lateral loading. Thermal Stresses’ 99, Third Interna-
tional Congress, 1999, 531-534.

V.1. Danilovskaya, Temperature stresses in an elastic half-space arising
under sudden heating of its boundary. Prikl. Matem. Mech., 14(1950),
No 3, 253-257.

B.A. Boley and J.H. Weiner, Theory of thermal stresses. Dover Pub-
lications, 1997.

17



