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Preface

We present a unified approach to various sharp pointwise inequalities for ana-
lytic functions in a disk with the real part of the function on the circumference
as the right-hand side. We refer to these inequalities as ”real part theorems”
in concert with the first assertion of such a kind, the celebrated Hadamard’s
real part theorem (1892). The inequalities in question are frequently used in
the theory of entire functions and in the analytic number theory.

We hope that collecting these inequalities in one place, as well as generaliz-
ing and refining them, may prove useful for various applications. In particular,
one can anticipate rich opportunities of extension of these inequalities to ana-
lytic functions of several complex variables and solutions of partial differential
equations.

The text is based on revised and enlarged recent publications of the authors
[55]-[57] and contains some new material as well. The research of G. Kresin was
supported by the KAMEA program of the Ministry of Absorption, State of
Israel, and by the College of Judea and Samaria, Ariel. The work of V. Maz’ya
was supported by the Liverpool University and the Ohio State University. The
authors record their thanks to these institutions.

We are most grateful to Lev Aizenberg and Dmitry Khavinson for inter-
esting comments and enhancing our knowledge of the history of the topic.
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5.4.5 Generalization of the Carathéodory inequality . . . . . . . . . 86

5.5 The case p = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6 The case p = ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Bohr’s type real part estimates and theorems . . . . . . . . . . . . . . 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Estimate for the lq -norm of the Taylor series remainder by

||!f ||1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Others estimates for the lq-norm of the Taylor series remainder 98
6.4 Bohr’s type modulus and real part theorems . . . . . . . . . . . . . . . . 104

7 Estimates for the increment of derivatives of analytic
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Estimate for |∆f (n)(z)| by ||!{f − Pm}||p. General case . . . . . . 109
7.3 The case p = 1 and its corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Explicit estimate in the case p = 1 . . . . . . . . . . . . . . . . . . . 110
7.3.2 Hadamard-Borel-Carathéodory type inequality for
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Introduction

Estimates for analytic functions and their derivatives play an important role
in complex analysis and its applications. Among these estimates which enjoy
a great variety, there are the following two closely related classes having a
wide range of applications.

The estimates of the first class contain only modulus of the analytic
function in the majorant part of an inequality. In particular, they em-
brace Cauchy’s inequalities, maximum modulus principle, Schwarz lemma,
Hadamard three circles theorem (see, for example, Titchmarsh [86], Ch. 2,
5), Bohr’s theorem [17], estimates for derivatives due to Landau, Lindelöf, F.
Wiener (see Jensen [50]), Makintyre and Rogosinski [68], Rajagopal [78, 79],
Szász [85]. In addition to that, the first class embraces estimates of Schwarz-
Pick type for derivatives of arbitrary order obtained by Anderson and Rovnyak
[10], Avkhadiev and Wirths [11], Bénéteau, Dahlner and Khavinson [12], Mac-
Cluer, Stroethoff and Zhao [65, 66], Ruscheweyh [82]. Among other known
estimates of the same nature are generalizations on analytic operator-valued
functions of a Schwarz-Pick type inequality for any order derivatives by An-
derson and Rovnyak [10] and Carathéodory’s inequality for the first derivative
by Yang [89, 90] .

During last years the so called Bohr’s inequality attracted a lot of atten-
tion. A refined form of Bohr’s result [17], as stated by M. Riesz, I. Schur, F.
Wiener (see Landau [61], K. I, § 4), claims that any function

f(z) =
∞∑

n=0

cnzn, (1)

analytic and bounded in the disk DR = {z ∈ C : |z| < R}, obeys the inequality

∞∑

n=0

|cnzn| ≤ sup
|ζ|<R

|f(ζ)|, (2)

where |z| ≤ R/3. Moreover, the value R/3 of the radius cannot be improved.
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Multi-dimensional analogues and other generalizations of Bohr’s theorem
are treated in the papers by Aizenberg [1, 2, 9], Aizenberg, Aytuna and Djakov
[3, 4], Aizenberg and Tarkhanov [5], Aizenberg, Liflyand and Vidras [7], Aizen-
berg and Vidras [8], Boas and Khavinson [14], Boas [15], Defant, Garcia and
Maestre [29], Dineen and Timoney [31, 32], Djakov and Ramanujan [34],
Kaptanoğlu [51].

Various interesting recent results related to Bohr’s inequalities were ob-
tained by Aizenberg, Grossman and Korobeinik [6], Bénéteau and Koren-
blum [13], Bénéteau, Dahlner and Khavinson [12], Bombieri and Bourgain
[19], Guadarrama [42], Defant and Frerick [30].

Certain problems of functional analysis connected with Bohr’s theorem
are examined by Defant, Garcia and Maestre [28], Dixon [33], Glazman and
Ljubič [39], Nikolski [71], Paulsen, Popescu and Singh [72], Paulsen and Singh
[73].

In estimates of the second class the majorant involves the real part of
the analytic function. Among these inequalities are the Hadamard-Borel-
Carathéodory inequality for analytic functions in DR with !f bounded from
above

|f(z)− f(0)| ≤ 2r

R− r
sup
|ζ|<R

!
{
f(ζ)− f(0)

}
, (3)

frequently called the Borel-Carathéodory inequality, and the Carathéodory-
Plemelj inequality for analytic functions in DR with bounded !f

|&f(z)−&f(0)| ≤ 2
π

log
(

R + r

R− r

)
||!

{
f − f(0)

}
||∞ (4)

(see, for example, Burckel [22], Ch. 5, 6 and references there), where |z| = r <
R. The same class includes Carathéodory’s inequality for derivatives at the
center of a disk [23], M. Riesz’ theorem on conjugate harmonic functions [80]
and many other estimates (see, for example, Jensen [50], Koebe [52], Rajagopal
[77]). The sharp constant in M. Riesz inequality for analytic functions in the
half-plane was obtained by Gohberg and Krupnik [40], Pichorides [74] and
Cole (see Gamelin [36]). Note that sharp constants in parametric M. Riesz
inequalities for analytic functions in the half-plane and in the disk were found
in the paper of Hollenbeck, Kalton and Verbitsky [47], where a wide range of
questions relating Fourier and Hilbert transforms was treated.

We note that different sources give different formulations of inequalities
containing the real part as a majorant. In fact, Cartwright ([26], Ch. 1),
Holland ([46], Ch. 3), Levin ([62], Lect. 2), Titchmarsh ([86], Ch. 5) formulate
the Hadamard-Borel-Carathéodory inequality for functions which are analytic
in DR. Unlike them, in the books by Burckel ([22], Ch. 6), Ingham ([49], Ch.
3), Littlewood ([64], Ch. 1) and Polya and Szegö ([75], III, Ch. 6) the same
estimate is derived for functions which are analytic in DR and have the real
part bounded from above.
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The Hadamard-Borel-Carathéodory inequality is used in an essential fash-
ion in the theory of entire functions (see, e.g. the books Boas [16], Ch. 1 and
Holland [46], Ch. 4). In particular, this inequality and its variants are applied
for factorization of entire functions (see Hadamard [43]), in the proof of the
Little Picard theorem (see Borel [20], Zalcman [91]) and in approximation of
entire functions (see Elkins [35]).

The Hadamard-Borel-Carathéodory inequality is of use also in the analytic
number theory (see Ingham [49], Ch. 3) and in mathematical physics (see
Maharana [67]).

During the last years, generalizations of the Hadamard real part theorem
(the first form of the Hadamard-Borel-Carathéodory inequality) for holomor-
phic functions in domains on a complex manifold (see Aizenberg, Aytuna
and Djakov [3]), the Carathéodory inequality for derivatives (see Aizenberg
[9]) in several complex variables, and an extension of the Hadamard-Borel-
Carathéodory inequality for analytic multifunctions (see Chen [27]) appeared.

The estimates in one of the classes mentioned above have their analogues
in the other class. For example, this relates Bohr’s theorem as well as its
analogues containing the real part (see Aizenberg, Aytuna and Djakov [3],
Paulsen, Popescu and Singh [72], Sidon [84], Tomić [87]).

Sharp pointwise estimates, being a classical object of analysis, occupy a
special place in analytic function theory. In a way, they provide the best
description of the pointwise behaviour of analytic functions from a given space.

The subject matter of this book is sharp pointwise estimates for analytic
functions and their derivatives in a disk in terms of the real part of the function
on the boundary circle. We consider various inequalities of this type from one
point of view which reveals their intimate relations.

All inequalities to be obtained result from the analysis of Schwarz integral
representation

f(z) = i &f(0) +
1

2πR

∫

|ζ|=R

ζ + z

ζ − z
!f(ζ)|dζ|,

where |z| < R. The sharp estimates for the increment of an analytic function
are written in a parametric form, where the role of the parameter is played
by an arbitrary real valued function α(z) in DR.

The book contains seven chapters.
In Chapter 1 we obtain sharp estimate for analytic functions in DR with

!f bounded from above

!{eiα(z)(f(z)− f(0))} ≤ 2r(R− r cos α(z))
R2 − r2

sup
|ζ|<R

!
{
f(ζ)− f(0)

}
, (5)

where r = |z| < R, and α is a real valued function on DR. This estimate
implies various forms of the Hadamard-Borel-Carathéodory inequality and
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some other similar inequalities. The sharpness of inequality (5) is proved with
the help of a parameter dependent family of test functions, each of them being
analytic in DR.

Chapter 2 deals with a sharp estimate of |!{eiα(z)(f(z) − f(0))}| by the
Lp-norm of !f −!f(0) on the circle |ζ| = R, where |z| < R, 1 ≤ p ≤ ∞, and
α is a real valued function on DR. In particular, we give explicit formulas for
sharp constants in inequalities for |!{eiα(z)(f(z) − f(0))}| with p = 1, 2,∞.
We find also the sharp constant in the upper estimate of |&f(z)− &f(0)| by
||!f − !f(0)||p for 1 ≤ p ≤ ∞ which generalizes the classical Carathéodory-
Plemelj estimate (4) with p = ∞. The evaluation of sharp constants is reduced
to finding the minimum value of integrals depending on a real parameter
entering the integrand.

In Chapter 3 we give sharp estimates of |!{eiα(z)(f(z) − f(0))}| by the
Lp-norm of !f − c on the circle |ζ| = R, where |z| < R, 1 ≤ p ≤ ∞, and α is
a real valued function on DR. Here c is a real constant. More specifically, we
obtain similar sharp estimates formulated in terms of the best approximation
of !f by a real constant on the circle |ζ| = R. As corollaries, we give explicit
formulas for sharp constants in inequalities for |!{eiα(z)(f(z) − f(0))}| with
p = 1, 2,∞. In particular, an estimate containing ||!f − c||1 in the right-hand
side implies

|!{eiα(z)(f(z)− f(0))}| ≤ 2r(R + r| cos α(z)|)
R2 − r2

sup
|ζ|<R

!
{
f(ζ)− f(0)

}
,

which contains Hadamard-Borel-Carathéodory inequality (3) and similar es-
timates for the real and imaginary parts.

Other corollaries of the main results in Chapters 2 and 3 are estimates for∣∣ log |f(z)|
∣∣, |z| < R, given in terms of Lp-norm of log |f | on the circle |ζ| = R,

where f is an analytic zero-free function in DR. The results of Chapters 1-3
also imply sharp inequalities for |f ′(z)| in terms of various characteristics of
the real part of f on the disk.

Using previous results, in Chapter 4 we obtain sharp estimates for direc-
tional derivatives (in particular, for the modulus of the gradient) of a harmonic
function in and outside the disk DR, and in the half-plane. Here the majo-
rants contain either characteristics of a harmonic function (interior estimates
for derivatives), or characteristics of its directional derivative. In the last case
we differ between estimates with a fixed and with a varying direction. In
particular, using an estimate for |f ′(z)| inside of the disk DR, obtained in
Chapter 3, we derive a refined inequality (see, for comparison, Protter and
Weinberger, [76], Ch. 2, Sect. 13) for the gradient of a harmonic function
inside of the bounded domain.

In Chapter 5 we find estimates with the best constants of |f (n)(z)| for
n ≥ 1 by the Lp-norm of !{f − Pm} on the circle |ζ| = R, where Pm is a
polynomial of degree m ≤ n− 1, |z| < R, 1 ≤ p ≤ ∞. For z = 0 explicit sharp
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constants are found for all p ∈ [1,∞]. In particular, from the above mentioned
sharp estimates for |f (n)(z)| with p = 1, we derive inequalities analogous to
the Hadamard real part theorem, as well as to the Carathéodory and Landau
inequalities. Sharp inequality for |f (n)(z)| similar to Hadamard’s real part
theorem is known (see, for example, Ingham [49], Ch. 3 and Rajagopal [77]).
Unlike the approach used in these works, the method developed in Chapter
5 yields sharp estimates for the modulus of derivative formulated in terms of
Lp-characteristics of the real part.

In Chapter 6 we show that given a function (1) with !f in the Hardy
space h1(DR) of harmonic functions on DR, the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

πRm(Rq − rq)1/q
||!f ||1

holds with the sharp constant, where r = |z| < R, m ≥ 1, q ∈ (0,∞]. This
estimate implies sharp inequalities for the lq-norm (quasi-norm for 0 < q <
1) of the Taylor series remainder for bounded analytic functions, analytic
functions with bounded !f , analytic functions with !f bounded from above,
as well as for analytic functions with !f > 0. Each of these estimates, specified
for q = 1 and m = 1, improves a certain sharp Hadamard-Borel-Carathéodory
type inequality. As corollaries, we obtain some sharp Bohr’s type modulus and
real part inequalities.

Chapter 7 is devoted to sharp estimates of |f (n)(z)− f (n)(0)| for n ≥ 0 by
the Lp-norm of !{f − Pm} on the circle |ζ| = R, where Pm is a polynomial
of degree m ≤ n, |z| < R, 1 ≤ p ≤ ∞. In particular, from the estimate
for |f (n)(z) − f (n)(0)| by the value ||!{f − Pm}||1 in the right-hand side we
obtain sharp estimates for the increment of derivatives of the type similar to
Hadamard-Borel-Carathéodory, Carathéodory and Landau inequalities.

The sharpness of estimates for derivatives, similar to the Hadamard-Borel-
Carathéodory, the Carathéodory and the Landau inequalities is proved in
Chapters 5 and 7 using a family of test functions, analytic in DR. Besides, in
these chapters, sharp pointwise estimates for the modulus of the derivatives
and their increments are formulated in terms of the best approximation of the
real part of f by the real part of polynomials Pm in the norm of Lp(∂DR). In
particular, for p = 2 the best constants are given in an explicit form.

The index and list of symbols are given at the end of the book.
The reader we have in mind should be familiar with the basics in complex

function theory. The references are limited to works mentioned in the text.



1

Estimates for analytic functions bounded with
respect to their real part

1.1 Introduction

Hadamard’s real part theorem is the following inequality

|f(z)| ≤ Cr

R− r
max
|ζ|=R

!f(ζ), (1.1.1)

where |z| = r < R and f is an analytic function on the closure DR of the disk
DR = {z : |z| < R} and vanishing at z = 0. This inequality was first obtained
by Hadamard with C = 4 in 1892 [43].

A more general estimate for |f(z)| with f(0) (= 0 was obtained by Borel
[20] and applied in his proof of Picard’s theorem independent of modular
functions. The inequality

|f(z)| ≤ |&f(0)|+ |!f(0)|R + r

R− r
+

2r

R− r
max
|ζ|=R

!f(ζ)

was found by Carathéodory (see Landau [59], pp. 275-277, [60], pp. 191-194).
A detailed historic survey on these and other fundamental inequalities for
analytic functions can be found in the paper by Jensen [50].

The following generalization of the real part theorem with C = 2 resulting
from (1.1.1) after replacing f(z) by f(z)− f(0),

|f(z)− f(0)| ≤ 2r

R− r
max
|ζ|=R

!{f(ζ)− f(0)} , (1.1.2)

and its corollary

|f(z)| ≤ R + r

R− r
|f(0)|+ 2r

R− r
max
|ζ|=R

!f(ζ), (1.1.3)

are often called the Borel-Carathéodory inequalities.
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Sometimes, (1.1.2) and (1.1.3), as well as the related inequality for !f

!f(z) ≤ R− r

R + r
!f(0) +

2r

R + r
max
|ζ|=R

!f(ζ), (1.1.4)

are called Hadamard-Borel-Carathéodory inequalities (see, e.g., Burckel [22],
Ch. 6 and references there).

In this chapter we obtain sharp estimates for

!{eiα(z)(f(z)− f(0))}

by the upper (or lower) bound of !f on the disk DR, where α is an arbitrary
real valued function on DR.

In Section 1.2 we give three known proofs of the real part theorem: based
on a conformal representation and the Schwarz lemma, on the Schwarz integral
representation, and on a series expansion.

Section 1.3 is auxiliary. Using a lemma proved in Section 1.3, in Section
1.4 we derive the following sharp pointwise estimate

!{eiα(z)(f(z)− f(0))} ≤ 2r(R− r cos α(z))
R2 − r2

max
|ζ|=R

!{f(ζ)− f(0)} , (1.1.5)

where f is analytic in DR and |z| = r < R.
The lower estimate for the constant in (1.1.5) is obtained with the help of

a family of test functions which are analytic in DR. As a corollary of (1.1.5)
we obtain the inequality with the same sharp constant for analytic functions
f in DR with !f bounded from above

!{eiα(z)(f(z)− f(0))} ≤ 2r(R− r cos α(z))
R2 − r2

sup
|ζ|<R

!
{
f(ζ)− f(0)

}
. (1.1.6)

Sections 1.5-1.7 contain various corollaries of estimate (1.1.6). Among
them, there are Hadamard-Borel-Carathéodory inequalities for the modulus
as well as for the real and imaginary part of an analytic function, Harnack
inequalities, and analogues of (1.1.6) for !{eiα(z)(f(z)− f(ξ))} in the case of
a disk and the half-plane.

1.2 Different proofs of the real part theorem

Proofs of (1.1.1) with C = 2 or (1.1.3) are given in Borel [21], Burckel ([22],
Ch. 6), Cartwright ([26], Ch. 1), Holland [46], Ingham ([49], Ch. 3), Levin
([62], L. 11), Littlewood ([64], Ch. 1), Maz’ya and Shaposhnikova ([69], Ch.
9), Polya and Szegö ([75], III, Ch. 6), Rajagopal [77], Titchmarsh ([86], Ch.
5), Zalcman [91].
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In this section we provide three different proofs of the real part theorem
with the constant C = 2. In all these proofs we assume that f = u + iv is an
analytic function in DR with f(0) = 0. We introduce the notation

Af (R) = sup
|z|<R

!f(z) (1.2.1)

to be used henceforth.
We recall that according to the Schwarz lemma, every analytic function f

in DR with |f(z)| ≤ M and f(0) = 0 satisfies

|f(z)| ≤ MR−1|z| for |z| < R

(see, for example, Littlewood [64], p. 112).
A combination of conformal mappings and the Schwarz lemma form the

basis of the so called subordination principle, used, in particular, in the proof
of the Hadamard-Borel-Carathéodory inequality and similar estimates (see
Burckel [22], Ch. 6, § 5, Polya and Szegö [75], III, Ch. 6, § 2). The following
proof is of the same nature.

Proof based on a conformal mapping and the Schwarz lemma
(see Littlewood [64], pp. 113-114, Titchmarsh [86], p. 174-175). When proving
the inequality

|f(z)| ≤ 2r

R− r
max
|ζ|=R

!f(ζ), (1.2.2)

we may assume that f (= 0. Then, by the maximum principle for harmonic
functions, Af (R) > u(0) = 0. The function

w = ψ(ζ) = −2Af (R)
ζ

1− ζ

performs the conformal mapping of the disk |ζ| < 1 onto the half-plane !w <
Af (R) so that, ψ(0) = 0. Using the inverse mapping

ϕ(w) =
w

w − 2Af (R)
,

consider the function

ω(z) = ϕ(f(z)) =
f(z)

f(z)− 2Af (R)
, |z| < R. (1.2.3)

According to the conformal representation theory, the function ω is analytic
in DR and |ω(z)| ≤ 1. These properties of ω can be also justified by other
arguments. The function ω is analytic in DR, since the denominator in the
right-hand side of (1.2.3) does not vanish. Furthermore, since

−2Af (R) + u(z) ≤ u(z) ≤ 2Af (R)− u(z),
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then |u(z)| ≤ 2Af (R)− u(z) and hence

|ω(z)|2 =
u2(z) + v2(z)

{2Af (R)− u(z)}2 + v2(z)
≤ 1.

Note that ω(0) = 0 because f(0) = 0. Thus, by the Schwarz lemma,

|ω(z)| ≤ r

R
.

Now, taking into account (1.2.3), we find

|f(z)| =
∣∣∣∣
2Af (R)ω(z)

1− ω(z)

∣∣∣∣ ≤
2Af (R)r

R− r
,

which proves (1.2.2). )*

Another proof of the real part theorem is based on the integral represen-
tation of analytic functions in a disk.

Proof based on the Schwarz formula (see Levin [62], p. 75, Rajagopal
[77]). Consider the Schwarz formula

f(z) =
1
2π

∫ 2π

0
u(Reiψ)

Reiψ + z

Reiψ − z
dψ, |z| < R.

Combining it with

0 = u(0) =
1
2π

∫ 2π

0
u(Reiψ)dψ,

we obtain

f(z) =
1
2π

∫ 2π

0
u(Reiψ)

2z

Reiψ − z
dψ.

Using the equality

1
2π

∫ 2π

0

dψ

Reiψ − z
=

1
2πi

∫

|ζ|=R

dζ

ζ(ζ − z)
= 0,

we find

f(z) =
1
2π

∫ 2π

0

{
u(Reiψ)−Af (R)

} 2z

Reiψ − z
dψ.

Hence,

|f(z)| ≤ 1
2π

∫ 2π

0

{
Af (R)− u(Reiψ)

} 2r

R− r
dψ,

which implies (1.2.2). )*
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There are proofs of the Hadamard-Borel-Carathéodory inequality, based
on series expansions (see Borel [20, 21], Cartwright [26], Ch. 1, Ingham [49],
Ch. 3, Littlewood [64], Ch. 1, Zalcman [91]). We now give a proof of the
real part theorem, close to that proposed by Hadamard, but with the sharp
constant C = 2 in (1.1.1).

Proof based on the series analysis (see Maz’ya and Shaposhnikova
[69], p. 277-278). Put

f(z) =
∑

n≥1

anzn,

which means that we assume f(0) = 0. Define the maximum term

µ(ρ) = max
n

|an|ρn

of f(z). Clearly,

|f(z)| ≤ µ(R)
∑

n≥1

( r

R

)n
=

r

R− r
µ(R). (1.2.4)

One verifies that

anRn =
1
π

∫ 2π

0
u(R, ϑ)e−inϑdϑ.

Since ∫ 2π

0
u(R, ϑ)dϑ = 0,

and, for any ζ ∈ C,
|ζ| = max

ϕ∈[0,2π]
!

(
eiϕζ

)
,

we obtain

|an|Rn =
1
π

max
ϕ∈[0,2π]

∫ 2π

0

(
1 + cos(nϑ− ϕ)

)
u(R, ϑ)dϑ.

Using the identity

1
π

∫ 2π

0

(
1 + cos(nϑ− ϕ)

)
dϑ = 2,

we arrive at the inequality

µ(R) ≤ 2 max
ϑ∈[0,2π]

u(R, ϑ),

which, together with (1.2.4), yields estimate (1.2.2). )*
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1.3 Extremal values of the real part of the rotated
Schwarz kernel

In what follows, by hp(DR), 1 ≤ p ≤ ∞, we mean the Hardy space of harmonic
functions in DR which are represented by the Poisson integral with a density
in Lp(∂DR). We shall adopt the notation ∆f(z) = f(z) − f(0), |z| = r <
R, γ = r/R.

It is well known (see, for example, Levin [62], L. 2), by Schwarz formula

f(z) = i&f(0) +
1

2πR

∫

|ζ|=R

ζ + z

ζ − z
!f(ζ)|dζ| (1.3.1)

one can restore any analytic function f in DR with !f continuous in DR.
We show that (1.3.1) can be extended to analytic functions f in DR with

!f ∈ hp(DR), 1 ≤ p ≤ ∞. It is known (see Hoffman [45], Ch. 3, 6 and Koosis
[53], Ch. 1, 2) that nontangential limit values of the Poisson integral

u(z) =
1

2πR

∫

|ζ|=R
!

{
ζ + z

ζ − z

}
g(ζ)|dζ|

with density g ∈ Lp(∂DR) coincide with g(ζ) almost everywhere on ∂DR. The
last equality can be written as the representation

u(z) =
1

2πR

∫

|ζ|=R
!

{
ζ + z

ζ − z

}
u(ζ)|dζ| (1.3.2)

for u ∈ hp(DR). Then formula (1.3.1) for an analytic function f = u + iv
with !f ∈ hp(DR) results from (1.3.2). In fact, by (1.3.2), the real parts of
the right and left- hand sides of (1.3.1) coincide in DR. Hence, these functions
may differ only by pure imaginary constant, and f(0) = u(0)+iv(0) by (1.3.1).

The following two lemmas will be used in the next three chapters.

Lemma 1.1. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞. For
any real function α on DR the relation

!{eiα(z)∆f(z)} =
1

πR

∫

|ζ|=R
!

(
eiα(z)z

ζ − z

)
!f(ζ)|dζ| (1.3.3)

holds.

Proof. By (1.3.1), we obtain

∆f(z) =
1

πR

∫

|ζ|=R

z

ζ − z
!f(ζ)|dζ|,

which implies (1.3.3). )*
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In the next Lemma, we find the extremal values of the function

Gz,α(z)(ζ) = !
(

eiα(z)z

ζ − z

)
(1.3.4)

on the circle |ζ| = R, where α is a real function on DR.
Since z plays the role of a parameter in what follows, we frequently do not

mark the dependence of α on z.

Lemma 1.2. For any point z with |z| = r < R and an arbitrary real function
α on DR, the relations

min
|ζ|=R

!
(

eiα(z)z

ζ − z

)
=

r(r cos α(z)−R)
R2 − r2

,

max
|ζ|=R

!
(

eiα(z)z

ζ − z

)
=

r(r cos α(z) + R)
R2 − r2

hold.

Proof. With the notation ζ = Reit, z = reiτ , γ = r/R one has

eiαz

ζ − z
=

eiαreiτ

Reit − reiτ
=

γeiα

ei(t−τ) − γ
. (1.3.5)

Setting ϕ = t− τ in (1.3.5), we obtain

Gz,α(ζ) = !
(

eiαz

ζ − z

)
= !

(
γeiα

eiϕ − γ

)
=

γ(cos(ϕ− α)− γ cos α)
1− 2γ cos ϕ + γ2

. (1.3.6)

Consider the function

g(ϕ) =
cos(ϕ− α)− γ cos α

1− 2γ cos ϕ + γ2
, |ϕ| ≤ π. (1.3.7)

We have

g ′(ϕ) =
(γ2 − 1) cos α sinϕ + (γ2 + 1) sin α cos ϕ− 2γ sinα

(1− 2γ cos ϕ + γ2)2
.

Solving the equation g ′(ϕ) = 0, we find

sinϕ+ =
(1− γ2) sinα

1 + 2γ cos α + γ2
, cos ϕ+ =

2γ + (1 + γ2) cos α

1 + 2γ cos α + γ2
, (1.3.8)

and

sinϕ− = − (1− γ2) sinα

1− 2γ cos α + γ2
, cos ϕ− =

2γ − (1 + γ2) cos α

1− 2γ cos α + γ2
, (1.3.9)
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where ϕ+ and ϕ− are critical points of g(ϕ). Setting (1.3.8) and (1.3.9) into
(1.3.7), we arrive at

g(ϕ+) =
γ cos α + 1

1− γ2
, g(ϕ−) =

γ cos α− 1
1− γ2

.

It follows from (1.3.7) that

g(−π) = g(π) = − cos α

1 + γ
=

γ cos α− cos α

1− γ2
.

Since g(ϕ+) > g(ϕ−) and

g(−π) = g(π) =
γ cos α− cos α

1− γ2
≤ γ cos α + 1

1− γ2
= g(ϕ+),

g(−π) = g(π) =
γ cos α− cos α

1− γ2
≥ γ cos α− 1

1− γ2
= g(ϕ−),

it follows from (1.3.6), (1.3.7) that

max
|ζ|=R

!
(

eiαz

ζ − z

)
= γg(ϕ+) = γ

γ cos α + 1
1− γ2

=
r(r cos α + R)

R2 − r2
,

min
|ζ|=R

!
(

eiαz

ζ − z

)
= γg(ϕ−) = γ

γ cos α− 1
1− γ2

=
r(r cos α−R)

R2 − r2
.

The proof of Lemma is complete. )*

1.4 Upper estimate of !{eiα∆f} by the supremum of
!∆f

We start with the following assertion.

Proposition 1.1. Let f be analytic on DR. Then for any z with |z| = r < R
and an arbitrary real valued function α on DR the inequality

!{eiα(z)∆f(z)} ≤ 2r(R− r cos α(z))
R2 − r2

max
|ζ|=R

!∆f(ζ) (1.4.1)

holds with the sharp constant.

Proof. 1. Proof of inequality (1.4.1). We fix a point z with |z| = r < R. Let

µ = min
|ζ|=R

!
(

eiα(z)z

ζ − z

)
.

By the inequality
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!
(

eiα(z)z

ζ − z

)
− µ ≥ 0,

for all ζ on the circle |ζ| = R there holds
{
!

(
eiα(z)z

ζ − z

)
− µ

}
!f(ζ) ≤

{
!

(
eiα(z)z

ζ − z

)
− µ

}
max
|ζ|=R

!f(ζ). (1.4.2)

It follows from dζ/iζ = |dζ|/R that for all z ∈ DR

∫

|ζ|=R

eiα(z)z

ζ − z
|dζ| = −iReiα(z)z

∫

|ζ|=R

dζ

(ζ − z)ζ
= 0.

Consequently,
∫

|ζ|=R
!

(
eiα(z)z

ζ − z

)
|dζ| = 0 (1.4.3)

and therefore, (1.4.2) implies

1
πR

∫

|ζ|=R

{
!

(
eiα(z)z

ζ − z

)
− µ

}
!f(ζ)|dζ| ≤ −2µ max

|ζ|=R
!f(ζ).

Taking into account the mean value theorem

1
2πR

∫

|ζ|=R
!f(ζ)|dζ| = !f(0),

we rewrite the last inequality as

1
πR

∫

|ζ|=R
!

(
eiα(z)z

ζ − z

)
!f(ζ)|dζ| ≤ −2µ max

|ζ|=R
!{f(ζ)− f(0)}.

Hence, and by relation (1.3.3), one has

!{eiα(z)∆f(z)} ≤ −2µ max
|ζ|=R

!∆f(ζ).

Using Lemma 1.2 and setting in the last inequality

−2µ = −2 min
|ζ|=R

!
(

eiα(z)z

ζ − z

)
=

2r(R− r cos α(z))
R2 − r2

,

we arrive at (1.4.1).

2. Sharpness of the constant in inequality (1.4.1). Let us show that the
constant

C(α(z)) =
2r(R− r cos α(z))

R2 − r2
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in (1.4.1) is the best possible. Owing to (1.4.1), the estimate

!{eiα(z)∆f(z)} ≤ C1(α(z)) max
|ζ|=R

!∆f(ζ) (1.4.4)

holds, where

C1(α(z)) ≤ C(α(z)). (1.4.5)

We verify that the constant in estimate (1.4.1) is sharp, i.e. C1(α(z)) ≥
C(α(z)).

Let ξ = ρeiϑ, where ρ > R. Consider the family of analytic functions in
DR

fξ(z) =
z

z − ξ
, (1.4.6)

depending on a complex parameter ξ. Putting z = ζ = Reit in (1.4.6), we find

!∆fξ(ζ) = !
(

ζ

ζ − ξ

)
= !

(
Reit

Reit − ρeiϑ

)

=
R(R− ρ cos(t− ϑ))

ρ2 − 2ρR cos(t− ϑ) + R2
=

1
2

(
1− ρ2 −R2

ρ2 − 2ρR cos(t− ϑ) + R2

)
.

This implies

max
|ζ|=R

!∆fξ(ζ) =
1
2

max
t

(
1− ρ2 −R2

ρ2 − 2ρR cos(t− ϑ) + R2

)

=
1
2

(
1− ρ2 −R2

ρ2 + 2ρR + R2

)
=

R

ρ + R
. (1.4.7)

Further, by (1.4.6),

!
{

eiα(z)∆fξ(z)
}

= !
(

eiα(z)z

z − ξ

)
= !

(
ei(α(z)+π)z

ξ − z

)
. (1.4.8)

By Lemma 1.2,

max
|ξ|=ρ

{
!

(
ei(α(z)+π)z

ξ − z

)}
=

r(ρ− r cos α(z))
ρ2 − r2

.

We fix z0, |z0| = r, and choose a point ξ0 = ρeiϑ0 so that

!
(

ei(α(z0)+π)z0

ξ0 − z0

)
=

r(ρ− r cos α(z0))
ρ2 − r2

.

Then, using (1.4.8), we find



1.4 Upper estimate of !{eiα∆f} by the supremum of !∆f 11

!
{

eiα(z0)∆fξo(z0)
}

=
r(ρ− r cos α(z0))

ρ2 − r2
. (1.4.9)

It follows from (1.4.4), (1.4.7), and (1.4.9) that

C1(α(z0)) ≥
r(ρ− r cos α(z0))

ρ2 − r2
· ρ + R

R
.

Passing to the limit as ρ ↓ R in the last inequality, we obtain

C1(α(z0)) ≥
2r(R− r cos α(z0))

R2 − r2
= C(α(z0)).

Hence, by the arbitrariness of the point z0 on the circle |z| = r, we arrive at
C1(α(z)) ≥ C(α(z)), which together with (1.4.5), proves the sharpness of the
constant in estimate (1.4.1). )*

The main objective of this chapter is

Theorem 1.1. Let f be analytic on DR with !f bounded from above. Then
for any z with |z| = r < R, and for an arbitrary real valued function α on DR

the sharp inequality

!{eiα(z)(f(z)− f(0))} ≤ 2r(R− r cos α(z))
R2 − r2

sup
|ζ|<R

!
{
f(ζ)− f(0)

}
(1.4.10)

holds.

Proof. Let z be a fixed point in DR, and let . ∈ (r, R). Then, by Proposition
1.1,

!{eiα(z)
(
f(z)− f(0)

)
} ≤ 2r(.− r cos α(z))

.2 − r2
{Af (.)−!f(0)} ,

where
Af (.) = max

|ζ|=*
!f(ζ).

Replacing Af (.) by the upper bound of !f on DR in the last inequality, we
obtain

!{eiα(z)
(
f(z)− f(0)

)
} ≤ 2r(.− r cos α(z))

.2 − r2
sup
|ζ|<R

!
{
f(ζ)− f(0)

}
,

Passing here to the limit as . ↑ R, we arrive at (1.4.10). The sharpness of the
constant in (1.4.10) follows from Proposition 1.1. )*
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1.5 Two-sided estimates of !{eiα∆f} by upper and
lower bounds of !∆f

The upper estimate for !{eiα∆f} in Theorem 1.1 can be equivalently written
as a lower estimate. Namely, replacing α(z) by α(z)+π in (1.4.10), we obtain

Corollary 1.1. Let f be analytic on DR with !f bounded from above. Then
for any z with |z| = r < R, and an arbitrary real valued function α on DR

the inequality

!{eiα(z)(f(z)− f(0))} ≥ −2r(R + r cos α(z))
R2 − r2

sup
|ζ|<R

!
{
f(ζ)− f(0)

}
(1.5.1)

holds with the sharp constant.

Inequalities (1.4.10) and (1.5.1) provide the two-sided estimate of

!{eiα(z)
(
f(z)− f(0)

)
}

in terms of

sup
|ζ|<R

!∆f(ζ) = sup
|ζ|<R

!{f(ζ)− f(0)} = sup
|ζ|<R

!f(ζ)−!f(0).

Replacing f by −f in (1.4.10) and (1.5.1), we can obtain similar inequalities
in terms of

sup
|ζ|<R

{−!∆f(ζ)} = sup
|ζ|<R

!{f(0)− f(ζ)} = !f(0)− inf
|ζ|<R

!f(ζ).

Corollary 1.2. Let f be analytic on DR with !f bounded from below. Then
for any z with |z| = r < R, and an arbitrary real valued function α on DR

the inequalities

!{eiα(z)∆f(z)} ≥ −2r(R− r cos α(z))
R2 − r2

{!f(0)− inf
|ζ|<R

!f(ζ)}, (1.5.2)

!{eiα(z)∆f(z)} ≤ 2r(R + r cos α(z))
R2 − r2

{!f(0)− inf
|ζ|<R

!f(ζ)} (1.5.3)

hold with the sharp constants.

1.6 Inequalities for the modulus, real and imaginary
parts

We note that various Hadamard-Borel-Carathéodory type inequalities (see
Burckel [22], Ch. 6, § 5, Jensen [50], Polya and Szegö [75], III, Ch. 6, § 2,
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Rajagopal [77, 78] and the bibliography in Burckel [22]) are corollaries of
Proposition 1.1.

1.6.1. Estimates for the real and imaginary parts

Introducing the notation

Af (R) = sup
|ζ|<R

!f(ζ), Bf (R) = inf
|ζ|<R

!f(ζ), (1.6.1)

and letting α(z) = 0 in (1.4.10), (1.5.1) and (1.5.2), (1.5.3), we arrive at
two-sided estimates

R + r

R− r
!f(0)− 2r

R− r
Af (R) ≤ !f(z) ≤ R− r

R + r
!f(0) +

2r

R + r
Af (R), (1.6.2)

R− r

R + r
!f(0) +

2r

R + r
Bf (R) ≤ !f(z) ≤ R + r

R− r
!f(0)− 2r

R− r
Bf (R). (1.6.3)

Inequality (1.6.2) was obtained by Jensen [50] (see also Rajagopal [77]).
If !f(ζ) > 0 on the disk DR, then Bf (R) ≥ 0 and (1.6.3) imply the

classical Harnack inequality

R− r

R + r
!f(0) ≤ !f(z) ≤ R + r

R− r
!f(0).

Another Harnack’s inequality

− 2r

R− r
Af (R) ≤ !f(z) ≤ 2r

R + r
Af (R)

(see, e.g. Koebe [52]) follows from (1.6.2) where !f(0) = 0.

Putting α(z) = π/2 in (1.4.10) and (1.5.1), we arrive at the inequality for
imaginary part of analytic functions

|&∆f(z)| ≤ 2Rr

R2 − r2
sup
|ζ|<R

!∆f(ζ). (1.6.4)

This inequality was formulated by Rajagopal [78].

1.6.2 Estimates for the modulus

Putting α(z) = − arg ∆f(z) in Theorem 1.1, we arrive at the following
assertion.

Corollary 1.3. Let f be analytic on DR with !f bounded from above. Then
for any z with |z| = r < R the sharp inequality

|∆f(z)| ≤ 2r(R− r cos arg ∆f(z))
R2 − r2

sup
|ζ|<R

!∆f(ζ) (1.6.5)

holds.
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From (1.6.5) one gets the estimate for ∆f(z) = f(z) − f(0) on the circle
|z| = r < R called the Hadamard-Borel-Carathéodory inequality

|∆f(z)| ≤ 2r

R− r
sup
|ζ|<R

!∆f(ζ). (1.6.6)

As its consequence we obtain the inequality

|f(z)| ≤ R + r

R− r
|f(0)|+ 2r

R− r
sup
|ζ|<R

!f(ζ), (1.6.7)

where |z| = r, also called Hadamard-Borel-Carathéodory inequality.

The next two-sided estimate is well known (see, for example, Polya and
Szegö [75], III, Ch. 6, § 2, Rajagopal [77], Levin [62], L.2).

Corollary 1.4. Let f be a bounded analytic and zero-free function on DR

with f(0) = 1 and let
Mf (R) = sup

|ζ|<R
|f(ζ)|.

Then for any z with |z| = r < R the two-sided inequality

Mf (R)−
2r

R−r ≤ |f(z)| ≤ Mf (R)
2r

R+r (1.6.8)

holds.

Proof. Let z be a fixed point in DR, and let r ∈ (.,R). Applying estimate
(1.6.2) to log f(z), where f(z) (= 0 for |z| ≤ ., f(0) = 1, we obtain

Mf (.)−
2r

!−r ≤ |f(z)| ≤ Mf (.)
2r

!+r .

Passing here to the limit as . ↑ R, we arrive at (1.6.8). )*

Remark 1.1. A similar estimate for |f(z)| with f(0) (= 1 can be obtained from
(1.6.8) with f(z) replaced by f(z)/f(0).

1.7 Variants and extensions

We present some corollaries of Theorem 1.1 which can be obtained via con-
formal mapping.

Consider a bounded domain G in C, bounded by a Jordan line. Given an
arbitrary point ξ in G, let z = Φ(w) be the conformal mapping of the disk
D1 = {w ∈ C : |w| < 1} onto G such that Φ(0) = ξ and let w = Ψ(z) denote
the inverse mapping.
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In what follows, we adopt the notation ∆ξf(z) = f(z) − f(ξ) and write
∆f(z) in place of ∆0f(z).

1.7.1 Upper estimate of !{eiα(z)∆ξf(z)} by the supremum of
!∆ξf(ζ) in a domain. Estimate for the first derivative

Let f(z) be an analytic function in G with real part bounded from above.
Then F (w) = f(Φ(w)) is analytic in D1 and has !f bounded from above.

Given an arbitrary real valued function α in G, we introduce ϑ(w) =
α(Φ(w)). By Theorem 1.1, the function F (w) satisfies

!{eiϑ(w)∆F (w)} ≤ 2|w|(1− |w| cos ϑ(w))
1− |w|2 sup

|w|<1
!∆F (w).

Hence, going back to the variable z, we arrive at a generalization of (1.4.10)
for a domain G and an arbitrary fixed ξ

!{eiα(z)∆ξf(z)} ≤ 2|Ψ(z)|(1− |Ψ(z)| cos α(z))
1− |Ψ(z)|2 sup

ζ∈G
!∆ξf(ζ). (1.7.1)

Putting here α(z) = − arg ∆ξf(z), we obtain

|∆ξf(z)| ≤ 2|Ψ(z)|(1− |Ψ(z)| cos arg ∆ξf(z))
1− |Ψ(z)|2 sup

ζ∈G
!∆ξf(ζ). (1.7.2)

Dividing both sides of (1.7.2) by |z − ξ| and using Ψ(ξ) = 0, we pass to the
limit as z → ξ in the resulting inequality and thus arrive at the estimate

|f ′(ξ)| ≤ 2|Ψ ′(ξ)| sup
ζ∈G

!{f(ζ)− f(ξ)} (1.7.3)

with the sharp constant.

1.7.2 Upper estimate of !{eiα(z)∆ξf(z)} by the supremum of
!∆ξf(ζ) and an estimate for the first derivative in the disk

Suppose, G = DR and Φ(w) = R(ξ −Rw)/(R− ξw). Then Ψ(z) = R(ξ −
z)/(R2 − zξ) and (1.7.1) becomes

!{eiα(z)∆ξf(z)} ≤ 2q(z, ξ)(1− q(z, ξ) cos α(z))
1− q2(z, ξ)

sup
|ζ|<R

!∆ξf(ζ), (1.7.4)

where q(z, ξ) = R|ξ − z|/|R2 − zξ|. The last estimate coincides with (1.4.10)
for ξ = 0.

Note that in the case of the disk DR, inequality (1.7.3) becomes

|f ′(z)| ≤ 2R

R2 − |z|2 sup
|ζ|<R

{!f(ζ)−!f(z)}, (1.7.5)
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where z is an arbitrary point of DR.
The last estimate was previously obtained by Lindelöf [63] (see also Jensen

[50], p. 24).

1.7.3 Upper estimate of !{eiα(z)∆ξf(z)} by the supremum of
!∆ξf(ζ) and an estimate for the first derivative in the half-plane

Consider the class of functions f analytic in the upper half-plane C+ =
{z ∈ C : &z > 0} such that !f is bounded from above.

Given a fixed point ξ ∈ C+, we map D1 onto C+ using the mapping
z = (ξ − ξw)/(1 − w) whose inverse is w = (z − ξ)/(z − ξ). The analogue of
(1.4.10) for C+ is

!{eiα(z)∆ξf(z)} ≤ 2s(z, ξ)(1− s(z, ξ) cos α(z))
1− s2(z, ξ)

sup
ζ∈C+

!∆ξf(ζ), (1.7.6)

where s(z, ξ) = |z − ξ|/|z − ξ|.
An immediate corollary of this inequality is the estimate of the first deriva-

tive

|f ′(z)| ≤ 1
&z

sup
ζ∈C+

{!f(ζ)−!f(z)} (1.7.7)

of a function f , analytic in C+ with !f bounded from above.



2

Estimates for analytic functions with respect
to the Lp-norm of !∆f on the circle

2.1 Introduction

There exist inequalities for analytic functions with the bounded real part in
the disk DR with ||!f − !f(0)||∞ as a majorant. One of them, generally
known as the Schwarz Arcustangens Formula, is

|!f(z)−!f(0)| ≤ 4
π

arctan
( r

R

)
||!f −!f(0)||∞, (2.1.1)

(see Schwarz [83], p. 190 and pp. 361-362). The following inequality

|&f(z)−&f(0)| ≤ 2
π

log
(

R + r

R− r

)
||!f −!f(0)||∞, (2.1.2)

is due to Carathéodory and Plemelj (see Carathéodory [24], p. 21). For the
proofs of these estimates see Burckel ([22], Ch. 6, § 5), Carathéodory ([25],
Ch. IV, § 76), Koebe [52], Polya and Szegö ([75], III, Ch. 6, § 2).

One more known inequality is

|f(z)− f(0)| ≤ 2
π

log
(

R + r

R− r

)
||!f −!f(0)||∞ (2.1.3)

(see Burckel [22], Ch. 6, § 5).
Estimates (2.1.1)-(2.1.3) are particular cases of more general sharp esti-

mates presented in this chapter, which is devoted to sharp pointwise estimates
for

|!{eiα(z)(f(z)− f(0))}|

by the Lp-norm of !f − !f(0) on the circle ∂DR, where f is an analytic
function on DR with !f ∈ hp(DR), α is a real valued function on DR, |z| =
r < R, and 1 ≤ p ≤ ∞.

In Section 2.2 we prove a general but somewhat implicit representation of
the best constant Cp(z, α(z)) in the inequality
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|!{eiα(z)(f(z)− f(0))}| ≤ Cp (z, α(z)) ||!f −!f(0)||p. (2.1.4)

Namely, we find the representation for the constant in (2.1.4)

Cp(z, α(z)) = R−1/pCp(r/R, α(z)),

where

Cp(γ, α) =
γ

π
min
λ∈R

{∫ π

−π

∣∣∣∣
cos(ϕ− α)− γ cos α

1− 2γ cos ϕ + γ2
− λ

∣∣∣∣
q

dϕ

}1/q

, (2.1.5)

1/q + 1/p = 1.
As a corollary of (2.1.4) with α = 0, for analytic and zero-free functions

f on DR such that f(0) = 1 and log |f | ∈ hp(DR), we deduce the two-sided
estimate

exp
{
−Cp(z, 0)

∣∣∣∣ log |f |
∣∣∣∣

p

}
≤

∣∣f(z)
∣∣ ≤ exp

{
Cp(z, 0)

∣∣∣∣ log |f |
∣∣∣∣

p

}
.

Section 2.3 contains the explicit formulas

C1(γ, α) =
γ

π(1− γ2)
, C2(γ, α) =

γ√
π(1− γ2)

.

In Section 2.4 we prove that the constant C∞(γ, α) is equal to

2
π




sinα log
2γ sinα +

√
(1− γ2)2 + 4γ2 sin2 α

1− γ2
+ cos α arcsin

(
2γ cos α

1 + γ2

)


 .

Inequality (2.1.4) for p = ∞, and the formula for C∞(γ, α) imply classical
estimates (2.1.1)-(2.1.3).

In Section 2.5 we show that the inequality

|&f(z)−&f(0)| ≤ R−1/pCp (r/R, π/2) ||!f −!f(0)||p (2.1.6)

holds with the sharp constant defined by

Cp(γ, π/2) =
κ(γ)
2π

{
2

∫ 1

−1

(1− t2)(q−1)/2

[1− κ(γ)t]q
dt

}1/q

, (2.1.7)

where q = p/(p − 1), κ(γ) = (2γ)/(1 + γ2). We note also that the constant
Cp(γ, π/2) can be written in the form

Cp(γ, π/2) =
κ(γ)
2π

{
2

[
1− κ2(γ)

] 1
2(1−p)

∞∑

n=0

B

(
2p− 1
2p− 2

,
2n + 1

2

)
κ2n(γ)

} p−1
p

,

where B(u, v) is the Beta-function. Inequality (2.1.6) with the sharp constant
Cp(γ, π/2) is a generalization of the classical Carathéodory-Plemelj estimate
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(2.1.2) for any p ≥ 1. For natural values of q, the value Cp(γ, π/2) is expressed
in elementary functions. For instance,

C4/3(γ, π/2) = γ

{
3− γ2

4π3(1− γ2)3

}1/4

,

and

C3/2(γ, π/2) =
1
π

{
γ(1 + γ2)
(1− γ2)2

− 1
2

log
1 + γ

1− γ

}1/3

.

The concluding Section 2.6 contains analogues of inequality (2.1.4) with
p = ∞ for |!{eiα(z)(f(z)− f(ξ))}| with sharp constants in the case of a disk
and a half-plane. As corollaries we obtain sharp estimates for |f ′(z)| in these
two domains. In particular, we prove the sharp inequality

|f ′(z)| ≤ 4R

π(R2 − |z|2) sup
|ζ|<R

|!f −!f(z)|,

where z is an arbitrary point in DR. The last estimate is similar to Lindelöf’s
inequality (1.7.5).

2.2 Estimate of |!{eiα∆f}| by the Lp-norm of !∆f on
the circle. General case

For real valued functions g1 and g2 defined on the circle |ζ| = R, we set

(g1, g2) =
∫

|ζ|=R
g1(ζ)g2(ζ)|dζ|

and by ||g||p we denote the Lp-norm, 1 ≤ p ≤ ∞, of g on the circle |ζ| = R.
The following assertion is basic in the present chapter.

Proposition 2.1. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
Further, let α(z) be a real valued function, |z| < R. Then for any fixed point
z, |z| = r < R, there holds

|!{eiα(z)∆f(z)}| ≤ Cp (z, α(z)) ||!∆f ||p (2.2.1)

with the sharp constant Cp(z, α(z)), where

Cp(z, α) =
1

R1/p
Cp

( r

R
, α

)
, (2.2.2)

and the factor

Cp(γ, α) =
γ

π
min
λ∈R

{∫ π

−π

∣∣∣∣
cos(ϕ− α)− γ cos α

1− 2γ cos ϕ + γ2
− λ

∣∣∣∣
q

dϕ

}1/q

, (2.2.3)
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is even π-periodic function of α, 1/q + 1/p = 1.
In particular,

|∆f(z)| ≤ Cp (z, arg ∆f(z)) ||!∆f ||p. (2.2.4)

Remark 2.1. The case p = 1 (q = ∞) in (2.2.3) is understood in the sense of
the relation

||g||∞ = lim
q→∞

||g||q.

Note also that all inequalities in the present chapter with ∆f(z) in the left-
hand side and ||!∆f ||p in the right-hand side can be written in an equivalent
form provided f is subject to the condition f(0) = 0. For example, inequality
(2.2.1) takes the form

|!{eiα(z)f(z)}| ≤ Cp (z, α(z)) ||!f ||p,

where f(0) = 0.

Applying Proposition 2.1 with α(z) = 0 to log f(z) , where f(z) (= 0 for
|z| < R, f(0) = 1, and log |f | ∈ hp(DR) , we obtain

Corollary 2.1. Let f be an analytic and zero-free function on DR with f(0) =
1, and let log |f | ∈ hp(DR), 1 ≤ p ≤ ∞. Then for any z with |z| = r < R
there holds

∣∣ log |f(z)|
∣∣ ≤ Cp(z, 0)

∣∣∣∣ log |f |
∣∣∣∣

p
(2.2.5)

with the constant Cp(z, 0) given by (2.2.2), (2.2.3) with α = 0.

We can write inequality (2.2.5) in the equivalent form

exp
{
−Cp(z, 0)

∣∣∣∣ log |f |
∣∣∣∣

p

}
≤

∣∣f(z)
∣∣ ≤ exp

{
Cp(z, 0)

∣∣∣∣ log |f |
∣∣∣∣

p

}
, (2.2.6)

which is the Lp-analogue of (1.6.8).

The following standard assertion (see, for instance, Korneichuk [54], Sect.
1.4) follows from the Hahn-Banach theorem and will be used in the proof of
Proposition 2.1.

Lemma 2.1. Let g and h be fixed elements of Lq(∂DR), 1 ≤ q ≤ ∞, and let
the functional Fg(ψ) = (g, ψ) be defined on the subspace

L = {ψ ∈ Lp(∂DR) : (h, ψ) = 0}

of Lp(∂DR), where 1/p + 1/q = 1. Then

||Fg||L = min
λ∈R

||g − λh||q. (2.2.7)
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Proof. It suffices to consider the functions h novanishing on a set of positive
measure. Let λ be an arbitrary real constant. Consider the extension of Fg

from L onto the whole space Lp(∂DR) given by

F g(ψ) = (g, ψ)− λ(h, ψ) = (g − λh, ψ). (2.2.8)

Hence, by ||Fg||L ≤ ||F g|| and due to the arbitrariness of λ

||Fg||L ≤ min
λ∈R

sup
{∣∣(g − λh, ψ)

∣∣ : ||ψ||p ≤ 1
}
. (2.2.9)

We show that any linear continuous functional extending Fg from L onto
Lp(∂DR) is of the form (2.2.8). Given u ∈ Lp(∂DR) with (h, u) = 1, we have
ϕ = ψ−(h, ψ)u ∈ L for any ψ ∈ Lp(∂DR). This means that any ψ ∈ Lp(∂DR)
admits the representation

ψ = ϕ + (h, ψ)u, (2.2.10)

where ϕ is a certain element of L. Let Φg denote an extension of Fg from L
onto Lp(∂DR). By (2.2.10) and Φg(ϕ) = Fg(ϕ) with ϕ ∈ L we obtain

Φg(ψ) = Fg(ϕ) + (h, ψ)Φg(u) = Fg

(
ψ − (h, ψ)u

)
+ (h, ψ)Φg(u)

=
(
g, ψ − (h, ψ)u

)
+ (h, ψ)Φg(u) =

(
g, ψ

)
− {(g, u)−Φg(u)} (h, ψ),

which proves the representation (2.2.8) for Φg with the constant λ = (g, u)−
Φg(u).

Then by the Hahn-Banach theorem, there exists a constant µ such that

||Fg||L = sup
{∣∣(g, h)− µ(h, ψ)

∣∣ : ||ψ||p ≤ 1
}
.

This and (2.2.9) imply

||Fg||L = min
λ∈R

sup
{∣∣(g − λh, ψ)

∣∣ : ||ψ||p ≤ 1
}
,

which is equivalent to (2.2.7). )*

Proof of Proposition 2.1. 1. Representation of the sharp constant in in-
equality (2.2.1). Using (1.3.3) and notation (1.3.4), we have

!{eiα∆f(z)} =
1

πR

∫

|ζ|=R
Gz,α(ζ) !f(ζ)|dζ|. (2.2.11)

Suppose first that

!f(0) =
1

2πR

∫

|ζ|=R
!f(ζ)|dζ| = 0. (2.2.12)

Therefore, applying Lemma 2.1 to the functional Fg(ψ) with
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g(ζ) = (πR)−1Gz,α(ζ)

and h = 1, ψ = !f , we arrive at the representation

Cp(z, α) =
1

πR
min
λ∈R

||Gz,α − λ||q (2.2.13)

for the sharp constant Cp(z, α) in

|!{eiα∆f(z)}| ≤ Cp (z, α) ||!f ||p. (2.2.14)

Setting f(z)−!f(0) instead of f(z) in (2.2.14), we conclude that (2.2.1) holds
with the sharp constant (2.2.13).

Now, suppose 1 < p ≤ ∞. Combining (2.2.13) with (1.3.4) and (1.3.5) we
have

Cp(z, α) =
1

πR
min
λ∈R

{∫ π+τ

−π+τ

∣∣∣∣!
(

γeiα

ei(t−τ) − γ

)
− λ

∣∣∣∣
q

Rdt

}1/q

,

which after the change of variable ϕ = t− τ becomes

Cp(z, α) =
1

πR1/p
min
λ∈R

{∫ π

−π

∣∣∣∣!
(

γeiα

eiϕ − γ

)
− λ

∣∣∣∣
q

dϕ

}1/q

. (2.2.15)

Using the notation

Cp(γ, α) =
1
π

min
λ∈R

{∫ π

−π

∣∣∣∣!
(

γeiα

eiϕ − γ

)
− λ

∣∣∣∣
q

dϕ

}1/q

, (2.2.16)

we rewrite (2.2.15) as

Cp(z, α) =
1

R1/p
Cp

( r

R
, α

)
, (2.2.17)

which together with (1.3.6) proves (2.2.2) and (2.2.3) for 1 < p ≤ ∞.
The case p = 1 (q = ∞) in (2.2.3) is handled by passage to the limit.

2. Properties of Cp(γ, α) and inequality (2.2.4). We show that Cp(γ,−α) =
Cp(γ, α). Let 1 < p ≤ ∞. By (2.2.16),

Cp(γ, α) =
γ

π
min
λ∈R

{∫ 2π

0

∣∣∣∣!
(

e−iα

e−iϕ − γ

)
− λ

∣∣∣∣
q

dϕ

}1/q

,

which after the change of variable ϕ = 2π − ψ becomes

Cp(γ, α) =
γ

π
min
λ∈R

{∫ 2π

0

∣∣∣∣!
(

e−iα

eiψ − γ

)
− λ

∣∣∣∣
q

dψ

}1/q

= Cp(γ,−α).
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The equality Cp(γ, α + π) = Cp(γ, α) follows also from (2.2.16). Obviously,
Cp(γ, α) remains even and π-periodic in the limiting case p = 1 as well.

Putting α(z) = − arg ∆f(z) in (2.2.1) and taking into account that
Cp(γ, α) is even in α, we arrive at (2.2.4). )*

The next two subsections contain explicit formulas for the sharp constant
Cp(z, α) in inequality (2.2.1) with p = 1, 2,∞. As corollaries, we obtain sharp
estimates for the real and imaginary parts of an analytic function in the disk
|z| < R, as well as for its modulus, in terms of its real part on the circle
|z| = R.

2.3 The cases p = 1 and p = 2

The next assertion specifies Proposition 2.1 for p = 1.

Corollary 2.1. Let f be analytic on DR with !f ∈ h1(DR). Further, let α(z)
be a real valued function, |z| < R. Then for any fixed point z, |z| = r < R, the
sharp inequality

|!{eiα(z)∆f(z)}| ≤ r

π(R2 − r2)
||!∆f ||1 (2.3.1)

holds.

Proof. By (2.2.13),

C1(z, α) =
1

πR
min
λ∈R

max
|ζ|=R

|Gz,α(ζ)− λ| . (2.3.2)

Since λ is subject to one of the three alternatives

λ ≤ min
|ζ|=R

Gz,α(ζ), min
|ζ|=R

Gz,α(ζ) < λ < max
|ζ|=R

Gz,α(ζ), λ ≥ max
|ζ|=R

Gz,α(ζ),

it follows that the minimum with respect to λ in (2.3.2) is attained at

λ =
1
2

{
min
|ζ|=R

Gz,α(ζ) + max
|ζ|=R

Gz,α(ζ)
}

,

which by 1.3.4 and Lemma 1.2 implies

λ =
r2 cos α

R2 − r2
.

Putting the value of λ into (2.3.2) and using Lemma 1.2 we obtain

C1(z, α) =
r

π(R2 − r2)
, (2.3.3)

which proves (2.3.1). )*
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Corollary 2.1 with p = 1 and formula (2.3.3) imply

Corollary 2.2. If f is an analytic and zero-free function on DR with f(0) =
1, and log |f | ∈ h1(DR), then for any z with |z| = r < R the inequality

∣∣ log |f(z)|
∣∣ ≤ r

π(R2 − r2)
∣∣∣∣ log |f |

∣∣∣∣
1

(2.3.4)

holds.

Note, that the inclusion log |f | ∈ h1(DR) holds for f ∈ Hp(DR), 1 ≤ p ≤ ∞
(see, for example, Koosis [53]).

The next assertion specifies Proposition 2.1 for p = 2.

Corollary 2.3. Let f be analytic on DR with !f ∈ h2(DR). Further, let α(z)
be a real valued function, |z| < R. Then for any fixed point z, |z| = r < R, the
sharp inequality

|!{eiα(z)∆f(z)}| ≤ r√
πR(R2 − r2)

||!∆f ||2 (2.3.5)

holds.

Proof. Combining
∫

|ζ|=R
Gz,α(z)|dζ| = !

{∫

|ζ|=R

eiαz

ζ − z
|dζ|

}
= !

{∫

|ζ|=R

Reiαz

i(ζ − z)ζ
dζ

}
= 0

with (2.2.13) for p = 2, we have

C2(z, α) =
1

πR
||Gz,α||2. (2.3.6)

Let us calculate ||Gz,α||2. Using (1.3.5) and setting ϕ = t− τ we obtain

||Gz,α||22 =
∫

|ζ|=R

[
!

(
eiαz

ζ − z

)]2

|dζ| = γ2

∫ π+τ

−π+τ

[
!

(
eiα

ei(t−τ) − γ

)]2

Rdt

=
r2

R

∫ π

−π

(cos(ϕ− α)− γ cos α)2

(1− 2γ cos ϕ + γ2)2
dϕ, (2.3.7)

and making elementary calculations, we arrive at
∫ π

−π

(cos(ϕ− α)− γ cos α)2

(1− 2γ cos ϕ + γ2)2
dϕ =

π

1− γ2
,

which together with (2.3.7) gives

||Gz,α||22 =
πr2R

R2 − r2
. (2.3.8)
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Hence and by (2.3.6) we conclude

C2(z, α) =
r√

πR(R2 − r2)
. (2.3.9)

)*

The following assertion results directly from Corollary 2.1 with p = 2 and
formula (2.3.9).

Corollary 2.4. If f is an analytic and zero-free function on DR with f(0) =
1, and log |f | ∈ h2(DR), then for any z with |z| = r < R the inequality

∣∣ log |f(z)|
∣∣ ≤ r√

πR(R2 − r2)

∣∣∣∣ log |f |
∣∣∣∣

2
(2.3.10)

holds.

2.4 The case p = ∞

The next assertion gives a sharp constant in (2.2.3) for p = ∞.

Theorem 2.1. Let f be analytic on DR with bounded !f . Further, let α(z)
be a real valued function, |z| < R. Then for any fixed point z, |z| = r < R, the
estimate

|!{eiα(z)∆f(z)}| ≤ C∞
( r

R
, α(z)

)
||!∆f ||∞ (2.4.1)

holds with the sharp constant

C∞(γ, α) =
2
π




sinα log
2γ sinα

√
(1− γ2)2 + 4γ2 sin2 α

1− γ2

+ cos α arcsin
(

2γ cos α

1 + γ2

)}
. (2.4.2)

Proof. The representation for the sharp constant in (2.4.1)

C∞(γ, α) =
γ

π
min
λ∈R

∫ π

−π

∣∣∣∣!
(

eiα

eiϕ − γ

)
− λ

∣∣∣∣ dϕ (2.4.3)

results by (2.2.16) and (2.2.17) with q = 1 (p = ∞).
1. Solution of the extremal problem in (2.4.3). Let the function α and the

point z with |z| = r < R be fixed. Suppose that λ = λ0 is a solution of the
equation
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∫ π

−π
sign

{
!

(
eiα

eiϕ − γ

)
− λ

}
dϕ = 0. (2.4.4)

Let

g(ϕ) = !
(

eiα

eiϕ − γ

)
− λ0. (2.4.5)

Then, for any µ ∈ R,
∫ π

−π
|g(ϕ)|dϕ =

∫ π

−π

(
g(ϕ)− µ

)
sign g(ϕ)dϕ ≤

∫ π

−π
|g(ϕ)− µ|dϕ,

which together with (2.4.3) and (2.4.5) leads to

C∞(γ, α) =
γ

π

∫ π

−π

∣∣∣∣!
(

eiα

eiϕ − γ

)
− λ0

∣∣∣∣ dϕ. (2.4.6)

We show now that (2.4.4) holds with λ = −γ(1 + γ2)−1 cos α, where γ ∈
[0, 1). We rewrite the left-hand side of the equation

!
(

eiα

eiϕ − γ

)
+

γ cos α

1 + γ2
= 0 (2.4.7)

as

!
(

eiα

eiϕ − γ

)
+

γ cos α

1 + γ2

=
1

1 + γ2
· (1− γ2) cos ϕ cos α + (1 + γ2) sinϕ sinα

1− 2γ cos ϕ + γ2
. (2.4.8)

Let ϑ be the solution of the system

cos ϑ =
(1− γ2)
k(α, γ)

cos α, sinϑ =
(1 + γ2)
k(α, γ)

sinα, (2.4.9)

where

k(α, γ) = [(1− γ2)2 cos2 α + (1 + γ2)2 sin2 α]1/2. (2.4.10)

From (2.4.8), (2.4.9) we obtain

!
(

eiα

eiϕ − γ

)
+

γ cos α

1 + γ2
=

k(α, γ)
1 + γ2

· cos(ϕ− ϑ)
1− 2γ cos ϕ + γ2

. (2.4.11)

Thus, the equation (2.4.7) with unknown ϕ is reduced to cos(ϕ− ϑ) = 0.
The distance between two successive roots ϕn = ϑ − π/2 + πn, n =

0,±1,±2, . . . , of the equation cos(ϕ − ϑ) = 0 is equal to π. We put ζ0 =
eiϕ0 , ζ1 = eiϕ1 with ϕ0 = ϑ− π/2, ϕ1 = ϑ + π/2. Then
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!
(

eiα

ζ0 − γ

)
+

γ cos α

1 + γ2
= !

(
eiα

ζ1 − γ

)
+

γ cos α

1 + γ2
= 0.

Thus, for fixed γ ∈ [0, 1) and α, the points ζ0 and ζ1 divide the circle
|ζ| = 1 into two half-circles such that the left-hand side of (2.4.7) is positive
on one of them and negative on another one. Hence (2.4.4) holds with λ =
−γ(1 + γ2)−1 cos α and, therefore, by (2.4.6),

C∞(γ, α) =
γ

π

∫ π

−π

∣∣∣∣!
(

eiα

eϕ − γ

)
+

γ

1 + γ2
cos α

∣∣∣∣ dϕ. (2.4.12)

2. Calculation of C∞(γ, α) by (2.4.12). The last equality and (2.4.11) imply

C∞(γ, α) =
γk(α, γ)
π(1 + γ2)

∫ π

−π

| cos(ϕ− ϑ)|
1− 2γ cos ϕ + γ2

dϕ, (2.4.13)

where k(α, γ) is defined by (2.4.10) and ϑ is the solution of (2.4.9) in (−π, π].
We denote, for brevity

J =
∫ π

−π

| cos(ϕ− ϑ)|
1− 2γ cos ϕ + γ2

dϕ. (2.4.14)

Equality (2.4.14) can be written as

J =
∫ ϑ+π/2

ϑ−π/2

cos(ϕ− ϑ)
1− 2γ cos ϕ + γ2

dϕ−
∫ ϑ+3π/2

ϑ+π/2

cos(ϕ− ϑ)
1− 2γ cos ϕ + γ2

dϕ.

In the first integral we make the change of variable ψ = −ϕ and in the second
integral we put η = π − ϕ. Then

J =
∫ π/2−ϑ

−π/2−ϑ

cos(ψ + ϑ)
1− 2γ cos ψ + γ2

dψ +
∫ π/2−ϑ

−π/2−ϑ

cos(η + ϑ)
1 + 2γ cos η + γ2

dη,

which implies

J = 2(1 + γ2)
∫ π/2−ϑ

−π/2−ϑ

cos ψ cos ϑ− sinψ sinϑ

(1 + γ2)2 − 4γ2 cos2 ψ
dψ. (2.4.15)

Substituting the integrals
∫ π/2−ϑ

−π/2−ϑ

cos ψ

(1 + γ2)2 − 4γ2 cos2 ψ
dψ =

1
γ(1− γ2)

arctan
(

2γ cos ϑ

1− γ2

)
,

∫ π/2−ϑ

−π/2−ϑ

sinψ

(1 + γ2)2 − 4γ2 cos2 ψ
dψ = − 1

2γ(1 + γ2)
log

1 + γ2 + 2γ sinϑ

1 + γ2 − 2γ sinϑ

into (2.4.15) we obtain
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J =
2(1 + γ2)

γ

{
cos ϑ

1− γ2
arctan

2γ cos ϑ

1− γ2
+

sinϑ

2(1 + γ2)
log

1 + γ2 + 2 sinϑ

1 + γ2 − 2γ sinϑ

}
.

Hence, taking into account (2.4.9), (2.4.10) and (2.4.13), (2.4.14), as well as
the identity arctan[x(1− x2)−1/2] = arcsinx, we arrive at formula (2.4.2). )*

Remark 2.1. Using the equality

sup
|ζ|<R

|g(ζ)| = ||g||∞,

which is valid for bounded harmonic functions g in DR, we can replace
||!∆f ||∞ in (2.4.1) and its corollaries by

sup
|ζ|<R

|!f(ζ)−!f(0)|.

The next assertion contains particular cases of (2.4.1), well known esti-
mates (2.1.1)-(2.1.3) for |!∆f(z)|, |&∆f(z)| and |∆f(z)| by ||!∆f ||∞.

Corollary 2.4. Let f be analytic on DR with bounded !f . Then for any fixed
point z, |z| = r < R, the sharp inequalities

|!∆f(z)| ≤ 4
π

arctan
( r

R

)
||!∆f ||∞, (2.4.16)

|&∆f(z)| ≤ 2
π

log
R + r

R− r
||!∆f ||∞, (2.4.17)

|∆f(z)| ≤ 2
π

log
R + r

R− r
||!∆f ||∞ (2.4.18)

hold.

Proof. 1. Inequalities for |!∆f(z)|. Estimate (2.4.16) follows from (2.4.1) and
(2.4.2) with α = 0. In fact, by (2.4.2),

C∞(γ, 0) =
2
π

arcsin
(

2γ

1 + γ2

)
=

4
π

arctan γ. (2.4.19)

2. Inequality for |&∆f(z)|. Inequality (2.4.17) stems from (2.4.1) and
(2.4.2) with α = π/2. In fact, by (2.4.2),

C∞(γ, π/2) =
2
π

log
1 + γ

1− γ
.

3. Inequality for |∆f(z)|. Since C∞(γ, α) is an even π-periodic function in
α, it follows that
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max{C∞(γ, α) : −π ≤ α ≤ π} = max{C∞(γ, α) : 0 ≤ α ≤ π/2}. (2.4.20)

We show that C∞(γ, α) is an increasing function of α on [0, π/2] and hence

max{C∞(γ, α) : 0 ≤ α ≤ π/2} = C∞(γ, π/2) =
2
π

log
1 + γ

1− γ
. (2.4.21)

Let us consider C∞(γ, α) for 0 ≤ α ≤ π/2. By (2.4.2) we have

∂C∞(γ, α)
∂α

=
2
π




cos α log
2γ sinα +

√
(1− γ2)2 + 4γ2 sin2 α

1− γ2
(2.4.22)

− sinα arcsin
(

2γ cos α

1 + γ2

)}
.

Note that the relations

log
2γ sinα +

√
(1− γ2)2 + 4γ2 sin2 α

1− γ2
=

∫ 2γ sin α

0

dt√
(1− γ2)2 + t2

,

arcsin
(

2γ cos α

1 + γ2

)
=

∫ 2γ(1+γ2)−1 cos α

0

dt√
1− t2

,

and the mean value theorem imply

cos α

∫ 2γ sin α

0

dt√
(1− γ2)2 + t2

>
2γ cos α sinα

[(1− γ2)2 + 4γ2 sin2 α]1/2
,

sinα

∫ 2γ(1+γ2)−1 cos α

0

dt√
1− t2

<
2γ cos α sinα

[(1− γ2)2 + 4γ2 sin2 α]1/2
,

where α ∈ (0, π/2). Therefore, it follows from (2.4.22) that

∂C∞(γ, α)
∂α

> 0.

Thus, C∞(γ, α) increases on the interval [0, π/2] and by (2.4.1), (2.4.20) and
(2.4.21) we arrive at (2.4.18). )*

As a corollary, we give an estimate for
∣∣ log |f(z)|

∣∣ in terms of
∣∣∣∣ log |f |

∣∣∣∣
∞.

Corollary 2.5. If f is an analytic and zero-free function on DR with f(0) =
1, and log |f | ∈ h∞(DR), then for any z with |z| = r < R the inequality

∣∣ log |f(z)|
∣∣ ≤ 4

π
arctan

( r

R

) ∣∣∣∣ log |f |
∣∣∣∣
∞ (2.4.23)

holds.

Proof. Estimate (2.4.23) results from (2.2.5) combined with (2.4.19) and
(2.2.2) with p = ∞. )*
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2.5 Generalization of the Carathéodory and Plemelj
inequality

2.5.1. The general case p ∈ [1,∞]

The next assertion contains a sharp inequality which is a generalization
for 1 ≤ p < ∞ of the classical estimate

|&f(z)−&f(0)| ≤ 2
π

log
(

R + r

R− r

)
||!f −!f(0)||∞

due to Carathéodory and Plemelj (see Carathéodory [24], p.21, Burckel [22],
Ch. 5, § 3 and Notes to Ch. 5).

Corollary 2.6. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
Then for any fixed z, |z| = r < R, there holds

|&∆f(z)| ≤ R−1/pC',p (r/R) ||!∆f ||p (2.5.1)

with the sharp constant

C',1(γ) =
γ

π(1− γ2)
, (2.5.2)

and

C',p(γ) =
κ(γ)
2π

{
2

∫ 1

−1

(1− t2)(q−1)/2

[1− κ(γ)t]q
dt

}1/q

(2.5.3)

=
κ(γ)
2π

{
2

[
1− κ2(γ)

]1/(2−2p)
∞∑

n=0

B

(
2p− 1
2p− 2

,
2n + 1

2

)
κ2n(γ)

}(p−1)/p

,

for 1 < p ≤ ∞, where κ(γ) = (2γ)/(1 + γ2) and B(u, v) is the Beta-function.
In particular,

C',2(γ) =
γ√

π(1− γ2)
. (2.5.4)

Proof. By Proposition 2.1, inequality (2.5.1) holds with the sharp constant

C',p(γ) = Cp(γ, π/2), (2.5.5)

where

Cp(γ, π/2) =
γ

π
min
λ∈R

{∫ π

−π

∣∣∣∣
sinϕ

1− 2γ cos ϕ + γ2
− λ

∣∣∣∣
q

dϕ

}1/q

. (2.5.6)

The formulae (2.5.2), (2.5.4) were obtained in Corollaries 2.1 and 2.3,
respectively.
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Let 1 < p ≤ ∞ (1 ≤ q < ∞). We fix γ ∈ [0, 1) and put

g(ϕ) =
sinϕ

1− 2γ cos ϕ + γ2
. (2.5.7)

Taking into account the equality
∫ π

−π
|g(ϕ)|q−1sign g(ϕ)dϕ = 0,

which holds since g is odd, for any µ ∈ R we have

||g||qq =
∫ π

−π
|g(ϕ)|qdϕ =

∫ π

−π

(
g(ϕ)− µ

)
|g(ϕ)|q−1sign g(ϕ)dϕ.

This implies

||g||qq ≤
∫ π

−π

∣∣g(ϕ)− µ
∣∣|g(ϕ)|q−1dϕ. (2.5.8)

Further, by Hölder’s inequality
∫ π

−π

∣∣g(ϕ)− µ
∣∣|g(ϕ)|q−1dϕ ≤ ||g − µ||q||g||q−1

q .

Hence, by (2.5.8),
||g||q ≤ ||g − µ||q.

Combining this with (2.5.6) and (2.5.7), we arrive at

Cp(γ, π/2) =
γ

π

{∫ π

−π

(
sinϕ

1− 2γ cos ϕ + γ2

)q

dϕ

}1/q

,

which in view of (2.5.5), results at

C',p(γ) =
γ

π

{
2

∫ π

0

(
sinϕ

1− 2γ cos ϕ + γ2

)q

dϕ

}1/q

. (2.5.9)

Making the change of variable t = cos ϕ and setting κ(γ) = (2γ)/(1 + γ2), we
arrive at the first equality for the constant C',p(γ) in (2.5.3).

We shall write the sharp constant C',p(γ) in (2.5.1) in a different form.
Using the equality (see, for example, Gradshtein and Ryzhik [41], 3.665)

∫ π

0

(
sinϕ

1− 2γ cos ϕ + γ2

)q

dϕ = B

(
q + 1

2
,
1
2

)
F

(
q,

q

2
;
q + 2

2
; γ2

)
,

where F (a, b; c;x) is the hypergeometric Gauss function, and the relation
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F (a, b; a− b + 1;x) =

(1− x)1−2b(1 + x)2b−a−1F

(
a + 1

2
− b,

a

2
+ 1− b; a− b + 1;

4x

(1 + x)2

)
,

we conclude by (2.5.9) that C',p(γ) is equal to

κ(γ)
2π

{
2

[
1− κ2(γ)

](1−q)/2
B

(
q + 1

2
,
1
2

)
F

(
1
2
, 1;

q + 2
2

; κ2(γ)
)}1/q

=
κ(γ)
2π

{
2

[
1− κ2(γ)

]1/(2−2p)
∞∑

n=0

B

(
2p− 1
2p− 2

,
2n + 1

2

)
κ2n(γ)

}(p−1)/p

,

that is, we arrive at the second equality for C',p(γ) in (2.5.3). )*

The integral

Iq(κ) =
∫ 1

−1

(1− t2)(q−1)/2

(1− κt)q
dt

in (2.5.3) is the sum of each of two series
∞∑

m=0

(−1)m

(
(q − 1)/2

m

) ∫ 1

−1

t2m

(1− κt)q
dt

and
∞∑

m=0

(−1)m

(
q/2
m

) ∫ 1

−1

t2m

(1− κt)q(1− t2)1/2
dt.

The first of these series becomes a finite sum for odd q and the second one for
even q.

2.5.2. The case of odd q

For odd q, the recurrence relation

I2n+1(κ) =
2(2n− 2)!!
(2n− 1)!!

1
κ2(1− κ2)n

− 1
κ2
I2n−1(κ)

with
I1(κ) =

1
κ log

1 + κ
1− κ

implies

I2n+1(κ) =
2

κ2n+2

n∑

k=1

(−1)n+k(2k − 2)!!
(2k − 1)!!

(
κ2

1− κ2

)k

+
(−1)n

κ2n+1
log

1 + κ
1− κ .

Hence, putting κ = (2γ)/(1+ γ2) in the last equality and taking into account
(2.5.3), we find
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C', 2n+1
2n

(γ) =
1
2π

{
4(−1)n log

1 + γ

1− γ

+
2(1 + γ2)

γ

n∑

k=1

(−1)n+k(2k − 2)!!
(2k − 1)!!

(
2γ

1− γ2

)2k
} 1

2n+1

.

For example,

C', 3/2(γ) =
1
π

{
γ(1 + γ2)
(1− γ2)2

− 1
2

log
1 + γ

1− γ

}1/3

.

2.5.3. The case of even q

For even q, the recurrence relation

I2n+2(κ) =
π(2n− 1)!!

(2n)!!
1

κ2(1− κ2)(2n+1)/2
− 1

κ2
I2n(κ)

with

I2(κ) =
π

(
1−

√
1− κ2

)

κ2
√

1− κ2

leads to

I2n+2(κ) =
π

κ2n+3

n∑

k=1

(−1)n+k(2k − 1)!!
(2k)!!

(
κ2

1− κ2

)(2k+1)/2

+
π(−1)n

κ2n+2

(
1−

√
1− κ2

)
√

1− κ2
.

Hence, putting κ = (2γ)/(1 + γ2) in the last equality and using (2.5.3), we
obtain

C', 2n+2
2n+1

(γ) =
1
2π

{
4(−1)nπγ2

1− γ2

+
π(1 + γ2)

γ

n∑

k=1

(−1)n+k(2k − 1)!!
(2k)!!

(
2γ

1− γ2

)2k+1
} 1

2n+2

.

In particular,

C', 4/3(γ) = γ

{
3− γ2

4π3(1− γ2)3

}1/4

.

2.6 Variants and extensions

Here we collect some estimates which result from Theorem 2.1 by conformal
mappings.
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Similar to Section 1.7, we assume that G is a bounded domain in C,
bounded by a Jordan curve. By ξ we denote an arbitrary fixed point of G. Let
z = Φ(w) be a conformal mapping of D1 = {w ∈ C : |w| < 1} onto G such
that Φ(0) = ξ and let w = Ψ(z) stand for the inverse mapping.

We preserve the notation ∆ξf(z) = f(z) − f(ξ) introduced in Chapter 1
and write ∆f(z) in place of ∆0f(z).

2.6.1 Estimate of |!{eiα(z)∆ξf(z)}| by the supremum of |!∆ξf(ζ)|
in a domain. Estimate for the first derivative

Let f(z) be an analytic function in G with bounded !f . Then F (w) =
f(Φ(w)) is an analytic function in D1 with bounded !F .

Given an arbitrary real valued function α in G, we introduce ϑ(w) =
α(Φ(w)). By Theorem 2.1 we have

|!{eiϑ(w)∆F (w)}| ≤ C∞ (|w|, ϑ(w)) sup
|w|<1

|!∆F (w)|,

where C∞(γ, α) is defined by (2.4.2).
Coming back to the variable z, we obtain the following generalization of

(2.4.1) for a domain G and arbitrary ξ

|!{eiα(z)∆ξf(z)}| ≤ C∞ (|Ψ(z)|, α(z)) sup
ζ∈G

|!∆ξf(ζ)|. (2.6.10)

Putting here α(z) = − arg ∆ξf(z), we obtain

|∆ξf(z)| ≤ C∞ (|Ψ(z)|, − arg ∆ξf(z)) sup
ζ∈G

|!∆ξf(ζ)|.

After dividing this inequality by |z − ξ| and taking into account (2.4.2) and
Ψ(ξ) = 0 we make the limit passage as z → ξ. As a result, we arrive at the
sharp estimate

|f ′(ξ)| ≤ 4|Ψ ′(ξ)|
π

sup
ζ∈G

|!f(ζ)−!f(ξ)|. (2.6.11)

2.6.2 Estimate of |!{eiα(z)∆ξf(z)}| by the supremum of |!∆ξf(ζ)|
and an estimate for the first derivative in the disk

Let G = DR and Φ(w) = R(ξ − Rw)/(R − ξw). Then Ψ(z) = R(ξ −
z)/(R2 − zξ). In concert with (2.6.10),

|!{eiα(z)∆ξf(z)}| ≤ C∞

(
R|z − ξ|
|R2 − ξz|

, α(z)
)

sup
|ζ|<R

|!∆ξf(ζ)|, (2.6.12)

which coincides with (2.4.1) for ξ = 0.
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In this case the sharp inequality (2.6.11) takes the form

|f ′(z)| ≤ 4R

π(R2 − |z|2) sup
|ζ|<R

|!f(ζ)−!f(ξ)|, (2.6.13)

where z is an arbitrary point of DR.

2.6.3 Estimate of |!{eiα(z)∆ξf(z)}| by the supremum of |!∆ξf(ζ)|
and an estimate for the first derivative in the half-plane

Consider a function f , analytic in the upper half-plane C+ = {z ∈ C :
&z > 0} with bounded !f .

Given a fixed point ξ ∈ C+, we map D1 onto C+ using the mapping
z = (ξ − ξw)/(1 − w) whose inverse is w = (z − ξ)/(z − ξ). An analogue of
(2.6.10) for C+ is

|!{eiα(z)∆ξf(z)}| ≤ C∞

(
|z − ξ|
|z − ξ|

, α(z)
)

sup
ζ∈C+

|!∆ξf(ζ)|. (2.6.14)

Hence, in the same way as in Section 2.6.1, we obtain the sharp inequality

|f ′(z)| ≤ 2
π&z

sup
ζ∈C+

|!f(ζ)−!f(z)|, (2.6.15)

where z is an arbitrary point of C+.





3

Estimates for analytic functions by the best
Lp-approximation of !f on the circle

3.1 Introduction

Along with (2.1.1) and (2.1.2), there exist other inequalities for the increment
of the real and imaginary parts at zero of a function f which is analytic in the
disk DR and has a bounded real part. In particular, we mean the inequalities

|!f(z)−!f(0)| ≤ 4
π

arcsin
( r

R

)
||!f ||∞, (3.1.1)

and

|&f(z)−&f(0)| ≤ 2
π

log
(

R + r

R− r

)
||!f ||∞ (3.1.2)

(see, for example, Hurwitz and Courant [48], III, § 9). The first inequality is
known as the Schwarz Arcussinus Formula.

The estimates (3.1.1), (3.1.2) are special cases of more general sharp in-
equalities presented in this chapter. Here we deal with sharp pointwise esti-
mate for

|!{eiα(z)(f(z)− f(0))}|
by the Lp-norm of !f on the circle ∂DR and its corollaries, where f is an
analytic function on DR with !f ∈ hp(DR), α is a real valued function on
DR, |z| = r < R, and 1 ≤ p ≤ ∞.

In Section 3.2 we obtain a general representation for the best constant
Kp(z, α(z)) in the inequality

|!{eiα(z)(f(z)− f(0))}| ≤ Kp (z, α(z)) ||!f − c||p, (3.1.3)

where c is an arbitrary real constant. Namely, we find the representation for
the sharp constant in (3.1.3)

Kp(z, α(z)) = R−1/pKp(r/R, α(z)), (3.1.4)
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where

Kp(γ, α) =
γ

π

{∫ π

−π

∣∣∣∣
cos(ϕ− α)− γ cos α

1− 2γ cos ϕ + γ2

∣∣∣∣
q

dϕ

}1/q

, (3.1.5)

1/q + 1/p = 1. The value ||!f − c||p in the right-hand side of (3.1.3) can be
replaced by Ep(!f), where

Ep(g) = min
c∈R

||g − c||p. (3.1.6)

stands for the best approximation of g by a real constant in the norm of
Lp(∂DR).

As a corollary of (3.1.3) with α = 0 one gets the two-sided estimate

exp
{
−Kp(z, 0) Ep

(
log |f |

)}
≤

∣∣f(z)
∣∣ ≤ exp

{
Kp(z, 0) Ep

(
log |f |

)}
,

where f is an analytic and zero-free function on DR with f(0) = 1, log |f | ∈
hp(DR), 1 ≤ p ≤ ∞.

The explicit formulas

K1(γ, α) =
γ(1 + γ| cos α|)

π(1− γ2)
, K2(γ, α) =

γ√
π(1− γ2

are derived in Section 3.3. In particular, for p = 1 and c = sup{!f(ζ) : |ζ| <
R} inequality (3.1.3) and formula for K1(γ, α) imply the Hadamard-Borel-
Carathéodory inequality (1.1.2).

In Section 3.4 we show that the constant K∞(γ, α) is equal to

4
π

{
sinα log

γ sinα +
(
1− γ2 cos2 α

)1/2

(1− γ2)1/2
+ cos α arcsin (γ cos α)

}
.

We note, that by (3.1.3) with c = 0, p = ∞ and by formula for K∞(γ, α)
with α = 0, and α = π/2 one gets the estimates (3.1.1), (3.1.2). Besides,
(3.1.3) with c = 0, p = ∞ and the above formula for K∞(γ, α) imply the
sharp inequality

|f(z)− f(0)| ≤ 2
π

log
(

R + r

R− r

)
||!f ||∞. (3.1.7)

A direct corollary of (3.1.3) with p = ∞ and the formula for K∞(γ, α) is
the explicit sharp estimate for |!{eiα(z)(f(z)− f(0))}| in terms of O(f (DR)
which stands for the oscillation of the real part on the disk DR.

Section 3.5 contains corollaries of (3.1.3), (3.1.4) and (3.1.5) giving esti-
mates for the modulus of the increment at zero of the real or imaginary parts
of an analytic function. In particular, we find an explicit formula for Kp(γ, 0)
with p = 2n/(2n− 1). For instance,
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K4/3(γ, 0) = γ

{
3 + 7γ2

4π3(1− γ2)3

}1/4

.

For α = π/2 and any z with |z| = r < R, inequality (3.1.3) and formulas
(3.1.4), (3.1.5) imply the estimate

|&f(z)−&f(0)| ≤ R−1/pKp (r/R, π/2) Ep(!f). (3.1.8)

In general, (2.1.5) and (3.1.5) lead to the inequality Cp(γ, α) ≤ Kp(γ, α) which
becomes equality for some values of p and α. In particular, this is the case
for p = 2. We also show that Kp(γ, π/2) = Cp(γ, π/2), that is the inequality
(3.1.8) holds with the sharp constant defined by (2.1.7).

In Section 3.6 we deduce a sharp estimate for the oscillation of !{eiα(z)f(z)}
on a subset of DR stated in terms of the oscillation of the real part on DR. The
constant in that estimate is specified for symmetric with respect to the ori-
gin subset of DR. This, in turn, leads to sharp inequalities for the supremum
modulus of the increment of an analytic function, as well as for the oscillation
of the real or imaginary parts by O(f (DR). Such estimates for the oscillation
of the real and imaginary parts in the disk Dr, r < R, are well known (see
Koebe [52], Polya and Szegö [75], III, Ch. 6, § 2).

The last Section 3.7 contains analogues of (3.1.3) with p = ∞ for
|!{eiα(z)(f(z) − f(ξ))}| in the disk and the half-plane. These estimates im-
ply sharp inequalities for |f ′(z)| with explicit constants. In particular, if f is
analytic function in DR with bounded !f , then for any point z ∈ DR

|f ′(z)| ≤ 2R

π(R2 − |z|2)O(f (DR). (3.1.9)

This inequality is used in the next chapter. Note that (3.1.9) is an analogue
of (1.7.5) and (2.6.13).

3.2 Estimate of |!{eiα∆f}| by the Lp-norm of !f − c
on the circle. General case

The next assertion is basic in this chapter. It contains a representation of the
best constant in the estimate of |!{eiα(z)∆f(z)}|, |z| < R, by the Lp-norm
of !f − c on the circle |z| = R, where c is an arbitrary real constant. As a
direct corollary, we obtain sharp estimates for |!{eiα(z)∆f(z)}| with the best
approximation Ep(!f) of !f by a real constant in the norm of Lp(∂DR) in
the right-hand side.

Proposition 3.1. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
Further, let α(z) be a real valued function, |z| < R, and let c be a real constant.
Then for any fixed point z, |z| = r < R, we have
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|!{eiα(z)∆f(z)}| ≤ Kp (z, α(z)) ||!f − c||p (3.2.1)

with the sharp constant Kp(z, α(z)), where

Kp(z, α) =
1

R1/p
Kp

( r

R
, α

)
, (3.2.2)

and the factor

Kp(γ, α) =
γ

π

{∫ π

−π

∣∣∣∣
cos(ϕ− α)− γ cos α

1− 2γ cos ϕ + γ2

∣∣∣∣
q

dϕ

}1/q

(3.2.3)

is an even π-periodic function of α, 1/p + 1/q = 1.
In particular,

|!{eiα(z)∆f(z)}| ≤ Kp (z, α(z))Ep(!f), (3.2.4)

where the notation Ep(g) is defined by (3.1.6).

Proof. 1. Representation of the sharp constant in inequality (3.2.1). By (1.3.3),
(1.3.4) and (1.4.3), we have

!{eiα∆f(z)} =
1

πR

∫

|ζ|=R
Gz,α(ζ){!f(ζ)− c}|dζ|, (3.2.5)

where c is an arbitrary real constant. By (3.2.5) we obtain the formula

Kp(z, α) =
1

πR
||Gz,α||q (3.2.6)

for the sharp constant Kp(z, α) in

|!{eiα∆f(z)}| ≤ Kp (z, α) ||!f − c||p.

Now, suppose 1 < p ≤ ∞. Combining (3.2.6) with (1.3.4) and (1.3.5) we
have

Kp(z, α) =
1

πR

{∫ π+τ

−π+τ

∣∣∣∣!
(

γeiα

ei(t−τ) − γ

)∣∣∣∣
q

Rdt

}1/q

,

which, after the change of variable ϕ = t− τ , becomes

Kp(z, α) =
1

πR1/p

{∫ π

−π

∣∣∣∣!
(

γeiα

eiϕ − γ

)∣∣∣∣
q

dϕ

}1/q

. (3.2.7)

Using the notation

Kp(γ, α) =
1
π

{∫ π

−π

∣∣∣∣!
(

γeiα

eiϕ − γ

)∣∣∣∣
q

dϕ

}1/q

, (3.2.8)
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we write (3.2.7) as

Kp(z, α) =
1

R1/p
Kp

( r

R
, α

)
,

which together with (1.3.6) proves (3.2.2) and (3.2.3) for 1 < p ≤ ∞.
The equality (3.2.3) with p = 1 (q = ∞) results from the limit relation

||g||∞ = lim
q→∞

||g||q.

Inequality (3.2.4) follows directly from (3.2.1).

2. Properties of Kp(γ, α). The π-periodicity of Kp(γ, α) in α follows di-
rectly from (3.2.8). One shows that Kp(γ, α) is an even function of α in the
same way as in Proposition 2.1. )*

Writing (3.2.8) as

Kp(γ, α) =
γ

π

{∫

|ζ|=1

∣∣∣∣!
(

eiα

ζ − γ

)∣∣∣∣
q

|dζ|
}1/q

and making the change of variable ζ = (w + γ)/(1 + γw), we obtain

Kp(γ, α) =
γ

π(1− γ2)1/p

{∫

|w|=1

∣∣!
{
eiα(γ + w)

}∣∣q

|1 + γw|2 |dw|
}1/q

.

Hence, Kp(γ, α) can be given in the form different from (3.2.3):

Kp(γ, α) =
γ

π(1− γ2)1/p

{∫ π

−π

|cos(ψ − α)− γ cos α|q

1− 2γ cos ψ + γ2
dψ

}1/q

. (3.2.9)

We give two more corollaries of Proposition 3.1. The first of them follows
by putting α(z) = − arg ∆f(z) in Proposition 3.1 and taking into account
that Kp(γ, α) is even in α.

Corollary 3.1. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
Further, let c be a real constant. Then for any fixed point z, |z| = r < R, the
estimate

|∆f(z)| ≤ Kp (z, arg ∆f(z)) ||!f − c||p (3.2.10)

holds with the sharp constant Kp(z, α), given by (3.2.2) and (3.2.3).

The next corollary is an analogue of (2.2.5). It results from (3.2.4) with
α(z) = 0 and log f in place of f .
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Corollary 3.2. Let f be an analytic and zero-free function on DR with f(0) =
1, and let log |f | ∈ hp(DR), 1 ≤ p ≤ ∞. Then for any z with |z| = r < R there
holds

∣∣ log |f(z)|
∣∣ ≤ Kp(z, 0) Ep

(
log |f |

)
(3.2.11)

or, in equivalent form,

exp
{
−Kp(z, 0) Ep

(
log |f |

)}
≤

∣∣f(z)
∣∣ ≤ exp

{
Kp(z, 0) Ep

(
log |f |

)}
,

where the constant Kp(z, 0) is given by (3.2.2) and (3.2.3) with α = 0, and
Ep(g) is defined by (3.1.6).

The values of Kp(z, α) for p = 1, 2,∞ and corresponding inequalities from
Proposition 3.1, Corollaries 3.1 and 3.2 will be given in the next sections of
this chapter.

3.3 The cases p = 1 and p = 2

Next, we present the inequalities from Proposition 3.1 and Corollary 3.2 with
explicit constants for p = 1. They follow from (3.2.1) and (3.2.11), combined
with (3.2.6) for q →∞ as well as (1.3.4) and Lemma 1.2.

Corollary 3.3. Let f be analytic on DR with !f ∈ h1(DR). Further, let α(z)
be a real valued function, |z| < R, and c be a real constant. Then for any fixed
point z, |z| = r < R, the sharp inequality

|!{eiα(z)∆f(z)}| ≤ r(R + r| cos α(z)|)
πR(R2 − r2)

||!f − c||1 (3.3.1)

holds.

Corollary 3.4. If f is an analytic and zero-free function on DR with |f(0)| =
1, log |f | ∈ h1(DR), then for any z with |z| = r < R the inequality

∣∣ log |f(z)|
∣∣ ≤ r

πR(R− r)
E1

(
log |f |

)
(3.3.2)

holds.

Note that inequalities (1.6.4) and (1.6.6) are consequences of (3.3.1). In
fact, putting

c = sup
|ζ|<R

!f(ζ)

into (3.3.1) with ρ ∈ (r, R) and passing to the limit as ρ ↑ R, we arrive at

|!{eiα∆f(z)}| ≤ 2r(R + r| cos α|)
R2 − r2

sup
|ζ|<R

!∆f(ζ).
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The last inequqlity contains both (1.6.4) and (1.6.6).
Consider the case p = 2 in Proposition 3.1 and Corollary 3.2. By (3.2.6)

with p = 2 and (2.3.8),

K2(z, α) =
r√

πR(R2 − r2)
. (3.3.3)

Note also that

E2(!f) = ||!f −!f(0)||2. (3.3.4)

Indeed, we have

||!f − c||2 =
{

R

∫ π

−π
[!f(Reiϕ)− c]2dϕ

}1/2

,

which implies the representation

E2(!f) = min
c∈R

||!f − c||2 =
{

R

∫ π

−π

[
!f(Reiϕ)−A0

]2
dϕ

}1/2

,

where
A0 =

1
2π

∫ π

−π
!f(Reiϕ)dϕ = !f(0)

which gives (3.3.4).
By (3.3.3) and (3.3.4), inequalities (3.2.4) and (3.2.11) with p = 2 coincide

with (2.3.5) and (2.3.10), respectively. Hence estimates (2.3.5) and (2.3.10)
are corollaries of the next assertion which follows from Proposition 3.1 and
(3.3.3).

Corollary 3.5. Let f be analytic on DR with !f ∈ h2(DR). Further, let α(z)
be a real valued function, |z| < R, and c be a real constant. Then for any fixed
point z, |z| = r < R, the sharp inequality

|!{eiα(z)∆f(z)}| ≤ r√
πR(R2 − r2)

||!f − c||2 (3.3.5)

holds.

3.4 The case p = ∞

The next theorem contains sharp constants in (3.2.1) and (3.2.4) for p = ∞.
When using (3.2.4) with p = ∞ we take into account that

E∞(!f) =
1
2
O(f (DR), (3.4.1)
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where O(f (DR) is the oscillation of !f on the disk DR. Note that (3.4.1) is
true since the minimal value in

E∞(!f) = min
c∈R

||!f − c||∞ = min
c∈R

sup
|ζ|<R

|!f(ζ)− c|

is attained at c =
(
Af (R) + Bf (R)

)
/2, where Af (R) and Bf (R) are the

supremum and the infimum of !f on the disk DR, respectively.

Theorem 3.1. Let f be analytic on DR with bounded !f . Further, let α(z)
be a real valued function, |z| < R, and c be a real constant. Then for any fixed
point z, |z| = r < R, the inequality

|!{eiα(z)∆f(z)}| ≤ K∞

( r

R
, α(z)

)
||!f − c||∞ (3.4.2)

holds with the sharp constant

K∞(γ, α) =
4
π

{
sinα log

γ sinα
(
1− γ2 cos2 α

)1/2

(1− γ2)1/2

+cos α arcsin (γ cos α)
}

. (3.4.3)

In particular,

|!{eiα(z)∆f(z)}| ≤ 1
2
K∞

( r

R
, α(z)

)
O(f (DR). (3.4.4)

Proof. By Proposition 3.1,

K∞(z, α) = K∞(r/R, α), (3.4.5)

where

K∞(γ, α) =
γ

π

∫ π

−π

| cos(ϕ− α)− γ cos α|
1− 2γ cos ϕ + γ2

dϕ, (3.4.6)

which implies (3.4.2) with the sharp constant (3.4.6). Estimate (3.4.4) results
from (3.2.4) with p = ∞ together with (3.4.1) and (3.4.5).

We evaluate the integral in (3.4.6). By Proposition 3.1, K∞(γ, α) is a
π-periodic and even function of α, therefore we take 0 ≤ α ≤ π/2.

Since for any z, |z| < R, there holds
∫

|ζ|=1

dζ

(ζ − z)ζ
= 0,

it follows that

0 = !
{∫

|ζ|=1

eiαz

i(ζ − z)ζ
dζ

}
= γ

∫ π

−π

cos(ϕ− α)− γ cos α

1− 2γ cos ϕ + γ2
dϕ.
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Using the last equality and (3.4.6), we conclude

K∞(γ, α) =
2γ

π

∫ ψ2(α)

ψ1(α)

cos(ϕ− α)− γ cos α

1− 2γ cos ϕ + γ2
dϕ, (3.4.7)

where

ψ1(α) = α− arccos(γ cos α), ψ2(α) = α + arccos(γ cos α). (3.4.8)

By (3.4.7) we have

K∞(γ, α) =
1
π

{
2γI1(γ, α) sinα +

(
(1− γ2)I2(γ, α)− I3(γ, α)

)
cos α

}
, (3.4.9)

where

I1(γ, α) =
∫ ψ2(α)

ψ1(α)

sinϕ

1− 2γ cos ϕ + γ2
dϕ, (3.4.10)

I2(γ, α) =
∫ ψ2(α)

ψ1(α)

dϕ

1− 2γ cos ϕ + γ2
,

I3(γ, α) =
∫ ψ2(α)

ψ1(α)
dϕ = 2arccos(γ cos α). (3.4.11)

We evaluate the integral (3.4.10)

I1(γ, α) =
2
γ

log
γ sinα +

(
1− γ2 cos2 α

)1/2

(1− γ2)1/2
. (3.4.12)

Next, note that

I2(γ, α) =
2

1− γ2
arctan

(
1 + γ

1− γ
tan

ϕ

2

) ∣∣∣
ψ2(α)

ψ1(α)
,

because

arctanx− arctan y = π + arctan
x− y

1 + xy
. (3.4.13)

Hence

I2(γ, α) =
2

1− γ2





π + arctan

1+γ
1−γ

(
tan ψ2(α)

2 − tan ψ2(α)
2

)

1 +
(

1+γ
1−γ

)2
tan ψ2(α)

2 tan ψ2(α)
2





. (3.4.14)

The conditions x > 0 and xy < −1, necessary for (3.4.13) to hold, are satisfied,
since by (3.4.8) and 0 ≤ α ≤ π/2,
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tan
ψ2(α)

2
> 0, tan

ψ2(α)
2

tan
ψ1(α)

2
= −1− γ

1 + γ
.

Combining this with

tan
ψ2(α)

2
− tan

ψ1(α)
2

=
2 sin

(
arccos(γ cos α)

)

(1 + γ) cos α
,

and (3.4.14) we find

I2(γ, α) =
2

1− γ2

{
π + arctan

sin
(
arccos(γ cos α)

)

−γ cos α

}
,

that is
I2(γ, α) =

2
1− γ2

(
π − arccos(γ cos α)

)
.

This and (3.4.11) imply

(1− γ2)I2(γ, α)− I3(γ, α) = 2
(
π − 2 arccos(γ cos α)

)
,

which together with arcsinx = (π/2)− arccos x gives

(1− γ2)I2(γ, α)− I3(γ, α) = 4 arcsin(γ cos α).

The last inequality together with (3.4.9) and (3.4.12) leads to (3.4.3). )*

The next corollary specifies inequality (3.4.2). Namely, it contains the es-
timates for |!∆f(z)|, |&∆f(z)| and |∆f(z)| by ||!f − c||∞, where c is an
arbitrary real constant. In particular, two first inequalities below imply (for
c = 0) estimates (3.1.1) and (3.1.2). We show that the right-hand side of the
inequality for |&∆f(z)| is, in fact, the sharp majorant for |∆f(z)|.

Corollary 3.6. Let f be analytic on DR with bounded !f . Further, let c be
a real constant. Then for any fixed point z, |z| = r < R, the inequalities with
sharp constants

|!∆f(z)| ≤ 4
π

arcsin
( r

R

)
||!f − c||∞, (3.4.15)

|&∆f(z)| ≤ 2
π

log
R + r

R− r
||!f − c||∞, (3.4.16)

|∆f(z)| ≤ 2
π

log
R + r

R− r
||!f − c||∞ (3.4.17)

hold.
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Proof. 1. Inequalities for |!∆f(z)| and |&f(z)|. Inequalities (3.4.15) and
(3.4.16) follow from (3.4.2) and (3.4.3) with α(z) = 0 and α(z) = π/2, re-
spectively.

2. Inequality for |∆f(z)|. Since K∞(γ, α) is an even and π-periodic in α,
we have

max{K∞(γ, α) : −π ≤ α ≤ π} = max{K∞(γ, α) : 0 ≤ α ≤ π/2}. (3.4.18)

We show that K∞(γ, α) is an increasing function of α on [0, π/2] and hence

max{K∞(γ, α) : 0 ≤ α ≤ π/2} = K∞(γ, π/2) =
2
π

log
1 + γ

1− γ
. (3.4.19)

Let us consider K∞(γ, α) for 0 ≤ α ≤ π/2. In view of (3.4.3),

∂K∞(γ, α)
∂α

=
4
π

{
cos α log

γ sinα +
(
1− γ2 cos2 α

)1/2

(1− γ2)1/2
(3.4.20)

− sinα arcsin(γ cos α)
}

.

Using the equalities

cos α log
γ sinα + (1− γ2 cos2 α)1/2

(1− γ2)1/2
= cos α

∫ γ sin α

0

dt√
1− γ2 + t2

,

sinα arcsin(γ cos α) = sin α

∫ γ cos α

0

dt√
1− t2

,

and the estimates

cos α

∫ γ sin α

0

dt√
1− γ2 + t2

>
γ sinα cos α√

1− γ2 + γ2 sin2 α
,

sinα

∫ γ cos α

0

dt√
1− t2

<
γ sinα cos α√
1− γ2 cos2 α

=
γ sinα cos α√

1− γ2 + γ2 sin2 α
,

which follow from the mean value theorem for α ∈ (0, π/2), we obtain from
(3.4.20)

∂K∞(z, α)
∂α

> 0.

Thus, K∞(γ, α) increases on the interval [0, π/2], and by (3.4.2), (3.4.18) and
(3.4.19) we arrive at (3.4.17). )*

The next assertion contains particular cases of (3.4.4) giving estimates for
|!∆f(z)|, |&∆f(z)| and |∆f(z)|.
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Corollary 3.7. Let f be analytic on DR with bounded !f . Then for any fixed
point z, |z| = r < R, the sharp inequalities

|!∆f(z)| ≤ 2
π

arcsin
( r

R

)
O(f (DR), (3.4.21)

|&∆f(z)| ≤ 1
π

log
R + r

R− r
O(f (DR), (3.4.22)

|∆f(z)| ≤ 1
π

log
R + r

R− r
O(f (DR) (3.4.23)

hold.

Proof. Inequalities (3.4.21)-(3.4.23) follow from relations between sharp con-
stants in (3.4.2) and (3.4.4) together with Corollary 3.6. )*

Next, we specify (3.2.11) for p = ∞ in terms of

Mf (R) = sup
|ζ|<R

|f(ζ)| and mf (R) = inf
|ζ|<R

|f(ζ)|,

where f is an analytic and zero-free function on DR.

Corollary 3.8. If f is an analytic and zero-free function on DR with f(0) =
1, and log |f | is bounded, then for any z with |z| = r < R the inequality

∣∣ log |f(z)|
∣∣ ≤ 2

π
arcsin

( r

R

)
log

(
Mf (R)
mf (R)

)
(3.4.24)

holds.

Proof. Inequality (3.4.24) results from (3.4.21) after replacing f by log f with
f(z) (= 0 for |z| < R, |f(0)| = 1, together with

Olog |f |(DR) = logMf (R)− log mf (R).

)*

Estimate (3.4.24) is a particular case of (3.2.11) for p = ∞, where

E∞(log |f |) =
1
2
Olog |f |(DR).

Inequality (3.4.21) is a corollary of the Schwarz Arcussinus Formula. In
fact, putting f − c in place of f in inequality (3.1.1) and minimizing in c, we
arrive at (3.4.21).
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Note that estimate (3.4.21) with f(0) = 0 does not coincide with the
inequality

|!f(z)| ≤ 2
π

arctan
( r

R

)
O(f (DR), (3.4.25)

obtained by Koebe (see [52], p. 70) for functions f vanishing at z = 0.
The next section contains corollaries of Proposition 3.1, generalizing

(3.4.21) and (3.4.22) for p ∈ [1,∞] in view of E∞(!f) = O(f (DR)/2. A
different proof of (3.4.22) was given by Koebe in the above mentioned paper.

3.5 Inequalities for the real and imaginary parts

3.5.1. Sharp constant in an inequality for the real part

The next assertion follows from Proposition 3.1 and (3.2.9) with α = 0
together with Corollaries 3.3, 3.5 and 3.6. We shall use the notation K(,p(γ)
in place of Kp(γ, 0).

Corollary 3.9. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
Then for any fixed point z, |z| = r < R, there holds

|!∆f(z)| ≤ R−1/pK(,p (r/R) Ep(!f)

with the sharp constant
K(,1(γ) =

γ

π(1− γ)
,

and

K(,p(γ) =
γ

π(1− γ2)1/p

{
2

∫ π

0

|cos ϕ− γ|q

1− 2γ cos ϕ + γ2
dϕ

}1/q

(3.5.1)

for 1 < p ≤ ∞.
In particular,

K(,2(γ) =
γ√

π(1− γ2)
, K(,∞(γ) =

4
π

arcsin γ.

Note that (3.5.1) can be written as

K(,p(γ) =
(1− γ2)1/q

2π

{
2

∫ π

0

∣∣∣∣1−
1− 2γ cos ϕ + γ2

1− γ2

∣∣∣∣
q

dϕ

1− 2γ cos ϕ + γ2

}1/q

.

Hence, straightforward calculations for q = 2n imply

K(, 2n
2n−1

(γ) = (2π)
1−2n
2n

{
1 +

2n∑

k=1

k−1∑

m=0

(−1)k
( 2n

k

)(k − 1
m

)2 γ2m

(1− γ2)k−1

} 1
2n

.
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For example,

K(, 4/3(γ) = γ

{
3 + 7γ2

4π3(1− γ2)3

}1/4

.

3.5.2. Sharp constant in an inequality for the imaginary part

Comparing the formulas (2.2.2), (2.2.3) and (3.2.2), (3.2.3) we conclude
that the sharp constants in the inequalities

|!{eiα(z)∆f(z)}| ≤ Cp (z, α(z)) ||!∆f ||p,

|!{eiα(z)∆f(z)}| ≤ Kp (z, α(z)) ||!f − c||p
are related in general as Cp(z, α) ≤ Kp(z, α). For example, by (2.3.1) and
(3.3.1),

C1(z, α) =
r

π(R2 − r2)
, K1(z, α) =

r(R + r| cos α|)
πR(R2 − r2)

.

However, for certain values of p and α the equality Cp(z, α) = Kp(z, α) may
hold. This is, clearly, the case for p = 2 in view of (2.3.5) and (3.3.5).

Another case of equality is

Cp(z, π/2) = Kp(z, π/2) (3.5.2)

for any p ∈ [1,∞]. Indeed, in the proof of Corollary 2.6 it was shown that for
α = π/2 the minimum in λ in (2.2.3) is attained at λ = 0. Hence, comparing
(2.2.3) and (3.2.3) for α = π/2 and taking into account (2.2.2), (3.2.2) we
arrive at (3.5.2).

Thus, by Corollary 2.6 and (3.5.2), together with Proposition 3.1, we ob-
tain the following inequality for |&∆f(z)| in terms of the best approximation
Ep(!f) of f by a constant on the circle |ζ| = R in the norm of Lp(∂DR). We
shall denote Kp(γ, π/2) by K',p(γ).

Corollary 3.10. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
Then for any fixed point z, |z| = r < R, the inequality

|&∆f(z)| ≤ R−1/pK',p (r/R) Ep(!f)

holds with the sharp constant

K',1(γ) =
γ

π(1− γ2)
,

and

K',p(γ) =
κ(γ)
2π

{
2

∫ 1

−1

(1− t2)(q−1)/2

[1− κ(γ)t]q
dt

}1/q

=
κ(γ)
2π

{
2

[
1− κ2(γ)

]1/(2−2p)
∞∑

n=0

B

(
2p− 1
2p− 2

,
2n + 1

2

)
κ2n(γ)

}(p−1)/p

,
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for 1 < p ≤ ∞, where κ(γ) = (2γ)/(1 + γ2) and B(u, v) is the Beta-function.
In particular,

K',2(γ) =
γ√

π(1− γ2)
, K',∞(γ) =

2
π

log
1 + γ

1− γ
.

Formulas for K',p(γ) = C',p(γ) for even and odd values of q = p/(p− 1)
were given in Sect. 2.5.

3.6 Estimate for the oscillation of !{eiαf} and its
corollaries

In this subsection we obtain a sharp estimate for the oscillation of !{eiαf}
on a set G ⊂ DR by the oscillation O(f (DR) of the function !f on the disk
DR. The following assertion holds.

Theorem 3.2. Let f be analytic on DR with bounded !f . Further, let G be
a subset of DR. Then for any real α the inequality

sup
z,ξ∈G

∣∣!
{
eiα

(
f(z)− f(ξ)

)}∣∣ ≤ 1
2

K∞

(
sup

z,ξ∈G
|Ψ(z, ξ)|, α

)
O(f (DR) (3.6.1)

holds with the sharp constant, where K∞(γ, α) is given by (3.4.3), and

Ψ(z, ξ) =
R(ξ − z)
R2 − zξ

. (3.6.2)

Proof. Let ξ be a fixed point of the disk DR and let z = R(ξ − Rw)/(R −
ξw), |w| ≤ 1. If f obeys the conditions of the theorem, the function

F (w) = f

(
R(ξ −Rw)
(R− ξw)

)

is analytic in D1 and its real part is bounded in D1.
By Corollary 3.1, F (w) satisfies

|!{eiα∆F (w)}| ≤ K∞ (|w|, α) ||!F − c||∞,

where K∞(γ, α) is defined by (3.4.3). Hence, returning back to the variable
z, we find

|!{eiα
(
f(z)− f(ξ)

)
}| ≤ K∞

(
|Ψ(z, ξ)|, α

)
||!f − c||∞, (3.6.3)

with Ψ(z, ξ) defined by (3.6.2).
It follows from (3.4.3) that
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∂K∞(γ, α)
∂γ

=
4
π

1√
1− γ2 cos2 α

(
sin2 α

1− γ2
+ cos2 α

)
> 0.

Since K∞(γ, α) is an increasing function of γ, the sharp inequality (3.6.1)
results from E∞(!f) = O(f (DR)/2, and (3.6.3). )*

In particular, for a set G, symmetric with respect to the origin, we arrive
at the following assertion.

Corollary 3.11. Let f be analytic on DR with bounded !f . Let G be a subset
of DR such that z ∈ G implies −z ∈ G, and let diam G = 2d. Then for any
real α there holds

sup
z,ξ∈G

∣∣!
{
eiα

(
f(z)− f(ξ)

)}∣∣ ≤ 1
2

K∞

(
2dR

R2 + d2
, α

)
O(f (DR) (3.6.4)

with the sharp constant, where K∞(γ, α) is given by (3.4.3).
In particular,

sup
z,ξ∈G

∣∣!f(z)−!f(ξ)
∣∣ ≤ 4

π
arctan

(
d

R

)
O(f (DR), (3.6.5)

sup
z,ξ∈G

∣∣&f(z)−&f(ξ)
∣∣ ≤ 2

π
log

(
R + d

R− d

)
O(f (DR) (3.6.6)

and

sup
z,ξ∈G

∣∣f(z)− f(ξ)
∣∣ ≤ 2

π
log

(
R + d

R− d

)
O(f (DR). (3.6.7)

Proof. Since for some ϑ the point deiϑ belongs to G, and

|Ψ(z, ξ)|2 =
R2

(
|z|2 − 2!(zξ) + |ξ|2

)

R4 − 2R2!(zξ) + |ξ|2|z|2 = 1−
(
R2 − |z|2

)(
R2 − |ξ|2

)

R4 − 2R2!(zξ) + |ξ|2|z|2 ,

the maximum of |Ψ | on G×G is attained at z = deiϑ, ξ = −deiϑ, i.e.

max
z,ξ∈G

|Ψ(z, ξ)| =
{

1− (R2 − d2)2

(R2 + d2)2

}1/2

=
2dR

R2 + d2
,

which by Theorem 3.2 proves (3.6.4).
It follows from (3.4.3) that

K∞

(
2dR

R2 + d2
, 0

)
=

4
π

arcsin
(

2dR

R2 + d2

)
=

8
π

arctan
(

d

R

)
,

which together with (3.6.4) gives (3.6.5). Inequality (3.6.6) follows from (3.6.4)
and (3.4.3) with α(z) = π/2. The estimate (3.6.7) results from(3.6.4) and
(3.4.3) combined with (3.4.18) and (3.4.19). )*
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Inequality (3.6.5) for the oscillation of the real part in the disk Dr, r < R,
was obtained by Neumann (see [70], p. 415). The estimate (3.6.6) with G = Dr

for the oscillation of the imaginary part of the analytic function was found by
Koebe [52].

3.7 Variants and extensions

Next we derive some estimates which follow from Theorem 3.1 by conformal
mapping.

As in Sections 1.7 and 2.6, we assume that G is a bounded domain in C,
bounded by a Jordan curve. Given an arbitrary point ξ of G, by z = Φ(w) we
denote a function which maps D1 = {w ∈ C : |w| < 1} conformly onto G so
that Φ(0) = ξ, and let w = Ψ(z) denote the inverse mapping.

We keep the notation ∆ξf(z) = f(z)− f(ξ), introduced in Chapter 1 and,
as before, write ∆f(z) instead of ∆0f(z).

3.7.1 Estimate of |!{eiα(z)∆ξf(z)}| by the supremum of |!f(ζ)− c|
in a domain. Estimate for the first derivative

By f(z) we denote a function analytic in G with bounded !f . Then
F (w) = f(Φ(w)) is an analytic function in D1 whose real part is bounded
in D1.

Let α be an arbitrary real-valued function in G and let ϑ(w) = α(Φ(w)).
By Theorem 3.1,

|!{eiϑ(w)∆F (w)}| ≤ K∞ (|w|, ϑ(w)) sup
|w|<1

|!F (w)− c|,

where K∞(γ, α) is defined by (3.4.3). Hence, returning to the variable z, we
find a generalization of (3.4.2)

|!{eiα(z)∆ξf(z)}| ≤ K∞ (|Ψ(z)|, α(z)) sup
ζ∈G

|!f(ζ)− c|. (3.7.8)

Putting here α(z) = − arg ∆ξf(z), we obtain

|∆ξf(z)| ≤ K∞ (|Ψ(z)|, − arg ∆ξf(z)) sup
ζ∈G

|!f(ζ)− c|.

Then we divide both sides by |z − ξ|, use (3.4.3) and Ψ(ξ) = 0, and make
passage to the limit as z → ξ. As a result we obtain the inequality

|f ′(ξ)| ≤ 4|Ψ ′(ξ)|
π

sup
ζ∈G

|!f(ζ)− c| (3.7.9)

with the sharp factor in front of the maximum.
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Taking into account

min
c∈R

sup
ζ∈G

|!f(ζ)− c| = 1
2
O(f (G),

where O(f (G) is the oscillation of !f on G, by (3.7.9) we obtain

|f ′(ξ)| ≤ 2|Ψ ′(ξ)|
π

O(f (G). (3.7.10)

3.7.2 Estimate of |!{eiα(z)∆ξf(z)}| by the supremum of |!f(ζ)− c|
and an estimate for the first derivative in the disk

Let G = DR and Φ(w) = R(ξ −Rw)/(R− ξw). Then

Ψ(z) = R(ξ − z)/(R2 − zξ)

and (3.7.8) implies

|!{eiα(z)∆ξf(z)}| ≤ K∞

(
R|z − ξ|
|R2 − ξz|

, α(z)
)

sup
|ζ|<R

|!f(ζ)− c|. (3.7.11)

The last estimate coincides with (3.4.2) for ξ = 0.
Now, the sharp estimate (3.7.9) takes the form

|f ′(z)| ≤ 4R

π(R2 − |z|2) sup
|ζ|<R

|!f(ζ)− c|, (3.7.12)

where z is an arbitrary point of DR. A corollary of the last inequality

|f ′(z)| ≤ 2R

π(R2 − |z|2)O(f (DR) (3.7.13)

is a particular case of (3.7.10) for the disk.

3.7.3 Estimate of |!{eiα(z)∆ξf(z)}| by the supremum of |!f(ζ)− c|
and an estimate for the first derivative in the half-plane

Consider the class of functions f analytic in the upper half-plane C+ =
{z ∈ C : &z > 0} such that !f is bounded in C+.

Given a fixed point ξ ∈ C+, we map D1 onto C+ using the mapping
z = (ξ − ξw)/(1− w) whose inverse is w = (z − ξ)/(z − ξ).

The analogue of (3.7.8) for C+ is

|!{eiα(z)∆ξf(z)}| ≤ K∞

(
|z − ξ|
|z − ξ|

, α(z)
)

sup
ζ∈C+

|!f(ζ)− c|. (3.7.14)
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Hence, in the same way as in Section 3.7.1, we obtain the inequality

|f ′(z)| ≤ 2
π&z

sup
ζ∈C+

|!f(ζ)− c| (3.7.15)

with the sharp factor in front of the supremum, where z is an arbitrary point
in C+.

A direct corollary of the last inequality is the sharp estimate

|f ′(z)| ≤ 1
π&z

O(f (C+), (3.7.16)

where
O(f (C+) = sup

ζ∈C+

!f(ζ)− inf
ζ∈C+

!f(ζ).





4

Estimates for directional derivatives of
harmonic functions

4.1 Introduction

In the present chapter we deduce various estimates for directional derivatives
(in particular, for the modulus of the gradient) of harmonic functions inside of
a planar domain in terms of various characteristics of harmonic functions and
their directional derivatives in the domain or on the boundary. These inequal-
ities follow from the estimates for analytic functions obtained in Chapters 1-3.
Henceforth in this chapter we assume that a real valued function is defined on
a set of points z = (x, y) of the real plane, while a complex valued function
is defined on a set of points z = x + iy of the complex plane. However, the
sets in R2 and in C, which differ in notations of points, will be denoted in the
same way.

In Section 4.2 we obtain sharp pointwise estimates for the gradient of a
harmonic function inside of a bounded domain G ⊂ R2 with Jordan boundary
in terms of certain characteristics of the function itself on G. Such character-
istics are the supremum of the increment, the supremum of the modulus of
the increment, and the oscillation of the function on G. Particular cases of
these estimates are given for the disk DR. Similar sharp inequalities are given
for the upper half-plane R2

+ = {(x, y) ∈ R2 : y > 0}.
In particular, we show that for any harmonic function u in DR and any

point z ∈ DR the sharp estimates hold

|∇u(z)| ≤ 2R

R2 − |z|2 sup
|ζ|<R

{u(ζ)− u(z)},

|∇u(z)| ≤ 4R

π(R2 − |z|2) sup
|ζ|<R

|u(ζ)− u(z)|,

|∇u(z)| ≤ 2R

π(R2 − |z|2)Ou(DR),
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whereOu(DR) is the oscillation of a function u defined on DR. As corollaries of
sharp pointwise estimates for the gradient inside of the disk, we obtain precise
interior estimates for the gradient of a harmonic function in any bounded
domain.

Section 4.3 contains sharp estimates for the directional derivative of a
harmonic function inside of a domain stated in terms of certain character-
istics of the derivative with respect to any fixed direction on the boundary.
These inequalities imply sharp estimates for the modulus of the increment of
the gradient with right-hand sides containing different characteristics of the
derivative in the domain with respect to a fixed direction. In particular, we
obtain the sharp estimates

|∇u(z)−∇u(ξ)| ≤ 2|z − ξ|
|z − ξ| − |z − ξ|

sup
ζ∈R2

+

{
∂u(ζ)

∂3
− ∂u(ξ)

∂3

}
,

|∇u(z)−∇u(ξ)| ≤ 2
π

log
(
|z − ξ|+ |z − ξ|
|z − ξ| − |z − ξ|

)
sup

ζ∈R2
+

∣∣∣∣
∂u(ζ)

∂3
− ∂u(ξ)

∂3

∣∣∣∣ ,

where z, ξ ∈ R2
+, and 3 is an arbitrary fixed unit vector.

Section 4.4 is devoted to estimates for directional derivatives and, in partic-
ular, for the gradient of a harmonic function in the disk. We show, for instance,
that a harmonic function u with bounded directional derivative ∂u/∂l in DR

obeys the following sharp inequality at any point z with |z| = r < R

|∇u(z)| ≤ 2R

πr
log

(
R + r

R− r

) ∣∣∣∣

∣∣∣∣
∂u

∂l

∣∣∣∣

∣∣∣∣
∞

,

where l is a unit vector such that the angle between l and the radial direction
is constant. In particular, l can be directed either normally or tangentially to
∂DR. A related theorem from Hile and Stanoyevitch [44] states that |∇u(z)|
has logarithmic growth as z approaches the smooth boundary ∂G of a bounded
domain G under the assumption that the boundary values of a harmonic
function are Lipschitz.

4.2 Interior estimates for derivatives in a domain

In this section we are concerned with sharp or improved pointwise interior
estimates for the gradient of a harmonic function formulated in terms of some
characteristics of the function.

In the next assertion we assume that G is a bounded domain in R2,
bounded by a Jordan curve. By ξ we denote an arbitrary fixed point of G. Let
z = Φ(w) be a conformal mapping of D1 = {w ∈ C : |w| < 1} onto G such
that Φ(0) = ξ and let w = Ψ(z) stand for the inverse mapping.
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Given harmonic function u in G , we put f ′(z) = u′x − iu′y in (1.7.3),
(2.6.11), (3.7.9) and (1.7.5), (2.6.13), (3.7.12). The result is contained in the
following assertion.

Corollary 4.1. For any harmonic function u in G and any real constant c
the inequalities

|∇u(ξ)| ≤ 2|Ψ ′(ξ)| sup
ζ∈G

{u(ζ)− u(ξ)},

|∇u(ξ)| ≤ 4
π
|Ψ ′(ξ)| sup

ζ∈G
|u(ζ)− u(ξ)|, (4.2.1)

|∇u(ξ)| ≤ 4
π
|Ψ ′(ξ)| sup

ζ∈G
|u(ζ)− c| (4.2.2)

with the sharp coefficients hold. In particular, for any z ∈ DR,

|∇u(z)| ≤ 2R

R2 − |z|2 sup
|ζ|<R

{u(ζ)− u(z)}, (4.2.3)

|∇u(z)| ≤ 4R

π(R2 − |z|2) sup
|ζ|<R

|u(ζ)− u(z)|, (4.2.4)

|∇u(z)| ≤ 4R

π(R2 − |z|2) sup
|ζ|<R

|u(ζ)− c|. (4.2.5)

As a particular case of (4.2.5) one has

|∇u(z)| ≤ 2R

π(R2 − |z|2)Ou(DR). (4.2.6)

Now, let G be a bounded domain in R2, z ∈ G, and let dz = dist(z, ∂G).
According to Protter and Weinberger

(
[76], Chapt. 2, Sect. 13

)
,

|∇u(z)| ≤ 2
πdz

Ou(G) (4.2.7)

for any harmonic function u in G, where Ou(G) is the oscillation of the func-
tion u on G.

The estimate (4.2.7) can be improved. This simple application of inequality
(4.2.6) is given in the next assertion.

Corollary 4.2. Let z be a fixed point in a bounded domain G ⊂ R2, and let
η be a point on ∂G for which |η − z| = dz. Further, let R be the radius of
the largest disk lying entirely in G with center on the straight line L passing
through z and η. Then, for any harmonic function u in G

|∇u(z)| ≤ 2R

πdz(2R− dz)
Ou(G). (4.2.8)
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The last estimate follows from (4.2.6) with |z| = R− dz, R ≥ dz, and the
inequality Ou(DR) ≤ Ou(G). We note that the factor

2R

π(2R− dz)

before 1/dz in (4.2.8) tends to 1/π, as z → η, z ∈ L, whereas the similar
coefficient in (4.2.7) is equal to the constant 2/π.

Analogously, from (4.2.5) we obtain the interior estimate for the gradient

|∇u(z)| ≤ 4R

πdz(2R− dz)
sup
G
|u|,

where z ∈ G and u is harmonic in D. The last inequality is a refinement of
the estimate

|∇u(z)| ≤ 2
dz

sup
G
|u| (4.2.9)

which can be found in Gilbarg and Trudinger ([38], Ch. 2, Sect. 2.7). We note
also that (4.2.3) implies

|∇u(z)| ≤ 2R

dz(2R− dz)

{
sup
G

u− u(z)
}

,

which improves the inequality

|∇u(z)| ≤ 2
dz

{
sup
G

u− u(z)
}

(4.2.10)

(see [38], Ch. 2, p. 29).
Putting f ′(z) = u′x − iu′y in (1.7.7), (2.6.15) and (3.7.15), we arrive at

Corollary 4.3. For any harmonic function u in R2
+ and any real constant c

the sharp inequalities

|∇u(z)| ≤ 1
y

sup
ζ∈R2

+

{u(ζ)− u(z)},

|∇u(z)| ≤ 2
πy

sup
ζ∈R2

+

|u(ζ)− u(z)|,

|∇u(z)| ≤ 2
πy

sup
ζ∈R2

+

|u(ζ)− c| (4.2.11)

hold at any point z = (x, y) ∈ R2
+.

As a particular case of (4.2.11) one has

|∇u(z)| ≤ 1
πy

Ou(R2
+)

for every z ∈ R2
+.
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4.3 Estimates for directional derivatives with constant
direction

In this section we reformulate inequalities for analytic functions obtained in
the three preceding chapters for directional derivatives of harmonic functions.

We are going to present sharp estimates for the increment of the directional
derivative and the gradient of a harmonic function inside of a domain in terms
of various characteristics of directional derivatives.Within this section by 3ϑ

we mean a unit vector at an angle ϑ with respect to the x-axis.

In the next statement we assume that G is a bounded domain in R2,
bounded by a Jordan curve. Putting α(z) = α = const and

f(z) = eiβ

(
∂u

∂x
− i

∂u

∂y

)
(4.3.1)

in (1.7.1), (2.6.10) and (3.7.8), and using the equalities

max
α

C∞(γ, α) = max
α

K∞(γ, α) =
2
π

log
1 + γ

1− γ

(see Corollaries 2.4, 3.6), we arrive at

Corollary 4.4. For any harmonic function u in G any real constant c and
any points z, ξ ∈ G the sharp inequalities

∂u(z)
∂3α+β

− ∂u(ξ)
∂3α+β

≤
2|Ψ(z)|

(
1− |Ψ(z)| cos α

)

1− |Ψ(z)|2 sup
ζ∈G

{
∂u(ζ)
∂3β

− ∂u(ξ)
∂3β

}
,

∣∣∣∣
∂u(z)
∂3α+β

− ∂u(ξ)
∂3α+β

∣∣∣∣ ≤ C∞
(
|Ψ(z)|, α

)
sup
ζ∈G

∣∣∣∣
∂u(ζ)
∂3β

− ∂u(ξ)
∂3β

∣∣∣∣ ,

∣∣∣∣
∂u(z)
∂3α+β

− ∂u(ξ)
∂3α+β

∣∣∣∣ ≤ K∞

(
|Ψ(z)|, α

)
sup
ζ∈G

∣∣∣∣
∂u(ζ)
∂3β

− c

∣∣∣∣

hold with arbitrary constants α, β and the coefficients C∞(γ, α), K∞(γ, α)
defined by (2.4.2) and (3.4.3), respectively.

In particular,

|∇u(z)−∇u(ξ)| ≤ 2|Ψ(z)|
1− |Ψ(z)| sup

ζ∈G

{
∂u(ζ)

∂3
− ∂u(ξ)

∂3

}
,

|∇u(z)−∇u(ξ)| ≤ 2
π

log
(

1 + |Ψ(z)|
1− |Ψ(z)|

)
sup
ζ∈G

∣∣∣∣
∂u(ζ)

∂3
− ∂u(ξ)

∂3

∣∣∣∣ , (4.3.2)
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|∇u(z)−∇u(ξ)| ≤ 2
π

log
(

1 + |Ψ(z)|
1− |Ψ(z)|

)
sup
ζ∈G

∣∣∣∣
∂u(ζ)

∂3
− c

∣∣∣∣ , (4.3.3)

where 3 is an arbitrary fixed unit vector.
As a particular case of (4.3.3) one has

|∇u(z)−∇u(ξ)| ≤ 1
π

log
(

1 + |Ψ(z)|
1− |Ψ(z)|

)
O∂u/∂/(G).

Remark 4.1. Each inequality in Corollary 4.4 can be written, in particular,
for the disk DR and an arbitrary point ξ ∈ DR. We arrive at corresponding
estimates putting Φ(w) = R(ξ − Rw)/(R − ξw) and setting Ψ(z) = R(ξ −
z)/(R2 − zξ) in Corollary 4.4. For example, inequality (4.3.2) takes the form

|∇u(z)−∇u(ξ)| ≤ 2
π

log
(
|R2 − zξ|+ R|ξ − z|
|R2 − zξ| −R|ξ − z|

)
sup
|ζ|<R

∣∣∣∣
∂u(ζ)

∂3
− ∂u(ξ)

∂3

∣∣∣∣ .

Next we write explicit sharp estimates for the increment of the directional
derivative and the gradient of a harmonic function in the half-plane. Putting
α(z) = α = const and combining (4.3.1) with (1.7.6), (2.6.14), and (3.7.14)
we obtain the following assertion.

Corollary 4.5. For any harmonic function u in R2
+ , any real constant c and

any z, ξ ∈ R2
+ the sharp inequalities

∂u(z)
∂3α+β

− ∂u(ξ)
∂3α+β

≤
2|z − ξ|

(
|z − ξ| − |z − ξ| cos α

)

|z − ξ|2 − |z − ξ|2
sup

ζ∈R2
+

{
∂u(ζ)
∂3β

− ∂u(ξ)
∂3β

}
,

∣∣∣∣
∂u(z)
∂3α+β

− ∂u(ξ)
∂3α+β

∣∣∣∣ ≤ C∞

(
|z − ξ|
|z − ξ|

, α

)
sup

ζ∈R2
+

∣∣∣∣
∂u(ζ)
∂3β

− ∂u(ξ)
∂3β

∣∣∣∣ ,

∣∣∣∣
∂u(z)
∂3α+β

− ∂u(ξ)
∂3α+β

∣∣∣∣ ≤ K∞

(
|z − ξ|
|z − ξ|

, α

)
sup

ζ∈R2
+

∣∣∣∣
∂u(ζ)
∂3β

− c

∣∣∣∣

hold with arbitrary constants α, β and the coefficients C∞(γ, α), K∞(γ, α)
defined by (2.4.2) and (3.4.3), respectively.

In particular,

|∇u(z)−∇u(ξ)| ≤ 2|z − ξ|
|z − ξ| − |z − ξ|

sup
ζ∈R2

+

{
∂u(ζ)

∂3
− ∂u(ξ)

∂3

}
,
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|∇u(z)−∇u(ξ)| ≤ 2
π

log
(
|z − ξ|+ |z − ξ|
|z − ξ| − |z − ξ|

)
sup

ζ∈R2
+

∣∣∣∣
∂u(ζ)

∂3
− ∂u(ξ)

∂3

∣∣∣∣ ,

|∇u(z)−∇u(ξ)| ≤ 2
π

log
(
|z − ξ|+ |z − ξ|
|z − ξ| − |z − ξ|

)
sup

ζ∈R2
+

∣∣∣∣
∂u(ζ)

∂3
− c

∣∣∣∣ , (4.3.4)

where 3 is an arbitrary fixed unit vector.
As a special case of (4.3.4) one has

|∇u(z)−∇u(ξ)| ≤ 1
π

log
(
|z − ξ|+ |z − ξ|
|z − ξ| − |z − ξ|

)
O∂u/∂/(R2

+).

4.4 Estimates for directional derivatives with varying
direction

Here we collect another group of sharp inequalities for directional derivatives
of functions harmonic in a disk. Unlike estimates in the previous section,
we take directional derivatives on the boundary in the directions having a
constant angle with respect to the radial vector.

In this section we put α(z) = α = const. By lϑ we denote a unit vector
having a constant angle ϑ with the radial direction. As before, we use the
notation |z| = r.

The corollary below is based on an inequality for analytic functions ob-
tained in Section 1.4. This assertion contains an estimate of the directional
derivative of a harmonic function in the disk DR by the maximum of the di-
rectional derivative on ∂DR. The direction vector in question has a constant
angle with the radius.

Corollary 4.6. Let u be either a harmonic function on DR in C1(DR), or a
harmonic function on R2\DR in C1(R2\DR). There hold sharp inequalities

∂u(z)
∂lα+β

≤ 2R(R− r cos α)
R2 − r2

max
∂DR

∂u

∂lβ
, r < R, (4.4.1)

∂u(z)
∂lα+β

≤ 2R2(r −R cos α)
r(r2 −R2)

max
∂DR

∂u

∂lβ
, r > R, (4.4.2)

where lβ can be directed, for instance, either normally or tangentially to ∂DR.
In particular ,

|∇u(z)| ≤ 2R

R− r
max
∂DR

∂u

∂lβ
, r < R, (4.4.3)
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|∇u(z)| ≤ 2R2

r(r −R)
max
∂DR

∂u

∂lβ
, r > R. (4.4.4)

Proof. Inequality (4.4.1) can be deduced from (1.4.10) by putting

f(z) = eiβz

(
∂u

∂x
− i

∂u

∂y

)
, (4.4.5)

where β ∈ [0, 2π] and u is a harmonic function on DR in C1(DR). It fol-
lows from the sharpness of the constant in (1.4.10) that the factor 2R(R −
r cos α)/(R2 − r2) in (4.4.1) cannot be diminished.

Let u(z) be a harmonic function on R2\DR in the class C1(R2\DR). By
z∗ ∈ DR we denote a point symmetric to z with respect to the circle ∂DR: z∗ =
R2/ z. The Kelvin transform of u(z) is u∗(z∗) = u(R2z∗/|z∗|2). Let (r, ϕ) and
(r∗, ϕ) be polar coordinates of z and z∗, and let ũ(r, ϕ) = u(z), ũ∗(r∗, ϕ) =
u∗(z∗). Since ũ(r, ϕ) = ũ∗(r∗, ϕ) and rr∗ = R2 we have

ũ∗(r∗, ϕ) = ũ(R2/r∗, ϕ).

This implies

∇u∗(z∗) =
∂ũ∗

∂r∗
er∗ +

1
r∗

∂ũ∗

∂ϕ
eϕ = − r2

R2

∂ũ

∂r
er +

r

R2

∂ũ

∂ϕ
eϕ

and therefore

∇u∗(z∗) =
r2

R2

(
−∂ũ

∂r
er +

1
r

∂ũ

∂ϕ
eϕ

)
. (4.4.6)

Let η = (η1, η2), |η| = 1 and let the unit vector η1er + η2eϕ form a constant
angle β with the radial direction, i.e. η1er + η2eϕ = lβ . Thus, −η1er + η2eϕ =
lπ−β and by (4.4.6)

∂u∗(z∗)
∂lπ−β

=
r2

R2

(
∂ũ

∂r
η1 +

1
r

∂ũ

∂ϕ
η2

)
=

r2

R2

∂u(z)
∂lβ

. (4.4.7)

Therefore

∂u∗(z∗)
∂lπ−β

∣∣∣
r∗=R

=
∂u(z)
∂lβ

∣∣∣
r=R

. (4.4.8)

By (4.4.1)

∂u∗(z∗)
∂lα+π−β

≤ 2R(R− r∗ cos α)
R2 − r∗2

max
∂DR

∂u∗(z∗)
∂lπ−β

.

This and (4.4.7), (4.4.8) imply

r2

R2

∂u(z)
∂lβ−α

≤ 2R(R− r∗ cos α)
R2 − r∗2

max
∂DR

∂u(z)
∂lβ

.
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Replacing here α by −α and using rr∗ = R2 we arrive at (4.4.2) with the
sharp constant.

Inequalities (4.4.3), (4.4.4) follow immediately from (4.4.1), (4.4.2). )*

Using the equality
∂u(z)
∂lπ+ϑ

= −∂u(z)
∂lϑ

,

and putting π + α in place of α in (4.4.1) and (4.4.2), we obtain the following
lower estimates for the directional derivative

∂u(z)
∂lα+β

≥ −2R(R + r cos α)
R2 − r2

max
∂DR

∂u

∂lβ
, r < R, (4.4.9)

∂u(z)
∂lα+β

≥ −2R2(R + r cos α)
r(r2 −R2)

max
∂DR

∂u

∂lβ
, r > R. (4.4.10)

Setting α = 0 in (4.4.1), (4.4.2) and (4.4.9), (4.4.10), we get the two-sided
estimates

− 2R

R− r
max
∂DR

∂u

∂lβ
≤ ∂u(z)

∂lβ
≤ 2R

R + r
max
∂DR

∂u

∂lβ
, r < R, (4.4.11)

− 2R2

r(r −R)
max
∂DR

∂u

∂lβ
≤ ∂u(z)

∂lβ
≤ 2R2

r(R + r)
max
∂DR

∂u

∂lβ
. r > R, (4.4.12)

Similarly, putting α = π/2 in (4.4.1), (4.4.2) and (4.4.9), (4.4.10), we
obtain

∣∣∣∣
∂u(z)
∂lπ

2 +β

∣∣∣∣ ≤
2R2

R2 − r2
max
∂DR

∂u

∂lβ
, r < R, (4.4.13)

∣∣∣∣
∂u(z)
∂lπ

2 +β

∣∣∣∣ ≤
2R2

r2 −R2
max
∂DR

∂u

∂lβ
, r > R. (4.4.14)

All inequalities (4.4.9)-(4.4.14) are valid under assumptions in Corollary 4.6.

The next assertion is based on inequalities for analytic functions derived
in Sections 2.3-2.5. We give an estimate of the directional derivative of a
harmonic function inside or outside the circle ∂DR by the Lp-norm of the
directional derivative on ∂DR.

Corollary 4.7. Let u be either a harmonic function on DR with

!{zeiβ(u′x − iu′y)} ∈ hp(DR)
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or a harmonic function on R2\DR with

!{zeiβ(u′x − iu′y)} ∈ hp(R2\DR),

1 ≤ p ≤ ∞. There the sharp inequalities
∣∣∣∣
∂u(z)
∂lα+β

∣∣∣∣ ≤
R(p−1)/p

r
Cp

( r

R
, α

) ∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
p

, r < R, (4.4.15)

∣∣∣∣
∂u(z)
∂lα+β

∣∣∣∣ ≤
R(p−1)/p

r
Cp

(
R

r
, α

) ∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
p

, r > R, (4.4.16)

hold, where the coefficient Cp(γ, α) is given by (2.2.3). Here lβ can be directed,
for instance, either normally or tangentially to ∂DR.

As particular cases of (4.4.15) and (4.4.16) one has

|∇u(z)| ≤ R

π(R2 − r2)

∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
1

, (4.4.17)

|∇u(z)| ≤

√
R

π(R2 − r2)

∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
2

, (4.4.18)

|∇u(z)| ≤ 2R

πr
log

(
R + r

R− r

) ∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
∞

, (4.4.19)

for r < R, and

|∇u(z)| ≤ R

π(r2 −R2)

∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
1

, (4.4.20)

|∇u(z)| ≤ R

r

√
R

π(r2 −R2)

∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
2

, (4.4.21)

|∇u(z)| ≤ 2R

πr
log

(
r + R

r −R

) ∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
∞

, (4.4.22)

for r > R.

Proof. Applying inequality (2.2.1) to the function

f(z) = eiβz

(
∂u

∂x
− i

∂u

∂y

)
,
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we obtain
∣∣∣∣
∂u(z)
∂lα+β

∣∣∣∣ ≤
Cp (z, α) R

|z|

∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
p

. (4.4.23)

Taking into account (2.2.2) and (2.2.3) we arrive at inequality (4.4.15).
Now we pass to the case of a harmonic function outside a disk. Keeping

the notation used in Corollary 4.6 and replacing β by π−β in (4.4.23) we get
∣∣∣∣
∂u∗(z∗)
∂lα+π−β

∣∣∣∣ ≤
Cp (z∗, α) R

|z∗|

∣∣∣∣

∣∣∣∣
∂u∗

∂lπ−β

∣∣∣∣

∣∣∣∣
p

,

which together with (4.4.7) and (4.4.8) implies

r2

R2

∣∣∣∣
∂u(z)
∂lβ−α

∣∣∣∣ ≤
Cp (z∗, α) R

|z∗|

∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
p

.

Using the relation Cp(z,−α) = Cp(z, α), proved in Proposition 2.1, and the
equality rr∗ = R2 we rewrite the last inequality as

∣∣∣∣
∂u(z)
∂lβ+α

∣∣∣∣ ≤
Cp (z∗, α) R

r

∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
p

. (4.4.24)

Using again (2.2.2), (2.2.3) and the equality rr∗ = R2 we deduce

Cp (z∗, α) =
1

R1/p
Cp

(
R

r
, α

)
.

Combining the last equality and (4.4.24) we arrive at (4.4.16).
Sharp inequalities for the gradient (4.4.17), (4.4.18) and (4.4.20), (4.4.21)

follow directly from (4.4.15), (4.4.16) and (2.3.3), (2.3.9) together with (2.2.2).
Finally, sharp estimates (4.4.19), (4.4.22) result from (4.4.15), (4.4.16) to-
gether with relation (2.4.21). )*

Putting α = 0, p = ∞ in (4.4.15), (4.4.16) and using (2.4.2) we obtain the
sharp estimates

∣∣∣∣
∂u(z)
∂lβ

∣∣∣∣ ≤
4R

πr
arctan

( r

R

) ∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
∞

, r < R,

∣∣∣∣
∂u(z)
∂lβ

∣∣∣∣ ≤
4R

πr
arctan

(
R

r

) ∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
∞

, r > R. (4.4.25)

Note that the constant in (4.4.25) does not exceed the unity, hence |∂u/∂lβ |
obeys the maximum principle outside the disk.
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For α = π/2 the constant Cp(γ, π/2) = C',p(γ) in (4.4.15) and (4.4.16)
was found in Section 2.5. In particular, from (4.4.15), (4.4.16) and (2.4.2) we
obtain the sharp inequalities

∣∣∣∣
∂u(z)
∂lπ

2 +β

∣∣∣∣ ≤
2R

πr
log

(
R + r

R− r

) ∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
∞

, r < R,

∣∣∣∣
∂u(z)
∂lπ

2 +β

∣∣∣∣ ≤
2R

πr
log

(
r + R

r −R

) ∣∣∣∣

∣∣∣∣
∂u

∂lβ

∣∣∣∣

∣∣∣∣
∞

, r > R.



5

Estimates for derivatives of analytic functions

5.1 Introduction

In Chapters 1-3 we derived estimates (1.7.5), (2.6.13), (3.7.12) for the modulus
of the first derivative of an analytic function in the disk DR with sharp factors
in the right hand-sides. In particular, the estimate

|f ′(z)| ≤ 4R

π(R2 − |z|2) sup
|ζ|=R

|!f(ζ)− c|

and its corollary

|f ′(z)| ≤ 2R

π(R2 − |z|2)O(f (DR)

are closely related to the questions we address in the present chapter. Here we
obtain sharp pointwise estimates for the modulus of higher derivatives of an
analytic function f in the disk DR. The right-hand sides in these estimates
involve the Lp(∂DR)-norm of the real part of the difference of f and a polyno-
mial. Similar sharp estimates with the Lp(∂DR)-norm of |f | in the right-hand
side were obtained by Makintyre and Rogosinski [68] and Szász [85].

We mention some known estimates for |f (n)(0)|, n ≥ 1. If the real part of
f is positive in DR, then the following Carathéodory inequality holds

|f (n)(0)| ≤ 2n!
Rn
!f(0) (5.1.1)

(see Carathéodory [23]). Another known estimate

|f (n)(0)| ≤ 2n!
Rn

max
|ζ|=R

!
{
f(ζ)− f(0)

}
(5.1.2)

for functions f analytic on DR (see, for example, Holland [46], Ch. 3, Ing-
ham [49], Ch. 3, Rajagopal [77]), is closely connected with the Carathéodory
inequality (5.1.1) and the Landau inequality
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|f (n)(0)| ≤ 2n!
Rn

max
|ζ|=R

{
|f(ζ)| − |f(0)|

}
(5.1.3)

(see Landau [61], I, § 4, pp. 33-34). Namely, the Carathéodory inequality
and the Landau inequality are corollaries of (5.1.2). Indeed, replacing f by
feiα in (5.1.2), estimating then !{f(ζ)eiα} by |f(ζ)| and using the equality
max{eiα!f(0) : α ∈ R} = |f(0)| we deduce (5.1.3). Further, setting −f in
place of f in (5.1.2) we obtain

|f (n)(0)| ≤ 2n!
Rn

max
|ζ|=R

!
{
f(0)− f(ζ)

}
, (5.1.4)

which implies (5.1.1) whenever !f(ζ) ≥ 0 for |ζ| = R. Another proof of
(5.1.1) is given by Aizenberg, Aytuna and Djakov [4]. For sharp estimates of
|f (n)(z)|/!f(z), where f is analytic in DR with !f > 0 see Ruscheweyh [81],
Yamashita [88].

Among estimates of |f (n)(z)| by values of !f on the circle |ζ| = R, there is
a corollary of the Hadamard-Borel-Carathéodory inequality (1.1.3) (see, e.g.,
Holland [46], Ch. 3, Titchmarsh [86], Ch. 5)

|f (n)(z)| ≤ 2n+2n!R
(R− r)n+1

max
|ζ|=R

{
!f(ζ) + |f(0)|

}
, (5.1.5)

where |z| = r < R, n ≥ 1, f is an analytic in DR and !f ∈ C(DR).
We note also that the inequality

|f (n)(0)| ≤ n!
Rn

[Mf (R)]2 − |f(0)|2

Mf (R)
, (5.1.6)

with f bounded on D and Mf (R) being the supremum of |f(z)| on D, was
obtained by Landau (see [59], pp. 305-306) for n = 1 and by F. Wiener (see
Bohr [17], Jensen [50]) for all n. A proof of (5.1.6), different from that given
by Wiener was found by Paulsen, Popescu and Singh [72]. A generalization of
(5.1.6) is due to Jensen [50].

As corollary of (5.1.6), Rajagopal [78] obtained the inequality

|f (n)(z)| ≤ n!R
(R− r)n+1

[Mf (R)]2 − |f(0)|2

Mf (R)
(5.1.7)

for derivatives in any point z ∈ DR. Another direction of generalizing (5.1.6)
is related to the following so called invariant form of Schwarz’s lemma due to
Pick (see Garnett [37], Ch. 1, § 1 and Jensen [50], Lindelöf [63]):

|f ′(z)| ≤ R

R2 − r2

[Mf (R)]2 − |f(z)|2

Mf (R)
. (5.1.8)

The following sharp estimate for derivatives of f at an arbitrary point of DR,
which includes (5.1.6) and (5.1.8),
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|f (n)(z)| ≤ n!R
(R + r)(R− r)n

[Mf (R)]2 − |f(z)|2

Mf (R)
, (5.1.9)

is due to Ruscheweyh [82] who applied classical methods. A different approach
to Schwarz-Pick type estimates and their generalizations was worked out by
Anderson and Rovnyak [10], Bénéteau, Dahlner and Khavinson [12] as well as
by MacCluer, Stroethoff and Zhao [65]. Extensions to several variables can be
found in the articles by Bénéteau, Dahlner and Khavinson [12] and MacCluer,
Stroethoff and Zhao [65].

In the present chapter, we consider analytic functions in DR with the real
part in hp(DR), and obtain estimates with sharp constants for |f (n)(z)|, n ≥ 1,
z ∈ DR, formulated in terms of various characteristics of !f on the circle
|ζ| = R. As before, |z| = r < R and || · ||p denote the Lp-norm of a real valued
function on the circle |ζ| = R, where 1 ≤ p ≤ ∞.

In Section 2 of this chapter we find a representation for the best constant
in the inequality

|f (n)(z)| ≤ Hn,p(z)||!{f − Pm}||p, (5.1.10)

where n ≥ 1, and Pm is a polynomial of degree m,m ≤ n− 1. From (5.1.10)
we obtain estimates with right-hand sides containing the best polynomial
approximation of !f on the circle |ζ| = R in the Lp(∂DR)-norm

|f (n)(z)| ≤ Hn,p(z)En−1,p(!f) (5.1.11)

with n ≥ 1. Here and henceforth

Ek,p(!f) = inf
P∈{Pk}

||!{f − P}||p,

where the infimum is taken over the set {Pk} of all polynomials of degree not
higher than k.

In Section 3 we find the values Hn,p(0) for 1 ≤ p ≤ ∞. For instance,

Hn,1(0) =
n!

πRn+1
, Hn,2(0) =

n!√
πR(2n+1)/2

, Hn,∞(0) =
4n!
πRn

.

Section 4 concerns corollaries of inequality (5.1.10) for p = 1. First, we
prove the equality

Hn,1(z) =
n!

π(R− r)n+1
,

where |z| = r < R. From (5.1.10) with p = 1 and m = 0 we deduce the sharp
estimate

|f (n)(z)| ≤ 2n!R
(R− r)n+1

sup
|ζ|<R

!
{
f(ζ)− f(0)

}
, (5.1.12)
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where n ≥ 1, and z is a fixed point of the circle |z| = r < R. The last
inequality can be viewed as a generalization of the real part theorem (1.1.1)
to higher order derivatives. We also show that the sharp constants in (5.1.5)
and (5.1.12) coincide. For other proofs of (5.1.12) see Ingham ([49], Ch. 3)
and Rajagopal [77].

Similar sharp estimates are obtained when the right-hand side of (5.1.12)
involves the expressions

sup
|ζ|<R

{
|!f(ζ)| − |!f(0)|

}
, sup

|ζ|<R

{
|f(ζ)| − |f(0)|

}
,

as well as !f(0) provided that !f(ζ) > 0 for |ζ| < R. As particular cases,
the estimates just mentioned contain the Landau inequality (5.1.3), and the
Carathéodory inequality (5.1.1).

The lower estimates for the constants in (5.1.12) and above mentioned
similar estimates are obtained with the help of a family of test functions
which are analytic in DR.

In Section 5 we deduce corollaries of (5.1.11) for p = 2. In particular, we
show that the inequality (5.1.11) with p = 2 holds with the sharp constant

Hn,2(z) =
1

R(2n+1)/2
Hn,2

( r

R

)
,

where

Hn,2(γ) =
n!√

π(1− γ2)(2n+1)/2

{
n∑

k=0

(n
k

)2
γ2k

}1/2

,

and

En,2(!f) =

∣∣∣∣∣

∣∣∣∣∣!
{

f −
n∑

k=0

f (k)(0)ζk

k!

}∣∣∣∣∣

∣∣∣∣∣
2

.

In Section 6 of the chapter, we deduce corollaries of (5.1.11) for p = ∞.
They contain an estimate for |f (n)(z)| formulated in terms of

On,(f (DR) = inf
P∈{Pn}

O({f−P}(DR),

where O(f (DR) is the oscillation of !f on the disk DR.

5.2 Estimate for |f (n)(z)| by ||!{f − Pm}||p. General
case

In the sequel, we use the notation

Em,p(!f) = inf
P∈{Pm}

||!{f − P}||p (5.2.1)



5.2 Estimate for |f (n)(z)| by ||!{f − Pm}||p. General case 73

for the best approximation of !f by the real part of algebraic polynomials in
Lp(∂DR)-norm, where {Pm} is the set of all polynomials of degree at most
m. The notation Ep(!f), introduced previously, coincides with E0,p(!f).

In what follows by Pm we denote a polynomial of degree m.

The following lemma will be used in the next chapters, in particular, in
the proof of the main assertion of this chapter.

Lemma 5.1. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞. Then
for all real α and for any point z ∈ DR there holds

!{eiαf (n)(z)} =
n!
πR

∫

|ζ|=R
!

{
ζeiα

(ζ − z)n+1

}
!f(ζ)|dζ|, (5.2.2)

where n ≥ 1, and

!{eiα∆f (n)(z)} =
n!
πR

∫

|ζ|=R
!

{
ζn+1 − (ζ − z)n+1

(ζ − z)n+1ζn
eiα

}
!f(ζ)|dζ|, (5.2.3)

where n ≥ 0.

Proof. Differentiating with respect to the parameter z in the right-hand side
of (1.3.1) we obtain

f (n)(z) =
n!
πR

∫

|ζ|=R

ζ

(ζ − z)n+1
!f(ζ)|dζ|, (5.2.4)

which leads to (5.2.2).
By (5.2.2), for n ≥ 1 we have

!{eiα(f (n)(z)− f (n)(0)} =
n!
πR

∫

|ζ|=R
!

{
ζn+1 − (ζ − z)n+1

(ζ − z)n+1ζn
eiα

}
!f(ζ)|dζ|.

In view of Lemma 1.1, the last equality, i.e. (5.2.3), holds also for n = 0. )*

We introduce the notation

Gn,z,α(ζ) = !
{

ζeiα

(ζ − z)n+1

}
, (5.2.5)

where |ζ| = R, |z| < R and α is a real constant.

The main objective of this section is

Proposition 5.1. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
1 ≤ p ≤ ∞. Further, let n ≥ 1, and let Pm be a polynomial of degree m ≤ n−1.
Then for any fixed point z, |z| = r < R, the inequality

|f (n)(z)| ≤ Hn,p(z)||!{f − Pm}||p (5.2.6)
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holds with the sharp factor

Hn,p(z) =
1

R(np+1)/p
Hn,p

( r

R

)
, (5.2.7)

where

Hn,p(γ) =
n!
π

sup
α

{∫

|ζ|=1

∣∣∣∣!
{

ζeiα

(ζ − γ)n+1

}∣∣∣∣
q

|dζ|
}1/q

, (5.2.8)

and 1/p + 1/q = 1.
In particular,

|f (n)(z)| ≤ Hn,p(z)En−1,p(!f). (5.2.9)

Proof. Using Lemma 5.1 and notation (5.2.5), we have

|f (n)(z)| = n!
πR

sup
α

∫

|ζ|=R
Gn,z,α(ζ) !f(ζ) |dζ|. (5.2.10)

The last equality implies the representation

Hn,p(z) =
n!
πR

sup
α
||Gn,z,α||q (5.2.11)

for the sharp constant Hn,p(z) in

|f (n)(z)| ≤ Hn,p(z)||!f ||p. (5.2.12)

Suppose 1 < p ≤ ∞. The case p = 1 (q = ∞) in (5.2.11) is handled by
passage to the limit.

Representation (5.2.11) can be written, in view of (5.2.5), as

Hn,p(z) =
n!
πR

sup
β

{∫

|ξ|=R

∣∣∣∣!
{

ξeiβ

(ξ − z)n+1

}∣∣∣∣
q

|dξ|
}1/q

. (5.2.13)

We rewrite this representation to have it in the form stated in Proposition.
Setting z = reiτ , ξ = Reit, ϕ = t− τ in (5.2.13), we obtain

Hn,p(z) =
n!
πR

sup
β

{∫ 2π+τ

τ

∣∣∣∣!
{

Reiteiβ

(Reit − reiτ )n+1

}∣∣∣∣
q

Rdt

}1/q

=
n!
πR

sup
β

{∫ 2π

0

∣∣∣∣!
{

Reiϕei(β−nτ)

(Reiϕ − r)n+1

}∣∣∣∣
q

Rdϕ

}1/q

=
n!
πR

sup
β

{∫

|ζ|=R

∣∣∣∣!
{

ζei(β−nτ)

(ζ − r)n+1

}∣∣∣∣
q

|dζ|
}1/q

,
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where ζ = Reiϕ. Putting here α = β − nτ and using 2π-periodicity of the
resulting function in α, we find

Hn,p(z) =
n!
πR

sup
α

{∫

|ζ|=R

∣∣∣∣!
{

ζeiα

(ζ − r)n+1

}∣∣∣∣
q

|dζ|
}1/q

. (5.2.14)

Adopting the notation

Hn,p(γ) =
n!
π

sup
α

{∫

|ζ|=1

∣∣∣∣!
{

ζeiα

(ζ − γ)n+1

}∣∣∣∣
q

|dζ|
}1/q

, (5.2.15)

where γ = r/R, we rewrite (5.2.14) as

Hn,p(z) =
1

R(np+1)/p
Hn,p

( r

R

)
,

which together with (5.2.15) proves (5.2.7) and (5.2.8).
Replacing f by f −Pm with m ≤ n− 1 in (5.2.12), we arrive at inequality

(5.2.6), which leads immediately to (5.2.9). )*

5.3 Estimate for |f (n)(0)| by ||!{f − Pm}||p

The following assertion contains an estimate for |f (n)(0)| with explicit sharp
constant as a consequence of the representation for Hn,p(z) given in Proposi-
tion 5.1.

Corollary 5.1. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
Further, let n ≥ 1, and let Pm be a polynomial of degree m ≤ n− 1. Then

|f (n)(0)| ≤ Hn,p(0)||!{f − Pm}||p, (5.3.1)

and the exact constant Hn,p(0) is given by

Hn,p(0) =






n!
πRn+1

for p = 1,

2(p−1)/pn!
π(p+1)/(2p)R(np+1)/p




Γ

(
2p−1
2p−2

)

Γ
(

3p−2
2p−2

)





(p−1)/p

for 1 < p < ∞,

4n!
πRn

for p = ∞.

In particular,
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Hn,2(0) =
n!√

πR(2n+1)/2
.

As a special case of (5.3.1) one has

|f (n)(0)| ≤ Hn,p(0)En−1,p(!f). (5.3.2)

Proof. Inequalities (5.3.1) and (5.3.2) are particular cases of (5.2.6) and (5.2.9)
for z = 0, respectively. We derive explicit formulas for Hn,p(0).

From (5.2.8) with p = 1 it follows that

Hn,1(0) = sup
α

sup
|ζ|=1

∣∣∣∣!
(

eiα

ζn

)∣∣∣∣ = sup
|ζ|=1

sup
α

∣∣∣∣!
(

eiα

ζn

)∣∣∣∣ = sup
|ζ|=1

1
|ζ|n = 1,

and, by (5.2.7), we obtain

Hn,1(0) =
n!

πRn+1
.

For 1 < p ≤ ∞, by (5.2.7) and (5.2.8) we have

Hn,p(0) =
n!

πR(np+1)/p
sup

α

{∫

|ζ|=1

∣∣∣∣!
(

eiα

ζn

)∣∣∣∣
p/(p−1)

|dζ|
}(p−1)/p

.

Putting here ζ = eiϕ we find

Hn,p(0) =
n!

πR(np+1)/p
sup

α

{∫ 2π

0
| cos(α− nϕ)|p/(p−1)dϕ

}(p−1)/p

. (5.3.3)

Changing the variable ϑ = α− nϕ in the last integral, we obtain
∫ 2π

0
| cos(α− nϕ)|p/(p−1)dϕ = − 1

n

∫ α−2nπ

α
| cos ϑ|p/(p−1)dϑ

=
1
n

∫ α

α−2nπ
| cos ϑ|p/(p−1)dϑ =

1
n

∫ 2nπ

0
| cos ϑ|p/(p−1)dϑ

=
∫ 2π

0
| cos ϑ|p/(p−1)dϑ = 4

∫ π/2

0
(cos ϑ)p/(p−1)dϑ.

Taking into account the equality
∫ π/2

0
coss xdx =

√
π

2
Γ

(
s+1
2

)

Γ
(

s+2
2

) , s > −1,

gives
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∫ 2π

0
| cos(α− nϕ)|p/(p−1)dϕ = 2

√
π

Γ
(

2p−1
2(p−1)

)

Γ
(

3p−2
2(p−1)

) ,

which together with (5.3.3) implies

Hn,p(0) =
n!

πR(np+1)/p




2
√

π
Γ

(
2p−1

2(p−1)

)

Γ
(

3p−2
2(p−1)

)






(p−1)/p

.

In particular,

Hn,2(0) =
√

2n!
π3/4R(2n+1)/2

[
Γ (3/2)
Γ (2)

]1/2

=
n!√

πR(2n+1)/2
,

Hn,∞(0) =
2n!√
πRn

Γ (1)
Γ (3/2)

=
4n!
πRn

.

)*

5.4 The case p = 1 and its corollaries

5.4.1 Explicit estimate in the case p = 1

In this section, we deal with inequality (5.2.6) for p = 1 and its consequences.
First we derive an explicit representation for Hn,1(z).

Corollary 5.2. Let f be analytic on DR with !f ∈ h1(DR). Further, let
n ≥ 1, and let Pm be a polynomial of degree m ≤ n − 1. Then for any fixed
point z, |z| = r < R, there holds

|f (n)(z)| ≤ Hn,1(z)||!{f − Pm}||1 (5.4.1)

with the sharp constant

Hn,1(z) =
n!

π(R− r)n+1
. (5.4.2)

In particular,

|f (n)(z)| ≤ Hn,1(z)En−1,1(!f). (5.4.3)

Proof. Inequalities (5.4.1) and (5.4.3) are particular cases of Proposition 5.1.
Representation (5.2.11) for p = 1 can be written as

Hn,1(z) =
n!
πR

sup
α

sup
|ζ|=R

∣∣∣∣!
{

ζeiα

(ζ − z)n+1

}∣∣∣∣ (5.4.4)
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Permutating the suprema in (5.4.4), we obtain the equality

Hn,1(z) =
n!
πR

sup
|ζ|=R

sup
α

∣∣∣∣!
{

ζeiα

(ζ − z)n+1

}∣∣∣∣ =
n!
πR

sup
|ζ|=R

∣∣∣∣
ζ

(ζ − z)n+1

∣∣∣∣ ,

which proves (5.4.2). )*

The next four assertions contain corollaries of inequality (5.4.1). They are
obtained in the following manner.

We put for brevity ω = !P0(z). Letting first m = 0, we put in (5.4.1)
successively

ω = sup
|ζ|<R

!f(ζ), ω = sup
|ζ|<R

|!f(ζ)|, ω = sup
|ζ|<R

|f(ζ)|,

and arrive at inequalities for derivatives of an analytic function with right-
hand sides

sup
|ζ|<R

!∆f(ζ), sup
|ζ|<R

∆|!f(ζ)|, sup
|ζ|<R

∆|f(ζ)|,

respectively.
The first of the resulting inequalities has the same right-hand side as that

in the Hadamard-Borel-Carathéodory inequality (1.1.2). It can be viewed as
a generalization to derivatives of Hadamard’s real part theorem (1.1.1). We
shall also obtain a sharp constant in the related estimate (5.1.5).

The second inequality we shall get is similar to the third which contains
the Landau inequality (5.1.3) as a particular case.

Besides, we obtain estimates for derivatives of an analytic function subject
to the condition !f(ζ) > 0 for ζ ∈ DR with !f(0) in the right-hand side. Such
inequalities generalize the Carathéodory inequality (5.1.1). We show that all
inequalities we get are sharp.

5.4.2 Hadamard’s real part theorem for derivatives

The estimate for |f (n)(z)| with n ≥ 1 below contains the value

sup
|ζ|<R

!f(ζ)−!f(0)

in the right-hand side. In particular, for f(0) = 0, this inequality generalizes
the Hadamard’s real part theorem (1.1.1) for derivatives.

Corollary 5.3. Let f be analytic on DR with !f bounded from above. Then
for any fixed z, |z| = r < R, the inequality holds with best constant

|f (n)(z)| ≤ 2n!R
(R− r)n+1

sup
|ζ|<R

!∆f(ζ), (5.4.5)
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where n ≥ 1.
In particular, for functions f vanishing at z = 0, the inequality

|f (n)(z)| ≤ 2n!R
(R− r)n+1

sup
|ζ|<R

!f(ζ) (5.4.6)

holds with the sharp constant.

Proof. 1. Proof of inequality (5.4.5). By Corollary 5.2,

|f (n)(z)| ≤ n!
π(ρ− r)n+1

||!f − ω||L1(∂Dρ), (5.4.7)

where ρ ∈ (r, R), ω is a real constant and n ≥ 1.
We set

ω = Af (R) = sup
|ζ|<R

!f(ζ)

in (5.4.7). Since, by the mean value theorem,

||!f −Af (R)||L1(∂Dρ) =
∫

|ζ|=ρ
{Af (R)−!f(ζ)} |dζ|

= 2πρ {Af (R)−!f(0)} = 2πρ sup
|ζ|<R

!∆f(ζ),(5.4.8)

it follows from (5.4.7) that inequality

|f (n)(z)| ≤ 2n!ρ
(ρ− r)n+1

sup
|ζ|<R

!∆f(ζ)

holds, where n ≥ 1. Passing to the limit as ρ ↑ R in the last inequality, we
obtain (5.4.5).

2. Sharpness of the constant in inequality (5.4.5). Consider the family of
analytic functions on DR

fξ(z) =
ξ

z − ξ
, (5.4.9)

where ξ is a complex parameter, |ξ| > R.
We are looking for max{!∆fξ(z) : |z| = R}. Putting ξ = ρeiτ , z = Reit

we find

!fξ(z) = !
{

ξ

z − ξ

}
= !

{
ρeiτ (Re−it − ρe−iτ )

|Reit − ρeiτ |2

}
,

that is

!fξ(z) =
γ(cos ϕ− γ)

1− 2γ cos ϕ + γ2
, (5.4.10)
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where γ = ρ/R, ϕ = t− τ . Hence, taking into account that γ > 1 we obtain

max
|z|=R

!∆fξ(z) = max
0≤ϕ≤2π

{
γ(cos ϕ− γ)

1− 2γ cos ϕ + γ2
+ 1

}

=
1
2

max
0≤ϕ≤2π

{
1 +

1− γ2

1− 2γ cos ϕ + γ2

}
=

1
1 + γ

=
R

ρ + R
. (5.4.11)

Let z = reit be a fixed point in the disk DR and let ξ = ρeit. For any
natural number n by (5.4.9) we have

|f (n)
ξ (z)| =

∣∣∣∣
(−1)nn!ξ
(z − ξ)n+1

∣∣∣∣ =
n!|ξ|

|z − ξ|n+1
=

n!ρ
(ρ− r)n+1

. (5.4.12)

Let Hn(z) denote the best constant in the inequality

|f (n)(z)| ≤ Hn(z) sup
|ζ|<R

!∆f(ζ).

By (5.4.5),

Hn(z) ≤ 2n!R
(R− r)n+1

. (5.4.13)

Using
|f (n)

ξ (z)| ≤ Hn(z) max
|ζ|=R

!∆fξ(ζ)

together with (5.4.11), (5.4.12), we find

Hn(z) ≥ n!ρ(R + ρ)
(ρ− r)n+1R

.

Passing here to the limit as ρ ↓ R, we conclude that

Hn(z) ≥ 2n!R
(R− r)n+1

,

which together with (5.4.13) proves sharpness of the constant in (5.4.5).
3. Inequality (5.4.6). This sharp inequality is an immediate consequence

of estimate (5.4.5) with the best constant. )*

The estimate (5.1.2) follows as a particular case of (5.4.5) with z = 0.

Observe also that replacing f by −f in (5.4.5), we deduce

|f (n)(z)| ≤ 2n!R
(R− r)n+1

sup
|ζ|<R

!∆{−f(ζ)} (5.4.14)
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for analytic functions f on DR with !f bounded from below, where n ≥ 1.
Unlike inequality (5.4.5) with

Af (R) = sup
|ζ|<R

!∆f(ζ) = sup
|ζ|<R

!f(ζ)−!f(0)

in the right-hand side, inequality (5.4.14) contains the expression

Bf (R) = sup
|ζ|<R

!∆{−f(ζ)} = !f(0)− inf
|ζ|<R

!f(ζ).

Unifying (5.4.5) with (5.4.14), we arrive at the sharp inequality

|f (n)(z)| ≤ 2n!R
(R− r)n+1

min {Af (R),Bf (R)}

for analytic functions f on DR with bounded !f , where n ≥ 1.

We conclude this subsection by noting that Corollary 5.3 implies the fol-
lowing inequalities similar to (5.1.5)

|f (n)(z)| ≤ 2n!R
(R− r)n+1

{
sup
|ζ|<R

!f(ζ) + |!f(0)|
}

(5.4.15)

and

|f (n)(z)| ≤ 2n!R
(R− r)n+1

{
sup
|ζ|<R

!f(ζ) + |f(0)|
}

. (5.4.16)

Remark 5.1. The sharpness of the constant in (5.4.15) and (5.4.16) is estab-
lished in the same way as in inequality (5.4.5).

5.4.3 Landau type inequality

The following assertion contains a sharp estimate for |f (n)(z)| with

sup
|ζ|<R

|!f(ζ)| − |!f(0)|

in the right-hand side. The estimate below is closely related to the Landau
inequality (5.1.3).

Corollary 5.4. Let f be analytic on DR with bounded !f . Then for any fixed
z, |z| = r < R, the inequality

|f (n)(z)| ≤ 2n!R
(R− r)n+1

sup
|ζ|<R

∆|!f(ζ)| (5.4.17)

holds with the best constant, where n ≥ 1.
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Proof. 1. Proof of inequality (5.4.17). We set

ω = Rf (R) = sup
|ζ|<R

|!f(ζ)|

in (5.4.7). Since

||!f −Rf (R)||L1(∂Dρ) = 2πρ {Rf (R)−!f(0)} , (5.4.18)

it follows from (5.4.7) that

|f (n)(z)| ≤ 2n!ρ
(ρ− r)n+1

{Rf (R)−!f(0)} ,

where n ≥ 1. Passing to the limit as ρ ↑ R in the last inequality, we obtain

|f (n)(z)| ≤ 2n!ρ
(ρ− r)n+1

{Rf (R)−!f(0)} . (5.4.19)

Replacing f by −f in (5.4.19), we have

|f (n)(z)| ≤ 2n!R
(R− r)n+1

{Rf (R) + !f(0)} ,

which together with (5.4.19) implies

|f (n)(z)| ≤ 2n!R
(R− r)n+1

{Rf (R)− |!f(0)|} . (5.4.20)

The last inequality proves (5.4.17).
2. Sharpness of the constant in inequality (5.4.17). We show that the con-

stant in (5.4.20), that is in (5.4.17), is sharp.
Introduce the family of analytic functions in DR

gξ(z) =
ξ

z − ξ
+

|ξ|2

|ξ|2 −R2
, (5.4.21)

depending on a complex parameter ξ = ρeiτ , ρ > R.
Let, as before, γ = ρ/R. Clearly,

|!gξ(0)| =
∣∣∣∣−1 +

γ2

γ2 − 1

∣∣∣∣ =
1

γ2 − 1
. (5.4.22)

We find Rgξ(R). Let z = Reit, ϕ = t − τ . Using (5.4.10) in (5.4.21), we
obtain

!gξ(z) = !
{

ξ

z − ξ

}
+

γ2

γ2 − 1
=

γ(cos ϕ− γ)
1− 2γ cos ϕ + γ2

+
γ2

γ2 − 1

= −1
2

+
γ2

γ2 − 1
− γ2 − 1

2(1− 2γ cos ϕ + γ2)
. (5.4.23)
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Hence
max
|ζ|=R

!gξ(ζ) = −1
2

+
γ2

γ2 − 1
− γ2 − 1

2(γ + 1)2
=

γ

γ2 − 1
,

min
|ζ|=R

!gξ(ζ) = −1
2

+
γ2

γ2 − 1
− γ2 − 1

2(γ − 1)2
= − γ

γ2 − 1
,

that is

Rgξ(R) =
γ

γ2 − 1
. (5.4.24)

Thus, by (5.4.22) and (5.4.24),

Rgξ(R)− |!gξ(0)| = γ

γ2 − 1
− 1

γ2 − 1
=

1
γ + 1

=
R

ρ + R
. (5.4.25)

Let z = reit be a fixed point with r < R and let ξ = ρeit. For any natural
number n by (5.4.21) we have

|g(n)
ξ (z)| =

∣∣∣∣
(−1)nn!ξ
(z − ξ)n+1

∣∣∣∣ =
n!|ξ|

|z − ξ|n+1
=

n!ρ
(ρ− r)n+1

. (5.4.26)

By Hn(z) we denote the best constant in

|f (n)(z)| ≤ Hn(z){Rf (R)− |!f(0)|}.

In view of (5.4.20),

Hn(z) ≤ 2n!R
(R− r)n+1

. (5.4.27)

Using
|g(n)

ξ (z)| ≤ Hn(z){Rgξ(R)− |!gξ(0)|}

together with (5.4.25), (5.4.26) we find

Hn(z) ≥ n!ρ(R + ρ)
(ρ− r)n+1R

.

Passing here to the limit as ρ ↓ R we find

Hn(z) ≥ 2n!R
(R− r)n+1

,

which, along with (5.4.27), proves sharpness of the constant in inequality
(5.4.17). )*

Remark 5.2. Note that (5.4.17) can be obtained as a consequence of estimate
(5.4.5) without proof of its sharpness.
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5.4.4 Generalization of the Landau inequality

The next assertion contains a sharp estimate of |f (n)(z)| with

sup
|ζ|<R

|f(ζ)| − |f(0)|

in the right-hand side. This estimate contains the Landau inequality (5.1.3).

Corollary 5.5. Let f be analytic and bounded on DR. Then for any fixed
z, |z| = r < R, the inequality

|f (n)(z)| ≤ 2n!R
(R− r)n+1

sup
|ζ|<R

∆|f(ζ)| (5.4.28)

holds with the best constant, where n ≥ 1.

Proof. 1. Proof of inequality (5.4.28). We put

ω = Mf (R) = sup
|ζ|<R

|f(ζ)|.

in (5.4.7). Since

||!f −Mf (R)||L1(∂Dρ) = 2πρ {Mf (R)−!f(0)} , (5.4.29)

it follows from (5.4.7) that

|f (n)(z)| ≤ 2n!ρ
(ρ− r)n+1

{Mf (R)−!f(0)} .

Passing to the limit as ρ ↑ R in the last inequality, we obtain

|f (n)(z)| ≤ 2n!R
(R− r)n+1

{Mf (R)−!f(0)} . (5.4.30)

Replacing f by feiα in (5.4.30) we arrive at

|f (n)(z)| ≤ 2n!R
(R− r)n+1

{
Mf (R)−!(f(0)eiα)

}
,

which due to the arbitrariness of α implies (5.4.28).
2. Sharpness of the constant in inequality (5.4.28). For the analytic func-

tion gξ(z) defined by (5.4.21) we have

|gξ(0)| =
∣∣∣∣−1 +

γ2

γ2 − 1

∣∣∣∣ =
1

γ2 − 1
. (5.4.31)

We are looking for Mgξ(R). Let z = Reit, ξ = ρeiτ , γ = ρ/R, ϕ = t − τ . In
view of (5.4.21),
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&gξ(z) = &
(

ξ

z − ξ

)
= &

(
ρeiτ

Reit − ρeiτ

)
= − γ sinϕ

1− 2γ cos ϕ + γ2
.

Taking into account (5.4.23), we have

|gξ(z)|2 =
[

γ(cos ϕ− γ)
1− 2γ cos ϕ + γ2

+
γ2

γ2 − 1

]2

+
[
− γ sinϕ

1− 2γ cos ϕ + γ2

]2

.

This simplifies to

|gξ(z)|2 =
γ2

(γ2 − 1)2
.

Thus,

Mgξ(R) =
γ

γ2 − 1
(5.4.32)

and by (5.4.31),

Mgξ(R)− |gξ(0)| = γ

γ2 − 1
− 1

γ2 − 1
=

1
γ + 1

=
R

ρ + R
. (5.4.33)

Let n be a natural number and let Hn(z) denote the best constant in

|f (n)(z)| ≤ Hn(z){Mf (R)− |f(0)|}. (5.4.34)

As shown above,

Hn(z) ≤ 2n!R
(R− r)n+1

. (5.4.35)

We take an arbitrary fixed point z = reit with r < R, and let ξ = ρeit. By
(5.4.26), (5.4.33), and (5.4.34)

Hn(z) ≥
|g(n)

ξ (z)|
Mgξ(R)− |gξ(0)| =

n!ρ(R + ρ)
(ρ− r)n+1R

.

Passing to the limit as ρ ↓ R in the last inequality, we obtain

Hn(z) ≥ 2n!R
(R− r)n+1

,

which, along with (5.4.35), proves sharpness of the constant in inequality
(5.4.28). )*

Remark 5.3. Inequality (5.4.28) follow from (5.4.5) without proof of its sharp-
ness.
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5.4.5 Generalization of the Carathéodory inequality

The following assertion contains estimate for |f (n)(z)| in terms of !f(0) under
the assumption that !f(ζ) > 0 for |ζ| < R. This estimate generalizes the
Carathéodory inequality (5.1.1).

Corollary 5.6. Let f be analytic with !f(ζ) > 0 on the disk DR. Then for
any fixed z, |z| = r < R, the inequality

|f (n)(z)| ≤ 2n!R
(R− r)n+1

!f(0) (5.4.36)

holds with the best constant, where n ≥ 1.

Proof. Suppose !f(ζ) > 0 for |ζ| < R. We put ω = 0 in (5.4.7). Since

||!f ||L1(∂Dρ) = 2πρ !f(0),

it follows from (5.4.7) that

|f (n)(z)| ≤ 2n!ρ
(ρ− r)n+1

!f(0).

Passing to the limit as ρ ↑ R in the last inequality, we obtain

|f (n)(z)| ≤ 2n!ρ
(ρ− r)n+1

!f(0). (5.4.37)

We show that the constant in (5.4.37) is sharp. Introduce the family of
analytic functions in DR

hξ(z) =
ξ

ξ − z
− |ξ|
|ξ|+ R

, (5.4.38)

which depend on the complex parameter ξ = ρeiτ , ρ > R. Putting z =
Reit, γ = r/R, ϕ = t− τ and taking into account (5.4.10), we find

!hξ(z) = !
(

ξ

ξ − z

)
− γ

γ + 1
=

γ(γ − cos ϕ)
1− 2γ cos ϕ + γ2

− γ

γ + 1

=
1
2
− γ

γ + 1
+

γ2 − 1
2(1− 2γ cos ϕ + γ2)

.

Hence
min
|ζ|=R

!hξ(z) =
1
2
− γ

γ + 1
+

γ2 − 1
2(γ + 1)2

= 0,

that is

!hξ(ζ) ≥ 0, |ζ| = R. (5.4.39)
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According to (5.4.38),

!hξ(0) = 1− γ

γ + 1
=

1
γ + 1

=
R

ρ + R
. (5.4.40)

Let n be a natural number. By Hn(z) we denote the sharp constant in

|f (n)(z)| ≤ Hn(z)!f(0) (5.4.41)

where !f(ζ) ≥ 0 for |ζ| = R. By (5.4.37) we have

Hn(z) ≤ 2n!R
(R− r)n+1

. (5.4.42)

Let z = reit be a fixed point with r < R, and let ξ = ρeit. It follows from
(5.4.38) that

|h(n)
ξ (z)| = n!ρ

(ρ− r)n+1
. (5.4.43)

Taking into account (5.4.39), (5.4.40), (5.4.41), and (5.4.43) we find

Hn(z) ≥
|h(n)

ξ (z)|
!hξ(0)

=
n!ρ(R + ρ)
(ρ− r)n+1R

.

Passing to the limit as ρ ↓ R in the last inequality, we obtain

Hn(z) ≥ 2n!R
(R− r)n+1

,

which, along with (5.4.42), proves sharpness of the constant in inequality
(5.4.36). )*

5.5 The case p = 2

The next assertion is a particular case of Proposition 5.1 for p = 2.

Corollary 5.7. Let f be analytic on DR with !f ∈ h2(DR). Further, let
n ≥ 1, and let Pm be a polynomial of degree m ≤ n − 1. Then for any fixed
point z, |z| = r < R, there holds

|f (n)(z)| ≤ Hn,2(z)||!{f − Pm}||2 (5.5.1)

with the sharp constant
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Hn,2(z) =
1

R(2n+1)/2
Hn,2

( r

R

)
, (5.5.2)

where

Hn,2(γ) =
n!√

π(1− γ2)(2n+1)/2

{
n∑

k=0

(n
k

)2
γ2k

}1/2

. (5.5.3)

In particular,

|f (n)(z)| ≤ Hn,2(z)En−1,2(!f), (5.5.4)

where

En,2(!f) =

∣∣∣∣∣

∣∣∣∣∣!
{

f −
n∑

k=0

f (k)(0)ζk

k!

}∣∣∣∣∣

∣∣∣∣∣
2

=

{
||!f −!f(0)||22 − πR

n∑

k=1

|f (k)(0)|2R2k

(k!)2

}1/2

. (5.5.5)

Here the sum in k from 1 to n is assumed to vanish for n = 0.

Proof. 1. Sharp constant in inequalities (5.5.1) and (5.5.4). Inequalities (5.5.1),
(5.5.4) follow from Proposition 5.1. Consider the integral in (5.2.8) for p = 2.
Putting ζ = 1/ξ, we find

∫

|ζ|=1

∣∣∣∣!
{

ζeiα

(ζ − γ)n+1

}∣∣∣∣
2

|dζ| =
∫

|ξ|=1

∣∣∣∣!
{

ξneiα

(1− γξ)n+1

}∣∣∣∣
2

|dξ|, (5.5.6)

where γ = r/R < 1 and α is a real parameter. Similarly,

∫

|ζ|=1

∣∣∣∣&
{

ζeiα

(ζ − γ)n+1

}∣∣∣∣
2

|dζ| =
∫

|ξ|=1

∣∣∣∣&
{

ξneiα

(1− γξ)n+1

}∣∣∣∣
2

|dξ|. (5.5.7)

We use the following property (see, e.g. Polya and Szegö [75], Ex. 234): if
the function

f(z) = a0 + a1z + a2z
2 + . . .

is regular in the disk |z| < R, and the equality
∫ 2π

0
[!f(ρeiϑ)]2dϑ =

∫ 2π

0
[&f(ρeiϑ)]2dϑ (5.5.8)

holds for ρ = 0, then it holds for any ρ ∈ (0, R).
The function

g(ξ) =
ξneiα

(1− γξ)n+1
, 0 ≤ γ < 1,
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analytic in the disk |ξ| < γ−1, satisfies (5.5.8) with ρ = 0. Therefore, the
equality ∫ 2π

0
[!g(ρeiϑ)]2dϑ =

∫ 2π

0
[&g(ρeiϑ)]2dϑ

is valid for ρ = 1, which together with (5.5.6) and (5.5.7) implies
∫

|ζ|=1

∣∣∣∣!
{

ζeiα

(ζ − γ)n+1

}∣∣∣∣
2

|dζ| =
∫

|ζ|=1

∣∣∣∣&
{

ζeiα

(ζ − γ)n+1

}∣∣∣∣
2

|dζ|.

Using this identity and (5.2.8) with p = 2 we obtain

Hn,2(γ) =
n!
π

{
1
2

∫

|ζ|=1

|dζ|
|ζ − γ|2(n+1)

}1/2

. (5.5.9)

Putting here ζ = (w +γ)(1+γw)−1, we find (see, e.g. Gradshtein and Ryzhik
[41], 3.616)

∫

|ζ|=1

|dζ|
|ζ − γ|2(n+1)

=
1

(1− γ2)2n+1

∫

|w|=1
|1 + γw|2n|dw|

=
1

(1− γ2)2n+1

∫ 2π

0
(1 + 2γ cos ϕ + γ2)ndϕ

=
2π

(1− γ2)2n+1

n∑

k=0

(n
k

)2
γ2k, (5.5.10)

which together with (5.5.9) leads to

Hn,2(γ) =
n!√

π(1− γ2)(2n+1)/2

{
n∑

k=0

(n
k

)2
γ2k

}1/2

.

This and (5.2.7) with p = 2 imply (5.5.2), (5.5.3).
2. Proof of relations (5.5.5). We prove the first equality in (5.5.5). Let

z = Reiϕ. We write the real part of the algebraic polynomial

Pn(z) =
n∑

k=0

ckzk, (5.5.11)

where ck = ak + ibk, as a trigonometric polynomial Tn(ϕ)

!Pn(Reiϕ) = !
{

n∑

k=0

(ak + ibk)Rkeikϕ

}

= α0 +
n∑

k=1

(αk cos kϕ + βk sin kϕ) = Tn(ϕ),
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α0 = a0, αk = Rkak, βk = −Rkbk, 1 ≤ k ≤ n.
Conversely, given a trigonometric polynomial

Tn(ϕ) = α0 +
n∑

k=1

(αk cos kϕ + βk sin kϕ)

and introducing the coefficients c0 = α0 + iβ0, ck = R−k(αk − iβk), where
β0 is an arbitrary real number, one restores the algebraic polynomial (5.5.11)
(up to an imaginary constant) such that !Pn(Reiϕ) = Tn(ϕ).

Let {Tn} be the set of trigonometric polynomials of degree at most n.
Using the above relation between algebraic and trigonometric polynomials
and the minimizing property of Fourier coefficients, we obtain

En,2(!f) = inf
P∈{Pn}

||!{f − P}||2

= inf
P∈{Pn}

{∫

|ζ|=R
[!f(ζ)−!P(ζ)]2|dζ|

}1/2

=
√

R inf
T ∈{Tn}

{∫ π

−π
[!f(Reiϕ)− T (ϕ)]2dϕ

}1/2

=
√

R

{∫ π

−π
[!f(Reiϕ)−Fn(ϕ)]2dϕ

}1/2

, (5.5.12)

where

Fn(ϕ) =
n∑

k=−n

Akeikϕ (5.5.13)

and

Ak =
1
2π

∫ π

−π
!f(Reiψ)e−ikψdψ. (5.5.14)

We rewrite coefficients Ak using the Schwarz formula (1.3.1) and its corollary
(5.2.4) for z = 0:

f(0) = i &f(0) +
1

2πR

∫

|ζ|=R
!f(ζ)|dζ|, (5.5.15)

f (k)(0) =
k!
πR

∫

|ζ|=R

!f(ζ)
ζk

|dζ|, (5.5.16)

where k ≥ 1. By (5.5.14) and (5.5.15) we have
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A0 =
1
2π

∫ π

−π
!f(Reiψ)dψ

=
1

2πR

∫

|ζ|=R
!f(ζ)|dζ| = f(0)− i &f(0) = !f(0). (5.5.17)

In view of (5.5.14) and (5.5.16), we have for 1 ≤ k ≤ n

Ak =
Rk

2πR

∫ π

−π

!f(Reiψ)
Rkeikψ

Rdψ

=
Rk−1

2π

∫

|ζ|=R

!f(ζ)
ζk

|dζ| = Rk

2k!
f (k)(0). (5.5.18)

Similarly, by (5.5.14) and (5.5.16), for −n ≤ k ≤ −1 there holds

Ak =
R|k|

2πR

∫ π

−π

!f(Reiψ)
R|k|ei|k|ψ Rdψ

=
R|k|−1

2π

∫

|ζ|=R

!f(ζ)
ζ |k|

|dζ| = R|k|

2|k|!f
(|k|)(0). (5.5.19)

Using (5.5.17)-(5.5.19) in (5.5.13), we find

Fn(ϕ) = !f(0) +
n∑

k=1

Rk

2k!

{
f (k)(0)eikϕ + f (k)(0)eikϕ

}

=
n∑

k=0

1
k!
!

{
f (k)(0)Rkeikϕ

}
,

which implies that (5.5.12) can be written as

En,2(!f) =
√

R






∫ π

−π

[
!f(Reiϕ)−

n∑

k=0

1
k!
!

{
f (k)(0)Rkeikϕ

}]2

dϕ






1/2

,

and, equivalently,

En,2(!f) =

∣∣∣∣∣

∣∣∣∣∣!
{

f −
n∑

k=0

f (k)(0)ζk

k!

}∣∣∣∣∣

∣∣∣∣∣
2

.

This proves the first equality in (5.5.5).
Taking into account (5.5.13), (5.5.17), we write (5.5.12) as

En,2(!f) =

{
||!f −!f(0)||22 − 2πR

n∑

k=1

|Ak|2 − 2πR
n∑

k=1

|A−k|2
}1/2

.

Hence, by (5.5.18) and (5.5.19) we arrive at the second representation in
(5.5.5). )*
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5.6 The case p = ∞

For p = ∞ inequality (5.2.9) can be written in terms of the infimum of the
oscillation of !f(ζ) − !P(ζ) on the circle, where the infimum is taken over
the set {Pn−1} of polynomials P of degree n− 1.

We introduce the notation

On,(f (DR) = inf
P∈{Pn}

O({f−P}(DR), (5.6.1)

where O(f (DR) is the oscillation of !f on the disk DR. For n = 0 we use the
notation O(f (DR) introduced earlier.

Corollary 5.13. Let f be analytic on DR with bounded !f , and let n ≥ 1.
Then for any fixed point z, |z| = r < R, there holds

|f (n)(z)| ≤ 1
2
Hn,∞(z)On−1,(f (DR) (5.6.2)

with the sharp constant

Hn,∞(z) =
1

Rn
Hn,∞

( r

R

)
, (5.6.3)

where

Hn,∞(γ) =
n!
π

sup
α

∫

|ζ|=1

∣∣∣∣!
{

ζeiα

(ζ − γ)n+1

}∣∣∣∣ |dζ|. (5.6.4)

In particular,

|f (n)(0)| ≤ 2n!
πRn

On−1,(f (DR). (5.6.5)

Proof. Suppose ω ∈ R. Then

En,∞(!f) = inf
P∈{Pn}

||!{f − P}||∞ = inf
P∈{Pn}

||!{f − P} − ω||∞

= inf
ω∈R

inf
P∈{Pn}

||!{f − P} − ω||∞.

Hence, permutating the infima and taking into account (3.4.1) and (5.6.1), we
obtain

En,∞(!f) = inf
P∈{Pn}

inf
ω∈R

||!{f − P} − ω||∞ = inf
P∈{Pn}

E0,∞(!{f − P})

= inf
P∈{Pn}

1
2
O({f−P}(DR) =

1
2
On,(f (DR),

which together with (5.2.9) and (5.2.7), (5.2.8) proves (5.6.2)-(5.6.4). Inequal-
ity (5.6.5) follows from (5.6.2) and Corollary 5.1. )*
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Note that the sharp inequality (3.7.13)

|f ′(z)| ≤ 2R

π(R2 − |z|2)O(f (DR)

is a particular case of (5.6.2) with n = 1.
The last estimate is somewhat similar to the Carathéodory inequality

|f ′(z)| ≤ R

R2 − |z|2 sup
|ζ|<R

|f(ζ)|.

As a corollary of (3.7.13) we obtain

|f ′(0)| ≤ 2
πR

O(f (DR)

(see Polya and Szegö [75], III, Ch. 5, § 2 and references there). Inequality
(5.6.5) can be viewed as generalization of the last estimate to derivatives of
arbitrary order.





6

Bohr’s type real part estimates and theorems

6.1 Introduction

This chapter is connected with two classical assertions of the analytic functions
theory, namely, with Hadamard-Borel-Carathéodory inequality

|f(z)− f(0)| ≤ 2r

R− r
sup
|ζ|<R

!
{
f(ζ)− f(0)

}
, (6.1.1)

and with Bohr’s inequality

∞∑

n=0

|cnzn| ≤ sup
|ζ|<R

|f(ζ)| (6.1.2)

for the majorant of the Taylor’s series

f(z) =
∞∑

n=0

cnzn, (6.1.3)

where |z| ≤ R/3 in (6.1.2) and the value R/3 cannot be improved.
In the chapter we deal, similarly to Aizenberg, Grossman and Korobeinik

[6], Bénéteau, Dahlner and Khavinson [12], Djakov and Ramanujan [34], with
the value of lq-norm (quasi-norm, for 0 < q < 1) of the remainder of the
Taylor series (6.1.3).

In Section 1, we prove the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

πRm(Rq − rq)1/q
||!f ||1 (6.1.4)

with the sharp constant, where r = |z| < R, m ≥ 1, 0 < q ≤ ∞.
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Section 2 contains corollaries of (6.1.4) for analytic functions f in DR

with bounded !f , with !f bounded from above, with !f > 0, as well as for
bounded analytic functions. In particular, we obtain the estimate

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

!{f(ζ)− f(0)},

with the best possible constant. This estimate, taken with q = 1, m = 1, is an
improvement of (6.1.1). Other inequalities, which follow from (6.1.4), contain
the supremum of |!f(ζ)|−|!f(0)| or |f(ζ)|−|f(0)| in DR, as well as !f(0) in
the case !f > 0 on DR. Each of these estimates specified for q = 1 and m = 1
improves a certain sharp Hadamard-Borel-Carathéodory type inequality.

Note that a sharp estimate of the full majorant series by the supremum
modulus of f was obtained by Bombieri [18] for r ∈ [R/3, R/

√
2].

In Section 3 we give modifications of Bohr’s theorem as consequences of
our inequalities with sharp constants derived in Section 2. For example, if the
function (6.1.3) is analytic on DR, then for any q ∈ (0,∞], integer m ≥ 1 and
|z| ≤ Rm,q the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ sup
|ζ|<R

!{e−i arg f(0)f(ζ)} − |f(0)| (6.1.5)

holds, where Rm,q = rm,qR, and rm,q is the root of the equation

2qrmq + rq − 1 = 0

in the interval (0, 1), and Rm,q is the radius of the largest disk centered at
z = 0 in which (6.1.5) takes place.

In particular,

r1,q = (1 + 2q)−1/q and r2,q = 21/q
(
1 +

√
1 + 2q+2

)−1/q
. (6.1.6)

Some of the inequalities presented in Section 3 contain known analogues
of Bohr’s theorem with !f in the right-hand side (see Aizenberg, Aytuna and
Djakov [3], Paulsen, Popescu and Singh [72], Sidon [84], Tomić [87]).

6.2 Estimate for the lq -norm of the Taylor series
remainder by ||!f ||1

In the sequel, we use the notation r = |z| and D* = {z ∈ C : |z| < .}.
We start with a sharp inequality for an analytic function f . The right-hand

side of the inequality contains the norm in the space L1(∂DR).
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Proposition 6.1. Let the function (6.1.3) be analytic on DR with !f ∈
h1(DR), and let q > 0, m ≥ R, |z| = r < R. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

πRm(Rq − rq)1/q
||!f ||1 (6.2.1)

holds with the sharp constant.

Proof. 1. Proof of inequality (6.2.1). Let a function f , analytic in DR with
!f ∈ h1(DR) be given by (6.1.3). By Corollary 5.1

|cn| ≤
1

πRn+1
||!f ||1 (6.2.2)

for any n ≥ 1.
Using (6.2.2), we find

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 1
πR

{ ∞∑

n=m

( r

R

)nq
}1/q

||!f ||1

=
rm

πRm(Rq − rq)1/q
||!f ||1

for any z with |z| = r < R.
2. Sharpness of the constant in (6.2.1). By (6.2.1), proved above, the sharp

constant C(r) in
{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) ||!f ||1 (6.2.3)

satisfies

C(r) ≤ rm

πRm(Rq − rq)1/q
. (6.2.4)

We show that the converse inequality for C(r) holds as well.
Let ρ > R. Consider the families of analytic functions in DR

fρ(z) =
z

z − ρ
, wρ(z) = fρ(z)− βρ, (6.2.5)

depending on the parameter ρ, with the real constant βρ defined by

||!fρ − βρ||1 = min
c∈R

||!fρ − c||1.

Then, for any real constant c

||!wρ − c||1 ≥ ||!wρ||1.
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Setting here
c = Aρ = max

|ζ|=R
!wρ(ζ)

and taking into account

||!wρ −Aρ||1 =
∫

|ζ|=R

[
Aρ −!wρ(ζ)

]
|dζ|

= 2πR{Aρ −!wρ(0)} = 2πR max
|ζ|=R

!{wρ(ζ)− wρ(0)},

we arrive at

2πR max
|ζ|=R

!{wρ(ζ)− wρ(0)} ≥ ||!wρ||1. (6.2.6)

In view of

cn(ρ) =
w(n)

ρ (0)
n!

= − 1
ρn

for n ≥ 1,

we find
∞∑

n=m

|cn(ρ)zn|q =
∞∑

n=m

(
r

ρ

)nq

=
rmq

ρ(m−1)q(ρq − rq)
. (6.2.7)

By (6.2.5), (1.4.6) and (1.4.7) we have

max
|ζ|=R

!
{
wρ(ζ)− wρ(0)

}
= max

|ζ|=R
!

{
fρ(ζ)− fρ(0)

}
=

R

ρ + R
. (6.2.8)

It follows from (6.2.3), (6.2.6), (6.2.7) and (6.2.8) that

C(r) ≥ (ρ + R)rm

2πR2ρm−1(ρq − rq)1/q
. (6.2.9)

Passing to the limit as ρ ↓ R in the last inequality, we obtain

C(r) ≥ rm

πRm(Rq − rq)1/q
, (6.2.10)

which together with (6.2.4) proves the sharpness of the constant in (6.2.1).)*

6.3 Others estimates for the lq-norm of the Taylor series
remainder

In this section we obtain estimates with sharp constants for the lq -norm
(quasi-norm for 0 < q < 1) of the Taylor series remainder for bounded ana-
lytic functions and analytic functions whose real part is bounded or on-side
bounded.
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We start with a theorem concerning analytic functions with real part
bounded from above which refines Hadamard-Borel-Carathéodory inequality
(6.1.1).

Theorem 6.1. Let the function (6.1.3) be analytic on DR with !f bounded
from above, and let q > 0, m ≥ 1, |z| = r < R. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

!{f(ζ)− f(0)} (6.3.1)

holds with the sharp constant.

Proof. We write (6.2.1) for the disk D*, . ∈ (r, R), with f replaced by f −ω,
where ω is an arbitrary real constant. Then

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

π.m(.q − rq)1/q
||!f − ω||L1(∂D!). (6.3.2)

Putting here
ω = Af (R) = sup

|ζ|<R
!f(ζ)

and taking into account that

||!f −Af (R)||L1(∂D!) = 2πρ{Af (R)−!f(0)} = 2πρ sup
|ζ|<R

!{f(ζ)− f(0)},

we find
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

.m−1(.q − rq)1/q
sup
|ζ|<R

!{f(ζ)− f(0)},

which implies (6.3.1) after the passage to the limit as . ↑ R.
Hence, the sharp constant C(r) in

{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) sup
|ζ|<R

!{f(ζ)− f(0)} (6.3.3)

obeys

C(r) ≤ 2rm

Rm−1(Rq − rq)1/q
. (6.3.4)

To get the lower estimate for C(r), we shall use functions fρ given by
(6.2.5). Taking into account equality

f (n)
ρ (0) = w(n)

ρ (0),
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as well as (6.3.3), (6.2.7) and (6.2.8), we arrive at

C(r) ≥ (ρ + R)rm

Rρm−1(ρq − rq)1/q
. (6.3.5)

Passing to the limit as ρ ↓ R in the last inequality, we obtain

C(r) ≥ 2rm

Rm−1(Rq − rq)1/q
, (6.3.6)

which together with (6.3.4) proves the sharpness of the constant in (6.3.1). )*

Remark 6.2. Inequality (6.3.1) for q = m = 1 is well known (see, e.g. Polya
and Szegö [75], III, Ch. 5, § 2). Adding |c0| and |f(0)| to the left- and right-
hand sides of (6.3.1) with q = m = 1, respectively, and replacing −!f(0) by
|f(0)| in the resulting relation, we arrive at

∞∑

n=0

|cnz|n ≤ R + r

R− r
|f(0)|+ 2r

R− r
sup
|ζ|<R

!f(ζ),

which is a refinement of the Hadamard-Borel-Carathéodory inequality

|f(z)| ≤ R + r

R− r
|f(0)|+ 2r

R− r
sup
|ζ|<R

!f(ζ)

(see, e.g., Burckel [22], Ch. 6 and references there, Titchmarsh [86], Ch. 5).

The next assertion contains an sharp estimate for analytic functions on
DR with bounded real part. It is a refinement of the inequality

|f(z)− f(0)| ≤ 2r

R− r
sup
|ζ|<R

{|!f(ζ)| − |!f(0)|}

which follows from (6.1.1).

Theorem 6.2. Let the function (6.1.3) be analytic on DR with bounded real
part, and let q > 0, m ≥ 1, |z| = r < 1. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|!f(ζ)| − |!f(0)|} (6.3.7)

holds with the sharp constant.

Proof. Setting
ω = Rf (R) = sup

|ζ|<R
|!f(ζ)|
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in (6.3.2) and making use of the equalities

||!f −Rf (R)||L1(∂D!) = 2πρ{Rf (R)−!f(0)} = 2πρ sup
|ζ|<R

{|!f(ζ)| −!f(0)},

we arrive at
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

.m−1(.q − rq)1/q
sup
|ζ|<R

{|!f(ζ)| − !f(0)}.

This estimate leads to
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|!f(ζ)| − !f(0)} (6.3.8)

after the passage to the limit as . ↑ R. Replacing f by−f in the last inequality,
we obtain

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|!f(ζ)|+ !f(0)},

which together with (6.3.8) results at (6.3.7).
Let us show that the constant in (6.3.7) is sharp. By C(r) we denote the

best constant in
{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) sup
|ζ|<R

{|!f(ζ)| − |!f(0)|}. (6.3.9)

As shown above, C(r) obeys (6.3.4).
We introduce the family of analytic functions in DR

gρ(z) =
ρ

z − ρ
+

ρ2

ρ2 −R2
, (6.3.10)

depending on a parameter ρ > R. By (5.4.21) and (5.4.25) we have

sup
|ζ|<R

{|!gρ(ζ)| − |!gρ(0)|} =
R

ρ + R
. (6.3.11)

Taking into account that the functions (6.2.5) and (6.3.10) differ by a
constant, and using (6.3.9), (6.2.7) and (6.3.11), we arrive at (6.3.5). Passing
there to the limit as ρ ↓ R, we conclude that (6.3.6) holds, which together
with (6.3.4) proves the sharpness of the constant in (6.3.7). )*
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The following assertion contains an estimate with the sharp constant for
bounded analytic functions in DR. It gives a refinement of the estimate

|f(z)− f(0)| ≤ 2r

R− r
sup
|ζ|<R

{|f(ζ)| − |f(0)|}

which follows from (6.1.1).

Theorem 6.3. Let the function (6.1.3) be analytic and bounded on DR, and
let q > 0, m ≥ 1, |z| = r < 1. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|f(ζ)| − |f(0)|} (6.3.12)

holds with the sharp constant.

Proof. Setting
ω = Mf (R) = sup

|ζ|<R
|f(ζ)|

in (6.3.2) and using the equalities

||!f −Mf (R)||L1(∂D!) = 2πρ{Mf (R)−!f(0)} = 2πρ sup
|ζ|<R

{|f(ζ)| −!f(0)},

we obtain
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

.m−1(.q − rq)1/q
sup
|ζ|<1

{|f(ζ)| − !f(0)}.

Passing here to the limit as . ↑ R, we find
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|f(ζ)| − !f(0)}.

Replacing f by feiα, we arrive at
{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
sup
|ζ|<R

{|f(ζ)| − !
(
f(0)eiα

)
},

which implies (6.3.12) by the arbitrariness of α.
Let us show that the constant in (6.3.12) is sharp. By C(r) we denote the

best constant in
{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) sup
|ζ|<R

{|f(ζ)| − |f(0)|}. (6.3.13)
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As shown above, C(r) obeys (6.3.4).
We consider the family hρ of analytic functions in D, defined by (6.3.10).

By (5.4.33) we have

sup
|ζ|<R

{|gρ(ζ)| − |gρ(0)|} =
R

ρ + R
. (6.3.14)

Taking into account that the functions (6.2.5) and (6.3.10) differ by a con-
stant, and using (6.3.13), (6.2.7) and (6.3.14), we arrive at (6.2.9). Passing
there to the limit as ρ ↓ R, we obtain (6.2.10), which together with (6.2.4)
proves the sharpness of the constant in (6.3.12). )*

Remark 6.3. We note that a consequence of (5.1.6) is the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ rm

Rm−1(Rq − rq)1/q

[Mf (R)]2 − |f(0)|2

Mf (R)
(6.3.15)

with the constant factor in the right-hand side twice as small as in (6.3.12)
and sharp, which can be checked using the sequence of functions given by
(6.3.10) and the limit passage as ρ ↓ R. Inequality (6.3.15) for q = 1,m = 1
with Mf (R) ≤ 1 was derived by Paulsen, Popescu and Singh [72].

The next assertion refines the inequality

|f(z)− f(0)| ≤ 2r

R− r
!f(0)

resulting from (6.1.1) for analytic functions in DR with !f > 0.

Theorem 6.4. Let the function (6.1.3) be analytic with positive !f on DR,
and let q > 0, m ≥ 1, |z| = r < 1. Then the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

Rm−1(Rq − rq)1/q
!f(0) (6.3.16)

holds with the sharp constant.

Proof. Setting ω = 0 in (6.3.2), with f such that !f > 0 in DR, we obtain

{ ∞∑

n=m

|cnzn|q
}1/q

≤ 2rm

.m−1(.q − rq)1/q
!f(0),

which leads to (6.3.16) as . ↑ R.
Thus, the sharp constant C(r) in
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{ ∞∑

n=m

|cnzn|q
}1/q

≤ C(r) !f(0) (6.3.17)

obeys the estimate (6.3.4).
To show the sharpness of the constant in (6.3.16), consider the family of

analytic functions in DR

hρ(z) =
ρ

ρ− z
− ρ

ρ + R
, (6.3.18)

depending on the parameter ρ > R. By (5.4.39), the real part of hρ is positive
in DR. Taking into account that the functions (6.2.5) and (6.3.18) differ by
a constant and using (6.3.17), (6.2.7) and !hρ(0) = R(ρ + 1)−1, we arrive at
(6.3.5). Passing there to the limit as ρ ↓ R, we obtain (6.3.6), which together
with (6.3.4) proves the sharpness of the constant in (6.3.16). )*

6.4 Bohr’s type modulus and real part theorems

In this section we collect some corollaries of the theorems in Sect. 2.

Corollary 6.1. Let the function (6.1.3) be analytic on DR, and let

sup
|ζ|<R

!{e−i arg f(0)f(ζ)} < ∞,

where arg f(0) is replaced by zero if f(0) = c0 = 0.
Then for any q ∈ (0,∞], integer m ≥ 1 and |z| ≤ Rm,q the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ sup
|ζ|<R

!{e−i arg f(0)f(ζ)} − |f(0)| (6.4.1)

holds, where Rm,q = rm,qR, and rm,q is the root of the equation 2qrmq + rq −
1 = 0 in the interval (0, 1). Here Rm,q is the radius of the largest disk centered
at z = 0 in which (6.4.1) takes place for all f . In particular, (6.1.6) holds.

Proof. The condition
2rm

Rm−1(Rq − rq)1/q
≤ 1

ensuring the sharpness of the constant in (6.3.1) holds if |z| ≤ Rm,q, where
Rm,q = rm,qR, and rm,q is the root of the equation 2qrmq + rq − 1 = 0 in the
interval (0, 1).

The disk of radius Rm,q centered at z = 0 is the largest disk, where the
inequality
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{ ∞∑

n=m

|cnzn|q
}1/q

≤ sup
|ζ|<R

!f(ζ)−!f(0) (6.4.2)

holds for all f . The last inequality coincides with (6.4.1) for f(0) = c0 = 0.
Suppose now that f(0) (= 0. Setting e−i arg f(0)f in place of f in (6.4.2) and

noting that the coefficients |cn| in the left-hand side of (6.4.2) do not change,
when !f(0) is replaced by |f(0)| = |c0|, we arrive at (6.4.1). )*

Inequality (6.4.1) with q = 1,m = 1 becomes

∞∑

n=1

|cnzn| ≤ sup
|ζ|<R

!{e−i arg f(0)f(ζ)} − |f(0)| (6.4.3)

with |z| ≤ R/3, where R/3 is the radius of the largest disk centered at z = 0 in
which (6.4.3) takes place. Note that (6.4.3) is equivalent to a sharp inequality
obtained by Sidon [84] in his proof of Bohr’s theorem and to the inequality
derived by Paulsen, Popescu and Singh [72].

For q = 1,m = 2 inequality (6.4.1) is

∞∑

n=2

|cnzn| ≤ sup
|ζ|<R

!{e−i arg f(0)f(ζ)} − |f(0)|, (6.4.4)

where |z| ≤ R/2 and R/2 is the radius of the largest disk about z = 0 in
which (6.4.4) takes place.

The next assertion follows from Theorem 6.3. For q = 1,m = 1 it contains
Bohr’s inequality (6.1.2).

Corollary 6.2. Let the function (6.1.3) be analytic and bounded on DR. Then
for any q ∈ (0,∞], integer m ≥ 1 and |z| ≤ Rm,q the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ sup
|ζ|<R

|f(ζ)| − |f(0)| (6.4.5)

holds, where Rm,q = rm,qR, and rm,q is the root of the equation 2qrmq + rq −
1 = 0 in the interval (0, 1). Here Rm,q is the radius of the largest disk centered
at z = 0 in which (6.4.5) takes place for all f . In particular, (6.1.6) holds.

For q = 1,m = 2 inequality (6.4.5) takes the form

|c0|+
∞∑

n=2

|cnzn| ≤ sup
|ζ|<R

|f(ζ)|, (6.4.6)

where |z| ≤ R/2. The value R/2 of the radius of the disk where (6.4.6) is valid
cannot be improved. Note that the inequality
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|c0|2 +
∞∑

n=1

|cnzn| ≤ 1, (6.4.7)

was obtained by Paulsen, Popescu and Singh [72] for functions (6.1.3) satisfy-
ing the condition |f(ζ)| ≤ 1 in DR and is valid for |z| ≤ R/2. The value R/2
of the radius of the disk where (6.4.7) holds is largest. Comparison of (6.4.6)
and (6.4.7) shows that none of these inequalities is a consequence of the other
one.

We conclude this section by an assertion which follows from Theorem 6.4.

Corollary 6.3. Let the function (6.1.3) be analytic, and !{e−i arg f(0)f} > 0
on DR. Then for any q ∈ (0,∞], integer m ≥ 1 and |z| ≤ Rm,q the inequality

{ ∞∑

n=m

|cnzn|q
}1/q

≤ |f(0)| (6.4.8)

holds, where Rm,q = rm,qR, and rm,q is the root of the equation 2qrmq + rq −
1 = 0 in the interval (0, 1). Here Rm,q is the radius of the largest disk centered
at z = 0 in which (6.4.5) takes place for all f . In particular, (6.1.6) holds.

Note that the inequality (6.4.8) for q = 1,m = 1 with |z| ≤ R/3 was
obtained by Aizenberg, Aytuna and Djakov [3] (see also Aizenberg, Grossman
and Korobeinik [6]).



7

Estimates for the increment of derivatives of
analytic functions

7.1 Introduction

The present chapter is connected with the contents of Chapters 1 and 3. One
inequality, proved in Chapter 3, intimately relates the questions we address
in this chapter. We mean the inequality which stems from Proposition 3.1:

|f(z)− f(0)| ≤ K0,p(z)||!f − c||p. (7.1.1)

Here
K0,p(z) = sup{Kp(z, α) : 0 ≤ α ≤ 2π},

z ∈ DR, c is an arbitrary real constant, || · ||p denote the Lp-norm of a real
valued function on the circle |ζ| = R, 1 ≤ p ≤ ∞, and Kp(z, α) is given by
(3.2.2) and (3.2.3).

In this chapter, we generalize (7.1.1) to derivatives of an analytic function
f in DR. As a consequence, we derive a generalization of the Hadamard-
Borel-Carathéodory inequality (1.1.2) for derivatives as well as analogues of
the Carathéodory and Landau inequalities (5.1.1), (5.1.3) for the increment
of derivatives at zero.

In Section 2 we find a representation for the best constant in the general-
ization of estimate (7.1.1)

|f (n)(z)− f (n)(0)| ≤ Kn,p(z)||!{f − Pm}||p, (7.1.2)

where n ≥ 0,Pm is a polynomial of degree m,m ≤ n. From (7.1.2) we obtain
the following estimate with right-hand side containing the best polynomial
approximation of !f on the circle |ζ| = R in the Lp(∂DR)-norm:

|f (n)(z)− f (n)(0)| ≤ Kn,p(z)En,p(!f), (7.1.3)

with n ≥ 0.
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Section 3 of this chapter concerns corollaries of inequality (7.1.2) for p = 1.
First, we show that

Kn,1(z) =
n![Rn+1 − (R− r)n+1]

π(R− r)n+1Rn+1
,

where |z| = r < R. From inequality (7.1.2) with p = 1 and m = 0 we deduce
estimates with sharp constants for the increment at zero of derivatives,

|f (n)(z)− f (n)(0)| ≤ 2n![Rn+1 − (R− r)n+1]
(R− r)n+1Rn

sup
|ζ|<R

!{f(ζ)− f(0)}, (7.1.4)

for n ≥ 0, where z is a fixed point of the circle |z| = r < R. As a particular
case, the estimate just mentioned contains the Hadamard-Borel-Carathéodory
inequality (1.1.2). Similar sharp estimates are obtained when the right-hand
side of (7.1.4) contains the expressions

sup
|ζ|<R

{|!f(ζ)| − |!f(0)|}, sup
|ζ|<R

{|f(ζ)| − |f(0)|}

in analogues of the Landau inequality, as well as !f(0) provided that !f(ζ) ≥
0 for |ζ| = R in the analogue of the Carathéodory inequality.

In Section 4 of this chapter, we deduce corollaries of (7.1.3) for p = 2 and
p = ∞. In particular, we show that inequality (7.1.3) with p = 2 holds with
the sharp constant

Kn,2(z) =
1

R(2n+1)/2
Kn,2

( r

R

)
,

where

Kn,2(γ) =
n!√

π(1− γ2)(2n+1)/2

{
n∑

k=0

(n
k

)2
γ2k − (1− γ2)2n+1

}1/2

,

and with En,2(!f) given by (5.5.5).
We note, that a corollary of (7.1.3) for p = ∞ contains estimates for the

modulus of the increment at zero of derivatives of f in terms of

On,(f (∂DR) = inf
P∈{Pn}

O({f−P}(DR),

where O(f (DR) is the oscillation of !f on the disk DR.
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7.2 Estimate for |∆f (n)(z)| by ||!{f − Pm}||p. General
case

The main assertion of this section is

Proposition 7.1. Let f be analytic on DR with !f ∈ hp(DR), 1 ≤ p ≤ ∞.
Further, let n ≥ 0, and let Pm be a polynomial of degree m ≤ n. Then for any
fixed point z, |z| = r < R, there holds

|f (n)(z)− f (n)(0)| ≤ Kn,p(z)||!{f − Pm}||p (7.2.1)

with the sharp constant

Kn,p(z) =
1

R(np+1)/p
Kn,p

( r

R

)
, (7.2.2)

where

Kn,p(γ) =
n!
π

sup
α

{∫

|ζ|=1

∣∣∣∣!
{

ζn+1 − (ζ − γ)n+1

(ζ − γ)n+1ζn
eiα

}∣∣∣∣
q

|dζ|
}1/q

, (7.2.3)

and 1/p + 1/q = 1.
In particular,

|f (n)(z)− f (n)(0)| ≤ Kn,p(z)En,p(!f). (7.2.4)

Proof. By Lemma 5.1 and notation (5.2.5), we have

|∆f (n)(z)| = n!
πR

sup
α

∫

|ζ|=R

{
Gn,z,α(ζ)− Gn,0,α(ζ)

}
!f(ζ) |dζ|. (7.2.5)

By (7.2.5) we arrive at the formula

Kn,p(z) =
n!
πR

sup
α
||Gn,z,α − Gn,0,α||q (7.2.6)

for the sharp constant Kn,p(z) in

|f (n)(z)− f (n)(0)| ≤ Kn,p(z)||!f ||p. (7.2.7)

In view of (5.2.5), representation (7.2.6) can be written as

Kn,p(z) =
n!
πR

sup
β

{∫

|ξ|=R

∣∣∣∣!
{

ξn+1 − (ξ − z)n+1

(ξ − z)n+1ξn
eiβ

}∣∣∣∣
q

|dξ|
}1/q

, (7.2.8)

where the case p = 1 (q = ∞) is understood in the sense of passage to the
limit.
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Suppose 1 < p ≤ ∞. Setting z = reiτ , ξ = Reit, γ = r/R and ϕ = t− τ in
(7.2.8), we obtain

Kn,p(z) =
n!
πR

sup
β

{∫ 2π+τ

τ

∣∣∣∣!
{

ei(n+1)t − (eit − γeiτ )n+1

(eit − γeiτ )n+1Rneint
eiβ

}∣∣∣∣
q

Rdt

}1/q

=
n!

πR(np+1)/p
sup

β

{∫ 2π

0

∣∣∣∣!
{

ei(n+1)ϕ − (eiϕ − γ)n+1

(eiϕ − γ)n+1einϕ
ei(β−nτ)

}∣∣∣∣
q

dϕ

}1/q

.

Putting here α = β − nτ and using 2π-periodicity of the resulting function in
α, we find

Kn,p(z) =
1

R(np+1)/p
Kn,p

( r

R

)
,

where

Kn,p(γ) =
n!
π

sup
α

{∫

|ζ|=1

∣∣∣∣!
{

ζn+1 − (ζ − γ)n+1

(ζ − γ)n+1ζn
eiα

}∣∣∣∣
q

|dζ|
}1/q

,

which proves (7.2.2) and (7.2.3).
Replacing f by f − Pm with m ≤ n in (7.2.7), we arrive at inequality

(7.2.1), which leads to (7.2.4). )*

7.3 The case p = 1 and its corollaries

7.3.1 Explicit estimate in the case p = 1

In this section we obtain an explicit representation for the sharp constant in
(7.2.1) for p = 1 and derive some corollaries. In particular, the next assertion
contains an explicit formula for Kn,1(z).

Corollary 7.1. Let f be analytic on DR with !f ∈ h1(DR). Further, let
n ≥ 0, and let Pm be a polynomial of degree m ≤ n. Then for any fixed point
z, |z| = r < R, there holds

|f (n)(z)− f (n)(0)| ≤ Kn,1(z)||!{f − Pm}||1 (7.3.1)

with the sharp constant

Kn,1(z) =
n![Rn+1 − (R− r)n+1]

π(R− r)n+1Rn+1
. (7.3.2)

In particular,

|f (n)(z)− f (n)(0)| ≤ Kn,1(z)En,1(!f). (7.3.3)
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Proof. Inequalities (7.3.1) and (7.3.3) follow as particular cases from Propo-
sition 7.1. Representation (7.2.6) for p = 1 can be written as

Kn,1(z) =
n!
πR

sup
α

sup
|ζ|=R

∣∣∣∣!
{

ζn+1 − (ζ − z)n+1

(ζ − z)n+1ζn
eiα.

}∣∣∣∣ (7.3.4)

Permutating the suprema in (7.3.4), we obtain the equality

Kn,1(z) =
n!
πR

sup
|ζ|=R

sup
α

∣∣∣∣!
{

ζn+1 − (ζ − z)n+1

(ζ − z)n+1ζn
eiα

}∣∣∣∣

=
n!
πR

sup
|ζ|=R

∣∣∣∣
ζn+1 − (ζ − z)n+1

(ζ − z)n+1ζn

∣∣∣∣ . (7.3.5)

On one hand, (7.3.5) implies

Kn,1(z) ≥ n!
πR

sup
|ζ|=R

|ζ|n+1 − |ζ − z|n+1

|ζ − z|n+1|ξ|n ≥ n![Rn+1 − (R− r)n+1]
π(R− r)n+1Rn+1

. (7.3.6)

On the other hand, (7.3.5) gives

Kn,1(z) =
n!

πRn+1
sup
|ζ|=R

∣∣∣∣∣1−
(

ζ

ζ − z

)n+1
∣∣∣∣∣

=
n!

πRn+1
sup
|ζ|=R

∣∣∣∣1−
ζ

ζ − z

∣∣∣∣

∣∣∣∣∣

n∑

k=0

(
ζ

ζ − z

)k
∣∣∣∣∣

≤ n!
πRn+1

sup
|ζ|=R

|z|
|ζ − z|

n∑

k=0

|ζ|k

|ζ − z|k .

From the last inequality it follows

Kn,1(z) ≤ n!r
πRn+1(R− r)

n∑

k=0

Rk

(R− r)k
=

n![Rn+1 − (R− r)n+1]
π(R− r)n+1Rn+1

,

which together with (7.3.6) proves the equality (7.3.2). )*

7.3.2 Hadamard-Borel-Carathéodory type inequality for
derivatives

The estimate for |f (n)(z)− f (n)(0)| with n ≥ 0 below contains the value

sup
|ζ|<R

!f(ζ)−!f(0)

in the right-hand side and generalizes the Hadamard-Borel-Carathéodory in-
equality (1.1.2) for derivatives. In particular, for n = 0 that inequality coin-
cides with (1.1.2).
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Corollary 7.2. Let f be analytic on DR with !f bounded from above. Then
for any fixed z, |z| = r < R, the inequality

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
sup
|ζ|<R

!∆f(ζ) (7.3.7)

holds with the best constant, where n ≥ 0.

Proof. By Corollary 7.1,

|f (n)(z)− f (n)(0)| ≤ n![ρn+1 − (ρ− r)n+1]
π(ρ− r)n+1ρn+1

||!f − ω||L1(∂Dρ), (7.3.8)

where ρ ∈ (r, R), ω is a real constant and n ≥ 0.
We set

ω = Af (R) = sup
|ζ|<R

!f(ζ)

in (7.3.8). Taking into account (5.4.8), we arrive at

|f (n)(z)− f (n)(0)| ≤ 2n![ρn+1 − (ρ− r)n+1]
(ρ− r)n+1ρn

sup
|ζ|<R

!∆f(ζ).

Passing to the limit as ρ ↑ R in the last inequality, we obtain (7.3.7).
Now, we show that the constant in (7.3.7) is sharp. Consider the family of

analytic functions on DR

fξ(z) =
ξ

z − ξ
, (7.3.9)

where ξ is a complex parameter, |ξ| > R.
Let n be a nonnegative integer. The function fξ(z) defined by (7.3.9) sat-

isfies

|f (n)
ξ (z)− f (n)

ξ (0)| = n!|ξn+1 − (ξ − z)n+1|
|ξ − z|n+1|ξ|n . (7.3.10)

Fixing z = reit in DR and putting ξ = ρeit, by (7.3.10) we obtain

|f (n)
ξ (z)− f (n)

ξ (0)| = n![ρn+1 − (ρ− r)n+1]
(ρ− r)n+1ρn

. (7.3.11)

Let Kn(z) be the best constant in

|f (n)(z)− f (n)(0)| ≤ Kn(z) sup
|ζ|<R

!∆f(ζ). (7.3.12)

As shown above,
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Kn(z) ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
. (7.3.13)

By (7.3.12),

|f (n)
ξ (z)− f (n)

ξ (0)| ≤ Kn(z) max
|ζ|=R

!∆fξ(ζ),

which together with (5.4.11), (7.3.11) implies

Kn(z) ≥ n![ρn+1 − (ρ− r)n+1](ρ + R)
(ρ− r)n+1ρnR

.

Passing here to the limit as ρ ↓ R, we obtain

Kn(z) ≥
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
,

which, along with (7.3.13), proves the sharpness of the constant in the in-
equality (7.3.7). )*

Observe also that replacing f by −f in (7.3.7), we deduce the inequality

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
sup
|ζ|<R

!∆{−f(ζ)} (7.3.14)

for analytic functions f on DR with !f bounded from below, where n ≥ 0.
Unlike (7.3.7) with

Af (R) = sup
|ζ|<R

!∆f(ζ) = sup
|ζ|<R

!f(ζ)−!f(0)

in the right-hand side, inequality (7.3.14) contains the expression

Bf (R) = sup
|ζ|<R

!∆{−f(ζ)} = !f(0)− inf
|ζ|<R

!f(ζ).

Unifying (7.3.7) with (7.3.14), we arrive at the estimate

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
min {Af (R),Bf (R)} ,

for analytic functions f on DR with bounded !f , where n ≥ 0.

7.3.3 Landau type inequalities

The following assertion contains a sharp estimate for |f (n)(z)− f (n)(0)| with

sup
|ζ|<R

|!f(ζ)| − |!f(0)|

in the right-hand side. The estimate below is similar to the Landau inequality
(5.1.3).
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Corollary 7.3. Let f be analytic on DR with bounded !f . Then for any fixed
z, |z| = r < R, the inequality

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
sup
|ζ|<R

∆|!f(ζ)| (7.3.15)

holds with the best constant, where n ≥ 0.

Proof. Setting
ω = Rf (R) = sup

|ζ|<R
|!f(ζ)|

in (7.3.8) and taking into account (5.4.18), we arrive at

|f (n)(z)− f (n)(0)| ≤
2n!

{
ρn+1 − (ρ− r)n+1

}

(ρ− r)n+1ρn
{Rf (R)−!f(0)} .

Passing to the limit as ρ ↑ R in the last inequality, we obtain

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
{Rf (R)−!f(0)} . (7.3.16)

Replacing f by −f in (7.3.16), we have

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
{Rf (R) + !f(0)} ,

which together with (7.3.16) implies (7.3.15).
Let us show that the constant in (7.3.15) is sharp. We introduce the family

of analytic functions in DR

gξ(z) =
ξ

z − ξ
+

|ξ|2

|ξ|2 −R2
, (7.3.17)

depending on a complex parameter ξ = ρeiτ , ρ > R.
Let z = reit be a fixed point, r < R, and let ξ = ρeit. Taking into account

that the functions (7.3.9) and (7.3.17) differ by a constant, for any nonnegative
integer n by (7.3.11) we have

|g(n)
ξ (z)− g(n)

ξ (0)| = n![ρn+1 − (ρ− r)n+1]
(ρ− r)n+1ρn

. (7.3.18)

By Kn(z) we denote the best constant in

|f (n)(z)− f (n)(0)| ≤ Kn(z){Rf (R)− |!f(0)|}. (7.3.19)

As shown above,
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Kn(z) ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
. (7.3.20)

By (7.3.19),

|g(n)
ξ (z)− g(n)

ξ (0)| ≤ Kn(z){Rgξ(R)− |!gξ(0)|},

which together with (5.4.25), (7.3.18) implies

Kn(z) ≥ n![ρn+1 − (ρ− r)n+1](ρ + R)
(ρ− r)n+1ρnR

.

Passing to the limit as ρ ↓ R in the last inequality, we obtain

Kn(z) ≥
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
,

which, along with (7.3.20), proves the sharpness of the constant in (7.3.15).)*

The assertion below contains a sharp estimate of |f (n)(z)− f (n)(0)| with

sup
|ζ|<R

|f(ζ)| − |f(0)|

in the right-hand side. This estimate is closely related to the Landau inequality
(5.1.3).

Corollary 7.4. Let f be analytic and bounded on DR. Then for any fixed
z, |z| = r < R, the sharp inequality

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
sup
|ζ|<R

∆|f(ζ)| (7.3.21)

holds for n ≥ 0.

Proof. Setting
ω = Mf (R) = sup

|ζ|<R
|f(ζ)|

in (7.3.8) and taking into account (5.4.29), we arrive at

|f (n)(z)− f (n)(0)| ≤
2n!

{
ρn+1 − (ρ− r)n+1

}

(ρ− r)n+1ρn
{Mf (R)−!f(0)} .

Passing to the limit as ρ ↑ R in the last inequality, we obtain

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
{Mf (R)−!f(0)} . (7.3.22)
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Replacing f by feiα in (7.3.22), we have

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn

{
Mf (R)−!(f(0)eiα)

}
,

which due to the arbitrariness of α implies (7.3.21).
We check that the constant in (7.3.21) is sharp. Let n be a nonnegative

integer and let Kn(z) denote the sharp constant in

|f (n)(z)− f (n)(0)| ≤ Kn(z) {Mf (R)− |f(0)|} . (7.3.23)

As shown above,

Kn(z) ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
. (7.3.24)

A particular case of (7.3.23) is

|g(n)
ξ (z)− g(n)

ξ (0)| ≤ Kn(z)
{
Mgξ(R)− |gξ(0)|

}
, (7.3.25)

where gξ(z) is the analytic function defined by (7.3.17). For any fixed z =
reit, r < R, and ξ = ρeit by (5.4.33), (7.3.18), and (7.3.25) we have

Kn(z) ≥
n!

{
ρn+1 − (ρ− r)n+1

}
(ρ + R)

(ρ− r)n+1ρnR
.

Passing to the limit as ρ ↓ R in the last inequality, we obtain

Km(z) ≥
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
,

which, along with (7.3.24), proves the sharpness of the constant in the in-
equality (7.3.21). )*

7.3.4 Carathéodory type inequality

The following assertion contains estimate for |f (n)(z) − f (n)(0)| in terms of
!f(0) under the assumption that !f(ζ) > 0 for |ζ| < R. This estimate is
closely related to the Carathéodory inequality (5.1.1).

Corollary 7.5. Let f be analytic with !f(ζ) > 0 on the disk DR. Then for
any fixed z, |z| = r < R, the inequality

|f (n)(z)− f (n)(0)| ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
!f(0) (7.3.26)

holds with the best constant, where n ≥ 0.
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Proof. Suppose !f(ζ) > 0 for |ζ| < R. We put ω = 0 in (7.3.8). Since

||!f ||L1(∂Dρ) = 2πρ !f(0),

it follows from (7.3.8) that

|f (n)(z)− f (n)(0)| ≤
2n!

{
ρn+1 − (ρ− r)n+1

}

(ρ− r)n+1ρn
!f(0),

where n ≥ 0. Passing to the limit as ρ ↑ R in the last inequality, we arrive at
(7.3.26).

We prove that the constant in (7.3.26) is sharp. Introduce the family of
analytic functions

hξ(z) =
ξ

ξ − z
− |ξ|
|ξ|+ R

, (7.3.27)

which depend on the complex parameter ξ = ρeiτ , ρ > R. By (5.4.39),
!hξ(ζ) ≥ 0, for |ζ| = R.

Let z = reit be a fixed point, r < R, and let ξ = ρeit. Taking into account
that functions (7.3.9) and (7.3.27) differ by a constant, for any nonnegative
integer n by (7.3.11) we have

|h(n)
ξ (z)− h(n)

ξ (0)| = n![ρn+1 − (ρ− r)n+1]
(ρ− r)n+1ρn

. (7.3.28)

By Kn(z) we denote the sharp constant in

|f (n)(z)− f (n)(0)| ≤ Kn(z)!f(0). (7.3.29)

As shown above,

Kn(z) ≤
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
. (7.3.30)

By (7.3.29),
|h(n)

ξ (z)− h(n)
ξ (0)| ≤ Kn(z)!hξ(0),

Hence, by (5.4.40), (7.3.28)

Kn(z) ≥
n!

{
ρn+1 − (ρ− r)n+1

}
(ρ + R)

(ρ− r)n+1ρmR
.

Passing to the limit as ρ ↓ R in the last inequality, we obtain

Kn(z) ≥
2n!

{
Rn+1 − (R− r)n+1

}

(R− r)n+1Rn
,

which, along with (7.3.30), proves the sharpness of the constant in the in-
equality (7.3.26). )*
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7.4 The cases p = 2 and p = ∞
The next assertion is a particular case of Proposition 7.1 for p = 2.

Corollary 7.6. Let f be analytic on DR with !f ∈ h2(DR). Further, let
n ≥ 0, and let Pm be a polynomial of degree m ≤ n. Then for any fixed point
z, |z| = r < R, there holds

|f (n)(z)− f (n)(0)| ≤ Kn,2(z)||!{f − Pm}||2, (7.4.1)

with the sharp constant

Kn,2(z) =
1

R(2n+1)/2
Kn,2

( r

R

)
, (7.4.2)

where

Kn,2(γ) =
n!√

π(1− γ2)(2n+1)/2

{
n∑

k=0

(n
k

)2
γ2k − (1− γ2)2n+1

}1/2

. (7.4.3)

In particular,

|f (n)(z)− f (n)(0)| ≤ Kn,2(z)En,2(!f), (7.4.4)

where

En,2(!f) =

∣∣∣∣∣

∣∣∣∣∣!
{

f −
n∑

k=0

f (k)(0)ζk

k!

}∣∣∣∣∣

∣∣∣∣∣
2

=

{
||!f −!f(0)||22 − πR

n∑

k=1

|f (k)(0)|2R2k

(k!)2

}1/2

.

Here the sum in k from 1 to n is assumed to vanish for n = 0.

Proof. Consider the integral in (7.2.3) for p = 2. Putting ζ = 1/ξ there, we
obtain
∫

|ζ|=1

∣∣∣∣!
{

ζn+1 − (ζ − γ)n+1

(ζ − γ)n+1ζn
eiα

}∣∣∣∣
2

|dζ|

=
∫

|ξ|=1

∣∣∣∣!
{

ξn[1− (1− γξ)n+1]
(1− γξ)n+1

eiα

}∣∣∣∣
2

|dξ|, (7.4.5)

where γ = r/R < 1 and α is a real parameter. Similarly,
∫

|ζ|=1

∣∣∣∣&
{

ζn+1 − (ζ − γ)n+1

(ζ − γ)n+1ζn
eiα

}∣∣∣∣
2

|dζ|

=
∫

|ξ|=1

∣∣∣∣&
{

ξn[1− (1− γξ)n+1]
(1− γξ)n+1

eiα

}∣∣∣∣
2

|dξ|. (7.4.6)
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The function

g(ξ) =
ξn[1− (1− γξ)n+1]

(1− γξ)n+1
eiα, 0 ≤ γ < 1,

analytic in the disk |ξ| < γ−1, satisfies (5.5.8) for ρ = 0. Therefore, the equality
∫ 2π

0
[!g(ρeiϑ)]2dϑ =

∫ 2π

0
[&g(ρeiϑ)]2dϑ

holds for ρ = 1, which together with (7.2.3) for p = 2 and (7.4.5), (7.4.6) leads
to

Kn,2(γ) =
n!
π

{
1
2

∫

|ζ|=1

|ζn+1 − (ζ − γ)n+1|2

|ζ − γ|2(n+1)
|dζ|

}1/2

.

By straightforward calculations we find

Kn,2(γ) =
n!
π





1
2

∫

|ζ|=1

∣∣∣∣∣1−
(

ζ

ζ − γ

)n+1
∣∣∣∣∣

2

|dζ|






1/2

=
n!
π

{
1
2

∫

|ζ|=1

(
1− 2!

(
ζ

ζ − γ

)n+1

+
1

|ζ − γ|2(n+1)

)
|dζ|

}1/2

.

Now, taking into account the equality
∫

|ζ|=1
!

(
ζ

ζ − γ

)n+1

|dζ| = !
{

1
i

∫

|ζ|=1

ζn

(ζ − γ)n+1
dζ

}
= 2π

and (5.5.10), we arrive at

Kn,2(γ) =
n!√

π(1− γ2)(2n+1)/2

{
n∑

k=0

(n
k

)2
γ2k − (1− γ2)2n+1

}1/2

,

which together with (7.2.2) for p = 2 results at (7.4.2), (7.4.3).
The formula for En,2(!f) stated in Corollary 7.6 was obtained in Corol-

lary 5.7. )*

Remark 7.1. For n = 0, inequalities (7.4.1) and (7.4.4) were obtained in pre-
vious chapters (see (3.3.5) and (2.3.5), respectively).

For p = ∞ inequality (7.2.4) can be written in terms of On,(f (DR) which
is the infimum of the oscillation of !f(ζ)−!P(ζ) on the disk DR taken over
the set {Pn} of polynomials P of degree at most n. The next assertion follows
from Proposition 7.1 for p = ∞ and can be proved in the same manner as
Corollary 5.13.
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Corollary 7.11. Let f be analytic on DR with bounded !f , and let n ≥ 0.
Then for any fixed point z, |z| = r < R, the inequality

|f (n)(z)− f (n)(0)| ≤ 1
2
Kn,∞(z)On,(f (DR) (7.4.7)

holds with the sharp constant

Kn,∞(z) =
1

Rn
Kn,∞

( r

R

)
,

where

Kn,∞(γ) =
n!
π

sup
α

∫

|ζ|=1

∣∣∣∣!
{

ζn+1 − (ζ − γ)n+1

(ζ − γ)n+1ζn
eiα

}∣∣∣∣ |dζ|.

Remark 7.2. Note that the sharp inequality (3.4.23)

|∆f(z)| ≤ 1
π

log
R + r

R− r
O(f (DR)

is a particular case of (7.4.7) for n = 0.
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14, N. 2, 235-239.
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Borel-Carathéodory inequality)
Bourgain, J., xii, 122
Burckel, R.B., xii, 2, 3, 12, 13, 17, 30,

100, 122
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