
A survey of functional and Lp dissipativity

theory

A. Cialdea ∗ V. Maz’ya †

Abstract. Various notions of dissipativity type for partial differential operators and

their applications are surveyed. We deal with functional dissipativity and its particular

case Lp-dissipativity. Most of the results are due to the authors.

1 Introduction

The present paper contains a survey of recent results concerning dissipativity of

partial differential operators. To be more precise, we mean the notion of functional

dissipativity introduced in [15] and its particular case, the so calledLp-dissipativity.

Our joint studies in this area started in 2005, when we found necessary and

sufficient conditions for the Lp-dissipativity of second order differential operators

with complex valued coefficients.

The Lp-dissipativity of a partial differential operator arises in a natural way

in the study of partial differential equations with data in Lp. The theory of such

problems has a long history. In fact Lp-dissipativity appeared in 1937 in the

pioneering work of Cimmino [16] on the Dirichlet problem with boundary data

in Lp. Similar ideas were used in [45] and [51]. In [48] the study of degenerate

oblique derivative problem hinges on the weighted Lp positivity of the differential

operator. Later we give more historical information.
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In order to introduce the topic in a simple way, let us consider the classical

Cauchy-Dirichlet problem for the heat equation





∂u

∂t
= ∆u, for t > 0,

u(x, 0) = ϕ(x), x ∈ R
n,

(1)

where ϕ is a given function in C0(Rn) ∩ L∞(Rn).
It is well known that the unique solution of problem (1) in the class of smooth

bounded solutions is given by the formula

u(x, t) =
1√

(4πt)n

∫

Rn

ϕ(y) e−
|x−y|2

4t dy, x ∈ R
n, t > 0. (2)

From (2) it follows immediately

|u(x, t)| 6 ‖ϕ‖∞, t > 0, (3)

since
1√

(4πt)n

∫

Rn

e−
|x−y|2

4t dy = 1 (t > 0). (4)

Inequality (3) leads to the classical maximum modulus principle

‖u(·, t)‖∞ 6 ‖ϕ‖∞, t > 0,

and this in turn implies that the norm ‖u(·, t)‖∞ is a decreasing function of t. In

fact, fix t0 > 0 and consider the problem





∂v

∂t
= ∆v, for t > t0,

v(x, t0) = u(x, t0), x ∈ R
n.

(5)

It is clear that the unique solution of (5) is given by v(x, t) = u(x, t) (t > t0)
and we have

‖v(·, t)‖∞ 6 ‖u(·, t0)‖∞, t > t0,

i.e.,

‖u(·, t)‖∞ 6 ‖u(·, t0)‖∞, t > t0.
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The L∞ norm is not the only norm for which we have this kind of dissipativity.

Let us consider the Lp-norm with 1 < p < ∞. By Cauchy-Hölder inequality,

from (2) we get

|u(x, t)| 6
(

1√
(4πt)n

∫

Rn

|ϕ(y)|pe− |x−y|2

4t dy

)1/p(
1√

(4πt)n

∫

Rn

e−
|x−y|2

4t dy

)1/p′

(1/p+ 1/p′ = 1) and then, keeping in mind (4),

|u(x, t)|p 6 1√
(4πt)n

∫

Rn

|ϕ(y)|pe− |x−y|2

4t dy.

Integrating over Rn and applying Tonelli’s Theorem we find

∫

Rn

|u(x, t)|pdx 6
1√

(4πt)n

∫

Rn

dx

∫

Rn

|ϕ(y)|pe− |x−y|2

4t dy =

1√
(4πt)n

∫

Rn

|ϕ(y)|pdy
∫

Rn

e−
|x−y|2

4t dx =

∫

Rn

|ϕ(y)|pdy

and we have proved that

‖u(·, t)‖p 6 ‖ϕ‖p. (6)

As before, this inequality implies that the norm ‖u(·, t)‖p is a decreasing

function of t.
Let us consider now the more general problem





∂u

∂t
= Au, for t > 0,

u(x, t) = 0, for x ∈ ∂Ω, t > 0,

u(x, 0) = ϕ(x), x ∈ Ω,

(7)

where Ω is a domain in R
n and A is a linear elliptic partial differential operator of

the second order

Au =
∑

|α|62

aα(x)D
αu ,

the coefficients aα being complex valued. A natural question arises: under which

conditions for the operator A the solution u(x, t) of the problem (7) satisfies the

inequality (6) ?
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As we know already, (6) implies that ‖u(·, t)‖p is a decreasing function of t
and then

d

dt
‖u(·, t)‖p 6 0. (8)

On the other hand, at least formally, we have for 1 < p <∞, 1

d

dt
‖u(·, t)‖ p

p =
d

dt

∫

Ω

|u(x, t)|pdx = pRe

∫

Ω

〈∂tu, u〉|u|p−2dx, (9)

where 〈·, ·〉 denotes the usual scalar product in C. Since u is a solution of the

problem (7), keeping in mind (9), we have that (8) holds if, and only if,

Re

∫

Ω

〈Au, u〉|u|p−2dx 6 0.

This leads to the following definition: letA a linear operator fromD(A) ⊂ Lp(Ω)
to Lp(Ω); A is said to be Lp-dissipative if

Re

∫

Ω

〈Au, u〉|u|p−2dx 6 0, ∀ u ∈ D(A). (10)

It follows from what we have said before that if A is Lp-dissipative and if problem

(7) has a solution, then (8) holds. Here we shall not dwell upon details of rigourous

justification of the above argument.

We conclude Introduction by a well known result (see e.g. [60, p.215]).

Consider the operator in divergence form with real smooth coefficients

Au = ∂i (aij(x) ∂ju) (11)

(aji = aij ∈ C1(Ω)): if aij(x)ξiξj > 0 for any ξ ∈ R
n, x ∈ Ω, the operator (11) is

Lp-dissipative for any p. If 2 6 p < ∞ this can be deduced easily by integration

by parts. Indeed we can write
∫

Ω

〈Au, u〉|u|p−2dx = −
∫

Ω

aij ∂ju ∂i
(
u |u|p−2

)
dx

= −
∫

Ω

aij∂ju
(
|u|p−2∂iu+ u ∂i(|u|p−2)

)
dx .

Since

∂i(|u|p−2) = (p− 2)|u|p−3∂i|u| = (p− 2)|u|p−4
Re (u ∂iu)

1Note that ∂t|u| = ∂t
√
uu = (utu+ uut)/(2

√
uu) = Re(utu/|u|).
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we can write

∂ju
(
|u|p−2∂iu+ u ∂i(|u|p−2)

)

= |u|p−4 [u u ∂ju ∂iu+ (p− 2)u ∂juRe (u ∂iu)] .

Setting

|u|(p−4)/2u ∂ju = ξj + iηj ,

we have

aij∂ju
(
|u|p−2∂iu+ u ∂i(|u|p−2)

)
= aij (ξj + iηj) (ξi − iηi + (p− 2)ξi).

This implies

Re
(
aij∂ju

(
|u|p−2∂iu+ u ∂i(|u|p−2)

))
= (p− 1)aijξiξj + aijηiηj

and then

Re

∫

Ω

aij∂ju ∂i
(
u |u|p−2

)
dx > 0,

i.e., A is Lp-dissipative. Some extra arguments are necessary for the case 1 < p <
2.

During the last half a century various aspects of the Lp-theory of semigroups

generated by linear differential operators were studied in [5, 18, 1, 64, 19, 34, 62,

20, 21, 41, 43, 39, 2, 17, 33, 42, 63, 58, 9, 54, 10] and others. A general account of

the subject can be found in the book [59]. Certain of our earlier results have been

described in our monograph [12], where they are considered in the more general

frame of semi-bounded operators.

Necessary and sufficient conditions for theL∞-contractivity for general second

order strongly elliptic systems with smooth coefficients were given in [36] (see

also the monograph [37]). Scalar second order elliptic operators with complex

coefficients were handled as a particular case. The operators generating L∞-

contractive semigroups were later characterized in [2] under the assumption that

the coefficients are measurable and bounded.

The maximum modulus principle for linear elliptic equations and systems with

complex coefficients was considered by Kresin and Maz’ya. They have obtained

several results on the best constants in different forms of maximum principles for

linear elliptic equations and systems (see the monograph [37] and the recent survey

[38]).

The case of higher order operators is quite different. Apparently, only the paper

[40] by Langer and Maz’ya dealt with the question of Lp-dissipativity for higher
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order differential operators. In the case 1 6 p < ∞, p 6= 2, they proved that, in

the class of linear partial differential operators of order higher than two, with the

domain containing C∞
0 (Ω), there are no generators of a contraction semigroup on

Lp(Ω). Ifu runs over notC∞
0 (Ω), but only (C∞

0 (Ω))+ (i.e., the class of nonnegative

functions of C∞
0 (Ω)), then the result for operators with real coefficients is quite

different and really surprising: if the operator A of order k has real coefficients

and the integral ∫

Ω

(Au) up−1dx

preserves the sign as u runs over (C∞
0 (Ω))+, then either k = 0, 1 or 2, or k = 4

and 3/2 6 p 6 3.

Let us now give an outline of the paper. Section 2 presents the basic results of

Functional Analysis leading to the concept of abstract dissipative operators.

In Section 3 we recall our general definition ofLp-dissipativity of the sesquilin-

ear form related to a scalar second order operator. In Section 4 we give an algebraic

condition we found, which provides necessary and sufficient conditions for the Lp-

dissipativity of second order operators in divergence form, with no lower order

terms.

Section 5 presents a review on p-elliptic operators, which are operators satis-

fying a strengthened version of our algebraic condition.

Section 6 is concerned with the Lp-dissipativity of operators with lower order

terms.

The topic of Section 7 is the linear elasticity system. More general systems are

considered in Section 8.

In Section 9 we show how the necessary and sufficient conditions we have

obtained lead to determine exactly the angle of dissipativity of certain operators.

Section 10 is devoted to presents some of the results obtained by Kresin and

Maz’ya concerning the validity of the classical maximum principle.

In Section 11 we briefly describe some other results we have obtained. They

concern the Lp-dissipativity of first order systems, of the “complex oblique deriva-

tive” operator and of a certain class of integral operators which includes the

fractional powers of Laplacian (−∆)s, with 0 < s < 1.

Section 12 discusses the concept of functional dissipativity, which we have

recently introduced.

The final section of this paper, Section 13, briefly shows how our conditions for

Lp-dissipativity and its strengthened variant are getting more and more important

in many respects.
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2 Abstract setting

Let X be a (complex) Banach space. A semigroup of linear operators on X is a

family of linear and continuous operators T (t) (0 6 t < ∞) from X into itself

such that T (0) = I , T (t+ s) = T (t)T (s) (s, t > 0).
We say that T (t) is a strongly continuous semigroup (briefly, a C0-semigroup)

if

lim
t→0+

T (t)x = x, ∀ x ∈ X.

The linear operator

Ax = lim
t→0+

T (t)x− x

t
(12)

is the infinitesimal generator of the semigroup T (t).
The domainD(A) of the operatorA (maybe not continuous) is the set of x ∈ X

such that the limit in (12) does exist.

If T (t) is a C0-semigroup generated by A and u0 is a given element in D(A),
the function u(t) = T (t)u0 is solution of the evolution problem





du

dt
= Au, (t > 0)

u(0) = u0 .
(13)

We remark the it is still possible to solve the Cauchy problem (13) when u0
is an arbitrary element of X . In order to do that, it is necessary to introduce a

concept of generalized solution. For this we refer to [60, Ch.4].

One can show that if T (t) is a C0 semigroup, then there exist two constants

ω > 0, M > 1 such hat

‖T (t)‖ 6M eωt, 0 6 t <∞. (14)

If we can choose ω = 0 and M = 1 in the inequality (14), we have

‖T (t)‖ 6 1, 0 6 t <∞

and the semigroup is said to be a contraction semigroup or a semigroup of con-

tractions. If the operator A is the generator of a C0-semigroup of contractions, the

solution of the Cauchy problem (13) satisfies the estimates

‖u(t)‖ 6 ‖u0‖ 0 6 t <∞. (15)
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If the norm in (15) is the L∞ norm, we have the classical maximum principle

for parabolic equations.

The next famous Hille-Yosida Theorem characterizes the operators which gen-

erates C0 semigroups of contractions

Theorem 1 A linear operator A generates a C0 semigroup of contractions T (t)
if, and only if,

(i) A is closed and D(A) is dense in X;

(ii) the resolvent set ̺(A) contains R+ and the resolvent operator Rλ satisfies

the inequality

‖Rλ‖ 6
1

λ
, ∀ λ > 0.

Given x ∈ X , denote by I (x) the set

I (x) = {x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2},

X∗ being the (topological) dual space of X . The set I (x) is called the dual set

of x. The operator A is said to be dissipative if, for any x ∈ D(A), there exists

x∗ ∈ I (x) such that

Re 〈x∗, Ax〉 6 0. (16)

Another characterization of operators generating contractive semigroups is

given by the equally famous Lumer-Phillips theorem:

Theorem 2 If A generates a C0 semigroup of contractions, then

(i) D(A) = X;

(ii) A is dissipative. More precisely, for any x ∈ D(A), we have

Re〈x∗, Ax〉 6 0, ∀ x∗ ∈ I (x);

(iii) ̺(A) ⊃ R
+.

Conversely, if

(i’) D(A) = X;

(ii’) A is dissipative;

(iii’) ̺(A) ∩ R
+ 6= ∅,

then A generates a C0 semigroup of contractions.

Lumer-Phillips theorem shows that in order to have a contractive semigroup

the operator A has to be dissipative, i.e., inequality (16) has to be satisfied. If
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X = Lp(Ω) (1 < p <∞) it is easy to see that the dual set I (f) contains only the

element f ∗ defined by

f ∗(x)

{
= ‖f‖2−p

p f(x) |f(x)|p−2 if f(x) 6= 0

= 0 if f(x) = 0.

and then inequality (16) coincide with (10). We remark that, in the case 1 < p < 2,

the integral in (10) has to be understood with the integrand extended by zero on

the set where it vanishes.

Maz’ya and Sobolevskiı̆ [51] obtained independently of Lumer and Phillips the

same result under the assumption that the norm of the Banach space is Gâteaux-

differentiable. Their result looks as follows

Theorem 3 The closed and densely defined operatorA+λI has a bounded inverse

for all λ > 0 and satisfies the inequality

‖[A+ λI]−1‖ 6 [Reλ+ λ0]
−1

(λ0 > 0) if and only if, for any v ∈ D(A) and f ∈ D(A∗),

Re〈Γv, Av〉 > λ0‖v‖,

Re〈Γ∗f, A∗f〉 > λ0‖f‖.
Here Γ and Γ∗ stand for the Gâteaux gradient of the norm in B and in B∗,
respectively. Applications to second order elliptic operators were also given in

[51]. It is interesting to note that the paper [51] was sent to the journal in 1960,

before the Lumer-Phillips paper of 1961 [44] appeared.

3 Scalar second order operators with complex coef-

ficients

In this section we describe the main results obtained in [9], where we studied the

Lp-dissipativity of scalar second order operators with complex coefficients.

To be precise we consider operators of the form

Au = ∇t(A ∇u) + b∇u+∇t(cu) + au

where∇t is the divergence operator, defined in a domainΩ ⊂ R
N . The coefficients

satisfy the following very general assumptions:
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— A is an n × n matrix whose entries are complex-valued measures ahk

belonging to (C0(Ω))
∗. This is the dual space of C0(Ω), the space of complex-

valued continuous functions with compact support contained in Ω;

— b = (b1, . . . , bn) and c = (c1, . . . , cn) are complex-valued vectors with

bj, cj ∈ (C0(Ω))
∗;

— a is a complex-valued scalar distribution in (C1
0(Ω))

∗, where C1
0(Ω) =

C1(Ω) ∩ C0(Ω).
Consider the related sesquilinear form L (u, v)

L (u, v) =

∫

Ω

(〈A ∇u,∇v〉 − 〈b∇u, v〉+ 〈u, c∇v〉 − a〈u, v〉)

on C0
1(Ω)× C0

1(Ω).
The operator A acts from C1

0(Ω) to (C1
0(Ω))

∗ through the relation

L (u, v) = −
∫

Ω

〈Au, v〉

for any u, v ∈ C1
0(Ω). The integration is understood in the sense of distributions.

The following definition was given in [9]. Let 1 < p <∞. A form L is called

Lp-dissipative if for all u ∈ C1
0(Ω)

ReL (u, |u|p−2u) > 0, if p > 2,

ReL (|u|p′−2u, u) > 0, if 1 < p < 2,
(17)

where p′ = p/(p−1) (we use here that |u|q−2u ∈ C1
0(Ω) for q > 2 and u ∈ C1

0(Ω)).
We remark that the form L is Lp-dissipative if and only if

ReL (u, |u|p−2u) > 0 (18)

for any u ∈ C1
0(Ω) such that |u|p−2u ∈ C1

0(Ω).
Indeed, if p > 2, |u|p−2u belongs to C1

0(Ω) for any u ∈ C1
0(Ω). If 1 < p < 2,

we prove the following simple fact: u ∈ C1
0(Ω) is such that |u|p−2u belongs to

C1
0(Ω) if and only if we can write u = ‖v‖2−p′

p′ |v|p′−2v, with v ∈ C1
0(Ω).

In fact, if v is any function inC1
0(Ω), then setting u = ‖v‖2−p′

p′ |v|p′−2v, we have

u ∈ C1
0(Ω) and u∗ = v belongs to C1

0(Ω) too. Conversely, if u is such that |u|p−2u

belongs to C1
0(Ω), set v = u∗. We have v ∈ C1

0(Ω) and u = ‖v‖2−p′

p′ |v|p′−2v.

Therefore, if 1 < p < 2, condition (18) for any u ∈ C1
0(Ω) such that |u|p−2u ∈

C1
0(Ω) means

ReL (|v|p′−2v, v) > 0
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for any v ∈ C1
0(Ω). This completes the proof of the equivalence between condition

(18) for any u ∈ C1
0(Ω) such that |u|p−2u ∈ C1

0(Ω) and definition (17).

A first property of dissipative operators is given by the lemma

Lemma 1 If a form L is Lp-dissipative, then

〈ReA ξ, ξ〉 > 0 ∀ξ ∈ R
n. (19)

This assertion follows from the following basic lemma wich provides a neces-

sary and sufficient condition for the Lp-dissipativity of the form L .

Lemma 2 ([9]) A form L is Lp-dissipative if and only if for all w ∈ C1
0(Ω)

Re

∫

Ω

[
〈A ∇w,∇w〉 − (1− 2/p)〈(A − A

∗)∇(|w|), |w|−1w∇w〉

− (1− 2/p)2〈A ∇(|w|),∇(|w|)〉
]
+

∫

Ω

〈 Im(b+ c), Im(w∇w)〉

+

∫

Ω

Re(∇t(b/p− c/p′)− a)|w|2 > 0.

Condition (19) is necessary and sufficient for the L2- dissipativity, but it is not

sufficient if p 6= 2.

Lemma 2 implies the following sufficient condition.

Corollary 1 ([9]) Let α and β be two real constants. If

4

p p′
〈ReA ξ, ξ〉+ 〈ReA η, η〉+ 2〈(p−1

ImA + p′−1
ImA

∗)ξ, η〉

+ 〈 Im(b+ c), η〉 − 2〈Re(αb/p− βc/p′), ξ〉
+ Re

[
∇t ((1− α)b/p− (1− β)c/p′)− a

]
> 0
(20)

for any ξ, η ∈ R
n, then the form L is Lp-dissipative.

Putting α = β = 0 in (20), we find that if

4

p p′
〈ReA ξ, ξ〉+ 〈ReA η, η〉+ 2〈(p−1

ImA + p′−1
ImA

∗)ξ, η〉
+〈 Im(b+ c), η〉+ Re

[
∇t (b/p− c/p′)− a

]
> 0 (21)

for any ξ, η ∈ R
n, then the form L is Lp-dissipative.

Generally speaking, condition (21) (and the more general condition (20)) is

not necessary.
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Example 1 Let n = 2 and

A =

(
1 iγ

−iγ 1

)
,

where γ is a real constant, b = c = a = 0. In this case, the polynomial (21) is

given by

(η1 + γξ2)
2 + (η2 − γξ1)

2 − (γ2 − 4/(pp′))|ξ|2.
For γ2 > 4/(pp′) the condition (20) is not satisfied, whereas the Lp-dissipativity

holds because the corresponding operator A is the Laplacian.

Note that the matrix ImA is not symmetric. Below (after Corollary 3), we

give another example showing that the condition (21) is not necessary for the

Lp-dissipativity even for symmetric matrices ImA .

4 The operator ∇t(A ∇u)
The main result proved in [9] concerns a scalar operator in divergence form with

no lower order terms:

Au = ∇t(A ∇u). (22)

The following assertion gives a necessary and sufficient condition for the Lp-

dissipativity of the operator (22), where - as before - the coefficients ahk belong to

(C0(Ω))
∗.

Theorem 4 ([9]) Let ImA be symmetric, i.e., ImA t =ImA . The form

L (u, v) =

∫

Ω

〈A ∇u,∇v〉

is Lp-dissipative if and only if

|p− 2| |〈 ImA ξ, ξ〉| 6 2
√
p− 1 〈ReA ξ, ξ〉 (23)

for any ξ ∈ R
n, where | · | denotes the total variation.

The condition (23) is understood in the sense of comparison of measures.

Of course if the coefficients {ahk} are complex valued L∞ functions (or more

generally L1
loc), the condition (23) means

|p− 2| |〈 ImA (x)ξ, ξ〉| 6 2
√
p− 1 〈ReA (x)ξ, ξ〉
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for any ξ ∈ R
n and for a.e. x ∈ Ω.

When this result appeared, it was new even for operators with smooth coeffi-

cients. For such operators it implies the contractivity of the generated semigroup.

Note that from Theorem 4 we immediately derive the following well known

results.

Corollary 2 Let A be such that 〈ReA ξ, ξ〉 > 0 for any ξ ∈ R
n. Then

1) A is L2-dissipative,

2) if A is an operator with real coefficients, then A is Lp-dissipative for any p.

The condition (23) is equivalent to the positivity of some polynomial in ξ and

η. More exactly, (23) is equivalent to the following condition:

4

p p′
〈ReA ξ, ξ〉+ 〈ReA η, η〉 − 2(1− 2/p)〈 ImA ξ, η〉 > 0 (24)

for any ξ, η ∈ R
n.

More generally, if the matrix ImA is not symmetric, the condition

4

p p′
〈ReA (x)ξ, ξ〉+〈ReA (x)η, η〉+2〈(p−1

ImA (x)+p′−1
ImA

∗(x))ξ, η〉 > 0

(25)

for almost any x ∈ Ω and for any ξ, η ∈ R
n (p′ = p/(p− 1)) is only sufficient for

the Lp-dissipativity.

Let us assume that eitherA has lower order terms or it has no lower order terms

and ImA is not symmetric. Then (23) is still necessary for the Lp-dissipativity of

A, but not sufficient, which will be shown in Example 2 (cf. also Theorem 7 below

for the case of constant coefficients). In other words, for such general operators

the algebraic condition (24) is necessary but not sufficient, whereas the condition

(21) is sufficient, but not necessary.

Example 2 Let n = 2, and let Ω be a bounded domain. Denote by σ a real

function of class C0
2(Ω) which does not vanish identically. Let λ ∈ R. Consider

the operator (22) with

A =

(
1 iλ∂1(σ

2)
−iλ∂1(σ2) 1

)
,

i.e.,

Au = ∂1(∂1u+ iλ∂1(σ
2) ∂2u) + ∂2(−iλ∂1(σ2) ∂1u+ ∂2u),
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where ∂i = ∂/∂xi (i = 1, 2). By definition, we have L2-dissipativity if and only if

Re

∫

Ω

((∂1u+ iλ∂1(σ
2) ∂2u)∂1u+ (−iλ∂1(σ2) ∂1u+ ∂2u)∂2u) dx > 0

for any u ∈ C0
1(Ω), i.e., if and only if
∫

Ω

|∇u|2dx− 2λ

∫

Ω

∂1(σ
2) Im(∂1u ∂2u) dx > 0

for any u ∈ C0
1(Ω). Taking u = σ exp(itx2) (t ∈ R), we obtain, in particular,

t2
∫

Ω

σ2dx− tλ

∫

Ω

(∂1(σ
2))2dx+

∫

Ω

|∇σ|2dx > 0. (26)

Since ∫

Ω

(∂1(σ
2))2dx > 0,

we can choose λ ∈ R so that (26) is impossible for all t ∈ R. Thus, A is not

L2-dissipative, although (23) is satisfied. Since A can be written as

Au = ∆u− iλ(∂21(σ
2) ∂1u− ∂11(σ

2) ∂2u),

this example shows that (23) is not sufficient for the L2-dissipativity of an operator

with lower order terms, even if ImA is symmetric.

5 The p-ellipticity

Let us consider the class of operators

Au = ∇(A ∇u) + b∇u+∇(cu) + au. (27)

with L∞ coefficients, such that the form (25) is not merely non-negative, but

strictly positive, i.e., there exists κ > 0 such that

4

p p′
〈ReA (x)ξ, ξ〉+ 〈ReA (x)η, η〉+ 2〈(p−1

ImA (x) + p′−1
ImA

∗(x))ξ, η〉

> κ(|ξ|2 + |η|2)
(28)

for almost any x ∈ Ω and for any ξ, η ∈ R
n. The class of operators (27) whose

principal part satisfies (28) and which could be called (strongly) p-elliptic, was

recently considered by several authors.

Carbonaro and Dragičević [6, 7] showed the validity of a so called (dimension

free) bilinear embedding. Their main result is the following

14



Theorem 5 ([6]) Let PA
t = exp (−tLA) , t > 0 and let p > 1. Suppose that the

matrices A,B are p-elliptic. Then for all f, g ∈ C∞
0 (Rn) we have

∫ ∞

0

∫

Rn

∣∣∇PA
t f(x)

∣∣ ∣∣∇PB
t g(x)

∣∣ dxdt 6 C‖f‖p‖g‖p′ (29)

with constant depending on ellipticity parameters, but not dimension.

We note that if A and B are real accretive matrices then (29) holds for the full

range of exponents p ∈ (1,∞).
In a series of papers [23, 24, 25, 26] Dindoš and Pipher proved several results

concerning the Lp solvability of the Dirichlet problem. Their result hinges on a

regularity property for the solutions of the Dirichlet problem for the equation

∂i (aij(x)∂ju) + bi(x)∂iu = 0 , (30)

given by the next result

Lemma 3 ([23], p.269) Let the matrix A be p-elliptic for p > 2 and let B have

coefficients Bi ∈ L∞
loc (Ω) satisfying the condition

|Bi(x)| 6 K(δ(x))−1, ∀x ∈ Ω , (31)

where the constantK is uniform, and δ(x) denotes the distance ofx to the boundary

of Ω. Suppose that u ∈ W 1,2
loc (Ω) is a weak solution of the equation (30) in Ω, an

open subset of Rn. Then, for any ball Br(x) with r < δ(x)/4,

∫

Br(x)

|∇u(y)|2|u(y)|p−2dy 6 C1r
−2

∫

B2r(x)

|u(y)|pdy

and (∫

Br(x)

|u(y)|qdy
)1/q

6 C2

(∫

B2r(x)

|u(y)|2dy
)1/2

for all q ∈
(
2, np

n−2

]
when n > 2, and where C1, C2 depend only on p-ellipticity

constants and K of (31). When n = 2, q can be any number in (2,∞). In

particular, |u|(p−2)/2u belongs to W 1,2
loc (Ω).

Dindoš and Pipher used this result in an iterative procedure, which is sim-

ilar to Moser’s iteration scheme (used in Moser’s proof of the celebrated De

Giorgi–Nash–Moser regularity theorem for real divergence form elliptic equa-

tions). Differently from the real coefficients case, where the procedure can be

15



applied for any p and leads to the boundedness of the solution (and then to its

Hölderianity), here the iteration scheme can be applied only up to a threshold de-

termined by the p-ellipticity of the operator. This is sufficient to obtain an higher

integrability of the solution.

Dindoš and Pipher uses this regularity result in the study of the existence for

the Dirichlet problem





∂i (aij(x)∂ju) + bi(x)∂iu = 0 in Ω

u(x) = f(x) a.e. on ∂Ω

Ñ2,a(u) ∈ Lp(∂Ω)

(32)

where f is in Lp(∂Ω). Here a > 0 is a fixed parameter and Ñ2,a(u) is a nontan-

gential maximal function defined using Lp averages over balls

Ñ2,a(u)(y) = sup
x∈Γa(y)

(
−
∫

Bδ(x)/2(x)

|u(z)|2dz
)1/2

(y ∈ ∂Ω) where the barred integral indicates the average and Γa(y) is a cone of

aperture a. To be precise, they say that the Dirichlet problem (32) is solvable for a

given p ∈ (1,∞) if there exists aC = C(p,Ω) > 0 such that for all complex valued

boundary data f ∈ Lp(∂Ω) ∩ B2,2
1/2(∂Ω) the unique “energy solution” satisfies the

estimate ∥∥∥Ñ2,a(u)
∥∥∥
Lp(∂Ω)

6 C‖f‖Lp(∂Ω) .

Since the space Ḃ2,2
1/2(∂Ω)∩Lp(∂Ω) is dense in Lp(∂Ω) for each p ∈ (1,∞), there

exists a unique continuous extension of the solution operator f 7→ u to the whole

space Lp(∂Ω), with u such that Ñ2,a(u) ∈ Lp(∂Ω) and the accompanying estimate∥∥∥Ñ2,a(u)
∥∥∥
Lp(∂Ω)

6 C‖f‖Lp(∂Ω) is valid.

Their results have been extended by Dindoš, Li and Pipher to systems and in

particular to elasticity in [22].

We mention that - as Carbonaro and Dragičević [6] show - the p-ellipticity

comes into play also in the study of the convexity of power functions (Bellman

functions) and in the holomorphic functional calculus.

Egert [27] shows that the p-ellipticity condition implies extrapolation to a

holomorphic semigroup on Lebesgue spaces in a p-dependent range of exponents.

Finally we remark that, if the partial differential operator has no lower order

terms, the concepts of p-ellipticity and strict Lp-dissipativity coincide. By strict

16



Lp-dissipativity we mean that there exists κ > 0 such that

Re

∫

Ω

〈A hk ∂ku, ∂h(|u|p−2u)〉 dx > κ

∫

Ω

|∇(|u|(p−2)/2u)|2dx

for any u ∈ C1
0(Ω) such that |u|p−2u ∈ C1

0(Ω).
It is worthwhile to remark that, if the partial differential operator has no lower

order terms, the concepts of p-ellipticity and strict Lp-dissipativity coincide. One

can prove that the operator A is strict Lp-dissipative, i.e., p-elliptic, if and only if

there exists κ > 0 such that A− κ∆ is Lp-dissipative.

6 Lp-dissipativity for operators with lower order terms

Generally speaking, it is impossible to obtain an algebraic characterization for an

operator with lower order terms. Indeed, let us consider, for example, the operator

Au = ∆u+ a(x)u

in a bounded domain Ω ⊂ R
n with zero Dirichlet boundary data. Denote by λ1

the first eigenvalue of the Dirichlet problem for the Laplace equation in Ω. A

sufficient condition for the L2-dissipativity of A has the form Re a 6 λ1, and we

cannot give an algebraic characterization of λ1.
Consider, as another example, the operator

A = ∆+ µ (33)

where µ is a nonnegative Radon measure on Ω. The operator A is Lp-dissipative

if and only if ∫

Ω

|w|2dµ 6
4

pp′

∫

Ω

|∇w|2dx (34)

for any w ∈ C∞
0 (Ω) (cf. Lemma 2). Maz’ya [46, 47, 49] proved that the following

condition is sufficient for (34):

µ(F )

capΩ(F )
6

1

pp′
(35)

for all compact set F ⊂ Ω and the following condition is necessary:

µ(F )

capΩ(F )
6

4

pp′
(36)
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for all compact set F ⊂ Ω. Here, capΩ(F ) is the capacity of F relative to Ω, i.e.,

capΩ(F ) = inf
{∫

Ω

|∇u|2dx : u ∈ C0
∞(Ω), u > 1 on F

}
.

The condition (35) is not necessary and the condition (36) is not sufficient.

It must be pointed out that a theorem by Jaye, Maz’ya and Verbitsky can provide

a necessary and sufficient condition of a different nature for the Lp-dissipativity of

operator (33). In fact in [32] they proved the following result

Theorem 6 Let Ω be an open set, and let σ ∈ (C∞
0 (Ω))′ be a real valued distri-

bution. In addition, let A be a symmetric matrix function defined on Ω satisfying

the conditions

(1.4) m|ξ|2 6 A(x)ξ · ξ, and |A(x)ξ| 6M |ξ|, for all ξ ∈ R
n \ {0}.

Then 〈
σ, h2

〉
6

∫

Ω

(A∇h) · ∇h dx

holds for all h ∈ C∞
0 (Ω) if and only if there exists a vector field ~Γ ∈ L2

loc(Ω) so

that:

σ 6 div(A~Γ)− (A~Γ) · ~Γ in (C∞
0 (Ω))′.

Keeping in mind that the operator (33) isLp-dissipative if and only if (34) holds

for any w ∈ C∞
0 (Ω), by taking σ = µ, A = (4/(pp′))I, we find immediately that

(33) is Lp-dissipative if and only if there exists a vector field ~Γ ∈ L2
loc(Ω) such that

µ 6
4

p p′

(
div ~Γ− |~Γ|2

)

in the sense of distributions.

In the case of an operator with constant coefficients and lower order terms, we

have found a necessary and sufficient condition. Consider the operator

Au = ∇t(A ∇u) + b∇u+ au (37)

with constant complex coefficients. Without loss of generality, we can assume that

the matrix A is symmetric.

The following assertion provides a necessary and sufficient condition for the

Lp-dissipativity of the operator A.
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Theorem 7 ([9]) Suppose that Ω is an open set in R
n which contains balls of

arbitrarily large radius. The operator (37) is Lp-dissipative if and only if there

exists a real constant vector V such that

2ReA V + Imb = 0,

Re a+ 〈ReA V, V 〉 6 0

and for any ξ ∈ R
n

|p− 2| |〈 ImA ξ, ξ〉| 6 2
√
p− 1 〈ReA ξ, ξ〉. (38)

If the matrix ReA is not singular, the following assertion holds.

Corollary 3 ([9]; cf. also [36]) Suppose that Ω is an open set in R
n which con-

tains balls of arbitrarily large radius. Assume that the matrixReA is not singular.

The operator A is Lp-dissipative if and only if (38) holds and

4Re a 6 −〈(ReA )−1
Imb, Imb〉. (39)

Now, we can show that the condition (20) is not necessary for the Lp-

dissipativity, even if the matrix ImA is symmetric.

Example 3 Let n = 1, and let Ω = R
1. Consider the operator

(
1 + 2

√
p− 1

p− 2
i

)
u′′ + 2iu′ − u,

where p 6= 2 is fixed. The conditions (38) and (39) are satisfied, and this operator

is Lp-dissipative in view of Corollary 3.

On the other hand, the polynomial in (21) has the form

(
2

√
p− 1

p
ξ − η

)2

+ 2η + 1,

i.e., it is not nonnegative for any ξ, η ∈ R.

Recently Maz’ya and Verbitsky [52] (see also [53]) gave necessary and suffi-

cient conditions for the accretivity of a second order partial differential operator

L containing lower order terms, in the case of Dirichlet data. We observe that the

accretivity of L is equivalent to the L2-dissipativity of −L.
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Their result concern second order operators with distributional coefficients

L = div(A∇·) + b · ∇+ c (40)

where A ∈ ((C∞
0 (Ω))′)n×n, b ∈ ((C∞

0 (Ω))′)n and c ∈ (C∞
0 (Ω))′ are complex-

valued.

Given A = {ajk} ∈ ((C∞
0 (Ω))′)n×n, we denote by As and Ac its symmetric

part and skew-symmetric part respectively. The accretivity property for −L can

be characterized in terms of the following real-valued expressions:

P = ReAs, d =
1

2
[Imb−Div (ImAc)] , σ = Re c− 1

2
div(Reb) . (41)

We note that P = {pik} ∈ ((C∞
0 (Ω))′)n×n,d = {dj} ∈ ((C∞

0 (Ω))′)n, and

σ ∈ (C∞
0 (Ω))′.

Moreover, in order that −L be accretive, the matrix P must be nonnegative

definite, i.e., Pξ · ξ > 0 in (C∞
0 (Ω))′ for all ξ ∈ R

n. In particular, each pjj
(j = 1, . . . , n) is a nonnegative Radon measure.

The characterization of accretive operators −L is given in the following crite-

rion obtained in [52, Proposition 2.1]

Theorem 8 Let L be the operator (40). Suppose that P,d, and σ are defined

by (41). The operator −L is accretive if and only if P is a nonnegative definite

matrix, and the following two conditions hold:

[h]2H = 〈P∇h,∇h〉 − 〈σh, h〉 > 0

for all real-valued h ∈ C∞
0 (Ω), and the commutator inequality

|〈d, u∇v − v∇u〉| 6 [u]H[v]H (42)

holds for all real-valued u, v ∈ C∞
0 (Ω).

Under some mild restrictions on H, the “norms” [u]H and [v]H on the right-

hand side of (42) can be replaced, up to a constant multiple, with the corresponding

Dirichlet norms

|〈d, u∇v − v∇u〉| 6 C‖∇u‖L2(Ω)‖∇v‖L2(Ω) (43)

where C > 0 is a constant which does not depend on real-valued u, v ∈ C∞
0 (Ω).

This leads to explicit criteria of accretivity (see [53, Section 4] for the details).

Indeed Maz’ya and Verbitsky have found necessary and sufficient conditions for

the validity of commutator inequality (43). For example, when Ω = R
n and d has

L1
loc components, they prove the following result
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Theorem 9 Let d ∈ [L1
loc(R

n)]n, n > 2. The inequality

∣∣∣∣
∫

Rn

〈d, u∇v − v∇u〉dx
∣∣∣∣ 6 C‖∇u‖L2(Rn)‖∇v‖L2(Rn) (44)

holds for any real-valued u, v ∈ C∞
0 (Rn)if and only if

d = c+DivF (45)

where F ∈ BMO(Rn)n×n
is a skew-symmetric matrix field, and c satisfies the

condition ∫

Rn

|c|2|u|2dx 6 C‖∇u‖2L2(Rn) (46)

where the constant C does not depend on u ∈ C∞
0 (Rn). Moreover, if (44) holds,

then (45) is valid with c = ∇∆−1(div d) satisfying (46), and F = ∆−1(Curld) ∈
BMO(Rn)n×n .

In the case n = 2, necessarily c = 0, and d = (−∂2f, ∂1f) with f ∈
BMO(R2) in the above statements.

7 Elasticity

Consider the classical operator of two-dimensional elasticity

Eu = ∆u+ (1− 2ν)−1∇∇tu, (47)

where ν is the Poisson ratio. As is known, E is strongly elliptic if and only if

either ν > 1 or ν < 1/2. To obtain a necessary and sufficient condition for the

Lp-dissipativity of this elasticity system, we formulate some facts about systems

of partial differential equations of the form

A = ∂h(A
hk(x)∂k), (48)

where A
hk(x) = {ahkij (x)} arem×mmatrices whose entries are complex locally

integrable functions defined in an arbitrary domain Ω of Rn (1 6 i, j 6 m, 1 6

h, k 6 n).
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Lemma 4 ([10]) An operator A of the form (48) is Lp-dissipative in Ω ⊂ R
n if

and only if
∫

Ω

(
Re 〈A hk∂kw, ∂hw〉

− (1− 2/p)2|w|−4 Re 〈A hkw,w〉Re〈w, ∂kw〉Re 〈w, ∂hw〉
− (1− 2/p)|w|−2 Re

(
〈A hkw, ∂hw〉Re 〈w, ∂kw〉

− 〈A hk∂kw,w〉Re 〈w, ∂hw〉
))
dx > 0

for any w ∈ (C0
1(Ω))m.

In the case n = 2, Lemma 4 yields a necessary algebraic condition.

Theorem 10 ([10]) Let Ω be a domain of R2. If an operator A of the form (48) is

Lp-dissipative, then

Re 〈(A hk(x)ξhξk)λ, λ〉 − (1− 2/p)2 Re 〈(A hk(x)ξhξk)ω, ω〉(Re〈λ, ω〉)2

− (1− 2/p) Re(〈(A hk(x)ξhξk)ω, λ〉 − 〈(A hk(x)ξhξk)λ, ω〉) Re 〈λ, ω〉 > 0

for almost every x ∈ Ω and for any ξ ∈ R
2, λ, ω ∈ C

m, |ω| = 1.

Based on Lemma 4 and Theorem 10, it is possible to obtain the following

criterion for the Lp-dissipativity of the two-dimensional elasticity system.

Theorem 11 ([10]) The operator (47) is Lp-dissipative if and only if

(
1

2
− 1

p

)2

6
2(ν − 1)(2ν − 1)

(3− 4ν)2
. (49)

By Theorems 10 and 11, it is easy to compare E and ∆ from the point of view

of Lp-dissipativity.

Corollary 4 ([10]) There exists k > 0 such that E − k∆ is Lp-dissipative if and

only if (
1

2
− 1

p

)2

<
2(ν − 1)(2ν − 1)

(3− 4ν)2
.

There exists k < 2 such that k∆− E is Lp-dissipative if and only if

(
1

2
− 1

p

)2

<
2ν(2ν − 1)

(1− 4ν)2
.
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As remarkd at p.17 for scalar operators, this is equivalent to say that E is

strict Lp-dissipative, i.e., E is p-elliptic. The last result was recently extended

to variable Lamé parameters by Dindoš, Li and Pipher [22]. It must be pointed

out that these authors introduce an auxiliary function r(x) (see [22, pp.390–391])

which generates some first order terms in the partial differential operator. In

the definition of p-ellipticity these terms do not play any role, while they have

some role in the dissipativity. Therefore our and their results do not seem to be

completely equivalent.

In [11] we showed that condition (49) is necessary for the Lp-dissipativity of

operator (47) in any dimension, even when the Poisson ratio is not constant. At the

present it is not known if condition (49) is also sufficient for the Lp-dissipativity

of elasticity operator for n > 2, in particular for n = 3 (see [50, Problem 43]).

Nevertheless, in the same paper, we gave a more strict explicit condition which is

sufficient for the Lp-dissipativity of (47). Indeed we proved that if

(1− 2/p)2 6





1− 2ν

2(1− ν)
if ν < 1/2

2(1− ν)

1− 2ν
if ν > 1,

then the operator (47) is Lp-dissipative.

In [11] we gave also necessary and sufficient conditions for a weighted Lp-

negativity of the Dirichlet-Lamé operator, i.e. for the validity of the inequality
∫

Ω

(∆u+ (1− 2ν)−1∇ div u) |u|p−2u
dx

|x|α 6 0 (50)

under the condition that the vector u is rotationally invariant, i.e. u depends only

on ̺ = |x| and u̺ is the only nonzero spherical component of u. Namely we

showed that (50) holds for any such u belonging to (C∞
0 (RN \ {0}))N if and only

if

−(p− 1)(n+ p′ − 2) 6 α 6 n+ p− 2.

8 A Class of Systems of Partial Differential Opera-

tors

In this section, we consider systems of partial differential operators of the form

Au = ∂h(A
h(x)∂hu), (51)
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where A
h(x) = {ahij(x)} (i, j = 1, . . . ,m) are matrices with complex locally

integrable entries defined in a domain Ω ⊂ R
n (h = 1, . . . , n). Note that the

elasticity system is not a system of this kind.

To characterize the Lp-dissipativity of such operators, one can reduce the con-

sideration to the one-dimensional case. Auxiliary facts are given in the following

two subsections.

Langer and Maz’ya considered the Lp-dissipativity of weakly coupled systems

in [39].

8.1 Dissipativity of systems of ordinary differential equations

In this subsection, we consider the operator

Au = (A (x)u′)′, (52)

where A (x) = {aij(x)} (i, j = 1, . . . ,m) is a matrix with complex locally

integrable entries defined in a bounded or unbounded interval (a, b). The corre-

sponding sesquilinear form L (u, w) takes the form

L (u, w) =

∫ b

a

〈A u′, w′〉 dx.

Theorem 12 ([10]) The operator A is Lp-dissipative if and only if

Re 〈A (x)λ, λ〉 − (1− 2/p)2 Re 〈A (x)ω, ω〉(Re〈λ, ω〉)2

− (1− 2/p)Re(〈A (x)ω, λ〉 − 〈A (x)λ, ω〉)Re 〈λ, ω〉 > 0

for almost every x ∈ (a, b) and for any λ, ω ∈ C
m, |ω| = 1.

This theorem implies the following assertion.

Corollary 5 ([10]) If the operator A is Lp-dissipative, then

Re 〈A (x)λ, λ〉 > 0

for almost every x ∈ (a, b) and for any λ ∈ C
m.

As a consequence of Theorem 12 is the possibility to compare the operators A
and I(d2/dx2).
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Corollary 6 ([10]) There exists k > 0 such thatA−kI(d2/dx2) is Lp-dissipative

if and only if

ess inf
(x,λ,ω)∈(a,b)×Cm×Cm

|λ|=|ω|=1

P (x, λ, ω) > 0.

There exists k > 0 such that kI(d2/dx2)− A is Lp-dissipative if and only if

ess sup
(x,λ,ω)∈(a,b)×Cm×Cm

|λ|=|ω|=1

P (x, λ, ω) <∞.

There exists k ∈ R such that A− kI(d2/dx2) is Lp-dissipative if and only if

ess inf
(x,λ,ω)∈(a,b)×Cm×Cm

|λ|=|ω|=1

P (x, λ, ω) > −∞.

8.2 Criteria in terms of eigenvalues of A (x)

If the coefficients aij of the operator (52) are real, it is possible to give a necessary

and sufficient condition for the Lp-dissipativity ofA in terms of eigenvalues of the

matrix A .

Theorem 13 ([10]) Let A be a real matrix {ahk} with h, k = 1, . . . ,m. Suppose

that A = A
t and A > 0 (in the sense that 〈A (x)ξ, ξ〉 > 0 for almost every

x ∈ (a, b) and for any ξ ∈ R
m). The operator A is Lp-dissipative if and only if

(
1

2
− 1

p

)2

(µ1(x) + µm(x))
2
6 µ1(x)µm(x)

almost everywhere, where µ1(x) and µm(x) are the smallest and largest eigenval-

ues of the matrix A (x) respectively. In the particular case m = 2, this condition

is equivalent to (
1

2
− 1

p

)2

(trA (x))2 6 detA (x)

almost everywhere.

Corollary 7 ([10]) Let A be a real symmetric matrix. Let µ1(x) and µm(x) be

the smallest and largest eigenvalues of A (x) respectively. There exists k > 0 such

that A− kI(d2/dx2) is Lp-dissipative if and only if

ess inf
x∈(a,b)

[
(1 +

√
p p′/2)µ1(x) + (1−

√
p p′/2)µm(x)

]
> 0. (53)
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In the particular case m = 2, the condition (53) is equivalent to

ess inf
x∈(a,b)

[
trA (x)−

√
p p′

2

√
(trA (x))2 − 4 detA (x)

]
> 0.

Under an extra condition on the matrix A , the following assertion holds.

Corollary 8 ([10]) Let A be a real symmetric matrix. Suppose that A > 0 almost

everywhere. Denote by µ1(x) and µm(x) the smallest and largest eigenvalues of

A (x) respectively. If there exists k > 0 such thatA−kI(d2/dx2) isLp-dissipative,

then

ess inf
x∈(a,b)

[
µ1(x)µm(x)−

(
1

2
− 1

p

)2

(µ1(x) + µm(x))
2

]
> 0. (54)

If, in addition, there exists C such that

〈A (x)ξ, ξ〉 6 C|ξ|2 (55)

for almost every x ∈ (a, b) and for any ξ ∈ R
m, the converse assertion is also

true. In the particular case m = 2, the condition (54) is equivalent to

ess inf
x∈(a,b)

[
detA (x)−

(
1

2
− 1

p

)2

(trA (x))2

]
> 0.

We remark that A− kI(d2/dx2) is Lp-dissipative means that A is p-elliptic.

Generally speaking, the assumption (55) cannot be removed even if A > 0.

Example 4 Consider (a, b) = (1,∞), m = 2, A (x) = {aij(x)}, where

a11(x) = (1− 2/
√
pp′)x+ x−1, a12(x) = a21(x) = 0,

a22(x) = (1 + 2/
√
pp′)x+ x−1.

Then

µ1(x)µ2(x)−
(
1

2
− 1

p

)2

(µ1(x) + µ2(x))
2 = (8 + 4x−2)/(p p′)

and (54) holds. But (53) is not satisfied because

(1 +
√
p p′/2)µ1(x) + (1−

√
p p′/2)µ2(x) = 2x−1.
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Corollary 9 ([10]) Let A be a real symmetric matrix. Let µ1(x) and µm(x) be

the smallest and largest eigenvalues of A (x) respectively. There exists k > 0 such

that kI(d2/dx2)− A is Lp-dissipative if and only if

ess sup
x∈(a,b)

[
(1−

√
p p′/2)µ1(x) + (1 +

√
p p′/2)µm(x)

]
<∞. (56)

In the particular case m = 2, the condition (56) is equivalent to

ess sup
x∈(a,b)

[
trA (x) +

√
p p′

2

√
(trA (x))2 − 4 detA (x)

]
<∞.

If A is positive, the following assertion holds.

Corollary 10 ([10]) Let A be a real symmetric matrix. Suppose that A > 0
almost everywhere. Let µ1(x) and µm(x) be the smallest and largest eigenvalues

of A (x) respectively. There exists k > 0 such that kI(d2/dx2)−A isLp-dissipative

if and only if

ess sup
x∈(a,b)

µm(x) <∞.

8.3 Lp-dissipativity of the operator (51)

We represent necessary and sufficient conditions for the Lp-dissipativity of the

system (51), obtained in [10].

Denote by yh the (n− 1)-dimensional vector (x1, . . . , xh−1, xh+1, . . . , xn) and

set ω(yh) = {xh ∈ R | x ∈ Ω}.

Lemma 5 ([10]) The operator (51) is Lp-dissipative if and only if the ordinary

differential operators

A(yh)[u(xh)] = d(A
h(x)du/dxh)/dxh

are Lp-dissipative in ω(yh) for almost every yh ∈ R
n−1 (h = 1, . . . , n). This

condition is void if ω(yh) = ∅.

Theorem 14 ([10]) The operator (51) is Lp-dissipative if and only if

Re〈A h(x0)λ, λ〉 − (1− 2/p)2 Re〈A h(x0)ω, ω〉(Re〈λ, ω〉)2

− (1− 2/p)Re(〈A h(x0)ω, λ〉 − 〈A h(x0)λ, ω〉)Re 〈λ, ω〉 > 0 (57)

for almost every x0 ∈ Ω and for any λ, ω ∈ C
m, |ω| = 1, h = 1, . . . , n.
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In the scalar case (m = 1), the operator (51) can be considered as an operator

from Section 4.

In fact, ifAu =
∑n

h=1 ∂h(a
h∂hu), a

h is a scalar function, thenA can be written

in the form (22) with A = {chk}, chh = ah, chk = 0 if h 6= k. The conditions

obtained in Section 4 can be directly compared with (57). We know that the

operator A is Lp-dissipative if and only if (24) holds. In this particular case, it is

clear that (24) is equivalent to the following n conditions:

4

p p′
(Re ah) ξ2 + (Re ah) η2 − 2(1− 2/p)(Im ah) ξη > 0 (58)

almost everywhere and for any ξ, η ∈ R, h = 1, . . . , n. On the other hand, in this

case, (57) reads as

(Re ah)|λ|2 − (1− 2/p)2(Re ah)(Re(λω)2

− 2(1− 2/p)(Im ah)Re(λω) Im(λω) > 0 (59)

almost everywhere and for any λ, ω ∈ C, |ω| = 1, h = 1, . . . , n. Setting ξ + iη =
λω and observing that |λ|2 = |λω|2 = (Re(λω))2 + (Im(λω))2, we see that the

conditions (58) (hence (24)) are equivalent to (59).

If A has real coefficients, we can characterize the Lp-dissipativity in terms of

the eigenvalues of the matrices A
h(x).

Theorem 15 ([10]) Let A be an operator of the form (51), where A
h are real

matrices {ahij} with i, j = 1, . . . ,m. Suppose that A
h = (A h)t and A

h > 0
(h = 1, . . . , n). The operator A is Lp-dissipative if and only if

(
1

2
− 1

p

)2

(µh
1(x) + µh

m(x))
2
6 µh

1(x)µ
h
m(x)

for almost every x ∈ Ω, h = 1, . . . , n, where µh
1(x) and µh

m(x) are the smallest

and largest eigenvalues of the matrix A
h(x) respectively. In the particular case

m = 2, this condition is equivalent to

(
1

2
− 1

p

)2

(trA
h(x))2 6 detA

h(x)

for almost every x ∈ Ω, h = 1, . . . , n.
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9 The angle of dissipativity

By means of the necessary and sufficient conditions we have obtained, we can

determine exactly the angle of dissipativity. Determining the angle of dissipativity

of an operator A, means to find necessary and sufficient conditions for the Lp-

dissipativity of the differential operator zA, where z ∈ C.

Consider first the scalar operator

A = ∇t(A (x)∇),

where A (x) = {aij(x)} (i, j = 1, . . . , n) is a matrix with complex locally inte-

grable entries defined in a domain Ω ⊂ R
n. If A is a real matrix, it is well known

(cf., for example, [29, 30, 56]) that the dissipativity angle is independent of the

operator and is given by

| arg z| 6 arctan

(
2
√
p− 1

|p− 2|

)
. (60)

If the entries of the matrix A are complex, the situation is different because

the dissipativity angle depends on the operator, as the next theorem shows.

Theorem 16 ([10]) Let a matrix A be symmetric. Suppose that the operator A is

Lp-dissipative. Let

Λ1 = ess inf
(x,ξ)∈Ξ

〈 ImA (x)ξ, ξ〉
〈ReA (x)ξ, ξ〉 , Λ2 = ess sup

(x,ξ)∈Ξ

〈 ImA (x)ξ, ξ〉
〈ReA (x)ξ, ξ〉 ,

where

Ξ = {(x, ξ) ∈ Ω× R
n | 〈ReA (x)ξ, ξ〉 > 0}.

The operator zA is Lp-dissipative if and only if

ϑ− 6 arg z 6 ϑ+ ,
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where 2

ϑ− =

{
arccot

(
2
√
p−1

|p−2| − p2

|p−2|
1

2
√
p−1+|p−2|Λ1

)
− π if p 6= 2,

arccot(Λ1)− π if p = 2,

ϑ+ =

{
arccot

(
−2

√
p−1

|p−2| + p2

|p−2|
1

2
√
p−1−|p−2|Λ2

)
if p 6= 2

arccot(Λ2) if p = 2.

Note that for a real matrix A we have Λ1 = Λ2 = 0 and, consequently,

2
√
p− 1

|p− 2| − p2

2
√
p− 1|p− 2| = − |p− 2|

2
√
p− 1

.

Theorem 16 asserts that zA is dissipative if and only if

arccot

(
− |p− 2|
2
√
p− 1

)
− π 6 arg z 6 arccot

( |p− 2|
2
√
p− 1

)
,

i.e., if and only if (60) holds.

We can precisely determine the angle of dissipativity also for the matrix ordi-

nary differential operator (52) with complex coefficients.

Theorem 17 ([10]) Let the operator (52) be Lp-dissipative. The operator zA is

Lp-dissipative if and only if

ϑ− 6 arg z 6 ϑ+

where

ϑ− = arccot

(
ess inf
(x,λ,ω)∈Ξ

(Q(x, λ, ω)/P (x, λ, ω))

)
− π,

ϑ+ = arccot

(
ess sup
(x,λ,ω)∈Ξ

(Q(x, λ, ω)/P (x, λ, ω))

)
,

2Here, 0 < arccoty < π, arccot(+∞) = 0, arccot(−∞) = π, and

ess inf
(x,ξ)∈Ξ

〈 ImA (x)ξ, ξ〉
〈ReA (x)ξ, ξ〉 = +∞, ess sup

(x,ξ)∈Ξ

〈 ImA (x)ξ, ξ〉
〈ReA (x)ξ, ξ〉 = −∞

if Ξ has zero measure.
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P (x, λ, ω) = Re 〈A (x)λ, λ〉 − (1− 2/p)2 Re 〈A (x)ω, ω〉(Re〈λ, ω〉)2

− (1− 2/p)Re(〈A (x)ω, λ〉 − 〈A (x)λ, ω〉)Re 〈λ, ω〉,

Q(x, λ, ω) = Im 〈A (x)λ, λ〉 − (1− 2/p)2 Im 〈A (x)ω, ω〉(Re〈λ, ω〉)2

− (1− 2/p) Im(〈A (x)ω, λ〉 − 〈A (x)λ, ω〉)Re 〈λ, ω〉

and Ξ is the set

Ξ = {(x, λ, ω) ∈ (a, b)× C
m × C

m | |ω| = 1, P 2(x, λ, ω) +Q2(x, λ, ω) > 0}.

Finally Theorem 14 allows us to determine the angle of dissipativity of the

operator (51).

Theorem 18 ([10]) Let the operator (51) be Lp-dissipative. The operator zA is

Lp-dissipative if and only if

ϑ− 6 arg z 6 ϑ+,

where

ϑ− = max
h=1,...,n

arccot

(
ess inf

(x,λ,ω)∈Ξh

(Qh(x, λ, ω)/Ph(x, λ, ω))

)
− π,

ϑ+ = min
h=1,...,n

arccot

(
ess sup

(x,λ,ω)∈Ξh

(Qh(x, λ, ω)/Ph(x, λ, ω))

)

and

Ph(x, λ, ω) = Re 〈A h(x)λ, λ〉 − (1− 2/p)2 Re 〈A h(x)ω, ω〉(Re〈λ, ω〉)2

− (1− 2/p)Re(〈A h(x)ω, λ〉 − 〈A h(x)λ, ω〉)Re 〈λ, ω〉,

Qh(x, λ, ω)=Im 〈A h(x)λ, λ〉 − (1− 2/p)2Im 〈A h(x)ω, ω〉(Re〈λ, ω〉)2

− (1− 2/p) Im(〈A h(x)ω, λ〉 − 〈A h(x)λ, ω〉)Re 〈λ, ω〉,

Ξh = {(x, λ, ω) ∈ Ω× C
m × C

m | |ω| = 1, P 2
h (x, λ, ω) +Q2

h(x, λ, ω) > 0}.
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10 Maximum principles for linear elliptic equations

and systems

As said in the Introduction, Kresin and Maz’ya have obtained results on different

forms of maximum principles for linear elliptic equations and systems. Here we

recall some of their results.

Let us consider the operator

A0 (Dx) =
n∑

j,k=1

Ajk∂jk (61)

where Dx = (∂1, . . . , ∂n) and Ajk = Akj are constant real (m × m)-matrices.

Assume that the operator A0 is strongly elliptic, i.e., that for all ζ = (ζ1, . . . , ζm) ∈
R

m and σ = (σ1, . . . , σn) ∈ R
n, with ζ, σ 6= 0, we have the inequality

〈
n∑

j,k=1

Ajkσjσkζ, ζ

〉
> 0

Let Ω be a domain in R
n with boundary ∂Ω and closure Ω. Let

[
Cb(Ω)

]m
denote

the space of boundedm-component vector-valued functions which are continuous

in Ω. The norm on
[
Cb(Ω)

]m
is ‖u‖ = sup{|u(x)| : x ∈ Ω}. The notation

[Cb(∂Ω)]
m

has a similar meaning. By [C2(Ω)]
m

we denote the space of m-

component vector-valued functions with continuous derivatives up to the second

order in Ω.

Let

K(Ω) = sup
‖u‖[Cb(Ω)]

m

‖u‖[Cb(∂Ω)]m
,

where the supremum is taken over all vector-valued functions in the class
[
Cb(Ω)

]m∩
[C2(Ω)]

m
satisfying the system A0 (Dx) u = 0.

Clearly, K(Ω) is the best constant in the inequality

|u(x)| 6 K(Ω) sup{|u(y)| : y ∈ ∂Ω}
where x ∈ Ω and u is a solution of the system A0 (Dx) u = 0 in the class[
Cb(Ω)

]m ∩ [C2(Ω)]
m

If K(Ω) = 1, then the classical maximum modulus principle holds for the

system A0 (Dx) u = 0.

Kresin and Maz’ya proved the following criterion for the validity of this clas-

sical modulus principle.
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Theorem 19 Let Ω be a domain in R
n with compact closure and C1-boundary.

The equality K(Ω) = 1 holds if and only if the operator A0 (Dx) is defined by

A0 (Dx) = A
n∑

j,k=1

ajk∂jk (62)

where A and {ajk} are positive-definite constant matrices of orders m and n,

respectively.

Suppose now that the operator (61) has complex coefficients, i.e., suppose that

Ajk = Akj are constant complex (m×m)-matrices. Assume that the operator is

strongly elliptic. This means that

Re

〈
n∑

j,k=1

Ajkσjσkζ, ζ

〉
> 0

for all ζ = (ζ1, . . . , ζm) ∈ C
m and σ = (σ1, . . . , σn) ∈ R

n, with ζ, σ 6= 0
A necessary and sufficient condition for validity of the classical modulus

principle for operator (61) with complex coefficients in a bounded domain runs as

follows.

Theorem 20 Let Ω be a domain in R
n with compact closure and C1-boundary.

The equality K(Ω) = 1 holds if and only if the operator A0 (Dx) has the form (62),

where nowA is a constant complex-valued (m×m)-matrix such thatRe(Aζ, ζ) >
0 for all ζ ∈ C

m, ζ 6= 0, and {ajk} is a real positive-definite (n× n) matrix.

These results have been extended to more general systems and we refer to the

survey [38] for all the details.

11 Other results

In this section we briefly mention other results we have obtained.

In [13] we found necessary and sufficient conditions for the Lp-dissipativity of

systems of the first order. Namely we have considered the matrix operator

Eu = B
h(x)∂hu+ D(x)u , (63)

where B
h(x) = {bhij(x)} and D(x) = {dij(x)} are matrices with complex locally

integrable entries defined in the domain Ω of Rn and u = (u1, . . . , um) (1 6 i, j 6
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m, 1 6 h 6 n). It states that, if p 6= 2, E is Lp-dissipative if, and only if,

B
h(x) = bh(x)I a.e., (64)

bh(x) being real locally integrable functions, and the inequality

Re〈(p−1∂h B
h(x)− D(x))ζ, ζ〉 > 0

holds for any ζ ∈ C
m, |ζ| = 1 and for almost any x ∈ Ω. If p = 2 condition (64) is

replaced by the more general requirement that the matrices B
h(x) are self-adjoint

a.e..

We have applied this result also to second order operators, obtaining a suffi-

cient condition for their Lp-dissipativity. We have also determined the angle of

dissipativity of operator (63).

In [14] we have considered the “complex oblique derivative” operator

λ · ∇u =
∂u

∂xn
+

n−1∑

j=1

aj
∂u

∂xj
(65)

where λ = (1, a1, . . . , an−1) and aj are complex valued functions. We gave neces-

sary and, separately, sufficient conditions under which such boundary operator is

Lp-dissipative on R
n−1. If the coefficients aj are real valued, we have obtained a

necessary and sufficient condition: the operator (65) is Lp-dissipative if and only

if there exists a real vector Γ ∈ L2
loc(R

n) such that

−∂j(Re aj) δ(xn) 6
2

p′
(div Γ− |Γ|2)

in the sense of distributions.

In the same paper we have considered also the class of integral operators which

can be written as ∫ ∗

Rn

[u(x)− u(y)]K(dx, dy) (66)

where the integral has to be understood as a principal value in the sense of Cauchy

and the kernelK(dx, dy) is a Borel positive measure defined onRn×R
n satisfying

certain conditions. The class of operators we considered includes the fractional

powers of Laplacian (−∆)s, with 0 < s < 1. For the latter we previously had

proved the following theorem
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Theorem 21 ([12], p.230–231) Let 0 < α < 1. We have, for any u ∈ C∞
0 (Rn),

∫

Rn

〈(−∆)αu, u〉|u|p−2dx >
2 cα
p p′

‖|u|p/2‖2Lα,2(Rn) ,

where

cα = −π−n/24αΓ(α + n/2)/Γ(−α) > 0

and

‖v‖Lα,2(Rn) =

(∫∫

Rn×Rn

|v(y)− v(x)|2 dxdy

|y − x|n+2α

)1/2

.

In [14] we have established the Lp-positivity of operator (66), extending in this

way Theorem 21.

12 The functional dissipativity

In [15] we have introduced the new concept of functional dissipativity. Roughly

speaking the idea is to replace |u|p−2 by a more general ϕ(|u|), ϕ being a positive

function.

Let us consider the operator (22) with L∞ complex valued coefficients. We

say that it is functional dissipative or LΦ-dissipative if

Re

∫

Ω

〈A ∇u,∇(ϕ(|u|) u)〉 dx > 0

for any u ∈ H̊1(Ω) such that ϕ(|u|) u ∈ H̊1(Ω). Here ϕ is a positive function

defined on R
+ = (0,+∞) which satisfies the following conditions:

(i) ϕ ∈ C1((0,+∞));

(ii) (s ϕ(s))′ > 0 for any s > 0;

(iii) the range of the strictly increasing function s ϕ(s) is (0,+∞);

(iv) there exist two positive constantsC1, C2 and a real number r > −1 such that

C1s
r
6 (sϕ(s))′ 6 C2 s

r, s ∈ (0, s0)

for a certain s0 > 0. If r = 0 we require more restrictive conditions: there

exists the finite limit lims→0+ ϕ(s) = ϕ+(0) > 0 and lims→0+ s ϕ
′(s) = 0.
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(v) There exists s1 > s0 such that

ϕ′(s) > 0 or ϕ′(s) 6 0 ∀ s > s1.

The reason for requiring that function s ϕ(s) is increasing is that in such a way

the function

Φ(s) =

∫ s

0

σ ϕ(σ) dσ (67)

is a Young function (i.e., a convex positive function such that Φ(0) = 0 and

Φ(+∞) = +∞) . We note that, if t ψ(t) is the inverse function of s ϕ(s), then

Ψ(s) =

∫ s

0

σ ψ(σ) dσ

is the conjugate Young function of Φ.

The condition (iv) prescribes the behaviour of the functionϕ in a neighborhood

of the origin, while (v) concerns the behaviour for large s.
The function ϕ(s) = sp−2 (p > 1) provides an example of such a function.

A motivation for the study of the concept of functional dissipativity comes

from the decrease of the Luxemburg norm of solutions of the Cauchy–Dirichlet

problem {
u′ = Au

u(0) = u0 .
(68)

Indeed let us consider the Orlicz space of functions u for which there exists

α > 0 such that ∫

Ω

Φ(α |u|) dx < +∞ .

For the general theory of Orlicz spaces we refer to Krasnosel’skiı̆, Rutickiı̆

[35] and Rao, Ren [61]. As in (9), if u(x, y) is a solution of the Cauchy-Dirichlet

problem (68), we have the decrease of the integrals

∫

Ω

Φ(|u(x, t)|) dx

if

Re

∫

Ω

〈Eu, u〉|u|−1Φ′(|u|) dx 6 0.
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This implies the decrease of the Luxemburg norm in the related Orlicz space

‖u(·, t)‖ = inf

{
〈> 0 |

∫

Ω

Φ(|u(x, t)|/λ) dx 6 1

}
.

In paper [15] we proved the following technical lemma, which played a key

role.

Lemma 6 The operator A is LΦ-dissipative if and only if

Re

∫

Ω

[
〈A ∇v,∇v〉+ Λ(|v|) 〈(A −A

∗)∇|v|, |v|−1v∇v)〉+

−Λ2(|v|) 〈A ∇|v|,∇|v|〉
]
dx > 0, ∀v ∈ H̊1(Ω),

where the function Λ is is the function defined by the relation

Λ
(
s
√
ϕ(s)

)
= − s ϕ′(s)

s ϕ′(s) + 2ϕ(s)
.

We remark that if ϕ(s) = sp−2, the function Λ is constant and

Λ(t) = −(1− 2/p), 1− Λ2(t) = 4/(p p′).

As Corollaries of Lemma 6 we have obtained necessary and, separately, suffi-

cient conditions for the functional dissipativity of the operator E.

Corollary 11 If the operator A is LΦ-dissipative, we have

〈ReA (x)ξ, ξ〉 > 0 (69)

for almost every x ∈ Ω and for any ξ ∈ R
n.

Corollary 12 If

[1− Λ2(t)]〈ReA (x) ξ, ξ〉+ 〈ReA (x) η, η〉+
[1 + Λ(t)]〈ImA (x) ξ, η〉+ [1− Λ(t)]〈ImA

∗(x) ξ, η〉 > 0
(70)

for almost every x ∈ Ω and for any t > 0, ξ, η ∈ R
n, the operator A is LΦ-

dissipative.
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Corollary 13 If the operator A has real coefficients and satisfies condition (69)

for almost every x ∈ Ω and for any ξ ∈ R
n, than it is LΦ-dissipative with respect

to any Φ.

The main result obtained in [15] is the following necessary and sufficient

condition

Theorem 22 Let the matrix ImA be symmetric, i.e., ImA
t = ImA . Then the

operator A is LΦ-dissipative if, and only if,

|s ϕ′(s)| |〈ImA (x) ξ, ξ〉| 6 2
√
ϕ(s) [s ϕ(s)]′ 〈ReA (x) ξ, ξ〉 (71)

for almost every x ∈ Ω and for any s > 0, ξ ∈ R
n.

Suppose that the condition ImA = ImA
t is not satisfied. Arguing as in the

proof of Theorem 22, one can prove that condition (71) is still necessary for the

LΦ-dissipativity of the operatorE. However in general it is not sufficient, whatever

the function ϕ may be. This is shown by the next example.

Example 5 Let n = 2 , Ω be a bounded domain, λ be a real parameter and

A =

(
1 iλx1

−iλx1 1

)

Since 〈ReA ξ, ξ〉 = |ξ|2 and 〈ImA ξ, ξ〉 = 0 for any ξ ∈ R
n, condition (71)

is satisfied.

If the corresponding operator Eu = ∆u+ i λ ∂2u is LΦ-dissipative, then

Re

∫

Ω

〈∆u+ i λ ∂2u, u〉ϕ(|u|) dx 6 0, ∀ u ∈ C∞
0 (Ω). (72)

Take u(x) = ̺(x) ei t x2 , where ̺ ∈ C∞
0 (Ω) is real valued and t ∈ R. Since

〈Eu, u〉 = ̺[∆̺+ 2 i t ∂2̺− t2̺+ i λ (∂2̺+ it̺)], condition (72) implies

∫

Ω

̺∆̺ϕ(|̺|) dx− λ t

∫

Ω

̺2ϕ(|̺|) dx− t2
∫

Ω

̺2ϕ(|̺|) dx 6 0 (73)

for any t, λ ∈ R. The function ϕ being positive, we can choose ̺ in such a way

∫

Ω

̺2ϕ(|̺|) dx > 0.
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Taking

λ2 > 4

∫

Ω

̺∆̺ϕ(|̺|) dx
(∫

Ω

̺2ϕ(|̺|) dx
)−1

,

inequality (73) is impossible for all t ∈ R. Thus E is not LΦ-dissipative, although

(71) is satisfied.

We have also

Corollary 14 Let the matrix ImA be symmetric, i.e., ImA
t = ImA . If

λ0 = sup
s>0

|s ϕ′(s)|
2
√
ϕ(s) [s ϕ(s)]′

< +∞, (74)

then the operator E is LΦ-dissipative if, and only if,

λ0 |〈ImA (x) ξ, ξ〉| 6 〈ReA (x) ξ, ξ〉 (75)

for almost every x ∈ Ω and for any ξ ∈ R
n. If λ0 = +∞ the operator E is

LΦ-dissipative if and only if ImA = 0 and condition (69) is satisfied.

If we use the function Φ (see (67)), condition (71) can be written as

|sΦ′′(s)− Φ′(s)| |〈ImA (x) ξ, ξ〉| 6 2
√
sΦ′(s) Φ′′(s) 〈ReA (x) ξ, ξ〉

for almost every x ∈ Ω and for any s > 0, ξ ∈ R
n. In the same way, formula (74)

becomes

λ0 = sup
s>0

|sΦ′′(s)− Φ′(s)|
2
√
sΦ′(s) Φ′′(s)

< +∞.

We consider now some examples in which we indicate both the functions Φ
and ϕ. It is easy to verify that in each example the function ϕ satisfies conditions

(i)-(v) (see p.35).

Example 6 If Φ(s) = sp, i.e., ϕ(s) = p sp−2, which corresponds to Lp norm, the

function in (74) is constant and λ0 = |p− 2|/(2√p− 1). In this way we reobtain

Theorem 4.

Example 7 Let us consider Φ(s) = sp log(s + e) (p > 1), which is the Young

function corresponding to the Zygmund space Lp logL. This is equivalent to say
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ϕ(s) = psp−2 log(s+ e) + sp−1(s+ e)−1. By a direct computation we find

|sΦ′′(s)− Φ′(s)|
2
√
sΦ′(s) Φ′′(s)

=

∣∣∣p(p− 2) log(s+ e) + (2p−1)s
s+e

− s2

(s+e)2

∣∣∣

2

√(
p log(s+ e) + s

s+e

) (
p(p− 1) log(s+ e) + 2ps

s+e
− s2

(s+e)2

) .
(76)

Since

lim
s→0+

|sΦ′′(s)− Φ′(s)|
2
√
sΦ′(s) Φ′′(s)

= lim
s→+∞

|sΦ′′(s)− Φ′(s)|
2
√
sΦ′(s) Φ′′(s)

=
|p− 2|
2
√
p− 1

the function is bounded. Then we have the LΦ-dissipativity of the operator A if,

and only if, (75) holds, where λ0 is the sup of the function (76) in R
+.

Example 8 Let us consider the function Φ(s) = exp(sp) − 1, i.e., ϕ(s) =
p sp−2 exp(sp). In this case

|sΦ′′(s)− Φ′(s)|
2
√
sΦ′(s) Φ′′(s)

=
|p sp + p− 2|

2
√

(p sp + p− 1)

and λ0 = +∞. In view of Corollary (14), the operator A is LΦ-dissipative, i.e.,

Re

∫

Ω

〈A ∇u,∇[u |u|p−2 exp(|u|p)]〉dx > 0

for anyu ∈ H̊1(Ω) such that |u|p−2 exp(|u|p) u ∈ H̊1(Ω), if and only if the operator

A has real coefficients and condition (69) is satisfied.

Example 9 Let Φ(s) = s− arctan s, i.e., ϕ(s) = s/(s2 + 1). In this case

|sΦ′′(s)− Φ′(s)|
2
√
sΦ′(s) Φ′′(s)

=
|s2 − 1|

2
√

2(s2 + 1)

and λ0 = +∞. As in the previous example, we have that

Re

∫

Ω

〈A ∇u,∇
( |u| u
|u|2 + 1

)
〉dx > 0

for any u ∈ H̊1(Ω) such that |u| u/(|u|2 + 1) ∈ H̊1(Ω), if and only if the operator

A has real coefficients and condition (69) is satisfied.
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Example 10 Let Φ(s) = s4/(s2 + 1), i.e., ϕ(s) = 2 s2(2 + s2)/(s2 + 1)2. In this

case
|sΦ′′(s)− Φ′(s)|
2
√
sΦ′(s) Φ′′(s)

=
2√

(s2 + 1)(s2 + 2)(s4 + 3s2 + 6)
.

This function is decreasing and λ0 is equal to its value at 0, i.e., λ0 = 1/
√
3. The

operator A is LΦ-dissipative, i.e.,

Re

∫

Ω

〈A ∇u,∇
( |u|2(2 + |u|2)u

(|u|2 + 1)2

)
〉dx > 0

for any u ∈ H̊1(Ω) such that |u|2(2 + |u|2)u/(|u|2 + 1)2 ∈ H̊1(Ω), if and only if

|〈ImA (x) ξ, ξ〉| 6
√
3 〈ReA (x) ξ, ξ〉

for almost any x ∈ Ω and for any ξ ∈ R
n.

Example 11 LetΦ(s) = s2(s2+2)/(s2+1)−2 log(s2+1), i.e.,ϕ(s) = 2 s4/(s2+
1)2. In this case

|sΦ′′(s)− Φ′(s)|
2
√
sΦ′(s) Φ′′(s)

=
2√

(s2 + 1)(s2 + 5)
.

This function is decreasing and λ0 is equal to its value at 0, i.e., λ0 = 2/
√
5. The

operator A is LΦ-dissipative, i.e.,

Re

∫

Ω

〈A ∇u,∇
( |u|4u
(|u|2 + 1)2

)
〉dx > 0

for any u ∈ H̊1(Ω) such that |u|4u/(|u|2 + 1)2 ∈ H̊1(Ω), if and only if

2 |〈ImA (x) ξ, ξ〉| 6
√
5 〈ReA (x) ξ, ξ〉

for almost any x ∈ Ω and for any ξ ∈ R
n.

By analogy to the Lp case, if we have an operator with lower order term (27)

and if the principal part is such that the left-hand side of (70) is not merely non

negative but strictly positive, i.e.

[1− Λ2(t)]〈ReA (x) ξ, ξ〉+ 〈ReA (x) η, η〉+
[1 + Λ(t)]〈ImA (x) ξ, η〉+ [1− Λ(t)]〈ImA

∗(x) ξ, η〉 > κ(|ξ|2 + |η|2)
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for a certain κ > 0 and for almost every x ∈ Ω and for any t > 0, ξ, η ∈ R
n, we

say that the operator A is (strongly) Φ-elliptic.

We note that, ifA is a (strongly) Φ-elliptic operator, then there exists a constant

κ such that for any nonnegative χ ∈ L∞(Ω) and any complex valued u ∈ H1(Ω)
such that ϕ(|u|) u ∈ H1(Ω) we have

Re

∫

Ω

〈A ∇u,∇(ϕ(|u|) u)〉χ(x)dx > κ

∫

Ω

|∇(
√
ϕ(|u|) u)|2χ(x) dx

(see [15, Corollary 4]).

13 Concluding remarks

Our condition (25) and its strengthened variant are getting more and more important

in many respects. We said already something about p-ellipticity, but there are also

other applications.

We mention that Hömberg, Krumbiegel and Rehberg [31] used some of the

techniques introduced in [9] to show the Lp-dissipativity of a certain operator

connected to the problem of the existence of an optimal control for the heat

equation with dynamic boundary condition.

Beyn and Otten [3, 4] considered the semilinear system

A∆v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ RN ,

where A is a m × m matrix, S is a N × N skew-symmetric matrix and f is

a sufficiently smooth vector function. Among the assumptions they made, they

require the existence of a constant γA > 0 such that

|z|2 Re〈w,Aw〉+ (p− 2)Re〈w, z〉Re〈z, Aw〉 > γA|z|2|w|2

for any z, w ∈ C
m. This condition originates from our (57).

The results of [9] allowed Nittka [55] to consider the case of partial differential

operators with complex coefficients.

Ostermann and Schratz [57] have obtained the stability of a numerical proce-

dure for solving a certain evolution problem. The necessary and sufficient condition

(23) show that their result does not require the contractivity of the corresponding

semigroup.

Chill, Meinlschmidt and Rehberg [8] used some ideas from [9] in the study

of the numerical range of second order elliptic operators with mixed boundary

conditions in Lp.
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ter Elst, Haller-Dintelmann, Rehberg and Tolksdorf [28] considered second

order divergence form operators with complex coefficients, complemented with

Dirichlet, Neumann or mixed boundary conditions. They proved several results

related to the generation of strongly continuous semigroup on Lp.
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