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Motivations

Non-classical and singular solutions to nonlinear uniformly elliptic PDEs

Cubic minimal cones: Hsiang’s problems

Why nonassociative algebras
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Fully nonlinear elliptic PDEs

Let us consider the Dirichlet problem{
F (D2u) = 0 in B1

u = ϕ on ∂B1

with F uniformly elliptic:

λ∥N∥ ≤ F (M +N)− F (M) ≤ Λ∥N∥, ∀N ≥ 0 and M,N symmetric

Examples: Hessian eqs. (Monge-Ampère, Special Lagrangian), Bellman eqs.

Pucci’s extremal operators, e.g.

M+ = Λtr+(M) + λ tr−(M) = sup
A∈Aλ,Λ

trAM

where Aλ,Λ is the set of all symmetric matrices with spectrum ⊂ [λ,Λ].

A continuous function u in Ω is a viscosity subsolution if for any x0 ∈ Ω and any
ϕ ∈ C2(Ω) such that u− ϕ has a local maximum at x0 it follows that

F (D2ϕ(x0)) ≥ 0.

Similarly one defines a viscosity supersolution. Then u is a viscosity solution when it
both viscosity supersolution and subsolution.
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Fully nonlinear elliptic PDEs

The existence and uniqueness (Evans, Crandall, Lions, Jensen, Ishii)
If ϕ ∈ C0(∂B1) then the Dirichlet problem{

F (D2u) = 0 in B1

u = ϕ on ∂B1

has a unique viscosity solution u ∈ C(B1)

u(x) is a viscosity solution
?

=⇒ u(x) is a classical C2 solution
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Fully nonlinear elliptic PDEs

Let F (D2u) = 0 be uniformly elliptic.

If n = 2 then u is classical (C2,α) solution (Nirenberg 1953)

If n ≥ 2 and Λ ≤ 1 + ϵ(n) then u is C2,α (Cordes 1956)

Hölder estimates and a Harnack inequality for uniformly elliptic or parabolic
equations of second order with measurable coefficients (Krylov and Safonov, 1980)

u ∈ C1,α(B1/2), α = α(Λ, n) (Trudinger, Caffarelli, 1989)

F convex (concave) ⇒ u ∈ C2,α(B1/2) (Krylov, Evans 1983)

u is C2,α(B1 \Σ), dimH Σ < n− ϵ, ϵ = ϵ(Λ, n) (Armstrong-Silvestere-Smart, 2011)
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Nonclassical and singular examples

For a general uniformly elliptic F the Krylov-Safonov-Cafarelli-Trudinger regularity is
optimal, i.e. there exist truly singular viscosity solutions in all dimensions n ≥ 5.

Theorem (Nadirashvili, Vlǎduţ, 2007-2011). There a cubic form w12(x) such that for
any δ ∈ [1, 2)

uδ(x) :=
w12(x)

|x|δ

is a viscosity solution to a certain uniformally elliptic equation F (D2u(x)) = 0
(depending on δ) in B1 ⊂ R12.

Theorem (Nadirashvili, V.T., Vlǎduţ, 2012). There a cubic form w5(x) such that

u = w5(x)
|x| ̸∈ C2 is a viscosity solution in B1 ⊂ R5. Furthermore,

F (D2u) = (∆u)5 + 2832(∆u)3 + 21235∆u+ 215 detD2(u).

The existence of truly viscosity solutions for n = 3, 4 is an open problem. There are no
homogeneous order 2 solutions (R3: Alexandrov, 1939; R4: Nadirashvili, Vlăduţ, 2012).
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Key steps of the proof

We consider singular (C1,1) solutions (the C1,α-case is much more delicate).

A family A ⊂ S2(Rn) of symmetric matrices A is uniformly hyperbolic if ∃M > 1 :

1

M
< −λn(A)

λ1(A)
< M, ∀A ∈ A, spec(A) = {λ1(A) ≤ ... ≤ λn(A)}.

The Ellipticity Criterium: Let w(x) be an odd homogeneous function of order 2 defined
B1 ⊂ Rn and smooth in B1 \ {0}. If the family

{D2w(a)−O−1D2w(b)O : a, b ∈ B1 \ {0} and O ∈ O(n)}

is uniformly hyperbolic then w is a viscosity solution in B1 of a uniformly elliptic Hessian
equation.
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Key steps of the proof

Let u(x) be the Cartan isoparametric cubic form in R5 and w(x) = u(x)/|x|. Then

1

12
≤ −Λ5

Λ1
≤ 12, (1)

where Λ1 ≤ · · · ≤ Λ5 are the eigenvalues of M(a, b, O) = D2w(a)−O−1D2w(b)O.

Sketch of the proof. We have for any |a| = |b| = 1

trM(a, b, O) = ∆w(a)−∆w(b) = −8ω,

where ω := u(a)− u(b).
• If ω = 0 then (1) holds with c = n− 1 = 4 as for any traceless matrix in dimension n.

• Let ω ̸= 0, say ω > 0. Then

0 ≥ −8ω = trM(a, b, O) ≥ Λ5 + (5− 1)Λ1 = Λ5 − 4|Λ1|, (2)

⇒ Λ5 ≤ 4|Λ1|.
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Key steps of the proof

A lower estimate of Λ5 relies on the spectrum of D2w(x):

λj(θ) =
3 sin(πj

3
−2θ)

sin(πj
3

+θ)
− cos 3θ, j = 1, 2, 3,

λ±(θ) =
−5 cos 3θ±3

√
5 cos2 3θ+4

2

where

u(x) = cos 3θ(x), θ : S4 → [0,
π

3
].

Then 0 < θ(a) < θ(b) < π
3
, and by Weyl’s inequality,

Λ5 ≥ max
1≤i≤n

(Λi(D
2w(a))− Λi(D

2w(b))) ≥ λ1(θ(a))− λ1(θ(b))

where λ1(θ) is a decreasing function and

dλ1

du
= 2

sin(θ + π
3
)

sin 3θ
− 1 ≥ 1, θ ∈ (0,

π

3
).

Integrating yields Λ5 ≥ ω, thus,

−8Λ5 ≤ −8ω = trM(a, b, O) ≤ (n− 1)Λ1 + Λ5 = 4Λ5 − |Λ1|,

yields |Λ1| ≤ 12Λ5, as desired.
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Isoparametric cubics

Recall that a submanifold of the Euclidean sphere Sn−1 ⊂ Rn is called isoparametric if
it has constant principal curvatures.

A celebrated result due to H.F. Münzner (1987) asserts that any isoparametric
hypersurface is algebraic and its defining polynomial u is homogeneous of degree
g = 1, 2, 3, 4 or 6, where g is the number of distinct principal curvatures.

É. Cartan (1938)

The only cubic polynomial solutions of

|Du(x)|2 = 9|x|4, ∆u(x) = 0

are the cubic forma in R5,R8,R14,R26:

ud(x) :=
3
√
3

2
det

 x2 − 1√
3
x1 z̄1 z̄2

z1 −x2 − 1√
3
x1 z̄3

z2 z3
2√
3
x1

 , x ∈ R3d+2,

Here zk ∈ Rd ∼= Fd is the real division algebra of dimension d ∈ {1, 2, 4, 8}.
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How do minimal cones enter?

In all examples of truly viscosity solutions u(x) = w(x)
|x| ,

their zero-locus is a minimal cone:

w3d = Re(z1z2)z3, zi ∈ H or O, the triality polynomials in R12 and R24

w5(x) =

∣∣∣∣∣∣∣
1√
3
x1 + x2 x3 x4

x2
−2√
3
x1 x5

x4 x5
1√
3
x1 − x2

∣∣∣∣∣∣∣ = a Cartan isoparametric cubic in R5

w9(x) =

∣∣∣∣∣∣
x1 x2 x3

x4 x5 x6

x7 x8 x9

∣∣∣∣∣∣ in R9 (C. Smart, unpublished)

Remarks:

all wk(x) are Hsiang minimal cubics;

all wk(x) are generic norms on a suitable cubic Jordan algebra.
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Minimal cones

Blowing-down entire graphs yields area minimizing cones (Fleming, De Giorgi). In 1969,
Bombieri-De Giorgi-Giusti have shown that the quadratic minimal cone

{(x, y) ∈ R4 × R4 : |x|2 − |y|2 = 0}

is area-minimizing in R8. In particular, Bernstein theorem fails for n ≥ 8

In general, if a minimal hypersurface is given implicitly by u(x) = 0 then

∆1u(x) := |Du(x)|2∆u(x)− 1
2
⟨Du(x), D|Du(x)|2⟩ = 0 whenever u(x) = 0

If u is a homogeneous polynomial then the cone u−1(0) is minimal iff there exists a
polynomial f , deg f = 2deg u− 4, such that

∆1u(x) = f(x)u(x).

W.Y. Hsiang (J. Diff. Geometry, 1967): Classify all solutions of deg u = 3.
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Hsiang’s Problems

A homogeneous cubic form u(x) is called a Hsiang cubic if

∆1u = λ|x|2u(x), λ ∈ R.
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Jordan algebras

An algebra V with a commutative product • is called Jordan if

[Lx, Lx2 ] = 0 ∀x ∈ V.

Main examples

1) The Jordan algebra Hn(Ad) of Hermitian matrices of order n, d = 1, 2, 4 with

x • y = 1
2
(xy + yx)

2) The spin factor S (Rn+1) with (x0, x) • (y0, y) = (x0y0 + ⟨x, y⟩; x0y + y0x)

Theorem (Jordan-von Neumann-Wigner, 1934)

Any finite-dimensional formally real Jordan algebra is a direct sum of the simple ones:

the spin factors S (Rn+1);

the Jordan algebras Hn(Ad), n ≥ 3, d = 1, 2, 4;

the Albert algebra H3(A8).
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What about the four Hsiang solutions?

Let X ∈ H ′
k (A) = trace free hermitian k × k-matrices over A = R or C

∆1 is an O(n)-invariant ⇒ ∆1(trX
3) = is a polynomial in trX2, . . . , trXk

deg(∆1 trX
3) = 5

if 3 ≤ k ≤ 4 then ∆1u(X) = c1 trX
2 trX3 = c1|X|2u(X).

⇒ u = trX3 is a Hsiang cubic!

This yields the four Hsiang examples u in

H ′
3 (R) ∼= R5, H ′

3 (C) ∼= R8, H ′
4 (R) ∼= R9, H ′

4 (C) ∼= R15

The Hsiang cubics in R5 and R9 are used in construction of the viscosity solutions.

An important observation: deg u = 3 implies

tr(D2u) = 0 the harmonicity

tr(D2u)2 = C1|x|2 the quadratic trace identity

tr(D2u)3 = C2u the cubic trace identity
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Clifford type examples of Hsiang cubics

Example. The Lawson cubic cone in R4 with the defining polynomial

u(z) = (x2
1 − x2

2)y1 + 2x1x2y2 = ⟨x,A1x⟩y1 + ⟨x,A2x⟩y1, z = (x, y) ∈ R4

A1 =

(
1 0
0 −1

)
, A2 =

(
0 1
1 0

)

Theorem (V.T. 2010) Let {Ai}1≤1≤q be a symmetric Clifford system, i.e.

A2
i = I and AiAj +AjAi = 0, ∀i ̸= j.

Then
uA(z) =

∑q

i=1
⟨x,Aix⟩yi, z = (x, y) ∈ R2p × Rq

is a Hsiang cubic.

The existence of a symmetric Clifford system in R2p is equivalent to

q − 1 ≤ ρ(p),

where ρ(p) is the Hurwitz-Radon function (= 1+ the number of vector fields on Sp−1)
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The dichotomy of Hisang cubics

Definition. A Hsiang cubic u is said to be of Clifford type if u ∼= uA up to an
orthogonal transformation; otherwise, it is called exceptional.

Representation theory of Clifford algebras yields a complete classification of Hsiang
cubics of Clifford type.

How to determine all exceptional Hsiang cubics?

Proposition. The Hsiang examples w in R5,R8,R9,R15 are exceptional Hsiang cubics.

Proof. Indeed, assume by contradiction that w is of Clifford type. Since ∆1 is
O(n)-invariant and for uA(z) in Rn = R2p × Rq one has

tr(D2uA)
2 = 2q|x|2 + 2p|y|2,

the quadratic trace identity tr(D2w)2 = C1|x|2 implies q = p. Combining with
q − 1 ≤ ρ(p) yields p ∈ {1, 2, 4, 8}, thus, n = q + 2p ∈ {3, 6, 12, 24}, a contradiction.
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The main results

Main Theorem, Part I
If u is a cubic homogeneous polynomial solution of

|Du(x)|2∆u(x)− 1
2
⟨Du(x), D|Du(x)|2⟩ = λ|x|2u(x)

then

either ∆u(x) = 0 or u is trivial (depends on one variable, ∼ x3
1)

the cubic trace identity holds:

tr(D2u)3 = 3λ(n1 − 1)u, n1 ∈ Z+

n2 = 1
2
(n+ 1− 3n1) ∈ Z+

u(x) is exceptional Hsiang cubic iff n2 ̸= 2 and the quadratic trace identity holds

tr(D2u)2 = C|x|2, C ∈ R
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The main results

Main Theorem, Part II
There exists finitely many isomorphy classes of exceptional Hsiang algebras.

n 2 5 8 14 26 9 12 15 21 15 18 21 24 30 42 27 30 33 36 51 54 57 60 72

n1 1 2 3 5 9 0 1 2 4 0 1 2 3 5 9 0 1 2 3 0 1 2 3 7

n2 0 0 0 0 0 5 5 5 5 8 8 8 8 8 8 14 14 14 14 26 26 26 26 26

In the realizable cases (uncolored):

If n2 = 0 then u = 1
6
⟨z, z2⟩, z ∈ H ′

3 (Ad), d = 0, 1, 2, 4, 8.

If n1 = 0 then u(z) = 1
12
⟨z2, 3z̄ − z⟩, z ∈ H3(Ad), d = 2, 4, 8.

If n1 = 1 then u(z) = Re⟨z, z2⟩, z ∈ H3(Ad)⊗ C, d = 1, 2, 4, 8.

If (n1, n2) = (4, 5) then u = 1
6
⟨z, z2⟩, z ∈ H3(O)⊖ H3(R)

H3(Ad) is the Jordan algebra of 3× 3-hermitian matrices over the Hurwitz algebra Ad
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Key steps of the proof

u is a solution of a PDE ⇒ a metrized algebra V (u) with an identity

A commutative nonassociative algebra V with an inner product ⟨, ⟩ is called metrized if
the multiplication operator Lxy := xy is self-adjoint, i.e.

⟨xy, z⟩ = ⟨x, yz⟩, ∀x, y, z ∈ V.

The Freudenthal-Springer construction: given a cubic form u, define an algebra by

u(x) = 1
6
⟨x, x2⟩ ⇔ x · y := (D2u(x))y

In this setting,

the algebra V = V (u) is metrized

Du(x) = 1
2
x2

Lx = D2u(x), i.e. the multiplication operator by x is the Hessian of u at x
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Key steps of the proof

Let u(x) be a Hsiang cubic, i.e.

|Du(x)|2∆u(x)− 1
2
⟨Du(x), D|Du(x)|2⟩ = λ|x|2u(x)

and let V = V (u) be the corresponding Freudenthal-Springer algebra. Then

⟨x2, x2⟩ trLx − ⟨x2, x3⟩ = 2
3
λ⟨x, x⟩⟨x2, x⟩

Definition. A metrized algebra is called Hsiang if the latter identity satisfied.

The correspondence: if V is a Hsiang algebra then u(x) = 1
6
⟨x, x2⟩ is a Hsiang cubic.

In the converse direction, if u(x) is a Hsiang cubic then V (u) is a Hsiang algebra.

Theorem A (The Dichotomy)

Any nontrivial Hsiang algebra is harmonic: trLx = 0.

u is a Hsiang cubic of Clifford type iff V (u) admits a non-trivial Z2-grading
V = V0 ⊕ V1 such that V0V0 = 0.
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Key steps of the proof

The set of idempotents of V (u) is nonempty: any maximum point of u(x) on Sn−1 gives
rise to an idempotent:

Du(x0) = kx0 ⇔ 1
2
x2
0 = kx0 ⇔ c2 = c for c = x0/2k

Given an idempotent c ∈ V , Lc is a self-adjoint. Consider the Peirce decomposition

V =
k⊕

α=1

Vc(tα), Vc(tα) := ker(Lc − tα)

A key point is by using the original PDE, to determine the multiplicative properties of
the Peirce decomposition:

Vc(tα)Vc(tβ) ⊂
⊕
γ

Vc(tγ)

If the PDE is ‘good enough’, there are some hidden (e.g., Clifford or Jordan) algebra
structures inside V .
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Key steps of the proof

Theorem B (The hidden Clifford algebra structure)

Let V be a Hisang algebra. Then

(i) given an idempotent c ∈ V , the associated Peirce decomposition is

V = Vc(1)⊕ Vc(−1)⊕ Vc(− 1
2
)⊕ Vc(

1
2
), dimVc(1) = 1;

(ii) the Peirce dimensions n1 = dimVc(−1), n2 = dimVc(− 1
2
) and n3 = dimVc(

1
2
) do

not depend on a particular choice of c and

n3 = 2n1 + n2 − 2;

(iii) the following obstruction holds:

n1 − 1 ≤ ρ(n1 + n2 − 1),

where ρ is the Hurwitz-Radon function.
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Key steps of the proof

The Peirce decomposition

Setting V0 = Vc(1), V1 = Vc(−1), V2 = Vc(− 1
2
), V3 = Vc(

1
2
) we have

V0 V1 V2 V3

V0 V0 V1 V2 V3

V1 V1 V0 V3 V2 ⊕ V3

V2 V2 V3 V0 ⊕ V2 V1 ⊕ V2

V3 V3 V2 ⊕ V3 V1 ⊕ V2 V0 ⊕ V1 ⊕ V2

In particular, V0 ⊕ V1 and V0 ⊕ V2 are subalgebras of V .
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Key steps of the proof

Theorem C (The hidden Jordan algebra structure)

Let V be a Hisang algebra. For any idempotent c ∈ V , the subspace

Jc := Vc(1)⊕ Vc(− 1
2
)

carries a structure of a formally real rank 3 Jordan algebra, and the following conditions
are equivalent:

(i) the Hsiang algebra V is exceptional ;

(ii) Jc is a simple Jordan algebra;

(iii) n2 ̸= 2 and the quadratic trace identity trL2
x = c|x|2 holds for some c ∈ R.

The proof of the first part of the theorem is heavily based on the McCrimmon-Springer
construction of a cubic Jordan algebra.
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THANK YOU FOR YOUR ATTENTION!
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