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Fully nonlinear elliptic PDEs

Let us consider the Dirichlet problem

F(D?*u) =0in B
u =¢ on 0B;

with I uniformly elliptic:
MN|| < F(M+N)—-F(M)<A|N|, VN2>0and M,N symmetric

Examples: Hessian egs. (Monge-Ampere, Special Lagrangian), Bellman egs.
Pucci's extremal operators, e.g.

MY =Atry (M) +Atr_ (M) = sup trAM

AEA,\7A
where Aj a is the set of all symmetric matrices with spectrum C [\, A].

A continuous function u in Q is a viscosity subsolution if for any xzo € € and any
¢ € C*(Q) such that u — ¢ has a local maximum at o it follows that

F(D?¢(z0)) > 0.

Similarly one defines a viscosity supersolution. Then w is a viscosity solution when it
both viscosity supersolution and subsolution.
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Fully nonlinear elliptic PDEs

The existence and uniqueness (Evans, Crandall, Lions, Jensen, Ishii)
If $ € C°(OB1) then the Dirichlet problem

F(D?*u) =0in B
u =¢ on 0B;

has a unique viscosity solution u € C(Bs)

u(z) is a viscosity solution| = |u(x) is a classical C* solution
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Fully nonlinear elliptic PDEs

Let F(D?u) = 0 be uniformly elliptic.

If n = 2 then w is classical (C**) solution (Nirenberg 1953)
If n>2and A < 1+ ¢(n) then u is C** (Cordes 1956)

@ Holder estimates and a Harnack inequality for uniformly elliptic or parabolic
equations of second order with measurable coefficients (Krylov and Safonov, 1980)

@ u € C"*(By2), a = a(A,n) (Trudinger, Caffarelli, 1989)

F convex (concave) = u € CQ’Q(BI/Q) (Krylov, Evans 1983)

wis C**(B1\ %), dimg X < n—¢, € = ¢(A,n) (Armstrong-Silvestere-Smart, 2011)
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Nonclassical and singular examples

For a general uniformly elliptic F' the Krylov-Safonov-Cafarelli-Trudinger regularity is
optimal, i.e. there exist truly singular viscosity solutions in all dimensions n > 5.

Theorem (Nadirashvili, VI&dut, 2007-2011). There a cubic form wi2(z) such that for
any 0 € [1,2)
w12($)

|=[°
is a viscosity solution to a certain uniformally elliptic equation F(D?*u(x)) = 0
(depending on §) in B; C R*2.

us(z) :=

Theorem (Nadirashvili, V.T., VI3dut, 2012). There a cubic form ws(z) such that

wsl®) o 2 js a viscosity solution in By C R®. Furthermore,

u =
||

F(D?*u) = (Au)® + 283 (Au)® + 2'°3° Au + 2'° det D? (u).

The existence of truly viscosity solutions for n = 3,4 is an open problem. There are no
homogeneous order 2 solutions (R*: Alexandrov, 1939; R*: Nadirashvili, VI3dut, 2012).
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Key steps of the proof

We consider singular (C**!) solutions (the C**®-case is much more delicate).

A family A C S%(R™) of symmetric matrices A is uniformly hyperbolic if IM > 1 :

1 A(4)
M ST NA)

< M, VAe A, spec(A) ={\(4) <..< A}

The Ellipticity Criterium: Let w(z) be an odd homogeneous function of order 2 defined
B; C R" and smooth in By \ {0}. If the family

{D*w(a) — O~ 'D*w(b)O : a,be B\ {0} and O € O(n)}

is uniformly hyperbolic then w is a viscosity solution in By of a uniformly elliptic Hessian
equation.
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Key steps of the proof

Let u(x) be the Cartan isoparametric cubic form in R and w(x) = u(x)/|x|. Then

1 As
— L ==L
12 = Ay — 12, ()

where A; < --- < Aj are the eigenvalues of M(a,b,0) = D*w(a) — O~ D?w(b)O.
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Key steps of the proof

Let u(x) be the Cartan isoparametric cubic form in R and w(x) = u(x)/|x|. Then

1 As
— <5<
12 = Ay — 12, (1)

where A; < --- < Aj are the eigenvalues of M(a,b,0) = D*w(a) — O~ D?w(b)O.

Sketch of the proof. We have for any |a| = |b| =1
tr M (a,b,0) = Aw(a) — Aw(b) = —8w,

where w := u(a) — u(b).
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Key steps of the proof

Let u(x) be the Cartan isoparametric cubic form in R and w(x) = u(x)/|x|. Then

1 As
— L ==L
12 = Ay — 12, (1)

where A; < --- < Aj are the eigenvalues of M(a,b,0) = D*w(a) — O~ D?w(b)O.

Sketch of the proof. We have for any |a| = |b| =1
tr M (a,b,0) = Aw(a) — Aw(b) = —8w,

where w := u(a) — u(b).
e If w =0 then (1) holds with ¢ = n — 1 = 4 as for any traceless matrix in dimension n.
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Key steps of the proof

Let u(x) be the Cartan isoparametric cubic form in R and w(x) = u(x)/|x|. Then

1 As
— L ==L
12 = Ay — 12, (1)

where A; < --- < Aj are the eigenvalues of M(a,b,0) = D*w(a) — O~ D?w(b)O.

Sketch of the proof. We have for any |a| = |b| =1
tr M (a,b,0) = Aw(a) — Aw(b) = —8w,

where w := u(a) — u(b).
e If w =0 then (1) holds with ¢ = n — 1 = 4 as for any traceless matrix in dimension n.

o Let w#0, say w > 0. Then
OZ—SWZU“M((LZ),O)2A5+(5—1)A1:A5—4|A1|, (2)

= As < 4|A1|
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Key steps of the proof

A lower estimate of A5 relies on the spectrum of D?w(x): i e
) 3,(8) 2.(0) s
3sin( 5l —20) . /
o )\i(0)=—"—3""—cos30,j=1,2,3, /
J( ) Sin(ﬂTJJrg) 3 J ) 33 //
Ve
24 3
— 2 R e
° )\i (0) _ 5 cos 39i3\2/ 5 cos? 30+4 (0 -
where 9% B

u(z) = cos 30(x), 6:8* =0, g]
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Key steps of the proof

A lower estimate of A5 relies on the spectrum of D?w(x): i
3sin( % —26)
sin( T +6)

° )\i (0) _ —5 cos 30434/5 cos? 30+4 (0

2

e \;(0) = —cos30, j=1,2,3,

where N o

u(z) = cos 30(x), 6:8* =0, g]

Then 0 < f(a) < 6(b) < %, and by Weyl's inequality,
As 2 max (Ai(Dw(a)) — Ai(D*u(®) 2 M (6(2) = i (00)

where \1(0) is a decreasing function and
da _,sin0+5) 45y,
du sin 360
Integrating yields As > w, thus,
—8A5 S —80.) = trM(a, b, O) S (’I’L — 1)A1 +A5 = 4A5 — ‘A1|,
yields |A1] < 12As5, as desired.
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Isoparametric cubics

Recall that a submanifold of the Euclidean sphere S"~! C R" is called isoparametric if
it has constant principal curvatures.

A celebrated result due to H.F. Miinzner (1987) asserts that any isoparametric
hypersurface is algebraic and its defining polynomial v is homogeneous of degree
g=1,2,3,4 or 6, where g is the number of distinct principal curvatures.

E. Cartan (1938)
The only cubic polynomial solutions of
Du(@)P =9l',  Au(x)=0

are the cubic forma in R®,R® R'* R2S:

_ 1 > >,
3v/3 s - 1 fz 3d+2
uq(z) = - det 21 Ty — 5T1 7 , xeRM¥,
zZ2 z3 ﬁ$1

Here 2, € R? =, is the real division algebra of dimension d € {1, 2,4, 8}.
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How do minimal cones enter?

™\
In all examples of truly viscosity solutions u(z) = “(=) / ‘
their zero-locus is a minimal cone: X

@ wsq = Re(z122)z3, z; € H or O, the triality polynomials in R'? and R**

° ws(z) =

o wg(l‘) =

Remarks:

1

/371t T2 71263 Ta )
T2 5% Ts5 = a Cartan isoparametric cubic in R®

1

T4 Ts  FT1— a2

X1 T2 X3

x4 x5 x6 | in R° (C. Smart, unpublished)

Ty ITg X9

@ all wy(x) are Hsiang minimal cubics;

@ all wy(z) are generic norms on a suitable cubic Jordan algebra.
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Minimal cones

Blowing-down entire graphs yields area minimizing cones (Fleming, De Giorgi). In 1969,
Bombieri-De Giorgi-Giusti have shown that the quadratic minimal cone

{(z,y) e R* x R* : |z]> — |y|* = 0}
is area-minimizing in R®. In particular, Bernstein theorem fails for n > 8
In general, if a minimal hypersurface is given implicitly by u(z) = 0 then
Avu(z) := |Du(z)*Au(z) — %(Du(a:),D\Du(x)F) =0 whenever u(z) =0

If u is a homogeneous polynomial then the cone «~*(0) is minimal iff there exists a
polynomial f, deg f = 2degu — 4, such that

M) = f(@)u(a).

W.Y. Hsiang (J. Diff. Geometry, 1967): Classify all solutions of degu = 3. J
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Hsiang's Problems

(if) Partly due to the lack of “canonical” mormal forms for r < 2 and
partly due to the rapid rate of increase of the dimension of £ with respect
to r, the little help obtained from the normal forms is not enough to solve the
problem of classifying minimal algebraic cones of higher degrees. For ex-
ample, it is very difficult to solve even the following very special equation:
F(x) = 0, where F(x) is an irreducible cubic form in r variables such that

(4F)- PF|* —VF -HF -FFt = + (2 + -+ +32)-F .

Since the above equation is invariant with respect to the orthogonal linear
substitutions, we may assume that F is given in some kind of “normal form”
which amounts to reduce the number of indeterminant coefficients by
n{rn — 1)/2. A systematic attempt to solve the above equation will involve the
job of solving over-determined simultaneous algebraic equations of many va-
riables. So far, we have only four non-trivial solutions (cf. §§1, 2), but there
is no reason why there should be no others.

A homogeneous cubic form u(z) is called a Hsiang cubic if

Aju = Nz|Pu(z), XeR.
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Jordan algebras

An algebra V' with a commutative product e is called Jordan if

[Le,L,2] =0  VzeV.

Main examples
1) The Jordan algebra .77, (A4) of Hermitian matrices of order n, d =1, 2,4 with

vey=3(zy+yx)

2) The spin factor Z(R™1) with (o, x) ® (yo,y) = (zovo + (x,9); oy + yor)

Theorem (JORDAN-VON NEUMANN-WIGNER, 1934)

Any finite-dimensional formally real Jordan algebra is a direct sum of the simple ones:
@ the spin factors .7 (R™™1);
@ the Jordan algebras J#,(A4), n > 3, d =1,2,4;
@ the Albert algebra J#3(As).
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What about the four Hsiang solutions?
Let X € s, (A) = trace free hermitian k X k-matrices over A =R or C
@ A; is an O(n)-invariant = A;(tr X®) = is a polynomial in tr X2, ..., tr X*
o deg(A1trX3) =5
0 if 3 <k <4then Aju(X)=citr X2tr X® = c1| X [2u(X).
= u=trX® is a Hsiang cubic!

This yields the four Hsiang examples u in

H(R) =R, #4(C)=R%, 7 (R)=R’, 4 (C)=R"

The Hsiang cubics in R® and R? are used in construction of the viscosity solutions.

An important observation: degu = 3 implies
tr(D*u) =0 the harmonicity
tr(D*u)® = C1|z|? the quadratic trace identity
tr(D*u)® = Cou the cubic trace identity
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Clifford type examples of Hsiang cubics

Example. The Lawson cubic cone in R* with the defining polynomial

u(z) = (z1 — 23)y1 + 21 22y2 = (z, A1z)yr + (z, A2y, z = (z,y) € R*

10 0 1
vl h) w=(10)

Theorem (V.T. 2010) Let {4;}1<1<q be a symmetric Clifford system, i.e.
A?=1T1 and A;A;+AjA; =0, Vi#j.

Then .
ua(z) =Y "z, Az)yi, 2= (3,y) €R” xR

is a Hsiang cubic.

The existence of a symmetric Clifford system in R?” is equivalent to

q—1<p(p),

where p(p) is the Hurwitz-Radon function (= 14- the number of vector fields on SP™1)
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The dichotomy of Hisang cubics

Definition. A Hsiang cubic w is said to be of Clifford type if ©u =2 u4 up to an
orthogonal transformation; otherwise, it is called exceptional. J

Representation theory of Clifford algebras yields a complete classification of Hsiang
cubics of Clifford type.

How to determine all exceptional Hsiang cubics? J
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The dichotomy of Hisang cubics

Definition. A Hsiang cubic w is said to be of Clifford type if ©u =2 u4 up to an
orthogonal transformation; otherwise, it is called exceptional. J

Representation theory of Clifford algebras yields a complete classification of Hsiang
cubics of Clifford type.

How to determine all exceptional Hsiang cubics? J

Proposition. The Hsiang examples w in R® R R% R'5 are exceptional Hsiang cubics.

Proof. Indeed, assume by contradiction that w is of Clifford type. Since A; is
O(n)-invariant and for ua(z) in R™ = R?” x R? one has

tr(D*ua)? = 2qlz|* + 2ply|,
the quadratic trace identity tr(D?w)? = Ci|z|? implies ¢ = p. Combining with

qg—1<p(p) yields p € {1,2,4, 8}, thus, n = g+ 2p € {3,6, 12,24}, a contradiction.
O
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The main results

Main Theorem, Part |

If u is a cubic homogeneous polynomial solution of
|Du(@)[* Au(@) — 5(Du(z), D|Du()*) = Alz|*u(z)

then

o either Au(x) = 0 or wu is trivial (depends on one variable, ~ z%)
@ the cubic trace identity holds:
tr(D*u)® = 3\ (n1 — 1)u, ny € 2"
@ ng=3(n+1-3m)ezt
@ u(x) is exceptional Hsiang cubic iff n2 # 2 and the quadratic trace identity holds

tr(D*u)® = Clz|?, C€R
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The main results

Main Theorem, Part Il

There exists finitely many isomorphy classes of exceptional Hsiang algebras.

n 2 5 8| 14| 26| 9 12| 15| 21| 15| 18| 21| 24| 30| 42| 27| 30| 33| 36| 51| 54| 57| 60| 72
ng| 1 2 & 5 9 0 1 4 0 1 2 3 5 © 0 1 2 3 0 1 2 3 T
nol 0| O o O 0 5 5 5 5 8 8 8 8 8 8 14| 14| 14| 14| 26| 26| 26| 26| 26

In the realizable cases (uncolored):
® If ng =0 then u = §(z,2%), z € #3(A4), d=0,1,2,4,8.

If n1 = 0 then u(z) = 5 (22,32 — 2), z € 4(Aq), d = 2,4,8.

12

If n1 =1 then u(z) = Re(z,zz), z € M (A)RC, d=1,2,4,8.
o If (n1,m2) = (4,5) then u = 1(z,2%), z € #3(0) © #4(R)

H#3(Aq) is the Jordan algebra of 3 x 3-hermitian matrices over the Hurwitz algebra A,
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Key steps of the proof

u is a solution of a PDE = a metrized algebra V' (u) with an identity

A commutative nonassociative algebra V with an inner product (,) is called metrized if
the multiplication operator L.y := xy is self-adjoint, i.e.

(zy, z) = (z,y2), Va,y,z € V.

The Freudenthal-Springer construction: given a cubic form u, define an algebra by

u(x) = %(x,mQ) & rey:= (D2u(m))y

In this setting,
@ the algebra V = V(u) is metrized
@ Du(z) = a2

2
o L, = D?u(x), i.e. the multiplication operator by z is the Hessian of u at x
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Key steps of the proof

Let u(x) be a Hsiang cubic, i.e.
|Du(@)[* Au(z) = 5(Du(z), D|Du(z)[*) = Alz|*u(x)
and let V = V(u) be the corresponding Freudenthal-Springer algebra. Then

<$27$2>ter - <1‘2,$3> = %)\<$,1’><SL’2,I>

Definition. A metrized algebra is called Hsiang if the latter identity satisfied. J

The correspondence: if V is a Hsiang algebra then u(z) = & (z, %) is a Hsiang cubic.
In the converse direction, if u(z) is a Hsiang cubic then V' (u) is a Hsiang algebra.

Theorem A (The Dichotomy)

@ Any nontrivial Hsiang algebra is harmonic: tr L, = 0.

@ wu is a Hsiang cubic of Clifford type iff V' (u) admits a non-trivial Zz-grading
V = Vo @ Vi such that VoVp = 0.
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Key steps of the proof

The set of idempotents of V' (u) is nonempty: any maximum point of u(z) on S"* gives
rise to an idempotent:

Du(zo) = kzo < %x?):ka:o s 2=c for ¢ = x0/2k

Given an idempotent ¢ € V, L. is a self-adjoint. Consider the Peirce decomposition

V=PVelta), Velta) :=ker(Le — ta)

A key point is by using the original PDE, to determine the multiplicative properties of
the Peirce decomposition:

Ve(ta)Ve(ts) € @ Velts)

If the PDE is ‘good enough’, there are some hidden (e.g., Clifford or Jordan) algebra
structures inside V.
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Key steps of the proof

Theorem B (The hidden Clifford algebra structure)
Let V be a Hisang algebra. Then

(i) given an idempotent ¢ € V, the associated Peirce decomposition is
V=V.1)®Ve(-1) @ Ve(—3) ®Ve(3), dimVe(l) =1;
(i) the Peirce dimensions n; = dim V.(—1), no = dim Vo(—3) and ns = dim V(%) do
not depend on a particular choice of ¢ and

ng = 2n; + ng — 2;

(iii) the following obstruction holds:

ni1—1< p(n1 +n2 —1),

where p is the Hurwitz-Radon function.
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Key steps of the proof

The Peirce decomposition

Setting Vo = Ve(1), Vi =Ve(-1), Va=V.(—2), Vs=V(3) we have
Vo 1% Vs Vs
Vo Vo W Va Vs
Vi Vi Vo Vs V@ Vs
Vo Vo Vs | Vo Va Vi@ Ve
Vs Vs | VadVa | VidVe | Vo Vi Ve

In particular, Vo @ Vi and Vi @ Vs are subalgebras of V.
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Key steps of the proof

Theorem C (The hidden Jordan algebra structure)
Let V' be a Hisang algebra. For any idempotent ¢ € V, the subspace
Je 1= Ve(1) @ Ve(—3)

carries a structure of a formally real rank 3 Jordan algebra, and the following conditions
are equivalent:

(i) the Hsiang algebra V' is exceptional;

(i) Je is a simple Jordan algebra;

(ii) n2 # 2 and the quadratic trace identity tr L2 = c|z|® holds for some ¢ € R.

The proof of the first part of the theorem is heavily based on the McCrimmon-Springer
construction of a cubic Jordan algebra.
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