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The problems | will discuss today lie in a common area between:

Q differential geometry (minimal and isoparametric submanifolds)
polynomial solutions to nonlinear PDEs,
regularity theory fully nonlinear PDEs

Jordan algebra theory and general metrized algebras

© ©6 0 o

general commutative metrized algebras

This is why the content is appropriately changed accordingly to a choice of relevant concepts/problems in a given community.

But the original source of my interest here is uniquely determined: it is a paper of Wy-Yi Hsiang of 1967.
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How it started: motivations

JloGofl MaTemaTHk, HepapHOIymRHA K Teophu wncer,
nenwTan ma cee ouapoamme Teopems QepMa o cymme
AByX HaTypanbubix Kapatos. [lcHx0AOr 1OrOBCKOR WKO-
A Hamen GH, BEPOATHO, 4TO Takue AHOGAHTOBH 3anaun
B BHCIIEH CTeNleHH APXHTHIHIAK.

(Cubic forms, Yu. 1. Manin)

Nonlinear Elliptic
Equations and
Nonassociative Algebras

Nikolai Nadirashvili
Viadimir Tkachev
Serge Viidut

AMS Math. Surv. Monographs, 2014; Vol.200

Interest in this topic is partly due to Irina Nikolaevna Sosnovtseva in 1980-1981,
postgraduate student prof. Isabella Bashmakova (Moscow State University).

Later, in 1981, when my future supervisor Vladimir Mikhailovich Miklyukov came to
VolSU, | began to study the global geometry of minimal submanifolds.

One of Miklyukov's favorite themes was to achieve a conceptual understanding of
Bernstein's theorem in the higher-dimensional case. He liked to mention that it
would be interesting to find something in common between different " phenomenona
of eight”, for example, between Milnor's exotic spheres and the termination of

Bernstein's theorem in dimensions starting from eight.

There is an interesting collection of about 100 references on this topic much later in

Eight in algebra, topology and mathematical physics on Andrew Ranicki's page

In 2008, | became interested in the problem of algebraic minimal cones, a topic that
turned out to be almost unexplored, except for one paper by Wy Yi Hisang in 1967.
From about that time, my research was in the geometric theory of non-associative
algebras, in particular together with S. Vladuts, N. Nadirashvili, Ya. Krasnov,

D.J. Fox. Some papers and my talks are available at this page
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https://www.ams.org/books/surv/200/
https://www.maths.ed.ac.uk/~v1ranick/eight.htm
https:/ /users.mai.liu.se/vlatk48/

2
Theorem (V.T., 2008) Let s(xz) = sn(xz, v/—1) be the Jacobi lemniscatic sinus, s(t + w) = —s(t), w = %. Then

M = {z = (21,2, 23,24) € R* : F(a) := s(z1)s(z2) — s(x3)s(ws) = 0},

is a connected minimal 4-fold periodic embedded hypersurface in R* with isolated singular points at the lattice zt U (h+ Dy).

The Lipschitz integers Z* = {m € H : m; € Z}, the checkerboard lattice D4 = {m € Z* : ‘1-1 1 m; =0 mod 2},
the Hurwitz integers H = Z* U (h + Z*) (the densest possible lattice packing of balls in R*), where h = (% % %, 1y
M have isolated Clifford cone type singularities (note that the cones are given by the split quaternion norms)

Q@ Singularities of Z*-type: if a € Z* then F(a + x) = +x 20 + w324 + O(Jz|?), asz — 0.

O Singularities of Dy-type: if a € h + Dy then F(a + x) = i(r§ + rﬁ — a:% — :1:%) + O(|ac|4), as ¢ — 0,

4 /:‘fﬁ/ o Z*points

y "~ M4, points

[ / A 4 o The tholes'

® Singular points of M
o the holes' of M v

A natural question: given a family F of algebraic minimal cones in R™, can one find an embedded minimal hypersurface with
singularities in 7? When | started looking for available algebraic minimal cones it turned out that there were only few known. .. J

=] F = = =




S.N. Bernstein (1830 — 1968)

A Russian and Soviet mathematician, known for contributions to partial differential equations, differential
geometry, probability theory, and approximation theory:

1904

1910s

1912

1915

1917

1924

1923

solved Hilbert’s 19th problem (a C3-solution of a nonlinear elliptic
analytic equation in 2 variables is analytic)

introduced a priori estimates for Dirichlet's boundary problem for
non-linear equations of elliptic type

laid the foundations of constructive function theory (Bernstein’s
theorem in approximation theory, Bernstein's polynomial).

the famous ‘Bernstein’s Theorem’ on entire solutions of minimal
surface equation.

the first axiomatic foundation of probability theory, based on the
underlying algebraic structure

introduced a method for proving limit theorems for sums of
dependent random variables

axiomatic foundation of a theory of heredity: genetic algebras
(Bernstein algebras)
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Minimal surface equation and minimal cones

The following definitions of a regular minimal hypersurface in R™ are equivalent:
@ A critical point of the area functional

O The mean curvature = 0

O If xp41 = u(x) is a graph over R™ then div

Du
V1+|Du|?

Theorem (S. Bernstein, 1915). If  is an entire analytic solution on R? then u = ax + by + c.

REMARK. The regularity assumptions become important starting with higher dimensions. The
topological /geometrical assumption is also important: if one removes a tiny disk from a plane, there is a
function defined everywhere outside that disk whose graph is a minimal surface (a half-catenoid).

The Bernstein result for C2- entire solutions holds true for all 2 < n < 7. A key ingredient: blowing-down
entire graphs yields area minimizing cones Fleming (1962), De Giorgi (1965), Almgren (1966), Simons (1968).
But for n > 8 there appear counterexamples:

Theorem (Bombieri-De Giorgi-Giusti, 1969). The Clifford-Simons cone
{(@,y) € R* x R* : |2|” — |y|* = 0}

is area-minimizing in R3. In particular, Bernstein theorem fails for n > 8




A.T. Fomenko, Multidimensional variational methods in the topology of extremals, Russ. Math. Surv., 36:6 (1981), 127-165

MHOTOMEPHEIE BAPHAIMOHHEIE METOTBL 125
uomx) ¢ rpamuieir S' X S°. U B 2T0M citydae KOHYC ¢ BePIIHHON B HYTO Ho MAHHE-
MATeH, TAK KaK RAKO CpaBHeMD
Kareoma o (pue. 6) wro ropronmEa
KATOHOWIR PACTOTOKOHA GAIKO K HATATY KOODAMIAT, YN TODIOBMHA CHITHI-
pav. Pacomotpmyt 5 S? V(nvvxppnﬁm axourypy— S1X S (1op), eramgaprino nao-
wemmsit B R = C? {w\}nnz\u_wwv:i) Hpswoe

DS Toxeanact (ou. mEe),

4o tpexaepuan I'M-mosepxmocts ¢

rpanumeit St X ST mweer eme Goree

4y3KYI0 PODIOBHHY» (CM. YCAOBHSIL s

puc. 8), mposucan Goabine, % b 1py-

MepHOM caydac. TOM cawint obmapy-

uBaeTCA mATepecki oddext: ¢ po-

ctow  pasmeprocrn  IM-mosepxiocTt

(vsasaduoro Tima) oma mpomncaer

e Gombme W GOTHMe, CTPOMSCh K

natany woopamiar. Iluryntusuo sc-

K0, 70 ¢ POCTOM DasMepHOCTH FACTY-

LT MOMOT, KOTAQ MIMHNATLHAR TIeK-

Ka o rpammmeil S X ST (nowemnoi

b §74*1) mponmerer MacTombIo, wTo

(CXIOUHOTCS W MPOBDATHICH B KORYC Prc. 6.

© popmmmoit B TouKe 0 (MATATO KoOD-

numar). Bra sepmmma Gymer ocofoft Towxo TM-momepxwoctm. Bompoo:
B Rakoit BrepRHE rofatsio KOHYCH,
OTIUTIHO OT CTAIIAPTHOFO AUCKA (r. 0. NOPIUMAA KOTODHX — CYICCTAGHNO
oco6an Touka)? ORaaimaeTod, of, pememiA HTOK SATATH BABECAT HeKoTOpe
DOUpOCH B TeOpHA AmpPepeHmMATHHEX yDapieHmit, reomerpusm rpymm Jim.

Teopema 5. ea06anvio nosep-
nocmanu ¢ epanuyeii A™-?, soe AN — opGuma Jeiicmsus KounaKmHOL cesanol
2pynnn JTu G = SO, na R*, A™* < ™1, saamomes Kouyco ¢ depuitnoli 6 HaNaAE
Koopduriam, ueiouue 5 Kavecmae spanuy. ciedyouie .mmzw&pnstw A = /‘/FI
1) 5 x 9 = (80, 0,)/(80,, X 80,-) @
2) (80, X S0,)/(Z, X S0, ;) ¢ R* oas k> 8; 3) (sv Ot + su 4,)
SR aank > 4 4) py X Sp)/(Sp} X Spy ) 15 s e > 2 )l/’/(SU‘ T‘]
o R, 6) Sp,/Sp? & RIS 7) Fy/Sping o R 8) (Spingy X U)/(SU, X 1M) s R
30ect wepes ™ oboanauena nodzpynna S* ¢ H. [fas eces ocmaasun nH0a006paaii

MHOTOMEPHBIE BAPHAIIOHHBIE METOBI 129

4 = GIlf, yuasawis o cvucre CII, comeememayougie Kowjes wad s e
sasiomes

SGaen. Do aces amucs capuass wndowe amies nongeos, | pascrampusseans ok
IKempenat PYRFYULONAAL 06eNa, aceada pasen. Oeckoneunocmu. lepevucaennne
e I’ M-KOHYCH 364310MCA G-UHSAPUAHIMHIAL OMHOCUEALHO elicmeus coom-
gememayiouguz 2pynn G, YKAIANHNL Geuue.

0 cpaviemmo ¢ [58] ROBHOII 30Ch ARAMOTCSH YTREPITEHUA 0 T0BATBHOI
MIHIMATHROCTH KOHYCOD TaX Mmoroobpaswmvi: S* X S* m S% X S'n R%
555 Sia R s (SO0 SON(Ty X 800 n ey (80, % SONTs X so,) BRI
(SUL X SU{TE % 8U,) % R, Boan' o xonye
HO MIHEMATEH, OF TeM He MeHee ABITCTCA HKCTPe-
MATbio QYHKIHOHATA 00BEMA, TAK KAK AHHYH-
pyer omeparop Diinepa. Caenopareanbo, Ias ta-
KOTO KOHYCA OUDONENeH ero WHIPKC — 9HCIO
OTPHIATOAMAY COGCTBONEELY HCON, CTOAMEX
Ha AUATORATH (0ECKOHWHOHl MATPHIN OmEpaTo-
Pa BTOpOIf Dapmagum. DTOT WHIKC YKA3MBacT,
CKOIBKO €CTh He3ABMCHMEIX BapWAIT, YMemsma-
fomux 06bex mopepxHOCTH. BEMIy PENyKIUN 3a-
e K TPOGIeMe HaXOHeRUS remlesn‘lechux Ha

Kantoit
Tiros n owyee (poaRMKaIMGE ToR GocKoHoRO
MAT0M BOTMYIEHIIE KOTYCA ¢ HOMOISI0 BeKTOpHOTO skoBmena mons [60]) ormo-

All known explicitly given minimal cones are algebraic, i.e. zero level sets of homogeneous polynomials. In fact, many of them

cones over the so-called isoparametric hyperesurfaces in Euclidean spheres, see below.



https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=3103&option_lang=eng

A curious remark on the n-dimensional spheres and balls

Graphs of volumes V;, and surface areas S,, _1 of n-balls of radius 1 (Wiki).
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https://en.wikipedia.org/wiki/N-sphere

Isoparametric hypersurfaces

A hypersurface M is called isoparametric if its principal curvatures are constant;

by g one denotes the number of distinct principal curvatures.
Miinzner (1980) used algebraic topology to prove that
O the number g of distinct principal curvatures: g € {1,2,3,4,6}

Q@ M =u"1(0)NnS™ 1, u(z) is a homogeneous polynomial in R™:

degu(z) =g
IVu@)*  =g*(@ 2)97 ", 1)
Au(z) = C(z,z>(3974)/2.

Q there are at most two multiplicities (1, m2) for the g principal
curvatures, dim M = %(ml + ma)g

E. Cartan (1938) completely characterized the cases g = 1, 2, 3. In particular, he

proved that for g = 3, there are exactly four isoparametric hypersurfaces
M3 cogldtl cp3dt2 g1 2 48,

given by the zero level set of the degree 3 homogeneous polynomials. For example,
for d = 1, the Cartan isoparametric cubic in R® given by the zero-level set of

3 2 2 2 2 2 2
x5 + %xs(acl + x5 — 2x3 — 2x)) + %a@(zz —x7) + 3\/§x1x2x3

Remarks.
1) Note that for g = 4 there are infinitely many

inhomogeneous isoparametric hypersurfaces.

2)The following table (by Quo-Shin Chi) is
the collection of all symmetric spaces G /K
whose isotropy representations give homogeneous

isoparametric hypersurfaces M:

(@ K T M [ ] (v, mz)
[S S0+ 1) SO0 [ 1[(L,1)
[SO(p +1) x SO(n + 1 - p) | SO(p) x SO(n - p) n 2 (p.n—p)
IE S0(3) 3 31(1,1)
[EUOEEUE) SU) G 31(2.2)

[ 5Tty $p(3) 2 [3](1,4)

Ey ) 2 [3](8.8)
50wy 506) SO0) 5 1122
[50(10) [UG) 1§ [4](45)
[50(m +2),m >3 SO(m) % S0(2) 20 =24 (Lm=2)
[STUm+2).m>2 [SW0m  U(2)) Tim—2 4] @.2m-2)
[Splm +2).m>2 [Splm) % Spi2) Sm =24 (4.4m—5)
[E [(Spin(10) x SOQ)/Za [30__[4

S0(1) ] 61(L1)
G, i) 61(2.2)

2) Chern'’s conjecture for isoparametric hypersur-
faces in a sphere: Any closed, minimally immersed
hypersurface of a sphere with constant scalar cur-

vature is isoparametric.


https://www.math.wustl.edu/~chi/iccm.pdf

Some explicit examples of algebraic minimal cones in R"

InRS: w = (m% + zg + z% + zi) - (zgj + zg + z% + zg) (the norm of split octonions).

In R® (a Cartan isoparametric cubic)

3 : : : 3V3 .
u(z) = z:; + 59:5(zi + zg — 2z§ — QIi) + 2 14(15 — z?) + 3\/5119:213
In general, in R34+2.
u(X):trXS, X € Hermg(Fy), trX =0,

Here Hermgy (F4) should be understood as a hermitian rank 3 Jordan algebra over a Hurwitz algebra K.
InR3%: u = Re((z122)23), z; € Kq, d = 1,2, 4, 8 (the triality polynomials).
In RY:
1 2 z3
u(x) = det T4 x5 Te
x7 g 9
and in the general case for det X in R X" in (Tkachev 2010). Recently generalized for various determinantal and

Pfaffian varieties producing minimal cones: Bordemann, Choe, Hoppe, Heaton, Kozhasov, Venturello.

Observe that all the above solutions can be written in a very compact form using norms, determinants, traces. A natural
question arises: what is a natural context for all these examples? Isoparametric? Determinantal? Jordan algebraic?...




Truly C viscosity solutions

Somewhat very strange appearance of minimal cones in the context of ‘truly’ Cl’o‘-viscosity solutions constructed in 2007-2011
by Nikolai Nadirashvili and Serge VI3dut (2010 ICM Invited Speakers in PDEs)

There are important classes of fully nonlincar Dirichlet. problems for Proceedings of the International Congress of Mathematicians
which the viscosity solution is in fact a classical one, e.g. due to Krylov Hyderabad, Tndia, 2010
Evans regularity theory, in the ease when the function F s convex, (se

[((] ﬂ(]. Hmw\rl for the g of the coincidence of

visc sed open.

]lm (um nl muu of this paper is the existence oh nonclassical viscosity ¥ P
solution of (1) in dimension 12. More preciscly we prove Weak Solutions of Nonvariational
Elliptic Equations

Theorem. The function
w(z)
wherew; € H, 1,2,3, are Hamiltonian quaternions, @ = (wi, ws,wy) € H* Nikolai Nadirashvili* and Serge Vladut’

=R is a viscosity solution in R'2 of a uniformly elliptic equation (1) with
e e

& smooth F.

Re(wiwpws)
ER

ates of RY in equation in those dimensions (28, 30]. Moreover, one can formulate a test similar
to the second part of Lemma 4.2 which garanties that w, is a solution to an

One can find the explicit expression for w
scetions 3 and 4. The elliptic operator £ will be defined in a constructive

way in section 2, and its ellipticity constant A < 10%. Isaacs equation.
As an immediate consequence of the theorem we have Tn this way we get the following:
—_————e 1). For any 4, 1 <4 < 2 and any plane H’ ¢ R?, dim H' = 21 the function
but loses the uniform el!.\puuty in a neighborhood of the subset of S formed (Pt ety
by the points with |21| = |22] = |za], Re(:12220) =
To explain why P does not work and Pl does work we give in the next s a viscosity solution to a uniformly elliptic Hessian (1.2) in the unit ball
section a short excursion in the area of division algebras and exceptional Lie CR2,

‘groups. That will lead us also to various extensions of Theorem 3.1

*

For any §, 1< 6 < 2 the function

4. Trialities, Quaternions, Octonions and wizg = Pua(z)/z|

Hessian Equations is a viscosity solution to a uniformly elliptic Hessian equation (1.2) in the
unit ball B C R™2.
As we have seen in the previous scetion, cubic forms for which the quadratic

form Py verifies the inequalities (3.2) or (3.3) should be rather exceptional. In 3). For any hyperplane H C R'? the function
fact all examples of such forms known to us come from trialities, which in turn
are intimately related to division algebras and exceptional Lie groups. Let us (Pua()/ |t
recall some of their elementary properties [1, 3] . . . §
‘Duality is ublquous in algebra; triality Is similar, but subtler. For two real s viscosity solution to a uniformly elliptic Hessian equation (1.2) in the
wnit ball B R

vector spaces Vi and Vs, a duality is simply a nondegenerate bilinear map
FiVixVa—R 4). For any §, 1< 8 < 2 the function

Similarly, for three real vector spaces Vi, Va, and Va, a triality is a trilinear map wizg = Pia(z)/ ||
FVixVaxVs—R is a viscosity solution to Isaacs equation (1.8) in the unit ball B ¢ R'2,

[} = =

MSU, Moscow, 2023, September 11th, 2023 (12 of 43)




Truly C viscosity solutions

@ Evans, Crandall, Lions, Jensen, Ishii: If 2 C R™ is bounded with Cl—boundary, ¢ continuous on 92, F' uniformly
elliptic operator then the Dirichlet problem
2 .
F(D“u)=0, in Q
u= ¢ on O
has a unique weak (the so-called viscosity) solution uw € C(£2);
Krylov, Safonov, Trudinger, Caffarelli, early 80’s: the solution is always cle

Nirenberg, 50's: if n = 2 then w is classical (C'?) solution

Nadirashvili, VI3dut, 2007-2011: if n > 12 then there are solutions which are not c2.

Theorem (Nadirashvili-VIadut-V.T, 2012) The function w () := “Ilér) where

uy(z) = zg + %:1)5(1% + zg — 21§ — 212) + 327\/514(23 — z?) + 3V3zizax3,

is a singular viscosity solution of a uniformly elliptic Hessian equation. This also gives the best possible dimension (n = 5)
where homogeneous order 2 real analytic functions in R™ \ {0}.

Q@ Some further comments can be found in Tkachev V., Spectral properties of nonassociative algebras and breaking
regularity for nonlinear elliptic type PDEs. Algebra i Analiz, 31(2019)


https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1637&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1637&option_lang=eng
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Hsiang's 1967 paper

In the 1st volume of J. of Diff. Geom., 1967, W.-Y. Hsiang published a paper "Remarks on closed minimal submanifolds in the

standard Riemannian m-sphere”, where he remarks:

The classically known examples of closed minimal submanifolds of condimension one in S™, namely, those of
the type S™ 1 5P %59, are exactly the real algebraic minimal submanifolds of degree 1 and 2. In addition to the
homogeneous examples given in the list of observation 2, §1, we produce some new algebraic minimal submanifolds
which are no longer homogeneous. Hence the set of algebraic minimal submanifolds in S™" is essentially larger
than that of homogeneous ones. It is then quite interesting to classify real algebraic minimal submanifolds of degree
higher than two up to equivalence under the orthogonal transformations. It turns out that the algebraic difficulties
involved in such a problem are rather formidable. As a by-product, we derive the existence of some kind of a normal
form for homogeneous polynomials of arbitrary degree and arbitrary number of variables over real closed fields with

respect to the orthogonal linear substitutions. . .

Any algebraic cone comes from a polynomial solution u € Rz, ..., zy] of degu = m to
Aqu(z) = |Vul’Au — L(Vu, V|Vul?) = P(z)u(z)
where P(z) is undefined homogeneous polynomial of degree 3m — 4. In particular, if m = 3 then
Aju(xz) = a quadratic form - u(x)
Explicitly, in dimension n = 2 one has a quasilinear PDE:
uiuzw — 2UgUyUgy + uiuyy = (aac2 + 2bzy + cy2)u, where a, b, c are unknown constants.

It is difficult, but a possible task to solve (4). But already for m = 3 the corresponding LHS contains almost 300 terms!
=] & = E E

(4)




Hsiang's 1967 paper

wm e e s gy s s A sy s hdn s dn s et
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30 =54 oyt + S Ry + 1888+ 188 by + 18R by + 183 By + ey T2

> 2 : 2 22 22
#3605 B+ Sy oy A + Sy B T oy b+ T ey R+ 60,0, by 3 + 160y aybyn B + T2y bR+ Ty by + Sy By

‘ 4 : 4 4 3 4 4
+ 120y byt + 240 by by, + 2 by sy + 20 by b — G by — 6y B + 20 by 4 24y by by 4 120 by + 2 by g — 6 By gty + 12y B
360y byby R + 120, by B+ 120y by R+ 120y By bR+ 120,y By 120 By 60y By i+ 200y By R + 120 by + 1200y + 24 by

+ 240 bybexy w3 + 6ay by, 33 + 24 e bycy Byl + 12a B + 364 by by + 12y by vy 3y + 24y By B3 + 6y By + 24 0 bge by + 6y by 3 + St oy + 18 by
G + 3 . +T2ayaybyx By + 120y dd+ + d+54 G+ 120543

18 @by + 18 b+ 182 5 + S NI
Raybandn +6nBin+ HaBdnd+ 2abbydy

+ 360yt by R+ 120y b s+ 2 by by + 120y b R+ 12y b B+ 2y R + 12y by

+ohbRR e b boday + Ue b b nd+ Rabbeddn+ 266633+ 00 ket + Habex 4] - 60 5]+ 2a kb + Haybbend — 600 dn ~ 6053

s ‘ - : 5 ; 55 ,
2 aybyby i + 120y, b, — Sy, 2y B+ 60y B+ 360y by B+ Mty B + 6By, B+ 120, B + 120y by + 8By + 18Ry

+ 18 byxy + 18 by + 6, Bt xy + 24 0y B8 vy + 36 a3 by by 3y + 24 ay by by oy vy + 2 by byxy By + 120y by by + 1203 by b3 + 240y by byxy G + 24 ay by b3 ) + 6ay by oy
B42ahanide Bt +1 2d+12 E +1 L2 . 34240 B + o

#3608, b,5 B+ 240y by bR+ 2 by b+ ey by By 60y by B+ 120, B+ 240y by by 1208y b+ 126 by — 6y B — 6y by — 6y B
- 6aybgeyn - 08l - 08 byt — 2808 + 280+ 8 bl - 48 + 28 bty 4 88 - 4l bl d - 12— 6 B — by by — 4l by
+85bbdnd = 4 b bt + 85 B addn — 4 b bt 20 e =88 B - 88 b - 12 B 4 s b bt 58 A - sty b+ 8 8 000d
80y by = 40y by b 3 = 188 ey g = 44 B+ 20y B+ 80y B0 by b, + 80y B + 80, byl = 60, by~ 40y ks b+ 80y by 3
bbb - 60 by g - 40 Bl d 4 85 8+ 20 B - 4 b 4 85 b g — 44y b g =24 i — 20,4 - 8 didnd - udx 1284 ey
EERREIR ERECIN IPE I MO 101 BT TR D MR TN P TR OO - RS T NS MEPTR SO S M T

| ey i . y ; . g f
—6hybad - dbBadn + 2 Gl + ShHAE + 8b b bt S~ aby by bin G+ 8 by bux ] — 4l by bt S + 855,03 + 8hb bl — s b b ny — 4 b x
+8h 50008 - 125,888 - 18580 nd - 45,540+ 14508+ 25,88 - 65, 50e, 35 - 25, dul — 85,8 A~ 1A - 68 - 68 8 + 880 + 280
—48byndd+ 88 + 28] - 4838
30+ 20y B+ 80y by by — 45 by g — by b bgnad + 8by by ey — 4 ey — 4y b — 6y b B - 26,4 R — b g d ~ shdndd - 6y - 12

SRR S RN MR TN SRR RO T Y SR

P

. B 4 o it i 5 : i
by = 80y 8 = by by 3 = 25y — 200~ 8y - 20 - 6B~ 128 d - 8h i~ 2003~ 28 -2y 2 gy -2
dxnd

Remark. Even if one is able to find an explicit solution, it will still be a nontrivial task to identify a relevant algebraic context
where this solution appears in?... Hsiang mentions a "normal” form (similar to the diagonal form of a matrix) and suggested an
elegant method which does not work in general, but is good enough to produce at least some further solutions.
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Hsiang's 1967 paper

W.-Y. Hsiang suggests the following problem:

(iiy Partly due to the lack of “canonical” normal forms for r < 2 and
partly due to the rapid rate of increase of the dimension of $; with respect
to r, the little help obtained from the normal forms is not enough to solve the
problem of classifying minimal algebraic cones of higher degrees. For ex-
ample, it is very difficult to solve even the following very special equation :
F(x) = 0, where F(x) is an irreducible cubic form in 5 variables such that

(4F). PF|* —PF-HF -Ft = + (£} + -+ 4 x2).F.

Since the above equation is invariant with respect to the orthogonal linear
substitutions, we may assume that F is given in some kind of “normal form”
which amounts to reduce the number of indeterminant coefficients by
n(r — 1)/2. A systematic attempt to solve the above equation will involve the
job of solving over-determined simultaneous algebraic equations of many va-
riables. So far, we have only four non-trivial solutions (cf. §§ 1, 2), but there
is no reason why there should be no others.

On other words, Hsiang asked to classify all cubic polynomial solutions of the following PDE in R™ :
Au(z) = |Vul®’Au — L(Vu, V[Vul?) = Mz, 2)u(z)

Such a solution u(z) is called a Hsiang eigencubic.



HSIANG's trick

Let K =R or C and let Hcrmﬁv(K) be the real vector space of trace free hermitian matrices of order N > 3 with the inner
product (X,Y) := tr XY. Define
u(X) = tr X3, X € Herm;V(K).

Hsiang shows that Aju = |Vu|?Au — %(Vu, V|Vu|?) is an O(N)-invariant operator, which implies

Aju € ]K[;,M{,ter,“.,trXN].
Note that deg Aju(xz) = 5 therefore
Aqu € ]K[trX2,trX3,trX4,trX5] = cltrX2 tr x° + CQtrX5.
Therefore if we additionally assume that N < 4 then co = 0 implying that
Aju(X) =rcy tr X2 tr x2 = c1 (X, X) u(X).

This yields the four Hsiang examples in R(F—1)(2+k dimK)/2

k=3: Hermé(]R) ~ R and Hermé(c) ~ g8
k=4: Herm;(R) ~RY and Hermil((c) o~ R1S

z
715 + x2 3 Tq
If k = 3, K=R then u(z) = Cs(z) := T2 7\2/21 5 = a Cartan isoparametric cubic in R®
€T
T4 x5 7% — T2
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How Cartan approached isoparametric equations?

Consider the isoparametric system, that for g = 3 takes the form
IVu(@)? = ¢*(z,2)? 7! = o(a,x)",  Au(2) = 0. ®)

To simplify analysis of (5), Cartan makes use of the so-called normal coordinates To get it, note
that w(z) #Z O is a cubic form then it has at least one local maximum ¢ € R" at the unit
sphere, which is automatically a stationary point of u(m)/|:c\3 in R™, which easily implies by
the Lagrange principle that Vu(c) is proportional to V|z|? at ¢, i.e. Vu(c) = Ac, where by
(5) A = 3 and by the Euler homogeneous function theorem

0+#3 max, u(z) = 3u(c) = (Vu(e),c) = )\|c\2 =3
sn

-
-
- -
- v
.

Thus A # 0. Let z = (y,t) € R® ™1 x R! be the new orthonormal coordinates such that t = (x, c¢) and y_Lc, then

u(y,t) = t2 — 3tP(y) + Q(v),

where deg P(y) = 2, deg Q(y) = 3. Substitution into (5) yields

9t + 9t2(|VP|? — 2P) — 6t(VP,VQ) + (9P + [VQ|?) = 9t* 4+ 18t2|y|? + 9]y|*

Qo \VP\2 — 2P = 2\y\2 implies that P(y) has two eigenvalues: —1 and % of multiplicities n1 and ng resp.;

QO Au=3t(2—- AP(y)) + AQ(y) = 0 implies that 2n; = ny + 2, and n = 3n; — 1.

O this naturally decomposes the y-subspace: R = Voiéev; /2 and further considerations;

O the remaining part is much more difficult, see my paper [Tkal0].



An alternative approach

A commutative algebra satisfying the identity z2 (zexz)==xe (12 e y) is called a Jordan alegrba.

Theorem([Tkal4])

There is a natural correspondence between the following categories:

cubic solutions of \Vu(z)\2 = 9|z|4 <> rank 3 formally real Jordan algebras

Given a cubic form u : V' — K, consider its linearizations
O u(@,y,2) =ul@+y+2) —u@+y) —u@+z) —uy+2) + u@) + uly) + u(z)

0 u(wiy) = Lu(z,z,y)

The Freudenthal-Springer Construction (McCrimmon, 1969). A cubic form N : V' — K with a distinguished point e,
N(e) = 1, is called a Jordan cubic form if

Q the bilinear form T'(z;y) = N(e; )N (e;y) — N(e; z; y) is a nondegenerate
Q the map # : V — V uniquely determined by T'(z#; y) = N (x; y) satisfies the adjoint identity (z#)# = N(z).
If N is Jordan then the multiplication
z ey = L(z#y + N(e;z)y + N(e;y)z — N(e;a;5y)e)

defines a Jordan algebra structure on V', where z#y := (z + y)# —o# — y#.




Yet another approach: by metrized algebras

Approach by the normal coordinates Approach by metrized algebras

1. A cubic homogeneous form u(x) on a Euclidean space A metrized algebra (A, e, (,)):

(x @y, z) = (Hessu(x)y, z)

2. The isoparametric (eiconal) equation The defining equation of a metrized algebra A

1 — 4
(Vu(z), Vu(z)) = 9z, z)* glz ez, zox) =9z, x)
The linearized defining equation:

ze(xex)=36x(x, )

3. A stationary point ¢ € R" of u(z)/|z|> and t = (z, c). An idempotent ¢ € A

4. The “normal” orthonormal coordinates z = (y, t) € R*—1 x RY the Peirce decomposition
u(y,t) = t3 — 3tP(y) + Q(y), where deg P = 2, deg Q = 3. R™ = @; he(X))

5. The diagonal form of the quadratic form P(y) is diag(—1, %) The Peirce spectrum o(A) = {—1, %

6. The source PDE by equating coefficients of ¢t reduces to a PDE The “fusion laws” on A:
system involving VP, VQ, for example

o | Re  a(-1) Ad)
ot + 9t2(|VP|? = 2P) — 6t(VP, VQ) + ... Rc Rc A(-1) A(S)
A(=1) | A(-1) Re AL
1 1 1
A(g) | A5)  A(g)  RedA(-1)
7. There appear some distinguished PDE relations Hidden algebra structures (Clifford, Hurwitz, Jor-

dan etc) inside of A

8. etc... etc. ..




Summary: three equivalent problems

(DG) Algebraic degree three minimal cones u(z) = 0 (Hsiang's problem, 1967). For example, the minimal tree
given by the zero level set of u(xy, z2) = Re(zy + izo)®

(PDE) Homogeneous degree 3 polynomial solutions to the Hsiang equation:
1
|Vu|?Au — S (Vul@), V(| Vu(x)|?)) = Q(z)u(z),  Q(=z) is an undefined quadratic form.
The above example satisfies the PDE with Q(z) = —54(3:% + a,g)
(NA) Commutative nonassociative algebras over R with an associative bilinear form (, ) and defining identities

tr Le(z) =0

=4 4 %(zlm)(z.z) —(z,z)(zox) — %(zoz,z)z =0.

The corresponding to the above example metrized algebra spanned by three nonzero equilateral idempotents, known also
as the two-dimensional Koichiro Harada algebra with automorphism group = S3 (1984).

The correspondence between (PDE) and (NA):

u(z) = %(z, T ezx) = algebra multiplication: z ¢ y = Hess u(z)y
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Basic notation and terminology

O Many interesting algebras (not all!) are defined by/satisfied identities. For example, the standard multiplication is both
commutative and associative. But the vector (cross) product in R3 is neither commutative nor associative and in fact,

(R3, X ) is a Lie algebra.

O The left multiplication operator is denoted by: Lo (z) : y — x ® y. The (left) spectrum of an element = € A is the

multiset of eigenvalues of L(x).
c € Ais called an idempotent if c @ ¢ = c. The set of nonzero idempotents is denoted by Idm(A).
A commutative algebra is metrized if there exists a nondegenerate bilinear form (, ) such that:
(roy,z) = (y,ze®z).
O A commutative metrized algebra generates the distinguished cubic form u(z) := é(z e z, z). Conversely, a cubic form
w(x) on an inner product vector space induces a structure of commutative nonassociative metrized algebra by
z oy := D?u(x)y (see an example below).

Idempotents and their spectra play a prominent role in nonassociative algebra. An idempotent c is semisimple if A decomposes
into a direct sum of eigenspaces of L (c) (Peirce subspaces):

* -1 -1
A=@xeo@)he) f
-1 1 —
A fusion law is a set 7 C K together with a symmetric binary map * : F X F — 27, . N 2
—= —= 1,—-1
2 2 ’

Ae(N) @ Ac(l) = D aernp Ael@)

For example, the Peirce spectrum of an eiconal algebra is {1, —1, %} with fusion laws:



Now let u(z) be an arbitrary cubic form in R™ and let
2
zey:= (D u(x))y.

Recall that any quadratic form comes from a symmetric bilinear form. Similarly, any cubic form w comes from a symmetric

trilinear form U. In other words,
u(z) = %U(z7 z,x), U(z,y,z) =U(z,z,y) = ... for any permutation

In fact,

U, y,2) = u(@ +y+2) —ule+y) — ul@ +2) - uly + 2) + u(@) + uly) + u(z)

Example 1. If u(z) = xjzox3 then U(zx,y, 2) = 26653 T (1)Yo(2) %0 (3)-

The by the definition of the Hessian: ((DQu(z))y, z)y=U(z,y,z) =(zey,z) |

This implies have the following important properties:
(i) zey=yeozx (the algebra A(w) is commutative)
(i) (xoy,z) =(y,zez) < (L(z)y,z)= (y,L(z)z) < L(x)is self-adjoint!
(in other words, A(u) is a Euclidean metrized algebra)
(iii) z ez =2Vu(x) (by Euler's homogeneous function theorem)
(iv) (z ez, z)=6u(x) (by Euler's homogeneous function theorem)

Important: these formulae and properties do NOT depend on a concrete represenation of u(z)!
We don’t know, for instance, what is = @ x exactly? In fact, if one computes (iii) and (iv) explicitly by u(z), it will imply the
algebraic identities for A(w) in the spirit of (6).



An example

Consider a cubic form u(z) = ézl(z% — 31% — 3z§)

Notice that the Hessian matrix of w(x) is a symmetric matrix with entries linearly depending on x:

z1 —x2 —x3
H(z) := D2u(x) = —zo  —®mp 0
—x3 0 —x1

Define on R3 an algebra A(u) with multiplication

zey:=H(x)y = H(y)r = (z1y1 — T2y2 — ®3¥Y3, —T2Y1 — T1Y2, T3Y1 — T1Y3)

The obtained multiplication is commutative and the corresponding Peirce decomposition satisfies the following fusion rules:

. el eg e3
] Ay A_4q
€1 €1 —e2 —es3
Aq Aq A_q
eo —en —e1 0
Ay | Aoy | A
es —e3 0 el
A=A ®A_q, Ay ={z:e; oz = Az}

In particular, e; € Idm(A), its Peirce spectrum of e is {1, —1}, the eigenvalue —1 of multiplicity 2.
A simple examination reveals the identities in the spirit of "3D-complex numbers":

rzex = (z? - zg - zg, —2zix0, —2x123)

(zlz)lz:(zf+:v§+z§)z:(z,z>z



Jordan algebras

The most natural in the commutative context are ‘stepsisters’ of the classically known Lie algebras: Jordan algebras.

How to multiply two Hermitian matrices?... unfortunately

Matrix - Matrix = Matrix, but
Hermitian - Hermitian # Hermitian
In 1932 Pascual Jordan proposed a program to discover a new algebraic setting for quantum mechanics such that it is

independent on an invisible but all-determining metaphysical matrix structure. By linearizing the quadratic squaring operation,

Jordan replaces the usual matrix multiplication by the anticommutator product (called also the Jordan product)
1
Teoy = 5(zy+yz):

A commutative algebra satisfying the identity 22 (zoexz)==xe (12 e y) is called a Jordan algebra.

Example (H. Freudenthal 1954, T. Springer 1961) Let V = 53 (IF;) be the vector space of self-adjoint 3 X 3-matrices with
coefficients in a Hurwitz algebra F; and

u(z) = Det(x) := é((tr z)3 —3tratra’ 4+ 2tr z3).

Then V (u) is a Jordan algebra w.r.t. the multiplication = e y = %(acy + yx).




Idempotents in a Euclidean metrized algebra

I

v

Y Let S be the sphere (z, x) = 1. Then
Come
\.. e :" x is a stationary point of u(xz) on S < Vu(z) = kV(z,z) = 2kz, Kk €R
- . — Al f —
\ - & zex =4dkx (by (iv) 4k = 6u(x))
L\

< either z2 = 0 or c e c = c, where c := z/4k

Any stationary point of u(x) is proportional to either a 2-nilpotent (if w(z) = 0) or an idempotent (if u(z) # 0).
If u(x) is a point of a local maximum on S then the corresponding idempotent is called maximal. J

Theorem. A maximal idempotent ¢ € A(w) is semisimple, primitive and its Peirce spectrum is subset of (—oo, %] and

A(%)A(%) « A(%)J‘ (‘Jordan type fusion law’).

» e SoeceDr
Journal of Algebra

e half in commutative
as with identities

The Peirce eigenvalue % is very special. It turns out that this eigenvalue is
universal and it appears in the Peirce spectrum of any commutative nonasso-

ciative algebra (over an arbitrary field char# 2, 3) possessing a polynomial
identity [Tka21].

ke
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How to connect a PDE and a nonassociative algebra?

Example 2. The simplest example is the Laplace operator. To solve a cubic equation in R"™ for a cubic form is not a difficult

problem, but on the nonassociative algebra side we obtain
Au(z) = tr D2u(z) =trL(z) =0

So, in the corresponding metrized algebra A(w), any multiplication operator is trace-free.

Example 3. A less trivial example. Let us consider with the eiconal equation

[Vu(z)|? = 1|z|*, = eR". (7)

1
4
Suppose we are searching a cubic homogeneous polynomial solution (a cubic form). By (iii): Vu(z) = %z e x, hence
2
(zox,z0x) = (x,x)
Now you can work as in calculus: the directional derivative along v (it is called linearization in Algebra) gives

4z oz, z0y) = 4z, z)(z,y)
((zoz)oz,y) = ((z,z)z,y)
implying that
(zox)ex = (z,z)z (think of z° = |z|?z) ()

The converse is also true (why?), i.e. (8) < (7). Compare with (6).




How to connect a PDE and a nonassociative algebra?

Example 3. The Hsiang equations (2) reads as:

Aju = |Vu\2Au - %(Vu,V\VuF) = @@, @yai(a).
Recall that
Au(x) = tr L(x),
Vu(a) = -
T)= -z 0T,
u 5%
2 2 1
V|Vu|® = Du(z)Vu(z) = Ez e (rex)
Then
%(zoz,z e x)tr L(xz) — %(zoz,z e (zezx)) = éa(z,z)(z,zoz)

therefore we arrive at the Hsiang algerba defining relation:

2
(@, 2%y tr Ly — (2, 2%) = §a<x,x><x2,x>

This is an ‘equation of order 5’ and therefore it is quite nontrivial (for example, the Jordan algebra identity x2(wy) = w(acZy)

has an order 4. My next story only starts here.




Main results

A solution w is called a trivial eigencubic if u(x) = (b, )2, i.e. the corresponding cone is a hyperplane (b, z) = 0.

Theorem A

w is a trivial eigencubic if and only if Au # 0.

In what follows we assume that  is a normalized Hsiang eigencubic, i.e. Aju = —2|z|?u(z), z € V = R".

Theorem B

Given a nontrivial normalized u, there exists a commutative metrized algebra such that

@D u(z) = %(z, z2) (the recovering property)
(%) z3z + %z212 — |z|?z? — %<(L‘2, z)z =0 (the defining identity)
@ tr Ly =0 (the harmonicity property)

In the converse direction, given a commutative metrized algebra with properties (2) and (3) above, the cubic form w defined by
(1) is a (normalized) Hsiang eigencubic.

A commutative metrized algebra with (2) and (3) above is called Hsiang algebra.




Theorem C
Let V' be a Hisang algebra. Then

(i) For any nonzero idempotent c, the associated Peirce decomposition is

V=Ve(l) ® Ve(-1) ® Vc(_%) @ Vc(%) and dim V. (1) = 1;

and the following fusion laws hold:

I
1 1 -1 _% %
-1 -1 1 % ,%@%
-3 || -3 1| 1e-3| -1e-§
3 3| -ted| 1o} |1e-10-}

ii e Peirce dimensions n1 = dim V,.(—1), ng = dim Vi.(— 5 ) and ng = dim V(3 ) do not depend on a particular
ii) The Peirce dimensi dim Ve (—1 dim Ve (—3) and dim Ve (3) d depend icul
choice of ¢ and n3 = 2n1 + ngy — 2;

(i) All idempotents have the same length and the same fusion law
(iv

(v) Ve(1) @ Vc(fé) is a subalgebra. It carries a hidden rank 3 Jordan algebra structure.

V(1) @ Ve(—1) is a subalgebra. It carries a hidden Clifford algebra structure.




Any polar algebra is Hsiang

Definition. A commutative algebra V' with associating form (x, y) is called polar if
(i) there is a Zo-grading V. = Vy @ V3 (the orthogonal sum)
(i) VoVo =0,
(iii) z(zy) =

(z,z)y forx € Vg and y € V7.

and A(z)? =

|z|?1y, Vo € X.

Example. Let us consider A(z) = 1 A1 + w2 A2 € Endsym(R2), where

1 0 0o 1
Ay = . Ag =

Definition. (X, Y, A), is called a symmetric Clifford system, or A € CIliff(X,Y), if A is a linear map X — Endgsym (Y")
Theorem (Radon, Hurwitz). The set Cliff (X, Y') is nonempty if and only if dim X < 1 + p(% dim Y"), where the
Hurwitz-Radon function p is defined by p(m) = 8a + 2%, if m = 24+ . 6dd, 0 < b < 3.

J

For example, p(2) = 2, p(3) = 1, p(4) =4, p(6) = 2, p(7) = 1, p(8) = 4, but p(16) = 9.

The Correspondence If A € Cliff (X, Y) then X @ Y is a polar algebra of the cubic u(z) = %(y, Alz)y), z=z D y.
Conversely, if V = Vi @ V7 is a polar algebra then L, € Cliff(Vy, V1), z € V.

The classification of symmetric Clifford system is well-known (D. Husemdller Fibre bundles, 1994.)

)




Polar vs exceptional

Definition. A Hsiang algebra V' isomorphic to a polar algebra is of Clifford type; otherwise it is exceptional.

Polar algebras Symmetric Clifford
/ systems

\» Exceptional algebras <—>

Proposition. Any commutative pseudocomposition algebra V, i.e. an algebra with z3 = \wlzw and tr Ly = O is an
exceptional Hsiang algebra. J

Proof. The scalar product by z2: (22, z2) = |z|?(x, z2), therefore V is Hsiang. Let us assume by contradiction that V' is
polar, and let V = Vi @ Vi. If 2 € Vp then &2 = 0, hence 0 = 23 = |z|2x, i.e. = 0, this proves that Vy = {0} is
trivial. Similarly V3 V1 C Vj implies that V7 = {0}, a contradiction. O

Example. The trace free subspace of the Jordan algebra (M3, o) of all 3 X 3 real symmetric matrices with the Jordan
multiplication z o y = %(zy + yz) is a pseudocomposition algebra. J




The hidden Jordan algebra structure

Theorem D

Let V' be a Hsiang algebra and ¢ € Idm(V). Let A, = Rc @ Vc(fé) be an isotope with the new multiplication

zoy = Lay + (z,c)y + (v, )z — 2(zy, c)e,  z,y € Re® Ve(—1), (10)

Then A is a rank 3 Jordan algebra with e. being the unit and the trace bilinear trace form T'(xz; y) = (=, y) (associative
with respect to ®). In particular, the Jordan algebra A is Euclidean and any element € A satisfies the cubic identity

z*3 — 2 c)a:.2 + (2(zx, 0)2 - %|x\2)x — %(z,aﬂ)c = 0. (11)

Furthermore, n; — 1 < p(nj + no — 1), where p is the Hurwitz-Radon function. In particular, for each no there exist only
finitely many possible values of 7.

Theorem E

The following conditions are equivalent:
@ A Hsiang algebra V' is exceptional
@ The Jordan algebra A, is simple for some ¢

@ The Jordan algebra A, is simple for all ¢

@ The quadratic form = — tr Li has a single eigenvalue and na (V') # 2




The finiteness of exceptional Hsiang algebras

Theorem F

There are at most 24 classes of exceptional Hsiang algebras. For any such an algebras ny € {0, 5, 8, 14, 26} and the possible

corresponding Peirce dimensions are

n 2 5 8| 14| 26| 9 12| 15| 21| 15| 18| 21| 24| 30| 42| 27| 30| 33| 36| 51| 54| 57| 60| 72
nql 1 2 3 5 9 0 1 2 4 0 1 2 3 5 © 0 1 2 3 0 1 2 3 T
nol O O o O 0 5 5 5 5 8 8 8 8 8 8 14| 14| 14| 14| 26| 26| 26| 26| 26

The cells in blue color represent non-realizable Peirce dimensions and the cells in gold color represent unsettled cases

Q If ng = 0 then ny € {2,5,8,14,26}. The corresponding Hsiang algebras are VFS(u), w = %(z, 22),
V = #5(Kyq) ORe, d =0,1,2,4,8.

Q If ny = 0 then ny € {5, 8,14}. The corresponding Hsiang algebras are VFs(u), 1—12(z2, 3z — z), where z — Z is

the natural involution on V = 53 (Ky), d = 2,4, 8.

O Ifny = 1 then ny € {5, 8, 14, 26}. The corresponding Hsiang algebras are VS (u), u(z) = Re(z, 22), where
2€V=03Ky)Q®C d=1,2,4,8.

O If (n1,n2) = (4,5) then V = VFS(u), u = 1(z,22) on s5(Ks) © 263(K1)




Two basic examples in dimensions 2 and 3

Example 1. Let V' be the 2 dimensional algebra generated by three idempotents c;, i = 0, 1, 2 which can be realized as unit
vectors in R? subject to the conditions:

O (ej,ey) =—3%.i#7, °t
Q cp+ecr+ec2=0
<o
Then for any triple {4, j, k} = {1, 2, 3} we have
2 2
cp =cp = (—¢c; —cj)° =cj +cj +2¢cic5 = —cp + 2¢4¢5 o
hence c;c; = ¢ and ¢ (c; — c;j) = —(¢; — cj;). Thisimplies V. = Ve, (1) ® Ve; (—1), the both Peirce subspaces being

1-dimensional. The corresponding fusion rules are

The Peirce dimensions are n1 = 1, ngy = ng = 0, the ambient dimension n = 2.
The minimal cone is given by o:‘lz — 3z zg =0.



Two basic examples in dimensions 2 and 3

Example 2. Similarly, let V' be the 3 dimensional algebra generated by four idempotents c;, i = 0, 1, 2, 3 realized as unit

vectors in RS subject to the conditions:

Q ¢; + cj is a 2-nilpotent, i.e. (¢; + Cj)2 =0 (i # j)

Then similarly to the above, one easily verifies that
V=Ve, (1)@ Ve, (—1),

where dim V¢, (1) = 1 and dim Ve, (—3) = n2 = 2.

1
2

The corresponding fusion rules are

co

c1

€3 c2

1
2
1
2
1
2

The underlying algebra structure after a 1-rank perturbation becomes a Jordan algebra of Clifford type. The minimal cone is

given by xjxox3 = 0, i.e. the triple of coordinate planes in R3.



Cnacubo 3a BHUMaHue!
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