
Metrized algebras with involutions and their applications
(a true story based on a joint work with Daniel Fox, Universidad Politécnica de Madrid)
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Irregular objects: do not follow a simple (regular) rule but very relevant (frequently used).

The most languages (not all! only exceptional or regular?) contain two group of verbs: regular and irregular (with an

unpredictable tense forms).

#(irregular verbs) = o(# regular verbs), BUT!

frequency of irregular verbs ≫ that of regular verbs

Compare, for example with ”exceptional mathematical results” vs ”general mathematical results” etc.

There are many irregular (exceptional or sporadic) objects, among others (in historical order):

Platonic solids in R3 (absent in R2): the tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

Real (normed) division algebras: R, C, H, O

Exceptional simple Lie algebras over C: g2, f4, e6, e7 and e8

Exceptional Jordan algebra R (the 27-dimensional Albert algebra).

Cartan isoparametric hypersurfaces in Euclidean spheres (only for an ambient curvature +1)

Sporadic finite simple groups (totally 26)

Remarks.

a) Sometimes, there are relevant borderline cases, or mutants, i.e. regular objects which share some important properties with

irregular ones (for example so(3), su(3), so(12) or su(6))

b) There is no a unified conceptual explanation/classification for irregular objects, their construction is individual or archaic

(Yu.Manin).



Episode 1: Isoparametric hypersurfaces

Start with a classical variational problem: the light propagation on a

sphere (the case of Euclidean space is trivial). This leads to a PDE

system for the front-hypersurfaces. E. Cartan (1938) proved that the

shape operator of each regular level hypersurface has constant principal

eigenvalues (curvatures) counting multiplicities. Moreover, if m ≥ 1 is

the number of distinct curvatures thenM is a level-set of a homogeneous

polynomial solution in Rn

∥∇P (x)∥2 = n
2⟨x; x⟩2m−2

,

∆P (x) = C⟨x; x⟩3m−4
, degP (x) = m.

Cartan completely characterized the cases degP (x) ≤ 3. In fact, he

proves that the degree 3 homogeneous polynomial solutions are exactly

the triality polynomials:

P (x1, x2, x3) = Re(x1 · (x2 · x3)),

where xi ∈ Kd, Kd is a normed real division algebra, d = 1, 2, 4, 8.

Münzner (1980) used algebraic topology to express certain Z2-

cohomology ring of M to prove that

m = degP (x) ∈ {1, 2, 3, 4, 6} cf. the ”plane regular tessellations”

E. Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques . . . ,

Math. Z. (1939)



Episode 2: Algebraic minimal cones

W.-Y. Hsiang (J. Diff. Geometry, 1967): Given a homogeneous polynomial

u(x), x ∈ Rn, the cone u−1(0) is a minimal hypersurface in Rn iff

∆1u := |∇u|2∆u − 1
2
⟨∇u;∇|∇u|2⟩ = Q(x)u(x). (1)

The first non-trivial case: deg u = 3. All known irreducible cubic minimal

cones satisfy

∆1u = ∥x∥2 · u(x) (∗)

Hisang’s Problem (ii): Classify all cubic solutions of (∗).

(V.T.,2010-2014): There are three distinguished families of solutions:

(a) of Clifford type (infinitely many, almost in any dimension n ≥ 3)

(b) Cartan’s isosparametric solutions in dimensions 5, 8, 14, 26 (i.e.

3d + 2)

(c) exceptional eigencubics which may exist only in the following

dimensions:

The last line: d = 1, 2, 4, 8 are the dimensions of real division algebras



Episode 3: Truly C1,α viscosity solutions

Another very strange appearance:
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Algebras with involution and associative bilinear form

Let (A, ◦, σ) be an algebra of dimension n < ∞ over a field K, and an involution σ, i.e. σ is an involutive anti-automorphism:

(x
σ
)
σ

= x, (x ◦ y)
σ

= y
σ ◦ x

σ ⇔ σL◦(x) = R◦(x
σ
)σ

1 Let (A, σ) be an algebra with involution. If σ = 1 then A is commutative, and if σ = −1 then A is anticommutative.

(The converse is not true! examples on the next slide)

2 If A is commutative (resp. anti-commutative) then σ = 1A (resp. σ = −1A) is the standard involutions.

3 A symmetric bilinear form h : A × A → K is called involutively invariant if

h(x
σ
, y

σ
) = h(x, y), h(xy, z) = h(y, x

σ
z).

4 An algebra (A, σ, h) with nondegenerate involutively invariant h is called metrized. If h additionally is positive definite

then A is Euclidean.

5 An algebra A is called Killing metrized if its Killing form

τ(x, y) := trL◦(x)L◦(y) = trR◦(x)R◦(y)

is well-defined and it is a nondegenerate involutively invatiant bilinear form.

Lemma 2.1

If h is involutively invariant then L◦(x)
∗ = L◦(x

σ) and R◦(y)
∗ = R◦(y

σ), in other words

h(xy, z) = h(y, x
σ
z) = h(y

σ
, z

σ
x) = h(zy

σ
, x) = h(x, zy

σ
).

Furthermore, in any metrized algebra, its Killing form is well-defined

trL◦(x)L◦(y) = trL◦(x)σR◦(x
σ
)σ = trσL◦(x)σR◦(x

σ
) = trR◦(x)R◦(y).



Algebras with involution and associative bilinear form

Below I give examples of standard and non-standard involutions for (anti-)commutative involutively metrized algebras:

Example 2.2

1 Consider a commutative algebra C̄ of para-complex numbers: z • w = z̄w̄ with the standard involution σ(z) = z̄. Then

(z • w)
σ

= z̄w̄ = zw = w
σ • z

σ
.

Notice that σ ̸= 1. The bilinear form h(x, y) = Re(x · yσ) is involutively invariant.

2 The cross-product algebra so(3,K) with the standard involution σ(x) = x and the Killing form h(x, y).

3 Define G0 as the algebra with basis (e1, e2, e3) and the anticommutative •-multiplication

G0 :

• e1 e2 e3

e1 0 e3 e2

e2 −e3 0 −e1

e3 −e2 e1 0

with a new involution:

eσ1 = e1,

eσ2 = e2,

eσ3 = −e3.

Let α(ei) = ei, i = 1, 2 and α(e3) = −e3, then (α, α, 1) : g0 → so(3,K) is a principal isotopy, i.e.

x • y = α(x) × α(y).

Both so(3,K) and G0 are Killing metrized algebras.



Composition algebras

1 An algebra (A, ◦) is a division algebra if L◦(x) and R◦(x) are invertible operators for all 0 ̸= x ∈ A.

2 An algebra (A, ◦) over K is a composition algebra if there exists a nondegenerate quadratic form called the norm

n : A → K such that

n(x ◦ y) = n(x)n(y).

n(x, y) = n(x + y) − n(x) − n(y) is the corresponding symmetric bilinear form.

3 Unital composition algebras are called Hurwitz algebras.

4 In any Hurwitz algebra with unit e, the endomorphism xσ = n(x, e)x − x is an involution.

5 A unital algebra is quadratic if e, x, x ◦ x are linearly dependent. Any Hurwitz algebra is quadratic.

6 Any Hurwitz algebra is isomorphic to one of the following (by the Cayley-Dickson doubling process):

(1D) The base field K;
(2D) Generalized complex numbers C(α) := Dickson(K, α)
(4D) Generalized quaternions H(α, β) := Dickson(C(α), β)
(8D) Generalized octonions Dickson(H(α, β), γ).

7 Given (A, ◦, n, σ), its para-Hurwitz algebra Ā w.r.t. x • y = xσ ◦ yσ (obs. 1 acts as a para-unit, Elduque, 1996).

8 A symmetric composition algebra if the norm is ”associative” (Petersson, Okubo, Elduque, Myung, Osborn, Faulkner):

n(x ◦ y, z) = n(x, y ◦ z),

9 Any Hurwitz or symmetric composition algebra is metized w.r.t. the standard involution and h = n.

10 In any Hurwitz algebra, xσ ◦ (x ◦ y) = n(x, x)y.



Composition formulas

A composition formula of size [r; s;n] is a formula (over a field) of the type

(x
2
1 + x

2
2 + . . . + x

2
r)(y

2
1 + y

2
2 + . . . + y

2
s) = (z1(x, y)

2
+ . . . + zn(x, y)

2
)

A composition formula of size [r; s;n] exists iff there are n × s-matrices A1, . . . Ar over K satisfying

A
t
iAj + A

t
jAi = 2δij · 1s, 0 ≤ i, j ≤ r.

1 (Hurwitz, 1898) A composition of size [n;n;n] implies n = 1, 2, 4, or 8.

2 (Radon 1922, Hurwitz 1923) A composition of size [r;n;n] exists iff r ≤ ρ(n), where

ρ(2
s · odd) = 8a + 2

b
, where s = 4a + b, 0 ≤ b ≤ 3.

n 1 2 3 4 5 6 7 8 . . . 16 . . . 32

ρ(n) 1 2 1 4 1 2 1 8 . . . 9 . . . 10

3 ρ(n) = the maximum number of linearly independent vector fields of any homotopy n-sphere.

4 the set of matrices as above generates a symmetric Clifford system, i.e. At
xAx = ⟨x; x⟩I, Ax :=

∑
xiAi.

Lemma 2.3

Let A be an Euclidean involutive metrizied algebra, f(x) : B → B′ be a linear homomorphism, B,B′ ⊂ A, f(x) depends

linearly on x ∈ C ⊂ A. Suppose that for all x ∈ C

B
f(x)
−→ B

′ f∗(x)
−→ B, (2)

f
∗
(x)f(x) = h(x, x)1B , (3)

then there exists a composition formula of size [dimC, dimB, dimB′]. If dimB = dimB′ then dimC ≤ ρ(dimB).



Constant rank algebras

An algebra A is said to satisfy the constant rank condition if the dimension of degeneracy of multiplication

d(A) := dim kerL(x) = dim kerR(x) independently of a nonzero x ∈ A.

The classically known example is the class of division algebras: d(A) = 0.

1 (K.O. May, 1966) Originally, the question about the existence of division algebras behind dimension 2 was posed by Gauss

in 1831: “ The writer has reserved for himself . . . the question why the relations between things that make up a manifold of

more than two dimensions cannot provide quantities admissible in universal arithmetic.”

2 (Hamilton, Cayley, Frobenious, Radon, Hurwitz) Several classical results under additional assumptions like the existence of

associativity, composition law etc.

3 Cartan’s and Study’s remark of 1908 “ . . . a definitive answer, if one exists, can only be given by the whole ulterior

development of algebra and analysis.”

4 (Bott, Milnor 1958) Any division algebra over the real numbers has dimension dimA = 1, 2, 4, 8.

5 (Gabriel 1994) A division algebra over an algebraically closed field must be one dimensional.

Proof. Let x, y ̸= 0 be non-proportional vectors in A. Then the linear operator L◦(x)
−1L◦(y) has an eigenvalue, say

λ ∈ K, therefore L◦(x)
−1L◦(y)z = λz, z ̸= 0, implying λx ◦ z = y ◦ z, therefore (λx − y) ◦ z = 0, a

contradiction.

Unfortunately, the case d(A) ≥ 1 is almost unexplored even over R. For example, what can be said in the case d(A) = 1? Do

there exist some distinguished properties in this case? Which possible values of d(A) are possible in general?

Below we provide an extra motivation why the constant rank condition can be interesting.
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Quasicomposition algebras

Definition. A metrized algebra (A, σ, h, ◦) is called a (QC) quasicomposition algebra if

x ◦ (x
σ ◦ (x ◦ y)) = h(x, x)(x ◦ y), ∀x, y ∈ A,

holds for any x ∈ A, or equivalently
L◦(x)L◦(x

σ
)L◦(x) = h(x, x)L◦(x).

Under the metrized algebra assumption, the latter is equivalent to R◦(x)R◦(x
σ)R◦(x) = h(x, x)R◦(x).

1 The name is motivated by the observation that the quadratic form n(x) = h(x, x) satisfies the quasicomposition property

n(x
σ ◦ (x ◦ y)) = h(x

σ ◦ (x ◦ y), x
σ ◦ (x ◦ y)) = h(x ◦ y, x ◦ (x

σ ◦ (x ◦ y)))

= h(x, x)h(x ◦ y, x ◦ y) = n(x
σ
)n(x ◦ y) = n(x)n(x ◦ y)

2 A Hurwitz algebra with its standard involution is a quasicomposition algebra: indeed, by (10)

x
σ ◦ (x ◦ y) = n(x, x)y ⇒ x ◦ (x

σ ◦ (x ◦ y)) = n(x, x)(x ◦ y)

3 A semigroup context. Recall that if S is a semigroup, then a ∈ S is (Von Neumann) regular if there exists a generalized

inverse of a, i.e. ∃b ∈ S: aba = a and bab = b.

Thus, the definition of a quasicomposition algebra can be restated as: for every h-anisotropic x ∈ A, h(x, x)−1L◦(x
σ)

is the generalized inverse of L◦(x) in the semigroup generated by L◦(A) ⊂ End(A)

4 Metrized anti-commutative algebras A were classified by Elduque in 1988 for the standard involution σ = −1: any such

(non-zero) algebra over an algebraically closed field is either of the following: 1) sl(2,K), 2) psl(3,K), charK = 3, 3)

a simple non-Lie Maltsev algebra or 4) the anricommutative algebra of the vectors in the color algebra

5 But originally QC-algebras appear in the context of exceptional Hsiang algebras of cubic minimal cones, see the next slide.



Theorem (V.T.,2012-2016)

There is a natural one-to-one correspondence between solution to Hsiang’s equation ∆1u = ⟨x; x⟩u(x) in Rn and

commutative metrized algebras H = (Rn, ·, 1, ⟨; ⟩), where u(x) = 1
6
⟨x; x2⟩, trL(x) = 0 and

⟨xx; x(xx)⟩ = k⟨x; x⟩⟨x2
; x⟩ ⇔ xx

3
+ 1

4
(xx)(xx) − ⟨x; x⟩(xx) − 2

3
⟨xx; x⟩x = 0

Any Hsiang algebra H is either isomorphic to a polar algebra (i.e. a commutative metrised Z2-graded algebra

A = A0 ⊕ A1 such that A0A0 = {0} and x0(x0x1) = h(x0, x0)x1 for all xi ∈ Ai, i = 0, 1) or exceptional

The class of polar algebras is in a natural 1-to-1 correspondence with Clifford summetric systems, well-understood.

The set of idempotents in H is nonempty. For any idempotent c, the associated Peirce decomposition is

A = Ac(1) ⊕ Ac(−1) ⊕ Ac(− 1
2
) ⊕ Ac(

1
2
) and dimAc(1) = 1

Ac(1) ⊕ Ac(−1) is a subalgebra and its is isotopic to a Clifford type Jorand algebra;

Ac(1) ⊕ Ac(− 1
2
) is a subalgebra and it is naturally isotopic to a rank 3 Jordan algebra structure, n2 = dimAc(− 1

2
).

A is exceptional if and only if Ac(1) ⊕ Ac(− 1
2
) is (isotopy of) a simple Jordan algebra. In this case, either n2 = 0 or

n2 = 3d + 2 and the hidden simple Jordan algebra is Herm3(Fd), d ∈ {1, 2, 4, 8}.

A is mutant iff n2 = 2, this corresponds to d = 0. A is exceptional or mutant iff trL(x)2 = m⟨x; x⟩ for some real

m. In this case, m = 2(n1 + d + 1).

There are finitely many dimensions n of A where exceptional Hsiang algebras can exist. Except the case n2 = 0, in all

other cases, dimA = 3(n1 + 2d + 1), where dimAc(− 1
2
) = 3d + 2, d ∈ {0, 1, 2, 4, 8}.

n 2 5 8 14 26 9 12 15 21 15 18 21 24 30 42 27 30 33 36 51 54 57 60 72

n1 1 2 3 5 9 0 1 2 4 0 1 2 3 5 9 0 1 2 3 0 1 2 3 7

n2 0 0 0 0 0 5 5 5 5 8 8 8 8 8 8 14 14 14 14 26 26 26 26 26





The QC algebras birthday: March 23, 2022



The triple of an algebra

Let (A, σ, h, ◦) be a metrized algebra. Define a commutative algebra structure on A × A × A (the triple) by virtue of

x ⊛ y = (x1, x2, x3) ⊛ (y1, y2, y3) := (x
σ
3 ◦ y

σ
2 + y

σ
2 ◦ x

σ
2 , x

σ
1 ◦ y

σ
3 + y

σ
1 ◦ x

σ
3 , y

σ
2 ◦ x

σ
1 + x

σ
2 ◦ y

σ
1 ).

The triple construction generalizes the Nahm algebra construction of Kinyuon-Sagle (2002), which is the special case where the

algebra A is a Lie algebra g and the involution σ = −1. More precisely, this is motivated by the Nahm ODE system
ẋ = [y, z],

ẏ = [z, x], x, y, z ∈ g

ż = [x, y].

Then the Nahm algebra is the commutative algebra obtain by tripling of (k, [], 1, ⟨; ⟩) with

(x1, x2, x3) ⊛ (y1, y2, y3) =
1

2
([x2, y3] + [y2, x3], [x3, y1] + [y3, x1], [x1, y2] + [y1, x2]) on g × g × g.

In the general case: think of the Jordan multiplication (X • Y = 1
2
(XY + Y X)) for formal ‘Hermitian matrices’ over A: 0 x3 xσ

2

xσ
3 0 x1

x2 xσ
1 0

 •

 0 y3 yσ
2

yσ
3 0 y1

y2 yσ
1 0

 =

 ∗ z3 zσ2
zσ3 ∗ z1

z3 zσ1 ∗

 ,

then

z = x ⊛ y



Proposition 3.1

The algebra T (A) = (A × A × A, ·, 1, H) is metrized, H(x, y) :=
∑3

i=1 h(xi, yi).

H(x · y, z) = h(x
σ
3 ◦ y

σ
2 + y

σ
2 ◦ x

σ
2 , z1) + h(x

σ
1 ◦ y

σ
3 + y

σ
1 ◦ x

σ
3 , z2) + h(y

σ
2 ◦ x

σ
1 + x

σ
2 ◦ y

σ
1 , z3)

= h(x1, y
σ
3 ◦ z

σ
2 + z

σ
3 ◦ y

σ
2 ) + h(x2, z

σ
1 ◦ y

σ
3 + y

σ
1 ◦ z

σ
3 ) + h(x3, z

σ
2 ◦ y

σ
1 + y

σ
2 ◦ z

σ
1 ) = H(x, y · z)

Theorem 3.1 (Hsiang algebras vs QC-algebras)

(A) T ((A, σ, h, ◦)) is a Hsiang algebra if and only if (A, σ, h, ◦) is a quasi-composition algebra.

(B) In that case, T ((A, σ, h, ◦)) is a exceptional or mutant Hsiang algebra with d(A) ∈ {0, 1, 2, 4, 8}.

Proof. (A): the if-part. If v1 = (x1, 0, 0) ∈ T1, v2 = (0, x2, 0) ∈ T2, v3 = (0, 0, x3) ∈ T3, then

v1v1 = 0, v1v2 = v2v1 = (0, 0, x
σ
2 x

σ
1 ), v1v3 = v3v1 = (0, x

σ
1 x

σ
3 , 0) etc.

This implies that T ((A, σ, h, ◦)) is naturally decomposed into an H-orthogonal sum

T (A) = T1 ⊕ T2 ⊕ T3, where TiTi = 0, TiTj = Tk, i, j, k ∼ 1, 2, 3.

v1(v1v2) = (0, x
σ
1 (x1x2), 0)

v1(v1(v1v2) = (0, 0, (x
σ
2 x

σ
1 )x1)x

σ
1 ) = (0, 0, R(x

σ
1 )R(x1)R(x

σ
1 )x

σ
2 )

For any x = v1 ⊕ v2 ⊕ v3 we have x2 = 2(v2v3 ⊕ v3v1 ⊕ v1v2), hence

1
2
x
3

= (v2(v2v1) + v3(v3v1)) ⊕ (v1(v1v2) + v3(v3v2)) ⊕ (v1(v1v3) + v2(v2v3)).

A nontrivial point: using the invariance of H and the fact that (A, σ, h, ◦) is a QC-algebra implies

H(x
3
, x

2
) = 4

∑
H(vi(vi(vivk),vj) = 4

∑
cyclic permutations

h((x
σ
kx

σ
i )xi)x

σ
i , xj) = . . . = 4

3
H(x

2
, x)H(x, x)

The proof of (B) is indirect and makes an essential use of the Hsiang algebra theory.



Some important questions arise:

Which of Hsiang algebras are QC-generated, i.e. obtained from QC-algebras?

How to classify Euclidean QC algebras over R?

How to classify general QC-algebras?

Remarks

Even for the particular case of composition algebras, the classification in the general case is
more involved than for R. That is why we discuss below only Euclidean QC algebras over
the reals. However, some important properties are still valid in the general case (over infinite
field of charK ̸= 2).

We also assume that AA ̸= 0 and will omit ◦ (use the juxtaposition)



Examples of QC algebras

Example 1

The complex numbers (C, σ, h), with xσ = x̄ and h(x, y) = Re(xȳ) satisfies x(xσ(xy)) = h(x, x)xy. In general, any

Hurwitz algebra A is a quasicomposition algebra.

Example 2

A cross product algebra is a metrized anticommutative algebra (A,×, σ, h), such that x× (x× y) = −h(x, x)y + h(x, y)x

and xσ = −x. Then the latter implies

x
σ × (x × y) = h(x, x)y − h(x, y)x ⇒ x × (x

σ × (x × y)) = h(x, x)x × y,

which together with h(x × y, z) = −h(y, x × z) = h(y, xσ × z) shows that (A,×, σ, h) is a quasicomposition algebra.

Example 3

Domokos and Kövesi-Domokos (1978) introduced the color algebra Col as a unique 7D algebra (over C) with unity e and a basis

ui, i = ±1,±2,±3 with multiplication

u±i ◦ u±j = ϵijku∓k, u±i ◦ u∓j = δije,

where ϵijk is the totally skew-symmetric tensor with ϵ123 = 1. The algebra Col is metrized with respect to a natural h.

Elduque (1988) studied in particular the ‘imaginary’ subspace Col0 = e⊥ and proved that it satisfies the QC identity which

implies an example of a 6D quasicomposition algebra. Explicitly,

Col0 ∼= K
3 ⊕ K

3 with (x
′
, x

′′
) × (y

′
, y

′′
) = (−x

′ × y
′
+ x

′′ × y
′′
, x

′ × y
′′

+ x
′′ × y

′
)
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Theorem 4.1

Let (A, σ, h) be a QC Euclidean algebra, dimA = n, x ̸= 0. Then there exists 0 ≤ d(A) ≤ n − 1:

1 1
h(x,x)

M(x)M(xσ) is the orthogonal projection onto ImM(x), here and below M ∈ {L,R} ;

2 dim kerM(x) = d(A)

3 rankM(x) = n − d(A) (The constant rank condition)

4 kerL(x) = (kerR(xσ))σ = (ImL(xσ))⊥ (The duality)

5 ImM(x) = ImM(x)M(xσ) and kerM(xσ) = kerM(x)M(xσ), in particular:

ImM(x)
M(xσ)
−→ ImM(x

σ
)

M(x)
−→ ImM(x), the composition = h(x, x) · 1ImM(x)

Proof. The principal observation is that P (x) := M(x)M(xσ) satisfies

P (x)
2

= M(x)M(x
σ
)M(x)M(x

σ
) = h(x, x)M(x)M(x

σ
) = h(x, x)P (x)

therefore P/h(x, x) is a projection. In particular, x → trP (x)/h(x, x) ∈ Z must be constant. This proves (1)–(3).

Next

h(xy,A) = h(y, x
σA) ⇒ kerL(x) = (ImL(x

σ
))

⊥

implying (4). Therefore

L(x)L(x
σ
)y = 0 ⇒ x

σ
y ∈ kerL(x) ∩ ImL(x

σ
) = kerL(x) ∩ (kerL(x))

⊥
= (by (4)) = 0,

i.e. y ∈ kerL(xσ), therefore proving essentially (5).



Definition. To any QC algebra one can associate its degeneracy index d(A) ∈ {0, 1, . . . , dimA − 1}.

d(A) = 0: for the classical Hurwitz algebras in dimensions n = 1, 2, 4, 8;

d(A) = 1: for n = 3 the cross product algebra so(3) (with Petersson’s isotopes and G0)

d(A) = 1: for n = 7, one has a cross product anti-commutative algebra of imaginary octonions;

d(A) = 2: an ‘imaginary’ subspace of the color anti-commutative algebra (with isotopes)

Corollary 4.1

(i) Every Euclidean QC-algebra satisfies the constant rank condition.

(ii) A unital QC (non-necessarily Euclidean) algebra over infinite field of charK ̸= 2 is a Hurwitz algebra.

(iii) If A is a Euclidean QC-algebra and dimA ≤ 2 then A is a division algebra.

Proof. (iii) follows from 2 ≥ dimA > 2d(A) implying that d(A) = 0.



Theorem 4.2 (The triad principle)

Let A be a Euclidean QC-algebra and x1, x2 ̸= 0. Then

1 If x1x2 = 0 then kerR(x1) = kerL(x2) and ImL(x1) = ImR(x2).

2 For any x ̸= 0 : kerL(x) kerR(x) = 0.

3 x1x2 = x2x3 = 0 implies x3x1 = 0.

4 Conversely, if x1x2 = 0 then there exists x3 ̸= 0: x1x2 = x2x3 = x3x1 = 0.

5 For any triple x1, x2, x3 satisfying (4) there holds for any i ∈ Z/3Z

kerR(xi) = kerL(xi+1), ImL(xi) = ImR(xi+1).

We denote this by the infinite cyclic diagram: . . . ⇝ x1 ⇝ x2 ⇝ x3 ⇝ x1 ⇝ . . .

Proof. The linearization of the QC-identity yields

(L(x)L(z
σ
) + L(z

σ
)L(x))(xy) + L(x)L(x

σ
)(zy) = 2h(x, z)xy + h(x, x)zy (♢)

If xy = 0, x, y ̸= 0 then [L(x)L(xσ)−h(x, x)]zy, i.e. zy ∈ ImL(x) for any z ∈ A, i.e. ImR(y) ⊂ ImL(x), implying

for the dimensional reasons ImR(y) = ImL(x). Since yσxσ = (xy)σ = 0 we have ImR(xσ) = ImL(yσ), therefore

kerR(x) = (ImR(x
σ
))

⊥
= (ImL(y

σ
))

⊥
= kerL(x) ⇐ (1)

If kerL(x) ̸= 0 then for any 0 ̸= y ∈ kerL(x): xy = 0, hence by (1) kerL(y) = kerR(x), thus y kerR(x) = 0

implying (2). Now, if x1x2 = x2x3 = 0 then x3x1 ∈ kerL(x2) kerR(x2) = 0, implying (3) and similarly (4)-(5).



Corollary 4.2

If A is a Euclidean QC algebra with σ = 1 then A is a commutative division algebra, in particular, dimA ≤ 2.

Proof. The assumption σ = 1 implies that A is commutative, hence L(x) = L(xσ) = R(x) = R(xσ) and therefore

kerL(x) kerL(x) = 0 for any x ∈ A. If d(A) ≥ 1 then given an arbitrary nonzero y ∈ A, y ∈ kerR(x) = kerL(x) for

0 ̸= x ∈ kerL(y) , hence yy = 0. Since A is commutative then polarization of yy = 0 implies AA = 0, a contradiction.

Corollary 4.3

The following statements are equivalent:

1 kerL(x) ∩ kerL(y) ̸= 0;

2 kerR(x) ∩ kerR(y) ̸= 0.

3 kerR(x) = kerR(y);

4 kerL(x) = kerL(y);

5 ImL(x) = ImL(y);

6 ImR(x) = ImR(y);

In particular, the left (or right) kernels is a projective partition of A \ {0}.

Observe that for example ImL(x) ∩ ImL(y) ̸= ∅ does not imply that ImL(x) = ImL(y).



Corollary 4.4
Let A1, resp. A−1, denote the subspace of symmetric, resp. skew-symmetric elements w.r.t. action of the involution σ. If

dimA ≥ 3 then A−1 ̸= 0. In particular, if dimA ≥ 2 and dimA−1 ≥ 1. Then

n − d(A) ≡ 0 mod 2.

Proof. The first part: if A−1 = 0 then σ = 1, hence A is commutative. By Corollary 4.2: dimA ≤ 2, a contradiction. Next,

fix a nonzero w ∈ A−1. Then L(wσ) = −L(w) and

ImL(w)
−L(w)
−→ ImL(w)

L(w)
−→ ImL(w) (ImL(w) is an invariant subspace),

L(w)L(w
σ
) = −L(w)

2
= 1ImL(w),

⇒
[
detL(w)|ImL(w)

]2
= (−1)

dim ImL(w)
.

hence dim ImL(w) is an even number.

Proposition 4.1 (Classification of Euclidean QC algebras in 2D)

If dimA = 2 then the only three following possibilities hold:

(A) A is a symmetric composition algebra, and in this case

(a) A contains a nonzero idempotent and is isomorphic to para-complex numbers,

(b) A does not contain nonzero idempotents: there is a basis (e, f) of A with e2 = f , ef = fe = e and

f2 = λe − f , f ∈ K

(B) A is the unital algebra of complex numbers.
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The main tool is the so-called pre-idempotent triples which represent idempotents ‘upstairs’ (= in the triple of A).

A −→ T (A)

(x1, x2, x3) −→ Idm(T (A))

Definition. Let A be a quasi-composition algebra. A triple (x1, x2, x3), h(xi, xi) = 1, is called an pre-idempotent triple or

(x1, x2, x3) ∈ J(A), if

x
σ
i = xi+1xi+2, i ∈ Z/3Z, ⇔


xσ
1 = x2x3

xσ
2 = x3x1

xσ
3 = x1x2

(4)

How it works:

Theorem 5.4 below on the commutator relations [Lσ
i Li, R

σ
i+2Ri+2] = [RiR

σ
i , Li+2L

σ
i+2] = 0 implies the following

”three-kernels” decomposition:

A = kerL(xi+2) ⊕ kerR(xi+1) ⊕ M(xi) ⊕ N (xi), where M(xi) ⊕ N (xi) = ImL(x
σ
i+2) ∩ ImR(x

σ
i+1)

Then a deeper result is that the principal kernel M(xi) can be isotopically made into a Hurwitz algebra w.r.t.

x • y := (xu2)(u3y), ∀x, y ∈ M(u1) ⊂ ImL(u
σ
3 ) ∩ ImR(u

σ
2 )

For instance, it is easy to see that u1 is the •-unity:

x • u1 = (xu2)(u3u1) = (by (4)) = (xu2)u
σ
2 = R(u

σ
2 )R(u2)x = x

u1 • y = (u1u2)(u3y) = (by (4)) = u
σ
3 (u3y) = L(u

σ
3 )L(u3)y = y.

But the proof of the composition property and the closeness by the •-multiplication is nontrivial.



For any nonzero u ∈ A there are nonzero solutions ξ, η of

uξ = ηu = 0 ⇒ (by the triad principle) ξη = 0,

hence the following is well-defined:

M (u) := kerR(ξ) = kerL(η),

E (u) := ImR(ξ
σ
) = ImL(η

σ
)

A = M (u) ⊕ E (u).

Theorem 5.1

Let (u1, u2, u3) ∈ J(A) and d(A) ≥ 1. Then

ui ∈ M (ui) ⊂ ImL(u
σ
i+2) ∩ ImR(u

σ
i+1). (5)

Let us define for any ∀x, y ∈ M (u1)

x • y := (xu2)(u3y) ∈ M (u1).

Then

x • y ∈ M (u1)

u1 • x = x • u1 = x

h(x • y, x • y) = h(x, x)h(y, y),

In particular, (M (u1), •) is a Hurwitz algebra and d(A) ∈ {1, 2, 4, 8}.



Let us consider the realization of the symmetric group S3 as the general affine group Aff(Z/3Z):

S3 ∼= Aff(Z/3Z) ∼= {g =

(
m i

0 1

)
: m ∈ (Z/3Z)×, i ∈ Z/3Z}

where the determinant is a multiplicative homomorphism det : S3 ∼= Aff(Z/3Z) → (Z/3Z)× ∼= Z/2Z is the sign of g ∈ S3:

det g = m = sign g.

Given g ∈ Aff(Z/3Z), define the corresponding nondegenerate linear endomorphism

[g](x) = mx + i : Z/3Z → Z/3Z.

S3 acts on permutation triples τ = (i, j, k) of {1, 2, 3} coordinate-wisely: τ → g(τ) = (g(i), g(j), g(k)). Any involutive

operator σ generates a cyclic group {σ, σ2 = e} ∼= Z/2Z, this implies the multiplicative group homomorphism

χ : Aff(Z/3Z) det−→ (Z/3Z)× τ−→ Z/2Z ∼= {e, σ},

Notice that {e, σ} is abelian, hence

χ(gh) = χ(g)χ(h) = χ(h)χ(g) = χ(hg).

We illustrate the above explicitly below

(m, k) g [g](t) g((1, 2, 3)) χ(g)

(1, 0) e t (1, 2, 3) e

(1, 1) ϵ t + 1 (2, 3, 1) e

(1, 2) ϵ2 t + 2 (3, 1, 2) e

(2, 2) α1 2t + 2 (1, 3, 2) σ

(2, 1) α2 2t + 1 (3, 2, 1) σ

(2, 0) α3 2t (2, 1, 3) σ

(6)

Here αi acts on τ by interchanging i + 1 and i + 2 (as elements of Z/3Z) followed by involution σ on all coordinates.



Lemma 5.2
S3 ∼= Aff(Z/3Z) acts faithfully on J(A): if τ = (x1, x2, x3) ∈ J(A) then g(τ) ∈ J(A). More explicitly, the S3-action

consists of

(a) three right-shifts xi → xi+1 and

(b) three conj-flips: interchanging any pair xi and xk followed by σ-action coordinate-wise.

Furthermore, the S3-action can be naturally extended to an S4-action on J(A) by adding sign involutions on A.

For example, if (x1, x2, x3) ∈ J(A) then so do also (x2, x3, x1) etc. and (xσ
1 , xσ

3 , xσ
2 ) etc.

Example. Let A = so(3). Then (x1, x2, x3) ∈ J(A) if and only if (x1, x3, x2)

is the right-handed orthonormal basis:

ImL(x1) = span(x2, x3), kerL(x1) = span(x1)

x2

x3

x1



Theorem 5.3 (The existence)

Let A be a Euclidean quasi-composition algebra. Let

1 x1 ∈ A and h(x1, x1) = 1

2 x2 ∈ ImL(xσ
1 ) and h(x2, x2) = 1.

Then (x1, x2, x
σ
2 xσ

1 ) ∈ J(A) (recall that the latter means that xσ
i = xi+1xi+2, i ∈ Z/3Z.)

Proof. Let x3 := xσ
2 xσ

1 , implying the 3rd identity in (4). Next, by Theorem 4.1, since x2 ∈ ImL(xσ
1 ):

x
σ
1 x

σ
3 = x

σ
1 (x

σ
2 x

σ
1 )

σ
= x

σ
1 (x1x2) = L(x

σ
1 )L(x1)x2 = L(x

σ
1 )L(x1) = projection on ImL(x

σ
1 ) = x2,

implying the 2nd identity in (4). It remains to show that h(x3, x3) = 1 and y := xσ
3 xσ

2 is equal to x1. To this end, note that

h(x3, x3) = h(x
σ
2 x

σ
1 , x

σ
2 x

σ
1 ) = h(x1x2, x1x2) = h(x2, x

σ
1 (x1x2)) = h(x2, x2) = 1.

Furthermore, by the above x2 ∈ ImR(xσ
3 ) and x3 ∈ ImL(xσ

2 ) hence

y
σ
x
σ
3 = (x2x3)x

σ
3 = R(x

σ
3 )R(x3)x2 = x2(but also = x

σ
1 x

σ
3 )

x
σ
2 y

σ
= x

σ
2 (x2x3) = L(x

σ
2 )L(x2)x3 = x3(but also = x

σ
2 x

σ
1 ).

It follows that
(yσ − xσ

1 )xσ
3 = 0

xσ
2 (yσ − xσ

1 ) = 0,

therefore by the triad principle either yσ − xσ
1 = 0 or 0 = xσ

3 xσ
2 = (x2x3)

σ = y. The latter is impossible because

h(y, y) = h(x
σ
3 x

σ
2 , x

σ
3 x

σ
2 ) = h(x2x3, x2x3) = h(x3, x

σ
2 (x2x3)) = h(x3, x3) = 1.

Therefore we have yσ − xσ
1 = 0, i.e. xσ

1 = x2x3 which implies the 1st identity in (4). This proves the theorem.



Theorem 5.4 (The commutator relations)

Let (x1, x2, x3) ∈ J(A). Then for any i ∈ Z/3Z,

1 R(xi+2)L(xσ
i )L(xi) = L(xi+1)L(xσ

i+1)R(xi+2),

2 kerL(xi)

R(xi+2)

−−−−−−→ kerL(xσ
i+1)

R(xσ
i+2)

−−−−−−→ kerL(xi) are bijections and R(xσ
i+2)R(xi+2) = 1kerL(xi)

.

3 kerL(xi) ⊂ ImR(xσ
i+2) and kerL(xσ

i ) ⊂ ImR(xi+1)

Example. Illustrate this by A = so(3) and (x1, x2, x3) ∈ J(A):

ImL(x1) = span(x2, x3), kerL(x1) = span(x1)

kerL(x1)
R(x3)

−−−−−−→ kerL(xσ
2 )

R(xσ
3 )

−−−−−−→ kerL(x1)

kerL(x1) ⊂ ImR(xσ
3 ), kerL(xσ

1 ) ⊂ ImR(x2)

x2

x3

x1

Corollary 5.5

If A is a nonzero Euclidean QC-algebra then dimA ≥ 2d(A) + 1. In particular, for any two nonzero x, y:

dim(ImL(x) ∩ ImL(y)) ≥ n − 2d(A) ≥ 1. In particular, any Euclidean QC-algebra is simple.

Proof. For any ideal I ̸= A, 0: dim I ≥ dim IA ≥ n − d and similarly dim I⊥ ≥ n − d, hence 2d ≥ n, a contradiction

with Corollary 5.5.



From the left and right kernels to the ”principal kernel”

For any nonzero u ∈ A there are nonzero solutions ξ, η of

uξ = ηu = 0 ⇒ ξη = 0,

hence the triad principle, the following is well-defined:

M (u) := kerR(ξ) = kerL(η),

E (u) := ImR(ξ
σ
) = ImL(η

σ
)

A = M (u) ⊕ E (u).

Definition 5.6

If A is a Euclidean QC algebra, then M (x) is the principal kernel and E (x) is the principal image of x ∈ A.

Proposition 5.1

For any nonzero x ∈ A, dimM (x) = d(A) and

1 if 0 ̸= t ∈ M (x) then M (t) = M (x);

2 if M (t) ∩ M (x) ̸= ∅ for a nonzero t, then M (t) = M (x);

3 t ∈ M (x) ⇔ x ∈ M (t).





Some useful numerology

In dimensions n = 1, 2, 4, 8 (corresponding the first 4 columns) one has classical Hurwitz algebras, d = 0

For n = 3 one has a cross product algebra so(3), d = 1 (and its isotopes)

For n = 6 one has a color anti-commutative algebra C6, d = 2 (and its isotopes)

For n = 7 one has a cross product anti-commutative algebra of imaginary octonions, d = 1
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1 (A, ◦) and (B, ⋄) are isotopic, if there exist invertible linear maps (α, β, γ) from A to B, such that

α(x) ⋄ β(y) = γ(x ◦ y) holds for any x, y ∈ A.

If γ = 1 then an isotopy is called principal. If (α, β, γ) is an isotopy (A, ◦) → (B, ⋄) then (αγ−1, βγ−1, 1) is a

principal isotopy (B, ⋄′) → (B, ⋄).

2 An isotopy of (A, ◦) to itself is called an autotopy. The set Atp(A, ◦) of all isotopies (a, b, c) ∈ GL(A)×3 of A is the

autotopy group of the algebra A. An automorphism ϕ is an autotopy where a = b = c.

Let (A, ◦, σ, h) be a metrized algebra. Given a ∈ GL(A), we denote by a−1 its inverse, a♭ = σaσ its σ-conjugate and by

a∗ its h-adjoint, i.e. h(a(x), y) = h(x, a∗(y)), ∀x, y ∈ A. Then

a → a∗, a → a−1 and a → a♭ are involutions which commute pairwisely (the first two are anti-automorphisms)

Lemma 6.1 (A D6-action on the autotopy group Atp(A))
Let θ := (a, b, c) ∈ Atp(A, ◦, σ, h) then Tθ, Sθ, Zθ ∈ Atp(A, ◦, σ, h) and ⟨S, Z, T ⟩ ∼= D6, where

S(a, b, c) = (b
♭
, a

♭
, c

♭
)

Z(a, b, c) = (a
−1

, b
−1

, c
−1

)

T (a, b, c) = (c
∗
, (b

♭
)
−1

, a
∗
)

Proof.

S2 = Z2 = T2 = 1

SZ = ZS, TZ = ZT

STZ = TSTZ, (ST )3 = Z



Proposition 6.1 (Petersson’s isotopes)

Let (A, σ, h, ◦) be a quasicomposition algebra and τ ∈ GL(A) satisfy

1 τ3 = 1

2 τ∗ = τ2 = τ♭ (notice that τ∗τ = 1 ⇔ τ is orthogonal)

3 (τ, τ, τ2) ∈ Atp(A, σ, h, ◦).

Then (A, σ, h, ◦) is also a quasicomposition algebra, where x ◦
τk y = τk(x) ◦ τ2k(y).

Theorem 6.2 (Classification of 3D (Euclidean) QC algebras)

Any 3D Euclidean quasi-composition algebra is isomorphic to one of the following:

1 one of the three Petersson’s isotopes of the anticommutative cross-product algebra on so(3,K)

2 the algebra G0 in Example 2.2



Thank you for your attention!
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