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a Introduction and motivations



Irregular objects: do not follow a simple (regular) rule but very relevant (frequently used).

The most languages (not all! only exceptional or regular?) contain two group of verbs: regular and irregular (with an

unpredictable tense forms).
# (irregular verbs) = o(# regular verbs), BUT!
frequency of irregular verbs > that of regular verbs

Compare, for example with "exceptional mathematical results” vs " general mathematical results” etc.

There are many irregular (exceptional or sporadic) objects, among others (in historical order):
@ Platonic solids in R3 (absent in Rz): the tetrahedron, cube, octahedron, dodecahedron, and icosahedron.
@ Real (normed) division algebras: R, C, H, O
@ Exceptional simple Lie algebras over C: gg, f4, ¢, ¢7 and eg
@ Exceptional Jordan algebra R (the 27-dimensional Albert algebra).
@ Cartan isoparametric hypersurfaces in Euclidean spheres (only for an ambient curvature +1)
@ Sporadic finite simple groups (totally 26)
Remarks.

a) Sometimes, there are relevant borderline cases, or mutants, i.e. regular objects which share some important properties with
irregular ones (for example s0(3), su(3), so0(12) or su(6))

b) There is no a unified conceptual explanation/classification for irregular objects, their construction is individual or archaic
(Yu.Manin).



Episode 1: Isoparametric hypersurfaces

Start with a classical variational problem: the light propagation on a
sphere (the case of Euclidean space is trivial). This leads to a PDE
system for the front-hypersurfaces. E. Cartan (1938) proved that the
shape operator of each regular level hypersurface has constant principal

eigenvalues (curvatures) counting multiplicities. Moreover, if m > 1is
the number of distinct curvatures then M is a level-set of a homogeneous

polynomial solution in R™

IVP@)|1? = n®(w;2)>™ 2,

3m—4
>

AP(z) = C{x;x) deg P(xz) = m.

Cartan completely characterized the cases deg P(x) < 3. In fact, he
proves that the degree 3 homogeneous polynomial solutions are exactly
the triality polynomials:

P(z1,22,23) = Re(zy - (22 - x3)),
where x; € K4, K is a normed real division algebra, d = 1, 2, 4, 8.

Miinzner (1980) used algebraic topology to express certain Zo-
cohomology ring of M to prove that

m = deg P(z) € {1,2,3,4,6} cf. the "plane regular tessellations”

e Uartan (a rans).

Dans un axticle récent?) j'i signalé Pexistence dans Pespace sphérique
4 quatre dimensions d'une famille d'hypersurfaces isoparamétriques & trois
courbures principales distinotes. Jo me propose e rechercher s'il existe, dans
un espace sphétique & un nombre queloonque de dimensions, des familles
hypersurfaces isoparamétriques admettant seulement trois courbures prin-
cipalos distinotes. Dans la premidre partie de ce Mémoire, jo montrerai Vexi-
stence de telles familles dans les espaces & 4, 7, 13 ct 25 dimensions; cette
existonce sora lide & celle d’un polynomo homogdne du troisiéme degré &
-2 variables (n + 1 étant la dimension de espace sphérique) jouissant de
la double propriété que son premier paramdtre différenticl, calculé dans
Tegpace euclidien & » + 2 dimensions de coordonnées rectangulaires z,, ...,
%43, 0it constant sur Ihypersphére de rayon 1 et que son second paramitre
différentiel soit, nul (polynome harmonique). De tels polynomes wexistent
que pour n = 3, 6, 12, 24 ou n = 3.2° (k = 0,1,2,3). Lo cas n = 24 est
particulidrement intéressant parce qu'il est lié & différentes théories (théorie

de

qu
@Analyse) du groupe simple b 52 paramtres qui ne rentre dans aucune des
grandes classes de groupes simples.

356 E. Cartan.

Dans 'espace euclidion & 26 di I lidien & 24 dimensi
tangent au point P (u = cos f, v =sint, X = ¥ =Z = 0) & 'hypersurface
de paramdtre ¢ situé dans Vhypersphére de rayon 1 se décompose en trois
sous-espaces & 8 dimensions, celui des vecteurs X, des veoteurs ¥ et des vee-
teurs Z. i nous portons notre attention sur ce dernier, les vecteurs X du
‘premier peuvent étre regardés comme les semi-spineurs de premiére espéce récls
et les vecteurs ¥ du second comme les semi-spineurs de seconds espéce réels
de Tespace des Z%). Le groupe G, indique comment le groupe des rotations
de Pespace i 8 dimensions transforme les veoteurs réels Z, les semi-spineurs de
‘premibre espbce réels X of les semi-spineurs de seconde espéce Y. Le principe
de trialité'$) de Pespace elliptique & 7T dimensions est ainsi mis en évidence d'une
maniére. conoréle.

E. Cartan, Sur des familles dhyp es i

Math. Z. (1939)



Episode 2: Algebraic minimal cones

Do you want cubic minimal
cones?..| have them!!

Wu-yi Hsiang (born 1937)

(i) Partly due to the lack of “canonical” normal forms for r < 2 and
partly duc 10 the rapid rate of increase of the dimension of ©f with respect
10 7, the little help obtained from the normal forms is not enough to solve the
problem of classifying minimal algebraic cones of higher degrees. For ex-
amgple, it is very difficult to solve even the following very special equation:
F(x) =0, where F(x) is an irreducible cubic form in n variables such that

(dF)- PF{ = PF-HF -FFi = = (£ 4 -+ 4 2)-F.

Since the above equation is invariant with respect to the orthogonal lincar
substitutions, we may assume that F is given in some kind of “normal form”
which amounts 1o reduce the number of indeterminant coefficients by
n(n — 1)j2. A systematic attempt to solve the above equation will involve the
job of solving over-determined simultaneous algebraic equations of many va-
riables. So far, we have only four non-trivial solutions (cf. §§ 1, 2), but there
is no reason why there should be no others.

W.-Y. Hsiang (J. Diff. Geometry, 1967): Given a homogeneous polynomial
u(zx), = € R™, the cone ™ (0) is a minimal hypersurface in R™ iff

Avu = |Vul?Au — 1(Vu; V|Vul?) = Q(a)u(z). (1)

The first non-trivial case: deg u = 3. All known irreducible cubic minimal
cones satisfy
2
Aru = [)? - u(e)

(%)
Hisang’s Problem (ii): Classify all cubic solutions of ().

(V.T.,2010-2014): There are three distinguished families of solutions:

(a
(b)

of Clifford type (infinitely many, almost in any dimension n > 3)

Cartan’s isosparametric solutions in dimensions 5, 8, 14, 26 (i.e.
3d + 2)
exceptional eigencubics which may exist only in the following

()

dimensions:
Hsidim=3n |3 |6 |12 24| 9 [12(1521|15|18 | 21| 24|30 42|27|30|33 | 36|51|54 |57 |60 72
n 1{24|8[3|4[5|7|5[6]|7 8|10 149 |10 11 12|17 18| 19|20 24
m=n-2d-1|0|1[3|7|0|1[2|4]0[1|2(3|5/9]|0|1[2(3]0[1|2|3|7
d ofofojof1|1|1|1|2|2]2]2|2|2]4 4|4 (488|888
The last line: d = 1, 2, 4, 8 are the dimensions of real division algebras



Another very strange appearance:

There are important classes of fully nonlincar Dirichlet. problems for
which the viscosity solution is in fact a classical one, e.g. due to Krylov
Evans regularity theory, in the case when the function F is con
[CC]. [K]). However, for the general F the problem of the coincidence of
e classical solutions remained open.
paper is the existence of a nonclassie
12. More precisely we prove

(sce

viscosity solutions with th
The central xesult of this
solution of (1) in dimensi

iscosity

Theorem. The function
R

)
w(x) .

wherew; € H, i = 1,2,3, are Hamiltonian quaternions, x = (w1, wa,ws) € H*
Z R i  viseosty solution in R of a uniformly eliptic equation (1) with
a smooth F.

One can find the explicit expression for w in the coordinates of R in
scetions 3 and 4. The elliptic operator £ will be defined in a constructive
way in section 2. and its ellipticity constant A < 10°

As an immediate consequence of the theorem we have

P

but loses the iiform nlhpuul) ina nmg)nhoxh\md of the subset of S} formed
by the points with 2], R

To explain why Ps dots ot ok and Pis docs work we give in the next
section a short excursion in the area of division algebras uml 1 excep nal Lie
groups. That will lead us also to various extensions of Theor

Trialities, Quaternions, Octonions and
Hessian Equations

As we have seen in the previous section, cubic forms for which the quadratic
form Py verifies the inequalities (3.2) or (3.3) should be rather exceptional. In
fact all examples of such forms known to us come from trialities, which in tum
are intimately related to division algebras and exceptional Lie groups. Let us
ecall some o[ their elementary propertics [1, 3]
Duality is ubiquous in algebra; triality is similar, but subtler. For two real
ector spaces i and Vs, a dualt i simply o nondegencrate bilineas map

FiVixVy =R

Similarly, for three real vector spaces Vi, Va, and Vi, a triality

a trilinear map

t:VixVaxVy — R

Episode 3: Truly C1® viscosity solutions

Proceedings of the International Congress of Mathematicians
Hyderabad, Indis, 2010

‘Weak Solutions of Nonvariational
Elliptic Equations

+ Nikolai Nadirashvili* and Serge Viidutf

B o, o

causion in those dimensions [28, 30]. Morcover, one can formulate a test similar
o the second part of Lemma 4.2 which garanties that w; is a solution to an

Taats equation.
Tn this way we get the following:

1). For any 6, 1 <4 < 2 and any plane H’ C R, dim H’ = 21 the function
(Pas(w)/|=I")

is a viscosi

solution to a uniformly elliptic Hessian (1.2) in the unit ball

&

For any 6, 1< 6 < 2 the function
wizg = Pra(a)/|e|’

is a viscosity solution to a uniformly elliptic Hessian equation (1.2) in the
unit ball B R*2

e H < R'2 the function

For any hyperpl
(Prz(@)/ I

i a viscosity solution to a uniformly elliptic Hessian equation (1.2) in the
it ball B c R

For a

v 4, 1 <4 < 2 the function
wizs = Pua(e) el

is a viscosity solution to Isaacs equation (1.8) in the unit ball B c RI2
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e Algebras with involution and associative bilinear form




Algebras with involution and associative bilinear form

Let (A, o, o) be an algebra of dimension n < oo over a field K, and an involution o, i.e. o is an involutive anti-automorphism:
(@°)7 = a, (@oy)’ =y 0a” &  oLo(z) = Ro(z")o
@ Let (A, o) be an algebra with involution. If o = 1 then A is commutative, and if © = —1 then A is anticommutative.
(The converse is not true! examples on the next slide)
@ If A is commutative (resp. anti-commutative) then o = 1 (resp. o = —1,) is the standard involutions.
© A symmetric bilinear form h : A X A — K is called involutively invariant if
h(z?,y7) = h(z,y), h(zy, z) = h(y, 27 2).

@ An algebra (A, o, h) with nondegenerate involutively invariant h is called metrized. If h additionally is positive definite

then A is Euclidean.
@ An algebra A is called Killing metrized if its Killing form
7(x,y) = tr Lo(x) Lo (y) = tr Ro (@) Ro (y)

is well-defined and it is a nondegenerate involutively invatiant bilinear form.

Lemma 2.1

If h is involutively invariant then Lo (z)* = Lo(x7) and Ro(y)* = Ro(y7), in other words
h(zy, 2) = hy, 27 2) = h(y”, 2%2) = h(zy7,2) = h(z, 24°).

Furthermore, in any metrized algebra, its Killing form is well-defined

tr Lo () Lo(y) = tr Lo(z)oRo (27 )0 = tro Lo ()0 Ro (27 ) = tr Ro (z)Ro (v)-

= = = = = (o}



Algebras with involution and associative bilinear form

Below | give examples of standard and non-standard involutions for (anti-)commutative involutively metrized algebras:

Example 2.2

@ Consider a commutative algebra C of para-complex numbers: z @ w = Zw with the standard involution o(z) = Z. Then

(zow)? =Zw = zw = w7 e 27
Notice that o # 1. The bilinear form h(z,y) = Re(x - y?) is involutively invariant.

@ The cross-product algebra so(3, K) with the standard involution o(z) = z and the Killing form h(z, y).

@ Define & as the algebra with basis (e1, €2, e3) and the anticommutative e-multiplication

. el eo e3
ef =eq,

el 0 es3 eg

B : with a new involution: eg = ea,

eg —e3 0 —ex
e = —es.

es3 —eo el 0

Let a(e;) = e;, i = 1,2 and a(egz) = —eg3, then (o, @, 1) : gg — s0(3, K) is a principal isotopy, i.e.

zeoy = a(z) X a(y).

Both s0(3, K) and & are Killing metrized algebras.




Composition algebras

@ An algebra (A, o) is a division algebra if L, (z) and R () are invertible operators for all 0 # = € A.

@ An algebra (A, o) over K is a composition algebra if there exists a nondegenerate quadratic form called the norm
n : A — K such that

n(@ o y) = n(@)n(y).
n(z,y) = n(x +y) — n(z) — n(y) is the corresponding symmetric bilinear form.
@ Unital composition algebras are called Hurwitz algebras.
@ In any Hurwitz algebra with unit e, the endomorphism 7 = n(z, e)x — z is an involution.
@ A unital algebra is quadratic if e, z, z 0 x are linearly dependent. Any Hurwitz algebra is quadratic.
@ Any Hurwitz algebra is isomorphic to one of the following (by the Cayley-Dickson doubling process):

(1D) The base field K;

(2D) Generalized complex numbers C'(«) := Dickson(K, «)
(4D) Generalized quaternions H (¢, 8) := Dickson(C(«), B)
(8D) Generalized octonions Dickson(H (a, 8), 7).

@ Given (A, 0,n,0), its para-Hurwitz algebra A w.r.t. z ¢ y = £ o y“ (obs. 1 acts as a para-unit, Elduque, 1996).

@ A symmetric composition algebra if the norm is "associative” (Petersson, Okubo, Elduque, Myung, Osborn, Faulkner):
n(zoy,z)=n(z,yoz),

@ Any Hurwitz or symmetric composition algebra is metized w.r.t. the standard involution and h = n.

@ In any Hurwitz algebra, 27 o (z 0 y) = n(z, z)y.



Composition formulas

A composition formula of size [r; s; n] is a formula (over a field) of the type
Glt+as+. +eDEI+v5+. 49 = @)+ 4z w)?)
A composition formula of size [r; s; n] exists iff there are n X s-matrices Ay, ... A, over K satisfying
AfA; + ALA; =285 -15, 0<i,j<r
@ (Hurwitz, 1898) A composition of size [n; n; n] implies n = 1,2, 4, or 8.
@ (Radon 1922, Hurwitz 1923) A composition of size [r; n; n] exists iff 7 < p(n), where

p(25»odd):8a+2b, where s = 4a +b, 0<b<3.

n_| 1|
1

2 3|45 |6 |7|8]..|16].. |32
PN N R R N R N

© p(n) = the maximum number of linearly independent vector fields of any homotopy n-sphere.

@ the set of matrices as above generates a symmetric Clifford system, i.e. A;Aw = (z;a)l, Ay := > x;A;.

Lemma 2.3

Let A be an Euclidean involutive metrizied algebra, f(x) : B — B’ be a linear homomorphism, B, B’ C A, f(x) depends
linearly on € C' C A. Suppose that for all x € C

Bl g 179 g (2)
(@) f(x) = h(z, 2)1p, 3)

then there exists a composition formula of size [dim C, dim B, dim B’]. If dim B = dim B’ then dim C' < p(dim B).

i = = = Ty




Constant rank algebras

An algebra A is said to satisfy the constant rank condition if the dimension of degeneracy of multiplication
d(A) := dim ker L(z) = dim ker R(x) independently of a nonzero = € A.

The classically known example is the class of division algebras: d(A) = 0.

@ (K.O. May, 1966) Originally, the question about the existence of division algebras behind dimension 2 was posed by Gauss

in 1831: “ The writer has reserved for himself . .. the question why the relations between things that make up a manifold of

more than two dimensions cannot provide quantities admissible in universal arithmetic.”

(Hamilton, Cayley, Frobenious, Radon, Hurwitz) Several classical results under additional assumptions like the existence of

associativity, composition law etc.

Cartan’s and Study’s remark of 1908 “...a definitive answer, if one exists, can only be given by the whole ulterior

development of algebra and analysis.”

(Bott, Milnor 1958) Any division algebra over the real numbers has dimension dim A = 1, 2,4, 8.

06 © ©o

(Gabriel 1994) A division algebra over an algebraically closed field must be one dimensional.

Proof. Let ¢,y # 0 be non-proportional vectors in A. Then the linear operator Lo (z) ~* Lo (y) has an eigenvalue, say
A € K, therefore Lo(:c)flLo(y)z = Az, z # 0, implying Az 0 z = y o z, therefore (Ax — y) 0z =0, a
contradiction.

Unfortunately, the case d(A) > 1 is almost unexplored even over R. For example, what can be said in the case d(A) = 1? Do

there exist some distinguished properties in this case? Which possible values of d(A) are possible in general?

Below we provide an extra motivation why the constant rank condition can be interesting.



Outline

o Quasicomposition algebras and triple algebras




Quasicomposition algebras

Definition. A metrized algebra (A, o, h, 0) is called a (QC) quasicomposition algebra if
50 (2% 0 (z0y) = hiz,0)(woy), Va,y €A,

holds for any = € A, or equivalently
Lo(z)Lo(27)Lo(2) = h(z,z)Lo(x).

Under the metrized algebra assumption, the latter is equivalent to Ro (z)Ro (27 )Ro(z) = h(z, z)Ro(z).

@ The name is motivated by the observation that the quadratic form n(z) = h(z, x) satisfies the quasicomposition property

n(z? o(xoy)) =h(z? o(zoy),z7 o(xoy)) =h(zoy,zo (z7 o (xoy)))

h(z,z)h(zoy,zoy) = n(z?)n(zoy) = n(z)n(xoy)
@ A Hurwitz algebra with its standard involution is a quasicomposition algebra: indeed, by (10)
27 o (zoy) =n(z,z)y = xo(z?o(zoy))=n(z,z)(zoy)

© A semigroup context. Recall that if S is a semigroup, then a € S is (Von Neumann) regular if there exists a generalized
inverse of a, i.e. 3b € S: aba = a and bab = b.
Thus, the definition of a quasicomposition algebra can be restated as: for every h-anisotropic € A, h(z, z)flLo (z9)

is the generalized inverse of Lo () in the semigroup generated by L, (A) C End(A)

etrized anti-commutative algebras A were classified by Elduque in or the standard involution o = —1: any suc
Metrized anti ive algebras A lassified by Eld in 1988 for th dard involuti 1 h
(non-zero) algebra over an algebraically closed field is either of the following: 1) sl(2, K), 2) ps((3, K), charK = 3, 3)

a simple non-Lie Maltsev algebra or 4) the anricommutative algebra of the vectors in the color algebra

@ But originally QC-algebras appear in the context of exceptional Hsiang algebras of cubic minimal cones, see the next slide.



Theorem (V.T.,2012-2016)

@ There is a natural one-to-one correspondence between solution to Hsiang's equation Aqu = (x; z)u(z) in R™ and

commutative metrized algebras H = (R™, -, 1, (; )), where u(z) = é(z; z2), tr L(x) = 0 and

‘ (xx; z(zx)) = k(x; :c)(ac2;w) ‘ < xz® + %(wac)(:cx) — (z; z) (zz) — %(xm;ac)x =0

@ Any Hsiang algebra # is either isomorphic to a polar algebra (i.e. a commutative metrised Zx-graded algebra
A = Ag ® Aq such that AgAg = {0} and zg(zgz1) = h(zg, zp)z forall x; € A;, ¢ = 0, 1) or exceptional

@ The class of polar algebras is in a natural 1-to-1 correspondence with Clifford summetric systems, well-understood.
@ The set of idempotents in # is nonempty. For any idempotent ¢, the associated Peirce decomposition is

A=Ac(1) ®Ac(=1) B Ac(=3) D Ac(L) and dimAc(1l) =1

@ Ac(1) @ Ac(—1) is a subalgebra and its is isotopic to a Clifford type Jorand algebra;
@ Ac(1) ® Ac(fé) is a subalgebra and it is naturally isotopic to a rank 3 Jordan algebra structure, no = dim A.(— %)

@ A is exceptional if and only if A.(1) ® Ac(— %) is (isotopy of) a simple Jordan algebra. In this case, either no = 0 or
ng = 3d + 2 and the hidden simple Jordan algebra is Hermgz(Fgq), d € {1, 2, 4, 8}.

@ A is mutant iff ny = 2, this corresponds to d = 0. A is exceptional or mutant iff tr L(z)? = m(z; z) for some real
m. In this case, m = 2(ny +d + 1).

@ There are finitely many dimensions n of A where exceptional Hsiang algebras can exist. Except the case ng = 0, in all
other cases, dim A = 3(ny + 2d + 1), where dimAc(f%) =3d+2,d € {0,1,2,4,8}.

3

N
o
©

14| 26| 9 12| 15| 21| 15| 18| 21| 24 30| 42| 27| 30| 33| 36| 51| 54| 57| 60| 72

5 5 9 0 1 2 4 0 1 2 3 5 9 0 1 2 3 0 1 2 3 7




A triality system

—1,1

V =R(zq, wa) DR(wg, wy) &( S5 © Sy) & (S5 ® S) @ ((Sa N Ti) B D_o) D (Ma & Da ® S_a),
2 d
O

iy

Sk
S

d

Sk
S

gd+ni-1

d
—1M 1™
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The triple of an algebra

Let (A, o, h, 0) be a metrized algebra. Define a commutative algebra structure on A X A X A (the triple) by virtue of

‘x@y:(11,12,z3)®<y1,y27y3)¢: (z§ oyg +y3 oxg, 2] oyl +yf oz, yg ox] +xJ oyf).

The triple construction generalizes the Nahm algebra construction of Kinyuon-Sagle (2002), which is the special case where the

algebra A is a Lie algebra g and the involution & = —1. More precisely, this is motivated by the Nahm ODE system
z = [y, 2],
y=[z,2], =y z€9
2= [z,y].

Then the Nahm algebra is the commutative algebra obtain by tripling of (&, [], 1, (;)) with

1
(z1, 22, 23) ® (¥1,Y2,¥3) = 5([73271/3] + [y2, z3], [z3, y1] + [y3, z1], [z1, y2] + [y1,22]) ongXgXg.

In the general case: think of the Jordan multiplication (X e Y = %(XY + Y X)) for formal ‘Hermitian matrices’ over A:

0 3  x9 0 RV * z3 25
zg 0 T . vg 0 Y1 = £ * z1 s
To zq 0 Yo yy 0 z3 2y *

then




Proposition 3.1

The algebra T(A) = (A X A X A, -, 1, H) is metrized, H(z,y) := Zg’zl h(xi,y;).

H(z -y, 2) = h(zg oyg +y3 0x3,21) + h(e] oyg +u] 0xg,22) + h(yg o x] + 23 0y, 23)

= h(a1.5 0 25 + 25 0 u5) + h(wa, 5] 0§ + ] 025) + h(ws.25 0uf +vS 02]) = H(w,y - 2)

Theorem 3.1 (Hsiang algebras vs QC-algebras)

(A) T((A, o, h,0)) is a Hsiang algebra if and only if (A, o, h, 0) is a quasi-composition algebra.

(B) In that case, T'((A, o, h, 0)) is a exceptional or mutant Hsiang algebra with d(A) € {0,1,2,4,8}.

Proof. (A): the if-part. If vi = (1,0,0) € Ty, vo = (0,z2,0) € Ty, v = (0,0, z3) € T3, then
vivy =0, vive =vavy = (0,0,z527), vivz=vgvi = (0,z7x5,0) etc
This implies that T'((A, o, h, 0)) is naturally decomposed into an H-orthogonal sum
T(A) =Ty & T2 & T3, where T;T; = 0, T;T; =Tk, 4,5,k~1,2,3.
vi(vive) = (0,27 (z122),0)
vi(vi(viva) = (0,0, (z327)z1)z]) = (0,0, R(z] )R(z1)R(2] )z3)

For any & = v @ va @ v3 we have 22 = 2(vovs @ vavy @ viva), hence

12% = (va(vavi) + va(vavi)) ® (vi(viva) + vs(vava)) @ (vi(vivs) + va(vavs)).
A nontrivial point: using the invariance of H and the fact that (A, o, h, o) is a QC-algebra implies

H(wg,xQ):42H(vi(vi(vivk),v]')=4 Z h((wag)xi)wia,wj)=...:%H(w2,w)H(ac,x)

cyclic permutations

The proof of (B) is indirect and makes an essential use of the Hsiang algebra theory.



Some important questions arise:
o Which of Hsiang algebras are QC-generated, i.e. obtained from QC-algebras?

@ How to classify Euclidean QC algebras over R?

@ How to classify general QC-algebras?

Remarks

o Even for the particular case of composition algebras, the classification in the general case is
more involved than for R. That is why we discuss below only Euclidean QC algebras over
the reals. However, some important properties are still valid in the general case (over infinite

field of charK # 2).

@ We also assume that | AA # 0 | and will omit o (use the juxtaposition)




Examples of QC algebras

Example 1

The complex numbers (C, o, k), with 27 = Z and h(z,y) = Re(ay) satisfies z(z? (zy)) = h(z, x)zy. In general, any
Hurwitz algebra A is a quasicomposition algebra.

Example 2

A cross product algebra is a metrized anticommutative algebra (A, X, o, h), such that z X (z X y) = —h(z,z)y + h(z, y)z
and 7 = —z. Then the latter implies

27 X (z X y) = h(z,z)y — h(z,y)z = z x (27 X (z X y)) = h(z,z)z X y,
which together with h(z X y,2) = —h(y,z X z) = h(y, % X z) shows that (A, X, o, h) is a quasicomposition algebra.

Example 3

Domokos and Kovesi-Domokos (1978) introduced the color algebra Col as a unique 7D algebra (over C) with unity e and a basis
w;, 1 = +1, £2, £3 with multiplication

Ut OUtj = €5k UTks Ut; Oup; = d;je,

where €; ;. is the totally skew-symmetric tensor with €123 = 1. The algebra Col is metrized with respect to a natural h.
Elduque (1988) studied in particular the ‘imaginary’ subspace Colg = el and proved that it satisfies the QC identity which
implies an example of a 6D quasicomposition algebra. Explicitly,

!

Colg =~ K3 o K3 with (ac/, a:”) X (y/,y”) = (—9:/ xy +a”" xy' 2" xy'' +a" x y/)




Outline

o The degeneracy index and the triad principle




Theorem 4.1

Let (A, o, h) be a QC Euclidean algebra, dim A = n, x # 0. Then there exists 0 < d(A) < n — 1:

o mM(:c)M(:co) is the orthogonal projection onto Im M (x), here and below| M € {L, R} |

@ dimker M(z) = d(A)
© rank M(z) = n — d(A) (The constant rank condition)
@ ker L(z) = (ker R(x7))? = (Im L(z%))* (The duality)
© Im M(z) = Im M(z)M(z°) and ker M(z%) = ker M(z)M(z?), in particular:

Im M (z) M(i:') Im M (z7) ]\L(ai) Im M(z), the composition = h(xz, x) - 11y nr(2)

Proof. The principal observation is that P(x) := M (z)M () satisfies
P(z)2 = M(z)M(z7)M(z)M () = h(z,z)M(x)M(z°) = h(z, z)P(z)

therefore P/h(x, x) is a projection. In particular, z — tr P(z)/h(x, z) € Z must be constant. This proves (1)—(3).

Next
h(zy,A) = h(y,a°4) =  kerL(z) = (Im L(z“))*

implying (4). Therefore
L(z)L(z%)y =0 = 2%y € ker L(z) NIm L(z7) = ker L(x) N (ker L(x))J‘ = (by (4)) =0,

i.e. y € ker L(x7), therefore proving essentially (5).




Definition. To any QC algebra one can associate its degeneracy index d(A) € {0,1,...,dimA — 1}.

@ d(A) = 0: for the classical Hurwitz algebras in dimensions n = 1, 2, 4, 8;
@ d(A) = 1: for n = 3 the cross product algebra s0(3) (with Petersson’s isotopes and &)
@ d(A) = 1: for n = 7, one has a cross product anti-commutative algebra of imaginary octonions;

@ d(A) = 2: an ‘imaginary’ subspace of the color anti-commutative algebra (with isotopes)

Corollary 4.1
(i) Every Euclidean QC-algebra satisfies the constant rank condition.
(ii) A unital QC (non-necessarily Euclidean) algebra over infinite field of charK # 2 is a Hurwitz algebra.

(iii) If A is a Euclidean QC-algebra and dim A < 2 then A is a division algebra.

Proof. (iii) follows from 2 > dim A > 2d(A) implying that d(A) = 0.



Theorem 4.2 (The triad principle)

Let A be a Euclidean QC-algebra and x1, x2 # 0. Then
@ Ifzixzo = 0 then ker R(z1) = ker L(z2) and Im L(z1) = Im R(z2).
@ Forany x # 0 : ker L(z) ker R(z) = 0.
@ z1x2 = x2x3 = 0 implies xz3z1 = 0.
@ Conversely, if x1x2 = O then there exists x3 # 0: x1x2 = xox3 = xzx1 = 0.

@ For any triple x1, xo, T3 satisfying (4) there holds for any i € Z/3Z

ker R(z;) = ker L(z;41), Im L(x;) = Im R(z;41)-

We denote this by the infinite cyclic diagram: ... ~> T] ~» Tg ~» T3 ~> T1 ~> ...

Proof. The linearization of the QC-identity yields
(L(x)L(27) + L(z7) L(x)) (zy) + L(@)L(z7)(2y) = 2h(x, 2)zy + h(z, z)zy ()

Ifzy =0, z,y # O then [L(z)L(z7) — h(x, z)]zy, i.e. zy € Im L(z) forany z € A, i.e. Im R(y) C Im L(z), implying

for the dimensional reasons Im R(y) = Im L(z). Since y7z? = (zy)? = 0 we have Im R(z?) = Im L(y?), therefore
ker R(z) = (Im R(:co))J' = (Im L(yo))J' = ker L(x) < (1)

If ker L(z) # 0 then for any 0 # y € ker L(x): @y = 0, hence by (1) ker L(y) = ker R(x), thus y ker R(z) = 0
implying (2). Now, if 129 = zgx3 = 0 then 3z € ker L(z2) ker R(z2) = 0, implying (3) and similarly (4)-(5).



Corollary 4.2

If A is a Euclidean QC algebra with o = 1 then A is a commutative division algebra, in particular, dim A < 2.

Proof. The assumption o = 1 implies that A is commutative, hence L(z) = L(z?) = R(z) = R(x”) and therefore
ker L(xz) ker L(x) = 0 for any € A. If d(A) > 1 then given an arbitrary nonzero y € A, y € ker R(xz) = ker L(x) for
0 # x € ker L(y) , hence yy = 0. Since A is commutative then polarization of yy = 0 implies AA = 0, a contradiction.

Corollary 4.3

The following statements are equivalent:
@ ker L(z) Nker L(y) # 0;
@ ker R(z) Nker R(y) # 0.
@ ker R(z) = ker R(y);
@ ker L(z) = ker L(y);
© Im L(z) = Im L(y);
@ Im R(z) = Im R(y);

In particular, the left (or right) kernels is a projective partition of A \ {0}.

Observe that for example Im L(z) N Im L(y) # @ does not imply that Im L(x) = Im L(y).




Corollary 4.4

Let Ay, resp. A_1, denote the subspace of sy ric, resp. sk Y ric el w.r.t. action of the involution o. If
dim A > 3 then A_q1 # 0. In particular, if dim A > 2 and dimA_1 > 1. Then

n —d(A) =0 mod 2.

Proof. The first part: if A_; = O then o = 1, hence A is commutative. By Corollary 4.2: dim A < 2, a contradiction. Next,
fix a nonzero w € A_1. Then L(w?) = —L(w) and

Im L(w) _L—(;U) Im L(w) L(—u;) Im L(w) (Im L(w) is an invariant subspace),

L(w)L(w?) = —L(w)2 = ﬂImL(w)a
= [det L(w)|ImL(w)}2 — (_1)dim Im L(w)

hence dim Im L(w) is an even number.

Proposition 4.1 (Classification of Euclidean QC algebras in 2D)
If dim A = 2 then the only three following possibilities hold:
(A) A is a symmetric composition algebra, and in this case

(a) A contains a nonzero idempotent and is isomorphic to para-complex numbers,
(b) A does not contain nonzero idempotents: there is a basis (e, f) of A with e?> = f, ef = fe = e and
fP=Xe—f feK

(B) A is the unital algebra of complex numbers.




Outline

o A hidden Hurwitz algebra structure



The main tool is the so-called pre-idempotent triples which represent idempotents ‘upstairs’ (= in the triple of A).
A — T(A)

(z1, 22, z3) — Idm(T'(4))

Definition. Let A be a quasi-composition algebra. A triple (z1, 2, 3), h(z;, ;) = 1, is called an pre-idempotent triple or
(z1,m2,23) € J(A), if

z{ =axoz3
@] =Tiy1%ite, @€ Z/3Z, < z§ = x3T1 (4)
z§  =zi22

How it works:

Theorem 5.4 below on the commutator relations [L{ L;, R, s Ri42] = [R; R], L2 L7 5] = 0 implies the following

"three-kernels” decomposition:
A =ker L(w;yo) ®ker R(x;41) ® A (x;) ® N (x;), where #(x;)® AN (x;)=1Im L(w;'Jrz) N Im R(w;ﬁrl)
Then a deeper result is that the principal kernel .# (x;) can be isotopically made into a Hurwitz algebra w.r.t.
z ey := (zuz)(usy), Vo,y € A (u1) C Im L(ug) NIm R(ug)
For instance, it is easy to see that w is the e-unity:
z e uy = (zuz)(ugui) = (by (4)) = (zu2)uy = R(u3)R(u2)z = =
uy oy = (uruz)(uzy) = (by (4)) = u3 (uzy) = L(ug)L(uz)y = y.

But the proof of the composition property and the closeness by the e-multiplication is nontrivial.




For any nonzero u € A there are nonzero solutions £, n of
ué =nu=0 = (by the triad principle) &n =0,
hence the following is well-defined:
M (u) := ker R(§) = ker L(n),
E(u) :=ImR(£7) =Im L(n?)
A= H(u)® E(u).

Theorem 5.1
Let (u1,u2,u3) € J(A) and d(A) > 1. Then

wi € M (u;) C Im L(uf,,) NIm R(ug, ).

Let us define for any Vz,y € M (u1)
z oy := (zu2)(usy) € A (u1).
Then
ey € Mur)
uiexrT =TeU =2
h(z ey,z ey) = h(z, x)h(y,y),
In particular, (.# (u1), ®) is a Hurwitz algebra and d(A) € {1, 2,4, 8}.




Let us consider the realization of the symmetric group S3 as the general affine group Aff(Z/3Z):

S3 = AfI(Z/32) = {g = (

m
0

i > :m e (Z/32)%, i € Z/3L}

where the determinant is a multiplicative homomorphism det : S3 & Aff(Z/3Z) — (Z/3Z)* = Z/2Z is the sign of g € S3:

Given g € Aff(Z/3Z), define the corresponding nondegenerate linear endomorphism

l9l(z) = ma +i: Z/3Z — Z/3L.

det g = m = signg.

S3 acts on permutation triples 7 = (%, j, k) of {1, 2, 3} coordinate-wisely: = — g(7) = (g(%), g(4), g(k)). Any involutive

operator o generates a cyclic group {0, 02 = e} 2 7/27, this implies the multiplicative group homomorphism

Notice that {e, o} is abelian, hence

X : Afi(z/37) 9<%

(2/32)* 5 7./27. = {e, o},

x(gh) = x(9)x(h) = x(h)x(g9) = x(hg).

We illustrate the above explicitly below

(m. k) | g | [6® | 9(1,2,3) | x(9)
(1,0) e t (1,2,3) e
(1,1) € t+1 (2,3,1) e
(1,2) | € | t+2 (3,1,2) e
(2,2) ar | 2t+2 | (1,3,2) o
(2,1) ag 2t + 1 (3,2,1) o
(2,0) az | 2t (2,1,3) o

Here ov; acts on 7 by interchanging 7 4+ 1 and @ + 2 (as elements of Z/3Z) followed by involution ¢ on all coordinates.



Lemma 5.2
Sz = Aff(Z/3Z) acts faithfully on J(A): if T = (x1,x2,x3) € J(A) then g(T) € J(A). More explicitly, the S3-action
consists of

(a) three right-shifts x; — x;41 and

(b) three conj-flips: interchanging any pair z; and xj, followed by o-action coordinate-wise.

Furthermore, the S3-action can be naturally extended to an S4-action on J(A) by adding sign involutions on A.

For example, if (x1,x2,x3) € J(A) then so do also (z2, z3,x1) etc. and (z7, 2§, x5 etc.

T2

Example. Let A = s0(3). Then (1, z2,z3) € J(A) if and only if (z1, z3, z2)
is the right-handed orthonormal basis:

Im L(z1) = span(ea, x3),  ker L(z1) = span(z1) =&




Theorem 5.3 (The existence)

Let A be a Euclidean quasi-composition algebra. Let
@Q x1 €Aand h(zy,21) =1
@ z2 € ImL(x7) and h(z2,xz2) = 1.

Then (1,2, 25 x]) € J(A) (recall that the latter means that x{ = x; 4 2x;42, 1 € Z/3Z.)

Proof. Let x:3 := 25«7, implying the 3rd identity in (4). Next, by Theorem 4.1, since x3 € Im L(z{):

z{zg = 2] (z527)7 = 2] (z122) = L(2])L(xz1)w2 =| L(z])L(x1) = projection on Im L(z7) | = =2,

implying the 2nd identity in (4). It remains to show that h(x3,x3) = 1 and y := x5 z§ is equal to 1. To this end, note that
h(z3,z3) = h(zgz‘f, zgz‘f) = h(z1z2,z122) = h(z2, zf(:vle)) = h(zg,z2) = 1.
Furthermore, by the above 2 € Im R(z5) and 3 € Im L(x§) hence
y7xf = (zaw3)zg = R(zf)R(x3)we = zo(butalso = z7z3)
zgya = zg(zzzg,) = L(zg)L(zg)mg = x3(but also = zg:cf).

It follows that

(y7 —z{)xzg =0

x5 (y7 —27) =0,
therefore by the triad principle either y7 — 2§ = 0 or 0 = 252§ = (x2x3)? = y. The latter is impossible because
h(y,y) = h(z3z3, x5 3) = h(zax3, 2223) = h(ws, 23 (v223)) = h(zz, z3) = 1.

Therefore we have y7 — :c'i' =0, ie :c'i' = xgx3 which implies the 1st identity in (4). This proves the theorem.



Theorem 5.4 (The commutator relations)

Let (z1,x2,x3) € J(A). Then foranyi € Z/3Z,
Q R(ziy2)L(xf)L(z;) = L(zip1) Lz 1) R(ziy2),

R(z;42) R(efy o)

@ ker L(x;) ——— ker L(z{, ;) ——— ker L(x;) are bijections and R(z7, o) R(%i+2) = Lier L(z;)

© ker L(z;) C Im R(x{,,) and ker L(z{) C Im R(w;41)

Example. lllustrate this by A = s0(3) and (z1, z2,z3) € J(A):

® ImL(z1) = span(wg,23),  ker L(z1) = span(z1)
R(x3) R(z§)

@ ker L(z1) ——— ker L(x5) ———— ker L(z1)

@ ker L(z1) C Im R(x%), ker L(z]) C Im R(z2)

x2

z3

Corollary 5.5

If A is a nonzero Euclidean QC-algebra then dim A > 2d(A) + 1. In particular, for any two nonzero x, y:
dim(Im L(z) NIm L(y)) > n — 2d(A) > 1. In particular, any Euclidean QC-algebra is simple.

Proof. For any ideal I # A, 0: dim I > dim IA > n — d and similarly dim I+ > n — d, hence 2d > n, a contradiction

with Corollary 5.5.




From the left and right kernels to the " principal kernel”

For any nonzero u € A there are nonzero solutions £, n of
u =nu=20 = &n =0,
hence the triad principle, the following is well-defined:
M (u) := ker R(§) = ker L(n),
E(u) :=ImR(£7) = Im L(n?)
A= A(u)®E(u).

Definition 5.6
If A'is a Euclidean QC algebra, then .# () is the principal kernel and & (x) is the principal image of x € A.

Proposition 5.1

For any nonzero x € A, dim .# (x) = d(A) and
Q ifO#te A (x) then A (t) = M (x);
Q if A (t) N M (x) # D for a nonzero t, then A (t) = M (x);
Qte M(x) e xe Ht).




Mhi+1 Ni+2 i Mi+1
aoL(uz)\w(mNL(u,m
Rj l L(&:) l oL(&i+1) l oL(&i+
& o i1 —— Eiyp —— 5 & = &
goL(nit2) ”OL(ﬂi)\L(771:\
1 ooL(uita) il ooL(u,) 1 oL (uit1)
Uit2 U; Uit Uit2 Ui
goL(&it1) UOL(fwzr)\o (&)
‘L oL (nit1) goL(1itz) l goL(n:)
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FIGURE 1. Vertical lines between orthogonal elements, wave arrows shows kernels.
Le. one makes a general triple u = (u1, u2, uz) into an orthogonal idempotent triple
(&1, iy mie1)



Some useful numerology

Hsidim=3n |3 |6 | 12| 249 |12|15|21|15 (18| 21| 24|30 |42|27|30|33|36|51|54|57|60|72
QC-dim=n 1124|813 |4|5|7]5|6/|7|8]10/14]9 |10]11 12|17 18] 19| 20| 24
m=n-2d-10[1[3|7]0]|1]2 0123|5901 2|3 |0|1 2|37
d=d(A) 0(0j0fO |1 |1 ]1|1|2]|2|2]|2]|2|2|4 |4 |4 4|8 |8 8|88
n+d 1124|8456 |8 |7 8|9 |10]12]16] 13| 14| 15| 16| 25| 26| 27| 28| 32
n—3d 112(4(8|0]|1]2]|4 011 (2(4(8]— = | === = D
QC-algebra? v VIVIV|=|?2|vV|—=|Y|—=|—=?|?|—-|—-|—-|?]|—-|—-|—-|—|?

TABLE 3. Permitted Peirce dimensions of exceptional Hsiang algebras. The four
first columns correspond to mutants. The Peirce dimension dim AL,(—%) =3d+2

In dimensions n = 1, 2, 4, 8 (corresponding the first 4 columns) one has classical Hurwitz algebras, d = 0
For n = 3 one has a cross product algebra s0(3), d = 1 (and its isotopes)

For n = 6 one has a color anti-commutative algebra Cg, d = 2 (and its isotopes)

For n = 7 one has a cross product anti-commutative algebra of imaginary octonions, d = 1



Outline
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@ (A, 0) and (B, ©) are isotopic, if there exist invertible linear maps (c, 3, ) from A to B, such that
a(z) o B(y) = y(xz oy) holds for any =,y € A.
If v = 1 then an isotopy is called principal. If (c, 8, ) is an isotopy (A, 0) — (B, ©) then (ay ™', 8y~ 1, 1) is a
principal isotopy (B, o'y = (B, o).

@ An isotopy of (A, o) to itself is called an autotopy. The set Atp(A, o) of all isotopies (a, b, c) € GL(A) X3 of A is the
autotopy group of the algebra A. An automorphism ¢ is an autotopy where a = b = c.

Let (A, 0, o, h) be a metrized algebra. Given a € GL(A), we denote by a~ ! its inverse, a® = cao its o-conjugate and by

a* its h-adjoint, i.e. h(a(x),y) = h(z,a*(y)), Yo,y € A. Then

@ a —a*, a— a !anda — a’ are involutions which commute pairwisely (the first two are anti-automorphisms)

Lemma 6.1 (A Dg-action on the autotopy group Atp(A))

Let 0 := (a,b, ) € Atp(A, 0,0, h) then T0, S0, Z0 € Atp(A, 0, o, h) and (S, Z, T) & Dy, where
S(a,b,¢) = (b",a°, )
Z(a,b,c) = (a1, 7T h

T(a,b,c) = (*, (") 7!, a”)

Proof.
0 52=2z2=712=1
@ SZ =28, TZ=2ZT
@ STZ =TSTZ, (ST)® = Z



Proposition 6.1 (Petersson’s isotopes)
Let (A, o, h, 0) be a quasicomposition algebra and T € G L(A) satisfy

Q I |
Q@ =12= b (notice that ™7 = 1 < 7 is orthogonal)
Q (r,7,7%) € Atp(A, o, h, 0).
Then (A, o, h, 0) is also a quasicomposition algebra, where = o kY= -rk(m) o -er(y).

Theorem 6.2 (Classification of 3D (Euclidean) QC algebras)

Any 3D Euclidean quasi-composition algebra is isomorphic to one of the following:
@ one of the three Petersson's isotopes of the anticommutative cross-product algebra on s0(3, K)

@ the algebra & in Example 2.2




Thank you for your attention!
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