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Properties ”in large”

Given a two-dimensional surface in R3, knowledge of its Gaussian curvature K provides a local information
about S: K(x) > 0, K(x) = 0 or K(x) < 0 is exactly when S is convex, flat or saddle (locally) at x.

On the other hand, ”geometry in large” studies the properties which hold under certain ”completeness”

assumptions (such as closed, complete or without boundary). In that case, one recover connections between

geometry, analysis and topology/combinatorical structure.

Euler polyhedron formula for a convex polyhedron

χ(P ) = V − E + F = 2.

Theorem (Gauss–Bonnet) Let S be a compact and orientable surface in R3 without boundary. If K is the

Gaussian curvature of the surface and χ is its Euler characteristic then∫∫
S

K dA = 2πχ(S)

We also mention an example from group theory

Class equation If G is a finite group then

|G| = |Z(G)| +
r∑

i=1

|Cl(xi)|
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In order to find a natural meaning of properties ”in large” in nonassociative algebra, we need to study the

smallest subalgebras, idempotents and 2-nilpotents.

The word “idempotent” stems from the Latin words “idem” and “potent,” which when put together,

means “the same power.” The term was originally introduced in mathematics to refer to mathematical

operations that can occur multiple times while only altering the end result once.

We consider only commutative algebras over a field k of characteristic ̸= 2.

An idempotent of an algebra (A, •) is an element x such that

x • x = x,

and a 2-nilpotent is a nonzero element satisfying

x • x = 0.

The set of idempotents is denoted by Idm(A). In what follows we write x • x = x2. From the analytical point

of view, an idempotent solves equation

x
2 − x = 0,

and its properties must depend on the ”differential” at x, i.e. 2L(x)− I, this will be in focus of our discussion.

An immediate corollary of the definitions is the following

Observation. Any one-dimensional subalgebra is spanned either by an idempotent or a 2-nilpotent.

In some ways, idempotents are also analogous to sl2-subalgebras of Lie algebras.

(Felix Rehren, 2016, Ind. Univ. Math. J.); similar ideas come back to Nielsen (1963) and Seligman (2003).
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A map of similarities between Lie and Jordan algebras

algebra g is a semisimple Lie algebra over C A is a (formally real) Jordan algebra

class identity [x, y] = −[y, x] xy = yx

defining identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 [L(x2), L(x)] = 0

adjoint operator ad(x)y = [x, y] L(x)y = xy

self-normalizer h a Cartan subalgebra of g h2 = h, an idempotent

associative form tr(ad(x)ad(y)) tr(L(x)L(y))

eigensubspace gα = {x ∈ g : ad(h)x = α(h)x, h ∈ h} Ah(λ) = {x ∈ A : L(h)x = λαx}

roots/spectrum 0 ̸= α ∈ h∗ is a root if gα ̸= 0 is nonzero λ ∈ k is a Peirce eigenvalue if Aλ ̸= 0

σ(A) = {0, 1
2 , 1}

root/Peirce

decomposition
g = h ⊕

⊕
α gα A = H ⊕

⊕
λ∈σ(A) Ah(λ)

fusion laws [gα, gβ ] ⊂ gα+β Ah(λ)Ah(µ) ⊂
⊕

ν∈λ⋆µ Ah(ν)

classification regular families and exceptional special algebras and the Albert algebra

Vladimir G. Tkachev European Non-Associative Algebra Seminar, January 15th, 2024 (6 of 36)



Below are some examples of appearance of idempotents in commutative nonassociative algebras outside a

purely algebraic context:

A projection operator (i.e. P 2 = P ) in an associative algebra setting. The trace trP is the dimension

of the target space.

An essential idempotent of the ∨-algebra defined in the famous 1962-paper on the ”Eightfold way” by

Gell-Mann on symmetries of baryons and mesons, corresponding to the equation

q ∨ q + η(q)q = 0.

These essential idempotents are the directions of symmetry breaking for the adjoint representation: that

is, they are the critical points of the invariant functional {A,A,A} on the unit sphere {A,A} = 1.

The bifurcation equations of the form B(x, x) + x = 0 considered by (D.H. Sattinger, 1977), where B

is a bilinear mapping from V × V to V which is invariant under a certain group.

In general, a stationary point of a distinguished cubic form u(x) on an inner product space V : the rule

x • y = Hessu(x)y induces a commutative algebra structure on V . Euler’s homogeneous function

theorem implies that x • x = 1
2∇u(x), hence x is an idempotent if and only if x is a (non-degenerated)

stationary point of a Lagrangian u(x) − λ⟨x; x⟩.

Idempotents in axial algebras: mimic a distinguished finite subset of involutions in a certain group

generating a nice commutative algebra structure. Axes are specific idempotents with common fusion

rules generating a whole algebra.
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Problem section I

Some immediate naive (=natural) questions arise:

As we have seen, idempotents appear in several contexts outside the conventional area of nonassociative

algebra. One could expect that some corresponding analogues holds true for higherdimensional

subalgebras. What are analogues for two-(or three-) dimensional subalgebras?

The number of idempotents of a commutative algebra in a generic situation is 2dim A. What is an

expectable number of two-dimensional subalgebras of a commutative algebra in a generic situation?

The spectrum of idempotents in an associative algebra is quite simple: 0 and 1 are the only spectral

values. In general, the (Peirce) spectrum can be very variegated.

Do there exist any obstructions for the spectrum of idempotents? any exceptional eigenvalues? How

much freedom one can use to construct idempotents a priori?
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So, what is a ”generic algebra”?

If you start with a basis in a vector space then you have a full freedom to define an algebra: for example, in the

multiplication table

ei • ej =
∑
k

γij,kek

the structure constants γij,k maybe arbitrary. For a commutative algebra there should be γij,k = γji,k.

This, in particular, yields that the dimension of the variety of all commutative n-dimensional algebras is

dimComAlg(k, n) =
n2(n + 1)

2
.

For example, dimComAlg(k, 2) = 6.

But one has to be careful with idempotents. In general, a commutative algebra may have any number of
idempotents, even infinitely many. The problem comes back to B. Segre (1938), who interpreted idempotents

in commutative algebras over complex numbers as solutions of a quadratic system

n∑
i,j=1

γij,kxixj = xk, 1 ≤ k ≤ n.

where x =
∑

i xiei is a basis decomposition. It turns out that idempotents, if they form a ”complete” set,

they must satisfy some explicit constraints. A nontrivial issue here is how to interpret the completeness, as we

shall see the regular idempotents plays a special role here.
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Definition

An algebra idempotent c is called singular if det(2L(c) − I) = 0, otherwise c is regular, i.e.

Φ(c) := 2L(c) − I

is invertible.

The definition of regular idempotents in the context of algebras of rank three were introduced by

S. Walcher (1999). In his terminology, a singular idempotent is ”of multiplicity 2”.

The trivial zero idempotent is regular.

Note that for a singular idempotent, the number 1
2 is always an eigenvalue, while for a non-singular

idempotent the set of nontrivial ( ̸= 1) eigenvalues maybe empty.

The operator Φ(c) acts as the squaring on idempotent differences:

Φ(c)(c − c1) = 2c • (c − c1) − (c − c1) = (c − c1)
2
.

Idempotents in associative algebras are always regular.

If a Jordan algebra contains a regular idempotent ̸= 0 and the unit then the algebra is not simple.

If the field k is the complex or real numbers then non-singular idempotents are always isolated points.

The value 1
2 is distinguished for commutative algebras with identities (V.T., J. Algebra, 2021), it appears

important for automorphism of axial algebras, construction exotic solutions of PDE etc.
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Lemma 1

If c is an idempotent in a two-dimensional algebra, u is a nonzero non-collinear with c vector then

c • c = c

c • u = αc + λu.

where λ is independent of u.

Proof. Indeed, L(c) =

(
1 α

0 λ

)
in the basis (c, u), that implies trL(c) − 1 = λ has an invariant

meaning. In fact, λ is the second (except for 1) eigenvalue of L(c).

Corollary 1

Let A be a two-dimensional algebra and c1, c2, c3 are distinct nonzero idempotents. Then

c1 • c2 = λ2c1 + λ1c2,

c2 • c3 = λ3c2 + λ2c3,

c3 • c1 = λ1c3 + λ3c1,

(1)

where (a multiset) {1, λi} is the spectrum of L(ci). Moreover λjck − λkcj is an eigenvector of L(ci) with

eigenvalue λi.

Indeed, L(ci)(λjck − λkcj) = λi(λjck − λkcj).
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A presence of 3 = 22 − 1 distinct nonzero idempotents in a two-dimensional subspace of a commutative

algebra considerably affects the algebra structure.

Lemma 2

If c1, c2, c3 are three distinct nonzero idempotents in a two-dimensional subspace V of a commutative algebra

(A, •) then V is a subalgebra of A, and either of the following holds:

V contains exactly three non-collinear idempotents c1, c2, c3, or

(i) c1, c2, c3 are singular idempotents, (ii) the line {c1t + (1 − t)c2 : t ∈ k} consists of idempotents,

(iii) c1 − c2 is a 2-nilpotent, and (iv) all idempotents of V belong to the line.

Proof. Any pair of the idempotents is a basis of V , hence c3 = αc1 + βc2, αβ ̸= 0, and therefore

αc1 + βc2 = (αc1 + βc2)
2 = α2c1 + 2αβc1 • c2 + β2c2, implying

c1 • c2 =
1 − α

2β
c1 +

1 − β

2α
c2. (2)

Hence V is a subalgebra and 1−β
2α is an eigenvalue of L(c1). Note that 1−β

2α = 1
2 iff α + β = 1, which is

equivalent to that c1, c2, c3 lie on the same line, in which case (2) becomes 2c1 • c2 = c1 + c2, therefore

(c1 − c2)
2 = 0, i.e. c1 − c2 is a 2-nilpotent and also the whole line consists of idempotents:

(c1t + (1 − t)c2)
2
= c1t

2
+ 2t(1 − t)c1 • c2 + (1 − t)

2
c2 = c1t + (1 − t)c2,

and conversely, any nonzero idempotent of V belong to the same line. However, if α + β ̸= 1 then a similar

argument implies that xc1 + yc2, xy ̸= 0, is an idempotent iff a linear system with determinant α+β−1
αβ is

(uniquely) solvable, implying that xc1 + yc2 = c3.
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An auxiliary equation

We write (λ1, λ2, λ3) ∈ Λ iff

4λ1λ2λ3 − λ1 − λ2 − λ3 + 1 = 0.

Proposition 1

Suppose (λ1, λ2, λ3) ∈ Λ. Then

(a) (1 − 4λiλj)(2λk − 1) = (2λi − 1)(2λj − 1) for any permutation (i, j, k) of (1, 2, 3);

(b) either all λi ̸= 1
2 or at least two of them are 1

2 ;

(c) ( 1
2 ,

1
2 , λ) ∈ Λ for any λ;

(d) if all λi ̸= 1
2 then

1

1 − 2λ1

+
1

1 − 2λ2

+
1

1 − 2λ3

= 1.
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Theorem 1 (Krasnov, V.T., 2018)

Let A be a commutative algebra over k, dimk A = 2. Suppose c1, c2, c3 are distinct nonzero idempotents,

spect(ci) = {1, λi}. Then (λ1, λ2, λ3) ∈ Λ, i.e.

4λ1λ2λ3 − λ1 − λ2 − λ3 + 1 = 0. (3)

Proof. Write ck = xjci + xicj , where xj , xi ∈ K, xjxi ̸= 0. Then (1) gives

(xjci + xicj) • ci = λi(xjci + xicj) + λkci,

and then (xj(1 − λi) + xiλj − λk)ci = 0, therefore λk = (1 − λi)xj + λjxi. Arguing similarly, we get

λk = λixj + (1 − λj)xi, hence

xi + xj = 2λk

xj(1 − 2λi) = xi(1 − 2λj).

If λi = 1
2 then λj = 1

2 , which implies (3) by Proposition 1(c). If λi ̸= 1
2 then λj ̸= 1

2 and we have

xi

xj

=
1 − 2λi

1 − 2λj

.

Since ci = − 1
xj

ck +
xi
xj

cj we find xi =
2λk−1

1−2λj
and xj =

2λk−1

1−2λi
. Summing up we obtain

2λk = xi + xj = −(1 − 2λk)

(
1

1 − 2λi

+
1

1 − 2λj

)
which readily yields (3).
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Theorem 2

Let dimK A = 2 and c1, c2, c3 be distinct regular nonzero idempotents. Then

(i)
1

1 − 2λ1

+
1

1 − 2λ2

+
1

1 − 2λ3

= 1;

(ii)
c1

1 − 2λ1

+
c2

1 − 2λ2

+
c3

1 − 2λ3

= 0;

(iii) ck =
1

1 − 4λiλj

(ci − cj)
2;

(iv) there are exactly three nonzero idempotents in A;
(v) there are no 2-nil elements;

(vi) c1, c2, c3 are non-collinear.

(iii) follows from (i) and Proposition 1(a):

ck = xjci + xicj =
2λk − 1

(1 − 2λi)(1 − 2λj)

(
ci + cj − (2λjci + 2λicj)︸ ︷︷ ︸

=2ci•cj

)
=

1

1 − 4λiλj

(ci − cj)
2

(iv)–(vi) follow from Lemma 2.
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Generic algebras

Since a generic (in the Zariski sense) polynomial system has always Bézout’s number of solutions, a generic

algebra must have exactly 2dimA distinct idempotents (including 0). The subset of the corresponding

nonassociative algebra structures on a vector space V is an open Zariski subset in V ∗ ⊗ V ∗ ⊗ V .

Definition 1

An n-dimensional algebra (A, •, k) is said to be generic if it contains 2n distinct regular idempotents.

It immediately follows from Theorem 2 that

Corollary 2

A two-dimensional algebra is generic if and only if it contains three distinct regular nonzero idempotents.

When K is the complex numbers or an algebraically closed field, one can prove that a generic algebra

does not contain 2-nilpotents (a result ”in large”). A very closed set of algebras in dimension 2 was

discussed by S. Walcher (1999).

Many axial algebras (excluding Jordan type with η = 1
2 ) are generic. We believe that the invariant

algebras of sporadic finite simple groups (as the Griess-Conway-Norton algebra) are generic.

If A is a generic axial algebra then Aut(A) is finite (Gorshkov/McInroy/Shumba/Mudziiri/Shpectorov

arXiv:2311.18538)

An example of a non-generic algebra is any commutative algebra satisfying a nontrivial identity, for

instance, Jordan algebras or Hsiang algebras (algebras of cubic minimal cones).
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Example 3 (Associative)

Let V = k2 with componentwise multiplication. Then the only nonzero idempotents are c1 = (1, 0),

c2 = (0, 1), c3 = c1 + c2 = (1, 1), where c1c2 = 0, and λ1 = λ2 = 0 and λ3 = 1, so that (i)-(ii) become

1

1 − 2 · 0
+

1

1 − 2 · 0
+

1

1 − 2 · 1
= 1

c1

1
+

c2

1
+

c3

−1
= 0.

Example 4 (Harada-Hsiang algebra)

Let V be a two-dimensional algebra generated by three idempotents subject to the condition

c1 + c2 + c3 = 0. Then

ck = c
2
k = (−ci − cj)

2
= ci + cj + 2cicj = −ck + 2cicj , {i, j, k} = {1, 2, 3},

hence cicj = ck = −ci − cj . This implies λ1 = λ2 = λ3 = −1, hence (i)-(ii) turn into

1

1 − 2 · (−1)
+

1

1 − 2 · (−1)
+

1

1 − 2 · (−1)
= 1

c1

3
+

c2

3
+

c3

3
= 0.
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Example 5 (Non-generic, a Hsiang algebra)

Let A be the three-dimensional algebra generated by four idempotents ci, i = 0, 1, 2, 3 subject to the

condition:

ci + cj is a 2-nilpotent ⇔ (ci + cj)
2 = 0 for any i ̸= j

Then the following Peirce decomposition holds:

A = Aci
(1) ⊕ Aci

(− 1
2 ),

where dimAci
(1) = 1 and dimAci

(− 1
2 ) = 2. The corresponding fusion

rules are

⋆ 1 − 1
2

1 1 − 1
2

− 1
2

1,− 1
2

A simple analysis reveals that besides the initial four idempotents are the

only idempotents in A, in particular, A is not generic.

c0

c1

c2c3

In other words, there exist non-generic algebras with only non-singular idempotents, but they are for few and

they are compensated by the presence of 2-nilpotents.
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Example 6 (A mix of generic and nongeneric)

The three-dimensional Matsuo algebra A = 3Cα is spanned by three idempotents c1, c2, c3 subject to the

following conditions:

ci • cj = α
2 (ci + cj − ck), {i, j, k} = {1, 2, 3}.

If α ̸= −1, 1
2 then the Matsuo algebra 3Cα, α ∈ k, is a 3-dimensional generic unital algebra. More

precisely, there exists exactly 7 = 23 − 1 distinct nonzero idempotents: c7 = 1
α+1 (c1 + c2 + c3) is the

algebra unit and c3+i = c7 − ci, i = 1, 2, 3 ares the conjugate idempotents. The spectrum is given as

follows:

σ(c7) = {1, 1, 1}, σ(ci) = {0, α, 1}, σ(c̄i) = {0, 1 − α, 1}.

In the exceptional case α = 1
2 , there exists an infinite family

of idempotents cx := x1c1 + x2c2 + x3c3 on the circle

(x1− 1
3 )

2
+(x2− 1

3 )
2
+(x3− 1

3 )
2
= 2

3 , x1+x2+x3 = 1

and have the same Peirce spectrum σ(c) = {1/2, 1, 0}. It

is known that the Matsuo algebra 3C 1
2

is power associative.

In the case α = −1, there are exactly three nonzero

idempotents ci, and also a one-dimensional zero subalgebra.

c0

c7

cx
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Example 7 (An isospectral algebra in 3D, Krasnov, V.T., 2019)

Let k be a field containing primitive roots of unity of degrees 3 and 7, denoted by ϵ and ζ, respectively. Then

γ := ζ + ζ2 + ζ4 is a Klein integer unit, i.e. it satisfies 2γ2 − γ + 1 = 0. Consider the algebra A3 over k

spanned by three idempotents c1, c2, c3 satisfying

c1c2 = (γ − 1)c1 − γc2 + γc3=: c5,

c2c3 = γc1 + (γ − 1)c2 − γc3=: c6,

c3c1 = −γc1 + γc2 + (γ − 1)c3=: c7,

One can show that

The only nonzero idempotents in A3 are {c1, c2, . . . , c7}, where c4 := −γ(c1 + c2 + c3), and their

spectrum is

σ(ci) = {1, ϵ, ϵ2}, ϵ
2
+ ϵ + 1 = 0,

i.e. A3 is isospectral and generic.

The nonzero idempotents in A3 are closed under multiplication:

∀ci, cj ∈ Idm(A3) ⇒ cicj ∈ Idm(A3).

Since the eigenvalue 1 is single, cicj ̸= cj , ci. Thus, A3 is a quasigroup.

The idempotents, and therefore all elements of A3 satisfy the medial algebra identity

(x • y) • (z • w) = (x • z) • (y • w), ∀ x, y, z, w ∈ A.

There are no two-dimensional subalgebras.
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Proposition 2 (An explanation)

A3 is an isotope of the associative algebra A3 := k[z]/(z3 − 1) with the new multiplication

[p(z)] • [q(z)] = [p(ϵz)q(ϵz)],

where [·] : k[z] → k[z]/(z3 − 1) is the standard projection.

Proof. Indeed, let ζ be a primitive root of unity of degree 7 and ρ(z) be a polynomial of degree two with the

Lagrange data ρ(ϵk) = ζ24−k
, k = 0, 1, 2. Then [ρ(z)m] • [ρ(z)m] = [ρ2m(ϵz)] and

ρ
2m

(ϵϵ
k
) = (ζ

24−k−1
)
2m

= (ζ
24−k

)
m

= ρ
m
(ϵ

k
),

thus [ρm] • [ρm] = [ρm], i.e. cm := [ρm(z)] is an idempotent in A3, 1 ≤ m ≤ 7. This gives the only

possible 7 distinct nonzero idempotents in A3. Note that c7 = [ρ77] = [1] and [ρ(ϵz)] = [ρ(z)4], hence

cm • cn = [ρ
m
] • [ρ

n
] = [ρ

m+n
(ϵz)] = [ρ(z)

4(n+m)
] = c4(m+n),

We have for the values at the node points:

1 ϵ ϵ2

ρ ζ ζ4 ζ2

ρ2 ζ2 ζ ζ4

ρ4 ζ4 ζ2 ζ

therefore c1 + c2 + c4 = [ρ + ρ2 + ρ4] = (ζ + ζ2 + ζ4)[1] = γc7 where 2γ2 − γ + 1 = 0. Also

c1 • c2 = c5, c2 • c4 = c3 and c4 • c1 = c6, readily implying the claim.
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Problem section II

Given a generic algebra (A, •, k) over a general field we address several principle questions:

Do there exist any nonzero idempotents in A except for the 2n − 1 postulated?

(an expected answer: NO)

Do there exist any 2-nilpotents in A?
(an expected answer: NO)

Is any proper subalgebra of A generic?

(an expected answer: unclear)

Given a proper subalgebra of A, how many idempotents it contain?

(an expected answer: unclear)

How many proper subalgebras of A in each dimension exist? For example, how many 2D subalgebras do

exist?

Do there exist some natural restrictions (“syzygies”) for idempotents?

(an expected answer: YES)

Does there exist a natural stratification of the set of idempotents in generic algebras?
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Syzygies in generic algebras

Syzygy: from Greek συζυγια ”conjunction, yoked together”

The classical syzygies:

Let us consider the matrix

X =

(
x11 x12 x13 x14

x21 x22 x23 x24

)
where the xij are indeterminates over a field k. With [ij] = x1ix2j − x1jx2i, one has the Plücker relation

[12][34] − [13][24] + [14][23] = 0.

Let P ∈ C[x] be a polynomial of degree n with only simple roots a1, . . . , an and degH(x) ≤ n − 1. Then

n∑
i=1

H(ai)

P ′(ai)
= 0

This is a partial case of what is called Euler-Jacobi formula, see below.
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Generic algebras over complex numbers

Following to Segre (1938), given a commutative algebra A over C, let x =
∑

i xiei be an element written in a

basis. The idempotent equation Ψ(x) − x = 0, where Ψ := x2, becomes in the homogeneous coordinates

{Fk(x) :=
n∑

i,j=1

γijkxixj − xkx0 = 0, 1 ≤ k ≤ n}, x = (x0 : x1 : . . . : xn) ∈ CPn
. (4)

Then x0 = 1 (resp. x0 = 0) corresponds to idempotents (resp. to 2-nilpotents). By the Bézout theorem, the

quadratic system has exactly 2n solutions in CPn, counted with multiplicities. Recall that a (finite) root is

simple if and only if the Jacobi matrix of (F1, . . . , Fn), where Fk(x) = Fk(1 : x), is nondegerate at x.

Proposition 3

A commutative algebra A over C is generic iff (4) has exactly 2n simple rootd.

Proof. Since A is commutative, the multiplication is uniquely determined from Ψ by polarization

2L(x)y = 2x • y = Ψ(x + y) − Ψ(x) − Ψ(y) = (DF (x) + I) y,

hence

DF (x) = 2L(x) − I (5)

hence detDF (x) = 0 whenever det(2L(x) − I) = 0.
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We recall a classical result (a generalization of the residue theorem on multidimensional case).

Euler-Jacobi Formula

Let F (x) = (F1(x), . . . , Fn(x)) be a polynomial map and let F̃ be the polynomial map, whose components

are the highest homogeneous terms of the components of F . Denote by SC(F ) the locus of all complex roots

of F1(x) = F2(x) = . . . = Fn(x) = 0 and suppose that any root a ∈ SC(F ) is simple and, furthermore,

that SC(F̃ ) = {0}. Then, for any polynomial h of degree less than the degree of the Jacobian:

deg h < N := −n +
∑n

i=1 degFi, one has

∑
a∈S(F )

h(a)

det[DF (a)]
= 0 (6)

where D(·) denotes the Jacobi matrix.

In our notation:

Fk(x) =

n∑
i,j=1

γijkxixj − xk, SC(F ) = {x : Fk(x) = 0} is the set of all idempotents of A,

F̃k(x) =

n∑
i,j=1

γijkxixj , SC(F̃ ) = {x : F̃k(x) = 0} is the set of 2-nilpotents of A

By Bézout theorem, the total cardinality of SC(F ) ∪ SC(F̃ ) is 2n, hence for a generic algebra SC(F̃ ) = ∅.
Furthermore, in our case N = −n +

∑n
i=1 degFi = 2n − n = n, so that we arrive at
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The Syzygy Theorem (Krasnov Y., V.T., 2018)

Let A be a generic commutative algebra over C and Idm0(A) be the set of its idempotents counting zero. If

H(x) : A → ks be a vector-valued polynomial map, degH ≤ n − 1, then

∑
c∈Idm0(A)

H(c)

χc(
1
2 )

= 0, (7)

In particular, ∑
c∈Idm(A)

c

χc(
1
2 )

= 0.

Furthermore, if χc(t) = det(tI − L(c)) and Idm(A) the set of all nonzero idempotents of A then

∑
c∈Idm0(A)

χc(t)

χc(
1
2 )

= 2
n
, ∀t ∈ C.

Remark. In other words, if an algebra A is generic then its spectrum is overdetermined, i.e. satisfies syzygies.

For n = 2 we have χci
(t) = (t − 1)(t − λi), i = 1, 2, 3 (nonzero idempotents) and χ0(t) = t2, hence

χci
( 1
2 ) = (2λi − 1)/4, implying the claims (i)-(ii) of Theorem 2 above

1

1 − 2λ1

+
1

1 − 2λ2

+
1

1 − 2λ3

= 1

c1

1 − 2λ1

+
c2

1 − 2λ2

+
c3

1 − 2λ3

= 0.
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Proof. Idempotents c ∈ A are exactly the zeroes of F (x) = Ψ(x) − x, hence by the Euler-Jacobi formula

0 =
∑

c:F (c)=0

H(c)

det[DF (c)]
=

∑
c∈Idm(A)∪{0}

H(c)

(−2)n det[ 12 I − Lc]
= (−2)

−n
∑

c∈Idm(A)∪{0}

H(c)

χc(
1
2 )

which proves the first claim.

Xc(t) := χc(
1
2 + t) = t

n − a1t
n−1

+ . . . + (−1)
n
an =

n∏
i=1

(t − ti),

where ak is an elementary symmetric function of the roots t1, . . . , tn of Xc(t). Then a1 = p1,

a2 = 1
2 (p

2
1 − p2) etc, by the Newton’s identities, ak = Tk(p1, . . . , pk), where the power sums

pi = pi(c) = t
i
1 + . . . + t

i
n =

/
by (5): χc(

1
2 + t) = det(tI − 1

2DF (c))

/
= 2

−i
tr(DF (c))

i
.

hk(c) = Tk(trDF (c), . . . , tr(DF (c))
k
) = 2

k
ak(c).

Therefore the Euler-Jacobi formula yields for a fixed k ≤ n − 1 (note that k ̸= n):

∑
c∈Idm0(A)

hk(c)

χc(
1
2 )

= 2
k

∑
c∈Idm0(A)

ak(c)

χc(
1
2 )

= 0 ⇒
∑

c∈Idm0(A)

Xc(t) − χc(
1
2 )

χc(
1
2 )

= 0
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Definition 8

An algebra is called isospectral if all its idempotents have the same spectrum.

The algebras in examples 4, 5 and 7 are isospectral. But their structure is quite different. Note that the latter

example is a generic algebra. In such a case, the syzygy theorem helps to understand which spectrum is

possible for generic algebras.

To this end suppose we have a generic algebra A of dimension n ≥ 2. Then

2
n

=
∑

c∈Idm(A)

χc(t)

χc(
1
2 )

= /totally 2
n − 1 equal terms/

= (2
n − 1)

χ(t)

χ( 1
2 )

+
tn

(1/2)n
,

therefore
χ(t)

χ( 1
2 )

=
2n

2n − 1
(1 − t

n
) =

tn − 1

(1/2)n − 1

implying that the common characteristic polynomial is χ(t) = tn − 1.

Theorem 3 (Krasnov Y., V.T., 2018)

If A is an isospectral generic algebra then its spectrum is generated by a primitive root of unity of degree n.

Remark. It is however completely unclear how to characterize the spectrum of nongeneric isospectral algebras.

The only known examples come from Hsiang algebras (algebras of minimal cones), with the Peirce spectrum

{1,−1,− 1
2 ,

1
2}.
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Problem section III

The proof of the syzygy theorem crucially depends on the Euler-Jacobi formula. Clearly, its statement is a

typical result ”in large”, i.e. it depends on a certain completeness, like Cauchy residue theorem, where the sum

of residues is taken over ”all” zeroes, counting multiplicities. Of course, the statement holds true for algebras

over subfields of complex numbers.

On the other hand, the statement of the syzygy theorem does not depend on a field. Therefore we believe that

the general fact holds still true for generic algebras (maybe some natural assumption on the characteristic of k

should be added):

Conjecture

Let A be a generic commutative algebra over an arbitrary field k. If H(x) : A → ks be a vector-valued

polynomial map, degH ≤ n − 1, then

∑
c∈Idm0(A)

H(c)

χc(
1
2 )

= 0. (8)
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Any generic algebra over C contains exactly 2n regular idempotents and does not contain 2-nilpotents.

Lemma 3

Let (A, •, k) be a generic algebra over k = C, dimA ≥ 3. If two distinct nonzero idempotents generate a

two-dimensional subalgebra then this subalgebra contains exactly three nonzero idempotents and it is generic.

Proof. Let c1 ̸= c2 be the two nonzero idempotents generating the two dimensional subalgebra span(c1, c2).

Then c1 • c2 = µ2c1 + µ1c2, where µi are eigenvalues of L(ci), hence µi ̸= 1
2 . Since

(c1 − 2µ1c2)
2
= c1 − 4µ1(µ2c1 + µ1c2) + 4µ

2
1c2 = (1 − 4µ1µ2)c1,

therefore by the assumptions, 1 − 4µ1µ2 ̸= 0, hence there exist uniquely determined x1, x2 ̸= 0 such that

(x1c1 + x2c2)
2
= x1 (x1 + 2x2µ2)︸ ︷︷ ︸

=1

c1 + x2 (2x1µ1 + x2)︸ ︷︷ ︸
=1

c2 = x1c1 + x2c2.

Proposition 2. Let (A, •, k) be an algebra, A be its two-dimensional generic subalgebra, and B is an arbitrary

subalgebra of A. Then either of the following holds:

A ∩ B = 0;

A ⊂ B;

A ∩ B is a one-dimensional subspace spanned by a nonzero idempotent.

Proof. Since A ∩ B is a subalgebra of A , Theorem 2 implies the conclusion.

Corollary 2. Let (A, •, k) be an algebra, A ,B,C be its two-dimensional generic subalgebras. Then
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Example 9

Let k3 be the standard direct product algebra with (orthogonal) basis

e1, e2, e3. Then it contains exactly 8 = 23 distinct idempotents

cα = α1e1 + α2e2 + α3e3, α ∈ F3
2

There are exactly 6 two-dimensional subalgebras, all generic:
Eij = span(ei, ej), Dij = span(ei + ej , c111). Any subalgebra con-

tains exactly the following idempotents:

(100) (010) (110)

(100) (001) (101)

(100) (011) (111)

(010) (001) (011)

(010) (101) (111)

(001) (110) (111)

(011) (101) (110)

(NB: the last array is absent! In other words, the six subalgebras are

exactly six lines on the Fano plane except for the circle line.

Question: do there exist a generic algebra such that all its two-

dimensional subalgebras form the coincidence relations isomorphic to the

Fano plane?

(000)

(010) (110)

(100)

(001)

(011) (111)

(101)

E12

D12

(100) (001)

(010)

(111)

(011)(110)

(101)

Note that S3 acts naturally on (k3, •). Given σ ∈ S3, let (k
3, •σ) be the corresponding inner isotope. If

ϵ3 = e then (k3, •ϵ) is isomorphic to isospectral algebra in Example 7.
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Inner isotopes and medial algebras

We come back to Example 7 and its explanation in Proposition 2. Note that in the latter case, the substitution

P (z) → P (ϵz) is an automorphism of the commutative associative algebra A3 := k[z]/(z3 − 1). This is a

part of a general construction in arXiv: 2308.16284.

Definition. Given (A , •) and h ∈ Aut(A ) its inner isotope is the algebra with the new multiplication

x •h y := h(x • y) = h(x) • h(y).

Proposition 4

Let (A, •) satisfy A • A = A and h, f ∈ Aut(A, •). Then (A, •h) is isomorphic to (A, •f ) if and only if h

and f conjugate in Aut(A, •).

An important corollary of the definition of medial algebra is that

(x • y) • (x • y) = (x • x) • (y • y).

which implies that the product of two idempotents in a medial algebra is an idempotent again.

A medial algebra (A, ∗) is called special if the set idempotents c with L(c) invertible is non-empty.

Proposition 5

Any inner isotope (A, •h) of a (unital) commutative associative algebra (A, •) is a (special) medial algebra.

Proof.

(x •h y) •h (z •h w) = h(h(x) • h(y)) • h(h(z) • h(w)) = h
2
(x) • h

2
(y) • h

2
(z) • h

2
(w).
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Let us define (Cn, •) := (k[z]/(zn − 1), •). Given σ ∈ Sn let σ = σ1 . . . σr be its disjoint cycle

decomposition and si = |σi|. We assume that k is a splitting field for all polynomials zt − 1, where

t ∈ {n, s1, . . . , sr, 2s1 − 1, . . . , 2sr − 1}.

Theorem 4

Let a permutation σ ∈ Sn have the disjoint cycle decomposition σ = σ1 . . . σr . Then

(a) an inner isotope (Cn, •τ ) is isomorphic to (Cn, •σ) if and only if τ has the same cyclic type as σ;

(b) there are exactly 2n distinct idempotents in (Cn, •σ) and they are naturally divided in 2r classes Iα,

enumerated by binary codes α ∈ F×r
2 .

(c) For any idempotent c ∈ Iα, the characteristic polynomial of L•σ (c) is given by

χc(λ) =

r∏
i=1

(λ
|σi| − α(i)). (9)

(d) If σ consists of one cycle (i.e. σ is a shift), the set of idempotents of (Cn, •σ) form a commutative

medial idempotent quasigroup w.r.t. the original multiplication.

(e) the algebra (Cn, •σ) is generic.

Remark. Deunitalization of kn: the latter can be thought of as various ‘bifurcations’ of the unital algebra kn

by inner isotopy.
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Three possibilities for n = 3

By Prop. 4, inner isotopes are isomorphic iff the corresponding elements of S3 conjugate, hence there are

exactly three distinct inner isotopes coded by the conjugacy classes of S3.

The unity in S3 gives rise to a unital commutative associative algebra, see Example 9.

The conjugacy class of τ = (2 3 1) ∈ S3, i.e. (left or right) shifts, give rise to a commutative
isospectral medial algebra, see Example 7. This algebra has many remarkable properties. For instance,

(x •τ (x •τ (x •τ y))) = ∆(x)y

where ∆ is a multiplicative homogeneous degree 3:

∆(a0e0 + a1e1 + a2e2) =

∣∣∣∣∣∣
a0 a2 a1

a1 a0 a2

a2 a1 a0

∣∣∣∣∣∣
(C3, •τ ) is a (primitive) axial algebra and the set of nonzero idempotents Idm(C3, •τ ) is a medial

idempotent quasigroup.

Theorem 10 (V.T., 2023)

In the above notation, the idempotent quasigroup and the algebra automorphism groups are:

Aut(Idm(C3, •τ )) ∼= Z7 ⋊id Z×
7

Aut(C3, •τ ) ∼= Z7 ⋊δ Z×
3 ,

where δ(i) = 2i : Z3 → Z×
7 .
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Three possibilities for n = 3

When ω = (2 1)(3) ∈ S3, the corresponding inner isotope is a generic Harada-type algebra. Its

idempotents relation can be described as follows:

χ0 = λ
3
,

χ1 = χ2 = χ3 = (λ − 1)(λ + 1)λ,

χ4 = (λ − 1)λ
2
,

χ5 = χ6 = χ7 = (λ − 1)
2
(λ + 1)

such that the syzygy relations become

∑
c

χc(λ)

χc(
1
2 )

=
λ3

1
23

+ 3 ·
(λ2 − 1)λ

− 3
23

+
(λ − 1)λ2

− 1
23

+ 3 ·
(λ2 − 1)(λ − 1)

3
23

= 2
3
.

The multiplication table of the idempotents is given explicitly by

•ω 1 2 3 4 5 6 7

1 1 3 2 0 1 3 2

2 3 2 1 0 3 2 1

3 2 1 3 0 2 1 3

4 0 0 0 4 4 4 4

5 1 3 2 4 5 7 6

6 3 2 1 4 7 6 5

7 2 1 3 4 6 5 7

where X := span(c1, c2) = span(c1, c2, c3) is the 2D Harada-Hsiang algebra from Example 4.
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THANK YOU FOR YOUR ATTENTION!
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