# Geometry of Hsiang algebras, or Where Hsiang meets Clifford and Jordan?



#### Vladimir G. Tkachev (Linköping University)

(based on a joint work with D.J. Fox, Universidad Politécnica de Madrid)

During the writing my talk I realized that a more relevant title should be

## Where Hsiang meets Elduque and Okubo?









Prom PDE to Nonassociative Algebra

- Basic facts on Hsiang algebras
- 4 How to construct more Hsiang algebras?
- 5 Where idempotents live?



Prom PDE to Nonassociative Algebra

3 Basic facts on Hsiang algebras

4 How to construct more Hsiang algebras?

5 Where idempotents live?

Many distinguished algebras appear as the most natural places where certain interesting structures live in.

- They appear in various areas of mathematics, including Differential Geometry, Nonlinear PDEs, Algebra and Combinatorial Design.
- They are intimately related to the classical structures like Jordan, Clifford, Lie and axial algebras.
- Moreover, they are also very related and contain pseudo-composition and Elduque-Okubo (aka admissible cubic) algebras.
- Similarly to the latter, they have infinitely many regular families vs finitely many exceptional families.
- They are essentially the only known examples of commutative nonassociative algebras with infinitely many idempotents where all idempotents have the same length and the same algebraic spectrum.
- Furthermore, the set of idempotents has a nice structure of a smooth (Riemannian) homogeneous submanifold.

Many distinguished algebras appear as the most natural places where certain interesting structures live in.

- They appear in various areas of mathematics, including Differential Geometry, Nonlinear PDEs, Algebra and Combinatorial Design.
- They are intimately related to the classical structures like Jordan, Clifford, Lie and axial algebras.
- Moreover, they are also very related and contain pseudo-composition and Elduque-Okubo (aka admissible cubic) algebras.
- Similarly to the latter, they have infinitely many regular families vs finitely many exceptional families.
- They are essentially the only known examples of commutative nonassociative algebras with infinitely many idempotents where all idempotents have the same length and the same algebraic spectrum.
- Furthermore, the set of idempotents has a nice structure of a smooth (Riemannian) homogeneous submanifold.

Many distinguished algebras appear as the most natural places where certain interesting structures live in.

- They appear in various areas of mathematics, including Differential Geometry, Nonlinear PDEs, Algebra and Combinatorial Design.
- They are intimately related to the classical structures like Jordan, Clifford, Lie and axial algebras.
- Moreover, they are also very related and contain pseudo-composition and Elduque-Okubo (aka admissible cubic) algebras.
- Similarly to the latter, they have infinitely many regular families vs finitely many exceptional families.
- They are essentially the only known examples of commutative nonassociative algebras with infinitely many idempotents where all idempotents have the same length and the same algebraic spectrum.
- Furthermore, the set of idempotents has a nice structure of a smooth (Riemannian) homogeneous submanifold.

Many distinguished algebras appear as the most natural places where certain interesting structures live in.

- They appear in various areas of mathematics, including Differential Geometry, Nonlinear PDEs, Algebra and Combinatorial Design.
- They are intimately related to the classical structures like Jordan, Clifford, Lie and axial algebras.
- Moreover, they are also very related and contain pseudo-composition and Elduque-Okubo (aka admissible cubic) algebras.
- Similarly to the latter, they have infinitely many regular families vs finitely many exceptional families.
- They are essentially the only known examples of commutative nonassociative algebras with infinitely many idempotents where all idempotents have the same length and the same algebraic spectrum.
- Furthermore, the set of idempotents has a nice structure of a smooth (Riemannian) homogeneous submanifold.

Many distinguished algebras appear as the most natural places where certain interesting structures live in.

- They appear in various areas of mathematics, including Differential Geometry, Nonlinear PDEs, Algebra and Combinatorial Design.
- They are intimately related to the classical structures like Jordan, Clifford, Lie and axial algebras.
- Moreover, they are also very related and contain pseudo-composition and Elduque-Okubo (aka admissible cubic) algebras.
- Similarly to the latter, they have infinitely many regular families vs finitely many exceptional families.
- They are essentially the only known examples of commutative nonassociative algebras with infinitely many idempotents where all idempotents have the same length and the same algebraic spectrum.
- Furthermore, the set of idempotents has a nice structure of a smooth (Riemannian) homogeneous submanifold.

Many distinguished algebras appear as the most natural places where certain interesting structures live in.

- They appear in various areas of mathematics, including Differential Geometry, Nonlinear PDEs, Algebra and Combinatorial Design.
- They are intimately related to the classical structures like Jordan, Clifford, Lie and axial algebras.
- Moreover, they are also very related and contain pseudo-composition and Elduque-Okubo (aka admissible cubic) algebras.
- Similarly to the latter, they have infinitely many regular families vs finitely many exceptional families.
- They are essentially the only known examples of commutative nonassociative algebras with infinitely many idempotents where all idempotents have the same length and the same algebraic spectrum.
- Furthermore, the set of idempotents has a nice structure of a smooth (Riemannian) homogeneous submanifold.

Many distinguished algebras appear as the most natural places where certain interesting structures live in.

- They appear in various areas of mathematics, including Differential Geometry, Nonlinear PDEs, Algebra and Combinatorial Design.
- They are intimately related to the classical structures like Jordan, Clifford, Lie and axial algebras.
- Moreover, they are also very related and contain pseudo-composition and Elduque-Okubo (aka admissible cubic) algebras.
- Similarly to the latter, they have infinitely many regular families vs finitely many exceptional families.
- They are essentially the only known examples of commutative nonassociative algebras with infinitely many idempotents where all idempotents have the same length and the same algebraic spectrum.
- Furthermore, the set of idempotents has a nice structure of a smooth (Riemannian) homogeneous submanifold.

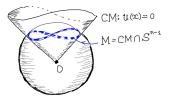
## Initial geometrical context

- A geodesic line is a shortest curve between two points.
- A minimal surface is a surface that *locally minimizes its area*.



Malmö Live Concert, Sweden, https://www.fotosidan.se/blogs/wolfgang/offentlig-konst-i-malmo.htm

 Minimal submanifolds in spheres: M ⊂ S<sup>n-1</sup> is (locally) minimal iff the cone CM ⊂ R<sup>n</sup> is so. The majority of known minimal cones are algebraic



• W.-Y. Hsiang (1967): the cone  $u^{-1}(0)$  is a minimal hypersurface in  $\mathbb{R}^n$  iff

$$\sum_{j=1}^{n}\sum_{i=1}^{n}u_{x_{i}x_{j}}^{\prime\prime}u_{x_{i}}^{\prime}u_{x_{j}}^{\prime}-(\sum_{i=1}^{n}u_{x_{i}}^{\prime})(\sum_{j=1}^{n}u_{x_{j}x_{j}}^{\prime})=Q(x)u(x).$$

where deg  $Q(x) = 2 \deg u - 4$ 

• The first **non-trivial case**: deg u = 3 and

 $\frac{1}{2}\langle \nabla u; \nabla |\nabla u|^2 \rangle - |\nabla u|^2 \Delta u = q(x) \cdot u(x) \tag{(*)}$ 

Hisang's Problem

Classify all cubic polynomials satisfying (\*).

In fact, all known **irreducible** solutions satisfy  $q(x) = \theta \cdot \langle x; x \rangle$  for some real  $\theta$ :

$$\frac{1}{2}\langle \nabla u; \nabla |\nabla u|^2 \rangle - |\nabla u|^2 \Delta u = \theta \cdot \langle x; x \rangle u(x) \tag{\tilde{x}}$$

Such a solution is called a *radial* Hsiang eigencubic.

#### Theorem 1.1

Any radial Hsiang eigencubic is harmonic, i.e.  $\Delta u(x) = 0$ , unless  $u(x) = \langle x; a \rangle^3$ In other words, any nontrivial radial Hsiang eigencubic satisfies

 $\frac{1}{2}\langle \nabla u; \nabla | \nabla u |^2 \rangle = \theta \cdot \langle x; x \rangle u(x) \qquad (*$ 

So one can reformulate the original Hsiang problem as

#### Problem

Classify all harmonic cubic polynomials satisfying (\*\*).

In fact, all known **irreducible** solutions satisfy  $q(x) = \theta \cdot \langle x; x \rangle$  for some real  $\theta$ :

$$\frac{1}{2}\langle \nabla u; \nabla |\nabla u|^2 \rangle - |\nabla u|^2 \Delta u = \theta \cdot \langle x; x \rangle u(x) \tag{\vec{*}}$$

Such a solution is called a *radial* Hsiang eigencubic.

#### Theorem 1.1

Any radial Hsiang eigencubic is harmonic, i.e.  $\Delta u(x) = 0$ , unless  $u(x) = \langle x; a \rangle^3$ . In other words, any nontrivial radial Hsiang eigencubic satisfies

$$\frac{1}{2}\langle \nabla u; \nabla |\nabla u|^2 \rangle = \theta \cdot \langle x; x \rangle u(x) \qquad (**$$

So one can reformulate the original Hsiang problem as

#### Problem

Classify all harmonic cubic polynomials satisfying (\*\*).

In fact, all known **irreducible** solutions satisfy  $q(x) = \theta \cdot \langle x; x \rangle$  for some real  $\theta$ :

$$\frac{1}{2}\langle \nabla u; \nabla |\nabla u|^2 \rangle - |\nabla u|^2 \Delta u = \theta \cdot \langle x; x \rangle u(x)$$
 (\*)

Such a solution is called a *radial* Hsiang eigencubic.

#### Theorem 1.1

Any radial Hsiang eigencubic is harmonic, i.e.  $\Delta u(x) = 0$ , unless  $u(x) = \langle x; a \rangle^3$ . In other words, any nontrivial radial Hsiang eigencubic satisfies

$$\frac{1}{2}\langle \nabla u; \nabla | \nabla u |^2 \rangle = \theta \cdot \langle x; x \rangle u(x) \qquad (**)$$

So one can reformulate the original Hsiang problem as

#### Problem

Classify all harmonic cubic polynomials satisfying (\*\*).



2 From PDE to Nonassociative Algebra

3) Basic facts on Hsiang algebras

4 How to construct more Hsiang algebras?

5 Where idempotents live?

- A bilinear form h is **invariant** in a commutative algebra if h(xy, z) = h(x, zy).
- An algebra with an invariant bilinear form is called **metrized**.
- An algebra is called **exact** if tr L(x) = 0.

#### Theorem 2.1 (V.T., 2010)

Let  $\mathbb{R}^n$  be a Euclidean space with an inner product  $\langle ; \rangle$ . Any cubic polynomial solution u(x) of (\*\*) can be written as

$$u(x) = \frac{1}{6} \langle x; x^2 \rangle$$

in an exact commutative nonassociative metrized algebra on  $\mathbb{R}^n$  satisfying

$$\langle x^3; x^2 \rangle = \theta \langle x^2; x \rangle \langle x; x \rangle, \qquad (1$$

or equivalently, satisfying the following degree 4 identity

$$4xx^{3} + x^{2}x^{2} - 3\theta\langle x; x\rangle x^{2} - 2\theta\langle x^{2}; x\rangle x = 0.$$

The multiplication in  $\mathbb{A}$  is defined by  $xy = x \cdot y = \text{Hess } u(x)y$ .

- A bilinear form h is **invariant** in a commutative algebra if h(xy, z) = h(x, zy).
- An algebra with an invariant bilinear form is called **metrized**.
- An algebra is called **exact** if tr L(x) = 0.

#### Theorem 2.1 (V.T., 2010)

Let  $\mathbb{R}^n$  be a Euclidean space with an inner product  $\langle ; \rangle$ . Any cubic polynomial solution u(x) of (\*\*) can be written as

$$u(x) = \frac{1}{6} \langle x; x^2 \rangle$$

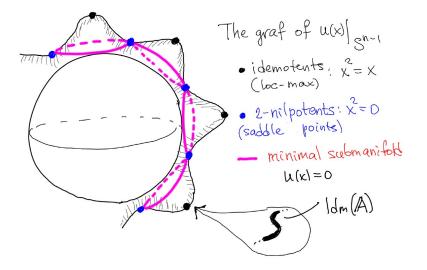
in an exact commutative nonassociative metrized algebra on  $\mathbb{R}^n$  satisfying

$$\langle x^3; x^2 \rangle = \theta \langle x^2; x \rangle \langle x; x \rangle, \tag{1}$$

or equivalently, satisfying the following degree 4 identity

$$4xx^{3} + x^{2}x^{2} - 3\theta\langle x; x\rangle x^{2} - 2\theta\langle x^{2}; x\rangle x = 0.$$
 (2)

The multiplication in  $\mathbb{A}$  is defined by  $xy = x \cdot y = \text{Hess } u(x)y$ .



An exact commutative *h*-metrized algebra  $(\mathbb{A}, h)$  is called **Hsiang** if there exists  $\theta \in \mathbb{K}$  such that the following identity holds:

$$h(x^3, x^2) = \theta h(x, x) h(x, x^2)$$
 (3)

An algebra satisfying the above identity only is called almost-Hsiang.

• Any Hsiang algebra is a *almost* Hsiang algebra.

- A subalgebra of a Hsiang algebra is an almost-Hsiang algebra.
- I A subalgebra of an almost-Hsiang algebra is also almost-Hsiang.
- The equation  $\langle x; x^2 \rangle = 0$  describes a minimal cone iff A a Hsiang algebra.
- The exactness condition affects mostly finer properties'.
- $\theta = 0$  implies that AA = 0 (see [V.T., 2015]).
- An immediate corollary of (3) is that any idempotent in A has length  $1/\theta$ .
- If one scales  $\langle x; y \rangle := \theta h(x, y)$  then (3) and (1) become respectively

$$\langle x^3; x^2 \rangle = \langle x^2; x \rangle \langle x; x \rangle, 4xx^3 + x^2x^2 - 3\langle x; x \rangle x^2 - 2\langle x^2; x \rangle x = 0.$$

$$(4)$$

An exact commutative *h*-metrized algebra  $(\mathbb{A}, h)$  is called **Hsiang** if there exists  $\theta \in \mathbb{K}$  such that the following identity holds:

$$h(x^3, x^2) = \theta h(x, x) h(x, x^2)$$
 (3)

An algebra satisfying the above identity only is called almost-Hsiang.

Any Hsiang algebra is a *almost* Hsiang algebra.

- A subalgebra of a Hsiang algebra is an almost-Hsiang algebra.
- A subalgebra of an almost-Hsiang algebra is also almost-Hsiang.
- The equation  $\langle x; x^2 \rangle = 0$  describes a minimal cone iff A a Hsiang algebra.
- In the exactness condition affects mostly finer properties.
- $\theta = 0$  implies that AA = 0 (see [V.T., 2015]).
- An immediate corollary of (3) is that any idempotent in A has length  $1/\theta$ .
- If one scales  $\langle x; y \rangle := \theta h(x, y)$  then (3) and (1) become respectively

$$\langle x^3; x^2 \rangle = \langle x^2; x \rangle \langle x; x \rangle, 4xx^3 + x^2x^2 - 3\langle x; x \rangle x^2 - 2\langle x^2; x \rangle x = 0.$$

$$(4)$$

An exact commutative *h*-metrized algebra  $(\mathbb{A}, h)$  is called **Hsiang** if there exists  $\theta \in \mathbb{K}$  such that the following identity holds:

$$h(x^3, x^2) = \theta h(x, x) h(x, x^2)$$
 (3)

An algebra satisfying the above identity only is called almost-Hsiang.

- Any Hsiang algebra is a *almost* Hsiang algebra.
- A subalgebra of a Hsiang algebra is an almost-Hsiang algebra.
- S A subalgebra of an almost-Hsiang algebra is also almost-Hsiang.
- The equation  $\langle x; x^2 
  angle = 0$  describes a minimal cone iff  $\mathbb A$  a Hsiang algebra.
- The exactness condition affects mostly finer properties'.
- $\theta = 0$  implies that AA = 0 (see [V.T., 2015]).
- An immediate corollary of (3) is that any idempotent in A has length  $1/\theta$ .
- If one scales  $\langle x; y \rangle := \theta h(x, y)$  then (3) and (1) become respectively

$$\langle x^3; x^2 \rangle = \langle x^2; x \rangle \langle x; x \rangle, 4xx^3 + x^2x^2 - 3\langle x; x \rangle x^2 - 2\langle x^2; x \rangle x = 0.$$

$$(4)$$

An exact commutative *h*-metrized algebra  $(\mathbb{A}, h)$  is called **Hsiang** if there exists  $\theta \in \mathbb{K}$  such that the following identity holds:

$$h(x^3, x^2) = \theta h(x, x) h(x, x^2)$$
 (3)

An algebra satisfying the above identity only is called almost-Hsiang.

- Any Hsiang algebra is a *almost* Hsiang algebra.
- A subalgebra of a Hsiang algebra is an almost-Hsiang algebra.
- S A subalgebra of an almost-Hsiang algebra is also almost-Hsiang.
- The equation  $\langle x; x^2 \rangle = 0$  describes a minimal cone iff A a Hsiang algebra.
- The exactness condition affects mostly finer properties'.
- $\theta = 0$  implies that AA = 0 (see [V.T., 2015]).
- **(a)** An immediate corollary of (3) is that any idempotent in A has length  $1/\theta$ .
- If one scales  $\langle x; y \rangle := \theta h(x, y)$  then (3) and (1) become respectively

$$\langle x^3; x^2 \rangle = \langle x^2; x \rangle \langle x; x \rangle,$$

$$4xx^3 + x^2x^2 - 3\langle x; x \rangle x^2 - 2\langle x^2; x \rangle x = 0.$$

$$(4)$$

An exact commutative *h*-metrized algebra  $(\mathbb{A}, h)$  is called **Hsiang** if there exists  $\theta \in \mathbb{K}$  such that the following identity holds:

$$h(x^3, x^2) = \theta h(x, x) h(x, x^2)$$
 (3)

An algebra satisfying the above identity only is called almost-Hsiang.

- Any Hsiang algebra is a *almost* Hsiang algebra.
- A subalgebra of a Hsiang algebra is an almost-Hsiang algebra.
- S A subalgebra of an almost-Hsiang algebra is also almost-Hsiang.
- The equation  $\langle x; x^2 \rangle = 0$  describes a minimal cone iff A a Hsiang algebra.
- The exactness condition affects mostly finer properties.
- $\theta = 0$  implies that AA = 0 (see [V.T., 2015]).
- An immediate corollary of (3) is that any idempotent in A has length  $1/\theta$ .
- If one scales  $\langle x; y \rangle := \theta h(x, y)$  then (3) and (1) become respectively

$$\langle x^3; x^2 \rangle = \langle x^2; x \rangle \langle x; x \rangle, 4xx^3 + x^2 x^2 - 3 \langle x; x \rangle x^2 - 2 \langle x^2; x \rangle x = 0.$$

$$(4)$$

An exact commutative *h*-metrized algebra  $(\mathbb{A}, h)$  is called **Hsiang** if there exists  $\theta \in \mathbb{K}$  such that the following identity holds:

$$h(x^3, x^2) = \theta h(x, x) h(x, x^2)$$
 (3)

An algebra satisfying the above identity only is called almost-Hsiang.

- Any Hsiang algebra is a *almost* Hsiang algebra.
- A subalgebra of a Hsiang algebra is an almost-Hsiang algebra.
- S A subalgebra of an almost-Hsiang algebra is also almost-Hsiang.
- The equation  $\langle x; x^2 \rangle = 0$  describes a minimal cone iff A a Hsiang algebra.
- Solution The exactness condition affects mostly finer properties.
- $\theta = 0$  implies that  $\mathbb{A}\mathbb{A} = 0$  (see [V.T., 2015]).
- An immediate corollary of (3) is that any idempotent in A has length  $1/\theta$
- If one scales  $\langle x; y \rangle := \theta h(x, y)$  then (3) and (1) become respectively

$$\langle x^3; x^2 \rangle = \langle x^2; x \rangle \langle x; x \rangle, 4xx^3 + x^2 x^2 - 3\langle x; x \rangle x^2 - 2\langle x^2; x \rangle x = 0.$$

$$(4)$$

An exact commutative *h*-metrized algebra  $(\mathbb{A}, h)$  is called **Hsiang** if there exists  $\theta \in \mathbb{K}$  such that the following identity holds:

$$h(x^3, x^2) = \theta h(x, x) h(x, x^2)$$
 (3)

An algebra satisfying the above identity only is called almost-Hsiang.

- Any Hsiang algebra is a *almost* Hsiang algebra.
- A subalgebra of a Hsiang algebra is an almost-Hsiang algebra.
- S A subalgebra of an almost-Hsiang algebra is also almost-Hsiang.
- The equation  $\langle x; x^2 \rangle = 0$  describes a minimal cone iff A a Hsiang algebra.
- S The exactness condition affects mostly finer properties'.
- $\theta = 0$  implies that  $\mathbb{A}\mathbb{A} = 0$  (see [V.T., 2015]).
- An immediate corollary of (3) is that any idempotent in A has length  $1/\theta$ .
- If one scales  $\langle x; y \rangle := \theta h(x, y)$  then (3) and (1) become respectively

$$\langle x^3; x^2 \rangle = \langle x^2; x \rangle \langle x; x \rangle,$$

$$(4)$$

An exact commutative *h*-metrized algebra  $(\mathbb{A}, h)$  is called **Hsiang** if there exists  $\theta \in \mathbb{K}$  such that the following identity holds:

$$h(x^3, x^2) = \theta h(x, x) h(x, x^2)$$
 (3)

An algebra satisfying the above identity only is called almost-Hsiang.

- Any Hsiang algebra is a *almost* Hsiang algebra.
- A subalgebra of a Hsiang algebra is an almost-Hsiang algebra.
- S A subalgebra of an almost-Hsiang algebra is also almost-Hsiang.
- The equation  $\langle x; x^2 \rangle = 0$  describes a minimal cone iff A a Hsiang algebra.
- S The exactness condition affects mostly finer properties'.
- $\theta = 0$  implies that  $\mathbb{A}\mathbb{A} = 0$  (see [V.T., 2015]).
- An immediate corollary of (3) is that any idempotent in A has length  $1/\theta$ .
- **③** If one scales  $\langle x; y \rangle := \theta h(x, y)$  then (3) and (1) become respectively

$$\langle x^3; x^2 \rangle = \langle x^2; x \rangle \langle x; x \rangle,$$

$$4xx^3 + x^2x^2 - 3\langle x; x \rangle x^2 - 2\langle x^2; x \rangle x = 0.$$

$$(4)$$

## Two important classes of almost-Hsiang algebras

A. A commutative algebra with a symmetric bilinear form *h* is called **pseudo-composition** (Meyberg, Osborn, Walcher, Röhrl, Gradl) if

$$x^3 = h(x, x)x \tag{5}$$

Elduque and Okubo (2000) proved that in fact *h* above must be an *invariant* form. This implies that any pseudo-composition algebra is almost-Hsiang:

(5) 
$$\Rightarrow$$
  $h(x^3, x^2) = h(x, x)h(x, x^2), \quad \theta = 1.$ 

The linearization of (5) gives  $2L(x)^2 + L(x^2) = x \otimes_h x + h(x,x)\mathbf{1}$  implying for any idempotent c that

$$2L(c)^2+L(c)-\mathbf{1}=0$$

 $\Rightarrow$  the spectrum of L(c) on  $c^{\perp}$  is  $\{-1, \frac{1}{2}\}$  with the Peirce decomposition

$$\mathbb{A} = \mathbb{K} c \oplus \mathbb{A}_c(-1) \oplus \mathbb{A}_c(\frac{1}{2})$$

#### Definition 2.2

If additionally to (5), tr L(x) = 0, such a **Hsiang** algebra is called **eikonal**.

### Two important classes of almost-Hsiang algebras

B. Elduque and Okubo studied commutative admissible cubic algebras, i.e.

$$x^{2}x^{2} = N(x)x = h(x^{2}, x)x$$
(6)

and proved that there exists an invariant bilinear form h:

$$N(x)=h(x^2,x).$$

Such an algebra is also almost-Hsiang:

(6) 
$$\Rightarrow h(x^2, x^3) = h(x^2x^2, x) = h(x^2, x)h(x, x), \quad \theta = 1.$$

The classification of Elduque and Okubo contains two relevant for us classes:

- The simple Jordan algebras of **degree 3** with the new multiplication  $x^2 := x^{\sharp}$
- **2** The contraction of **trace zero** elements of a simple **degree 4** Jordan algebra.

The Elduque-Okubo algebras have the following Peirce decomposition:

$$\mathbb{A} = \mathbb{K} c \oplus \mathbb{A}_c(-\frac{1}{2}) \oplus \mathbb{A}_c(\frac{1}{2})$$

The case 2 appears in the Hsiang paper Hs'67.



Prom PDE to Nonassociative Algebra

#### Basic facts on Hsiang algebras

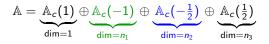
4 How to construct more Hsiang algebras?

#### 5 Where idempotents live?

Assume for simplicity that  $\mathbb{A}$  is **normalized** by (4).

#### Theorem (Basic facts on Hsiang algebras, I)

- $\textbf{0} \ \ \mathsf{The set of nonzero idempotents in any Hsiang algebra} \ \ \mathbb{A} \ \ \mathsf{is nonempty} \ \ }$
- ② All idempotents have the *unit length* and share the *same fusion laws*.
- So For any idempotent c, the associated Peirce decomposition is



A<sub>c</sub>(1) ⊕ A<sub>c</sub>(-1) is a subalgebra of A and is a pseudo-composition algebra.
 Λ<sub>c</sub> := A<sub>c</sub>(1) ⊕ A<sub>c</sub>(-<sup>1</sup>/<sub>2</sub>) is a subalgebra and is an Elduque-Okubo algebra
 Λ<sub>c</sub> carries a rank 3 Jordan algebra structure (an isotopy of multiplication)

#### Remark 1

The structure of the Peirce subspace  $\mathbb{A}(\frac{1}{2})$  is much more involved and it is related to the structure of **idempotents** of  $\mathbb{A}$ .



These two cases are quite independent as the following lemma shows:

#### Observation

In an almost-Hsiang algebra, the elements satisfying both the Elduque-Okubo and the pseudo-composition conditions are exactly the cone over idempotents.

**Proof.** Substitution  $x^3 = \langle x; x \rangle x$  and  $x^2 x^2 = \langle x^2; x \rangle x$  into (4) yields  $\langle x; x \rangle x^2 = \langle x^2; x \rangle x$ . We have  $x^2 \neq 0$  because otherwise  $0 = x^3 = \langle x; x \rangle x$ , a contradiction. This yields  $x^2 = \frac{\langle x^2; x \rangle}{\langle x; x \rangle} x$ , and thus the desired conclusion.



These two cases are quite independent as the following lemma shows:

#### Observation

In an almost-Hsiang algebra, the elements satisfying both the Elduque-Okubo and the pseudo-composition conditions are exactly the cone over idempotents.

**Proof.** Substitution  $x^3 = \langle x; x \rangle x$  and  $x^2 x^2 = \langle x^2; x \rangle x$  into (4) yields  $\langle x; x \rangle x^2 = \langle x^2; x \rangle x$ . We have  $x^2 \neq 0$  because otherwise  $0 = x^3 = \langle x; x \rangle x$ , a contradiction. This yields  $x^2 = \frac{\langle x^2; x \rangle}{\langle x; x \rangle} x$ , and thus the desired conclusion.

## A toy example I: the simplicial algebra $\mathbb{E}_2$

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- ② x ◊ y := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x · y, where · is the complex number multiplication on ℝ<sup>2</sup> ≅ C.
- (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form ⟨x; y⟩ := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- **(a)** A is a **Hsiang algebra** for  $\theta = \frac{3}{2}$ .
- Idm $(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}, \epsilon^3 = 1.$
- Since Aut( $\mathbb{E}_2$ ) stabilizes idempotents, one has Aut( $\mathbb{E}_2$ ) =  $S_3$ .
- For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

 $(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (1, 0, 0)$ 

 $@~\mathbb{E}_2$  is a Hsiang algebra with a finite  $\mathsf{Aut}(\mathbb{A})$  and set of idempotents.

## A toy example I: the simplicial algebra $\mathbb{E}_2$

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- Solution := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x ⋅ y, where ⋅ is the complex number multiplication on R<sup>2</sup> ≅ C.
- (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form ⟨x; y⟩ := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- **(a)** A is a **Hsiang algebra** for  $\theta = \frac{3}{2}$ .
- Idm $(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}, \epsilon^3 = 1.$
- Since Aut( $\mathbb{E}_2$ ) stabilizes idempotents, one has Aut( $\mathbb{E}_2$ ) =  $S_3$ .
- (i) For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

 $(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (1, 0, 0)$ 

 ${}_{igodol 0} \, {}_{igodol 2}$  is a Hsiang algebra with a finite  ${
m Aut}({\Bbb A})$  and set of idempotents.

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- Solution := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x ⋅ y, where ⋅ is the complex number multiplication on R<sup>2</sup> ≅ C.
- ③ (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form ⟨x; y⟩ := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- **(a)** A is a **Hsiang algebra** for  $\theta = \frac{3}{2}$ .
- Idm $(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}$ ,  $\epsilon^3 = 1$ .
- Since Aut( $\mathbb{E}_2$ ) stabilizes idempotents, one has Aut( $\mathbb{E}_2$ ) =  $S_3$ .
- **()** For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

 $(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (1, 0, 0)$ 

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- Solution := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x ⋅ y, where ⋅ is the complex number multiplication on R<sup>2</sup> ≅ C.
- ③ (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form ⟨x; y⟩ := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- **(a)** A is a **Hsiang algebra** for  $\theta = \frac{3}{2}$ .
- Idm $(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}$ ,  $\epsilon^3 = 1$ .
- Since Aut( $\mathbb{E}_2$ ) stabilizes idempotents, one has Aut( $\mathbb{E}_2$ ) =  $S_3$ .
- (i) For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

 $(\dim \mathbb{A}_{c}(-1), \dim \mathbb{A}_{c}(-\frac{1}{2}), \dim \mathbb{A}_{c}(\frac{1}{2})) = (1, 0, 0)$ 

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- Solution := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x ⋅ y, where ⋅ is the complex number multiplication on R<sup>2</sup> ≅ C.
- ③ (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form ⟨x; y⟩ := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- **•** A is a **Hsiang algebra** for  $\theta = \frac{3}{2}$ .
- Idm $(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}, \epsilon^3 = 1.$
- Since Aut( $\mathbb{E}_2$ ) stabilizes idempotents, one has Aut( $\mathbb{E}_2$ ) =  $S_3$ .
- For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

 $(\dim \mathbb{A}_{c}(-1), \dim \mathbb{A}_{c}(-\frac{1}{2}), \dim \mathbb{A}_{c}(\frac{1}{2})) = (1, 0, 0)$ 

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- Solution := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x ⋅ y, where ⋅ is the complex number multiplication on R<sup>2</sup> ≅ C.
- ③ (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form ⟨x; y⟩ := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- A is a Hsiang algebra for  $\theta = \frac{3}{2}$ .
- $\mathsf{Idm}(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}, \ \epsilon^3 = 1.$

• Since Aut( $\mathbb{E}_2$ ) stabilizes idempotents, one has Aut( $\mathbb{E}_2$ ) =  $S_3$ .

**()** For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

 $(\dim \mathbb{A}_{c}(-1), \dim \mathbb{A}_{c}(-\frac{1}{2}), \dim \mathbb{A}_{c}(\frac{1}{2})) = (1, 0, 0)$ 

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- Solution := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x ⋅ y, where ⋅ is the complex number multiplication on R<sup>2</sup> ≅ C.
- ③ (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form (x; y) := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- A is a Hsiang algebra for  $\theta = \frac{3}{2}$ .
- Idm $(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}, \epsilon^3 = 1.$
- Since Aut( $\mathbb{E}_2$ ) stabilizes idempotents, one has Aut( $\mathbb{E}_2$ ) =  $S_3$ .
- For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

 $(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (1, 0, 0)$ 

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- Solution := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x ⋅ y, where ⋅ is the complex number multiplication on R<sup>2</sup> ≅ C.
- (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form (x; y) := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- A is a Hsiang algebra for  $\theta = \frac{3}{2}$ .
- Idm $(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}, \epsilon^3 = 1.$
- Since  $Aut(\mathbb{E}_2)$  stabilizes idempotents, one has  $Aut(\mathbb{E}_2) = S_3$ .
- For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

$$(\dim \mathbb{A}_{c}(-1), \dim \mathbb{A}_{c}(-\frac{1}{2}), \dim \mathbb{A}_{c}(\frac{1}{2})) = (1, 0, 0)$$

**(1)**  $\mathbb{E}_2$  is a Hsiang algebra with a *finite* Aut(A) *and set of idempotents*.

• 
$$u(x) = \frac{1}{6}(x_1^3 - 3x_2^2x_1), x = (x_1, x_2) \in \mathbb{K}^2$$
, Hess  $u(x) = \begin{pmatrix} x_1 & -x_2 \\ -x_2 & -x_1 \end{pmatrix}$ 

- Solution := Hess u(x)y = (x<sub>1</sub>y<sub>1</sub> x<sub>2</sub>y<sub>2</sub>, -x<sub>2</sub>y<sub>1</sub> x<sub>1</sub>y<sub>2</sub>) = x ⋅ y, where ⋅ is the complex number multiplication on R<sup>2</sup> ≅ C.
- ③ (A, ◊) ≅ (Ĉ, ·) ≅ E<sub>2</sub> (para-complex numbers, resp. the 2D simplicial algebra) with an invariant bilinear form ⟨x; y⟩ := Re(x̄ · y).
- $x \diamond (x \diamond x) = \langle x; x \rangle x$  (a **pseudo-composition** algebra!)
- **•** A is a **Hsiang algebra** for  $\theta = \frac{3}{2}$ .
- Idm $(\mathbb{E}_2) = \{1, \epsilon, \epsilon^2\}, \epsilon^3 = 1.$
- Since  $Aut(\mathbb{E}_2)$  stabilizes idempotents, one has  $Aut(\mathbb{E}_2) = S_3$ .
- **③** For any  $c \in \mathsf{Idm}(\mathbb{E}_2)$ , the Peirce dimensions of  $\mathbb{E}_2$  are

$$(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (1, 0, 0)$$

#### Definition 3.1

Griess-Harada (simplicial) algebras  $\mathbb{E}_n$ : generated by  $n \ge 2$  idempotents  $\{e_i\}$  such that  $e_i e_j = e_j e_i = -\frac{1}{n-1}(e_i + e_j)$ .

The simplicial algebra  $\mathbb{E}_3$  plays a prominent role in the Hsiang algebras.

● E<sub>3</sub> is metrized w.r. to the natural Killing form h(x, y) := <sup>2</sup>/<sub>3</sub> tr L(x)L(y)
 ● E<sub>3</sub> is exact

- **③**  $\mathbb{E}_3$  is an Elduque-Okubo algebra:  $x^2x^2 = \langle x; x^2 \rangle x$
- Totally there are 4 nonzero idempotents in  $\mathbb{E}_3$  (with  $e_0 := -(e_1 + e_2 + e_3)$ )
- $(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (0, 2, 0)$
- $\mathbb{E}_3$  is a Hsiang algebra (a mutant) with the Peirce decomposition  $\mathbb{E}_3 = \mathbb{A}_{c_i}(1) \oplus \mathbb{A}_{c_i}(-\frac{1}{2}), \quad \dim \mathbb{A}_{c_i}(-\frac{1}{2}) = 2$

#### Definition 3.1

Griess-Harada (simplicial) algebras  $\mathbb{E}_n$ : generated by  $n \ge 2$  idempotents  $\{e_i\}$  such that  $e_i e_j = e_j e_i = -\frac{1}{n-1}(e_i + e_j)$ .

The simplicial algebra  $\mathbb{E}_3$  plays a prominent role in the Hsiang algebras.

- E<sub>3</sub> is metrized w.r. to the natural Killing form h(x, y) := <sup>2</sup>/<sub>3</sub> tr L(x)L(y)
   E<sub>3</sub> is exact
- **③**  $\mathbb{E}_3$  is an Elduque-Okubo algebra:  $x^2x^2 = \langle x; x^2 \rangle x$
- Totally there are 4 nonzero idempotents in  $\mathbb{E}_3$  (with  $e_0 := -(e_1 + e_2 + e_3))$
- (dim  $\mathbb{A}_c(-1)$ , dim  $\mathbb{A}_c(-\frac{1}{2})$ , dim  $\mathbb{A}_c(\frac{1}{2})$ ) = (0, 2, 0)
- ◎  $\mathbb{E}_3$  is a Hsiang algebra (a mutant) with the Peirce decomposition  $\mathbb{E}_3 = \mathbb{A}_{c_i}(1) \oplus \mathbb{A}_{c_i}(-\frac{1}{2}), \quad \dim \mathbb{A}_{c_i}(-\frac{1}{2}) = 2$

#### Definition 3.1

Griess-Harada (simplicial) algebras  $\mathbb{E}_n$ : generated by  $n \ge 2$  idempotents  $\{e_i\}$  such that  $e_i e_j = e_j e_i = -\frac{1}{n-1}(e_i + e_j)$ .

The simplicial algebra  $\mathbb{E}_3$  plays a prominent role in the Hsiang algebras.

- **9**  $\mathbb{E}_3$  is metrized w.r. to the natural Killing form  $h(x, y) := \frac{2}{3} \operatorname{tr} L(x)L(y)$
- 2  $\mathbb{E}_3$  is exact
- **③**  $\mathbb{E}_3$  is an Elduque-Okubo algebra:  $x^2x^2 = \langle x; x^2 \rangle x$
- Totally there are 4 nonzero idempotents in E<sub>3</sub> (with e<sub>0</sub> := -(e<sub>1</sub> + e<sub>2</sub> + e<sub>3</sub>))
  (dim A<sub>c</sub>(-1), dim A<sub>c</sub>(-<sup>1</sup>/<sub>2</sub>), dim A<sub>c</sub>(<sup>1</sup>/<sub>2</sub>)) = (0, 2, 0)
- $\mathbb{E}_3$  is a Hsiang algebra (a mutant) with the Peirce decomposition  $\mathbb{E}_3 = \mathbb{A}_{c_i}(1) \oplus \mathbb{A}_{c_i}(-\frac{1}{2}), \quad \dim \mathbb{A}_{c_i}(-\frac{1}{2}) = 2$

#### Definition 3.1

Griess-Harada (simplicial) algebras  $\mathbb{E}_n$ : generated by  $n \ge 2$  idempotents  $\{e_i\}$  such that  $e_i e_j = e_j e_i = -\frac{1}{n-1}(e_i + e_j)$ .

The simplicial algebra  $\mathbb{E}_3$  plays a prominent role in the Hsiang algebras.

- **(**)  $\mathbb{E}_3$  is metrized w.r. to the natural Killing form  $h(x, y) := \frac{2}{3} \operatorname{tr} L(x)L(y)$
- 2  $\mathbb{E}_3$  is exact
- **③**  $\mathbb{E}_3$  is an Elduque-Okubo algebra:  $x^2x^2 = \langle x; x^2 \rangle x$
- Totally there are 4 nonzero idempotents in  $\mathbb{E}_3$  (with  $e_0 := -(e_1 + e_2 + e_3)$ )
- (dim  $\mathbb{A}_c(-1)$ , dim  $\mathbb{A}_c(-\frac{1}{2})$ , dim  $\mathbb{A}_c(\frac{1}{2})$ ) = (0, 2, 0)
- $\mathbb{E}_3$  is a Hsiang algebra (a mutant) with the Peirce decomposition  $\mathbb{E}_3 = \mathbb{A}_{c_i}(1) \oplus \mathbb{A}_{c_i}(-\frac{1}{2}), \quad \dim \mathbb{A}_{c_i}(-\frac{1}{2}) = 2$

#### Definition 3.1

Griess-Harada (simplicial) algebras  $\mathbb{E}_n$ : generated by  $n \ge 2$  idempotents  $\{e_i\}$  such that  $e_i e_j = e_j e_i = -\frac{1}{n-1}(e_i + e_j)$ .

The simplicial algebra  $\mathbb{E}_3$  plays a prominent role in the Hsiang algebras.

- **(**)  $\mathbb{E}_3$  is metrized w.r. to the natural Killing form  $h(x, y) := \frac{2}{3} \operatorname{tr} L(x)L(y)$
- 2  $\mathbb{E}_3$  is exact
- **③**  $\mathbb{E}_3$  is an Elduque-Okubo algebra:  $x^2x^2 = \langle x; x^2 \rangle x$
- Totally there are 4 nonzero idempotents in  $\mathbb{E}_3$  (with  $e_0 := -(e_1 + e_2 + e_3)$ )
- **(** $\dim \mathbb{A}_{c}(-1), \dim \mathbb{A}_{c}(-\frac{1}{2}), \dim \mathbb{A}_{c}(\frac{1}{2})) = (0, 2, 0)$
- $\mathbb{E}_3$  is a Hsiang algebra (a mutant) with the Peirce decomposition  $\mathbb{E}_3 = \mathbb{A}_{c_i}(1) \oplus \mathbb{A}_{c_i}(-\frac{1}{2}), \quad \dim \mathbb{A}_{c_i}(-\frac{1}{2}) = 2$

#### 

#### Definition 3.1

Griess-Harada (simplicial) algebras  $\mathbb{E}_n$ : generated by  $n \ge 2$  idempotents  $\{e_i\}$  such that  $e_i e_j = e_j e_i = -\frac{1}{n-1}(e_i + e_j)$ .

The simplicial algebra  $\mathbb{E}_3$  plays a prominent role in the Hsiang algebras.

- **(**)  $\mathbb{E}_3$  is metrized w.r. to the natural Killing form  $h(x, y) := \frac{2}{3} \operatorname{tr} L(x)L(y)$
- 2  $\mathbb{E}_3$  is exact
- **③**  $\mathbb{E}_3$  is an Elduque-Okubo algebra:  $x^2x^2 = \langle x; x^2 \rangle x$
- Totally there are 4 nonzero idempotents in  $\mathbb{E}_3$  (with  $e_0 := -(e_1 + e_2 + e_3)$ )
- $(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (0, 2, 0)$
- $\mathbb{E}_3$  is a Hsiang algebra (a mutant) with the Peirce decomposition  $\mathbb{E}_3 = \mathbb{A}_{c_i}(1) \oplus \mathbb{A}_{c_i}(-\frac{1}{2}), \quad \dim \mathbb{A}_{c_i}(-\frac{1}{2}) = 2$

#### Definition 3.1

Griess-Harada (simplicial) algebras  $\mathbb{E}_n$ : generated by  $n \ge 2$  idempotents  $\{e_i\}$  such that  $e_i e_j = e_j e_i = -\frac{1}{n-1}(e_i + e_j)$ .

The simplicial algebra  $\mathbb{E}_3$  plays a prominent role in the Hsiang algebras.

- **(**)  $\mathbb{E}_3$  is metrized w.r. to the natural Killing form  $h(x, y) := \frac{2}{3} \operatorname{tr} L(x)L(y)$
- 2  $\mathbb{E}_3$  is exact
- **Solution**  $\mathbb{E}_3$  is an Elduque-Okubo algebra:  $x^2x^2 = \langle x; x^2 \rangle x$
- Totally there are 4 nonzero idempotents in  $\mathbb{E}_3$  (with  $e_0 := -(e_1 + e_2 + e_3)$ )
- $(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (0, 2, 0)$
- $\mathbb{E}_3$  is a Hsiang algebra (a mutant) with the Peirce decomposition  $\mathbb{E}_3 = \mathbb{A}_{c_i}(1) \oplus \mathbb{A}_{c_i}(-\frac{1}{2}), \quad \dim \mathbb{A}_{c_i}(-\frac{1}{2}) = 2$

#### • $\mathbb{E}_3 \cong Tri(\mathbb{K}).$

#### Definition 3.1

Griess-Harada (simplicial) algebras  $\mathbb{E}_n$ : generated by  $n \ge 2$  idempotents  $\{e_i\}$  such that  $e_i e_j = e_j e_i = -\frac{1}{n-1}(e_i + e_j)$ .

The simplicial algebra  $\mathbb{E}_3$  plays a prominent role in the Hsiang algebras.

- **(**)  $\mathbb{E}_3$  is metrized w.r. to the natural Killing form  $h(x, y) := \frac{2}{3} \operatorname{tr} L(x)L(y)$
- 2  $\mathbb{E}_3$  is exact
- **③**  $\mathbb{E}_3$  is an Elduque-Okubo algebra:  $x^2x^2 = \langle x; x^2 \rangle x$
- Totally there are 4 nonzero idempotents in  $\mathbb{E}_3$  (with  $e_0 := -(e_1 + e_2 + e_3)$ )
- $(\dim \mathbb{A}_c(-1), \dim \mathbb{A}_c(-\frac{1}{2}), \dim \mathbb{A}_c(\frac{1}{2})) = (0, 2, 0)$
- $\mathbb{E}_3$  is a Hsiang algebra (a mutant) with the Peirce decomposition  $\mathbb{E}_3 = \mathbb{A}_{c_i}(1) \oplus \mathbb{A}_{c_i}(-\frac{1}{2}), \quad \dim \mathbb{A}_{c_i}(-\frac{1}{2}) = 2$

#### • $\mathbb{E}_3 \cong \operatorname{Tri}(\mathbb{K}).$

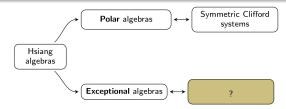
# Further examples of Hsiang algebras

#### Definition 3.2

A commutative *h*-metrized algebra  $\mathbb{A}$  is **polar** if there is a nontrivial  $\mathbb{Z}_2$ -grading  $\mathbb{A} = \mathbb{A}_0 \oplus \mathbb{A}_1$  such that  $\mathbb{A}_0 \mathbb{A}_0 = 0$  and x(xy) = h(x, x)y,  $x \in \mathbb{A}_0$ ,  $y \in \mathbb{A}_1$ .

### Theorem (V.T. 2010)

There exists a bijection between polar algebras symmetric Clifford systems.



For example, any exact pseudo-composition algebra  $\mathbb{A}$  is exceptional. Indeed, we have  $\langle x^2; x^2 \rangle = \langle x^3; x \rangle = \langle x; x \rangle \neq 0$  for  $x \neq 0$ . This contradicts to  $\mathbb{A}_0 \mathbb{A}_0 = 0$ .

#### Basic facts on Hsiang algebras, II

- A is exceptional if and only if A<sub>c</sub>(1) ⊕ A<sub>c</sub>(-<sup>1</sup>/<sub>2</sub>) is (isotopy of) a simple Jordan algebra. In this case, either n<sub>2</sub> = 0 or n<sub>2</sub> = 3d + 2 and the hidden simple Jordan algebra is Herm<sub>3</sub>(H<sub>d</sub>), d ∈ {1, 2, 4, 8}.
- **2** A is **mutant iff**  $n_2 = 2$ , this corresponds to  $\mathbf{d} = 0$ .
- A is exceptional or mutant iff tr  $L(x)^2 = m\langle x; x \rangle$  for some real *m*. In this case,  $m = 2(n_1 + \mathbf{d} + 1)$ .
- There are finitely many dimensions n of A where exceptional Hsiang algebras can exist. Except the case n₂ = 0, in all other cases, dim A = 3(n₁ + 2d + 1), where dim A<sub>c</sub>(-1/2) = 3d + 2, d ∈ {0, 1, 2, 4, 8}.

| n                     | 2 | 5 | 8 | 14 | 26 | 3 | 6 | 12 | 24 | 9 | 12 | 21 | 15 | 18 | 30 | 42 | 27 | 30 | 54 |
|-----------------------|---|---|---|----|----|---|---|----|----|---|----|----|----|----|----|----|----|----|----|
| $n_1$                 | 1 | 2 | 3 | 5  | 9  | 0 | 1 | 3  | 7  | 0 | 1  | 4  | 0  | 1  | 5  | 9  | 0  | 1  | 1  |
| <i>n</i> <sub>2</sub> | 0 | 0 | 0 | 0  | 0  | 2 | 2 | 2  | 2  | 5 | 5  | 5  | 8  | 8  | 8  | 8  | 14 | 14 | 26 |
| d                     | _ | _ | _ | _  | _  | 0 | 0 | 0  | 0  | 1 | 1  | 1  | 2  | 2  | 2  | 2  | 4  | 4  | 8  |

The colours correspond to pseudo-composition, mutants and two unsettled cases.



Prom PDE to Nonassociative Algebra

3) Basic facts on Hsiang algebras

4 How to construct more Hsiang algebras?

5 Where idempotents live?

# Tripling construction

Let  $(\mathbb{A}, h, \sigma)$  be a metrized algebra with involution  $\sigma$ . Define a **commutative** algebra structure on  $\mathbb{A} \times \mathbb{A} \times \mathbb{A}$  (the **tripling**) with a  $\circ$ -invariant form T by

$$(x_1, x_2, x_3) \circ (y_1, y_2, y_3) := (x_3^{\sigma} y_2^{\sigma} + y_2^{\sigma} x_2^{\sigma}, x_1^{\sigma} y_3^{\sigma} + y_1^{\sigma} x_3^{\sigma}, y_2^{\sigma} x_1^{\sigma} + x_2^{\sigma} y_1^{\sigma}),$$
  
$$H((x_1, x_2, x_3), (y_1, y_2, y_3)) := \sum_{i=1}^3 h(x_i, y_j).$$

When  $\mathbb{A} = \mathfrak{g}$  is a **Lie algebra** endowed with the **standard** involution  $\sigma = -1$ , its triple is the Nahm algebra construction of Kinyuon-Sagle (2002).

#### Definition

A metrized algebra  $(\mathbb{A}, \sigma, h, \circ)$  is called a quasicomposition algebra if

$$x \circ (x^{\sigma} \circ (x \circ y)) = h(x, x)(x \circ y), \quad x, y \in \mathbb{A}.$$

#### Theorem 4.1 (D.J. Fox, V.T., 2024)

 $T(\mathbb{A})$  is a Hsiang algebra iff  $\mathbb{A}$  is a quasicomposition algebra. In that case,  $T(\mathbb{A})$  is a exceptional or mutant Hsiang algebra with  $d(\mathbb{A}) \in \{0, 1, 2, 4, 8\}$ .

# Contractions of Jordan algebras

### Theorem (V.T., 2015)

Given a simple unital rank 3 Jordan algebra  $(\mathbb{A}, \bullet)$  and its arbitrary unital subalgebra  $\mathbb{B} \trianglelefteq \mathbb{A}$ , the contraction of  $\mathbb{A}$  onto  $\mathbb{B}^{\perp}$  is a Hsiang algebra. More precisely, let e be the unit of  $\mathbb{A}$ ,  $\operatorname{Tr}(x)$  be the trace form such that  $\operatorname{Tr}(e) = 3$ ,  $h(x, y) := \operatorname{Tr}(x \bullet y)$ , and

 $\mathbb{A} = \mathbb{B} \oplus_{h} \mathbb{B}^{\perp}, \quad \pi : \mathbb{A} \to \mathbb{B}^{\perp}$  be the orthogonal projection.

If  $x \diamond y := \pi(x \bullet y)$  then  $(\mathbb{B}^{\perp}, \diamond, h)$  is a Hsiang algebra with  $\theta = 1/6$ .

- If B = ⟨e⟩ then (e<sup>⊥</sup>, •) is the *deunitalization* of A and it is known as an eikonal algebra. The classes of eikonal algebras and trace-less pseudo-composition algebras coincide (and appear only in dimensions n = 5, 8, 14, 26). These algebras occur in many contexts including the Cartan isoparametric hypersurfaces with 3 distinct principal curvatures.
- Another important case is a "diagonal frame" B = D = ⟨e<sub>1</sub>, e<sub>2</sub>, e<sub>2</sub>⟩, ∑ e<sub>i</sub> = e; then D<sup>⊥</sup> is known as a mutant Hsiang algebra, i.e. the tripling of a Hurwitz algebra.

### The contractions of cubic Jordan algebras

Let  $\mathcal{H}_3(\operatorname{Hurv}_d)$  denote the Jordan algebra of Hermitean 3 × 3-matrices over the Hurwitz algebra  $\operatorname{Hurv}_d$ ,  $d \in \{1, 2, 4, 8\}$ . Then

|                              | $\mathcal{H}_3(\Omega_1)$ | $\mathcal{H}_3(\Omega_2)$ | $\mathcal{H}_3(\Omega_4)$ | $\mathcal{H}_3(\Omega_8)$ | <u>,</u> п |
|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------|
| $\langle e  angle$           | <b>K</b> <sup>5</sup>     | K <sup>8</sup>            | $\mathbf{K}^{14}$         | <b>K</b> <sup>26</sup>    |            |
| $\langle e, e_1  angle$      | K <sup>4</sup>            | <b>K</b> <sup>7</sup>     | <b>K</b> <sup>13</sup>    | <b>K</b> <sup>25</sup>    |            |
| $\langle e, e_1, e_2  angle$ | K <sup>3</sup>            | K <sup>6</sup>            | <b>K</b> <sup>12</sup>    | <b>K</b> <sup>24</sup>    |            |
| $\mathcal{H}_3(\Omega_1)$    | —                         | —                         | <b>K</b> <sup>9</sup>     | <b>K</b> <sup>21</sup>    |            |
| $\mathcal{H}_3(\Omega_2)$    | _                         | _                         | _                         | $\mathbf{K}^{18}$         | sBundhu    |
| $\mathcal{H}_3(\Omega_4)$    | _                         | _                         | _                         | _                         |            |

In the remained (-) cases, the contraction is a zero algebra.

# Mutants

A borderline case of polar algebras, called mutants, share important properties of exceptional algebras.

Given a Hurwitz algebra  $\operatorname{Hurv}_d$  with unity e, conjugation  $\overline{x}$ , norm n(x), dim  $\mathbf{H}_d = d \in \{1, 2, 4, 8\}$ , the **tripling** 

$$\mathsf{Tri}(\mathsf{H}_d) := \mathsf{H}_d \times \mathsf{H}_d \times \mathsf{H}_d = V_1 \oplus V_2 \oplus V_3$$

with commutative multiplication

$$(x_1, x_2, x_3) * (y_1, y_2, y_3) = (\bar{x}_3 \bar{y}_2 + \bar{y}_3 \bar{x}_2, \bar{x}_1 \bar{y}_3 + \bar{y}_1 \bar{x}_3, \bar{x}_2 \bar{y}_1 + \bar{y}_2 \bar{x}_1)$$

and an invariant bilinear form  $H((x_1, x_2, x_3), (y_1, y_2, y_3)) = \sum_{i=1}^{3} t(\bar{x}_i y_i)$ , where t(x) = n(x + e) - n(x) - n(e) is the trace form ('the real part'). Note that

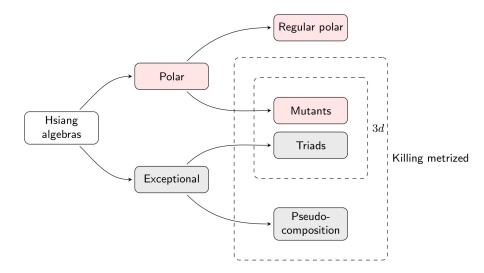
$$V_i V_i = 0, \qquad V_i V_j = V_k$$

(cf. the concept of Cartan's triality)

### Proposition (D. Fox, V.T., 2024)

Tri( $\mathbf{H}_d$ ) is a **polar algebra** w.r.t. to any of the three decompositions  $V_k \oplus V_k^{\perp}$ . The corresponding defining form  $u(x) = u(x_1, x_2, x_3) = t(x_1(x_2x_3))$ .

# On the Origin of Species





Prom PDE to Nonassociative Algebra

3) Basic facts on Hsiang algebras

4 How to construct more Hsiang algebras?

#### 5 Where idempotents live?

All examples of Hsiang algebras (including the infinite family of polar algebras) reveal a remarkable structure of idempotents:

#### Not a theorem yet

- Except the dimensions 2 and 3, the set of idempotents Idm(A) of a Hsiang algebra is a homogeneous subspace of the Euclidean sphere.
- **2** The dimension of the submanifold  $\operatorname{Idm}(\mathbb{A})$  is  $\operatorname{dim} A_c(\frac{1}{2})$ .
- For finer properties and Aut(A) one need to work with pre-idempotents (i.e. the elements x satisfying x<sup>2</sup>x<sup>2</sup> = -x<sup>2</sup>)

A heuristic argument explaining item (2) (Krasnov-V.T., 2018): Let  $c \in Idm(\mathbb{A})$  be a fixed idempotent, then for  $c + x \in Idm(\mathbb{A})$  close to c enough:

$$c + x = (c + x)^2 = c + 2cx + x^2 \approx c + 2cx \quad \Rightarrow \quad 2cx = c$$
  
$$\Rightarrow \quad x \in \mathbb{A}_c(\frac{1}{2}) \quad \Rightarrow \quad \dim \operatorname{Idm}(\mathbb{A}) = \dim \mathbb{A}_c(\frac{1}{2})$$

# Idempotents in $Triple(\mathbb{B})$

### Proposition 5.1

Let  $\mathbb{B}$  be a quasicomposition algebra. Then  $c \in \text{Idm}(\text{Triple}(\mathbb{B}))$  iff  $c = (x, y, 2(xy)^{\sigma})$ , where  $|x| = |y| = \frac{1}{2}$  and  $y \in \text{im}(L(x^{\sigma}))$ 

#### Example 5.1

• If  $\mathbb{B} = \operatorname{Hurv}_d$  is a Hurwitz algebra then  $\operatorname{im}(L(x^{\sigma})) = \operatorname{Hurv}_d$ , therefore

$$\mathsf{Idm}(\mathsf{Triple}(\mathsf{Hurv}_d)) \cong S^{d-1} \times S^{d-1}$$

② If 
$$(\mathfrak{so}(3,\mathbf{K}), imes)$$
 then  $\operatorname{im}(L(x^{\sigma}))=x^{\perp}$ 

 $\operatorname{Idm}(\operatorname{Triple}(\mathfrak{so}(3,\mathbf{K}))\cong\operatorname{St}(2,\mathbf{K}^3)=SO(3,\mathbf{K}).$ 

• If  $\mathbb{M}$  the Malcev algebra of imaginary octonions then  $\operatorname{im}(L(x^{\sigma})) = x^{\perp}$  and

 $\operatorname{Idm}(\operatorname{Triple}(\mathbb{M}) \cong \operatorname{St}(2, \mathbb{K}^7) = \frac{G_2}{SU(2)}$ 

| $\dim \mathbb{A}$ | $\dim Idm(\mathbb{A})$ | ldm(Ѧ)                       | type          | tripling |
|-------------------|------------------------|------------------------------|---------------|----------|
| 5                 | 2                      | $\mathbb{RP}^2$              | EO. (eikonal) |          |
| 6                 | 2                      | $S^1 	imes S^1$              | mutant        | yes      |
| 8                 | 4                      | $\mathbb{CP}^2$              | EO. (eikonal) |          |
| 9                 | 3                      | <i>SO</i> (3)                | pseudo-comp.  | yes      |
| 12                | 5                      | <i>SU</i> (3)/ <i>SO</i> (3) | para-complex  |          |
| 12                | 6                      | $S^3 	imes S^3$              | mutant        | yes      |
| 14                | 8                      | $\mathbb{HP}^2$              | EO. (eikonal) |          |
| 15                | 6                      | $SU(4)/S(U(1) \times U(3))$  | pseudo-comp.  |          |
| 18                | 8                      | <i>SU</i> (4)                | para-complex  | yes      |
| 21                | 11                     | $G_2/SU(2)$                  | contraction   | yes      |
| 24                | 14                     | $S^7 	imes S^7$              | mutant        | yes      |
| 26                | 16                     | $\mathbb{OP}^2$              | EO. (eikonal) |          |
| 27                | 12                     | Sp(4)/Sp(1) 	imes Sp(3)      | pseudo-comp.  |          |
| 30                | 14                     |                              | para-complex  |          |
| 54                | 26                     | $E_6/F_4$                    | para-complex  |          |

# 項武義 Hsiang Wa-Yi Nor 十一月四日 2016

# Thank you!

| n  | n1(-1) | n2(-1/2) | n3(1/2) | d   | replica | terms | m QuasiCLiff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/3 | chi | rho |     | Tri | pl | ldm                    | pread | Aut      | Comments |             |
|----|--------|----------|---------|-----|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|----|------------------------|-------|----------|----------|-------------|
|    |        |          |         |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |     |     |    |                        |       |          |          |             |
| 2  | 1      | 0        | 0       |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |     |     |    |                        |       |          | Eikonal  |             |
| 5  | 2      | 0        | 2       |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |     |     |    | P2P2                   | 3     | 3 50(3)  | Eikonal  |             |
| 8  | 3      | 0        | 4       |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |     |     | Τ  | CPL                    | 6     | 8 SU(3)  | Eikonal  |             |
| 14 | 5      | 0        | 8       | -   |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |     |     | Τ  | HP2                    | 12    | 21 Sp(3) | Eikonal  |             |
| 26 | 9      | 0        | 16      |     |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |     |     |     |    | OP2                    | 24    | 52 E6    | Eikonal  |             |
| 3  | 0      | 2        | 0       | 0   | 1       | . 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   | 1   |     | 1 : | 1 y |    | SXS                    | -     |          | Mutant   |             |
| 6  | 1      | 2        | 2       | 0   | 2       | 4     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2   | 2   | 2   | 2 : | 2 y |    | SIXSI                  | 2.    |          | Mutant   |             |
| 12 | 3      | 2        | 6       | 0   | ) 4     | 16    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4   | 4   |     | 4 4 | 4 y |    | S3×S3                  | 8     |          | Mutant   |             |
| 24 | 7      | 2        | 14      | 0   | 8       | 64    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8   | 8   | 3   | 3 8 | Вy  |    | Str St                 | 20    |          | Mutant   |             |
| 9  | 0      | 5        | 3       | 1   | . 2     | 6     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3   | 4   | Ļ,  | 4 . | 4 y |    | 50(3) = 50(4)/50(1)+50 |       |          | A .      |             |
| 12 | 1      | 5        | 5       | 1   | L       | 12    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4   | 5   | 5   | 1 ! | 5   |    | SU(3)/SO(3)            | 5     |          | Lagrange | grassina,   |
| 15 | - 2    | 5        | 7       | 1   |         | 20    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5   | 6   | 5   | 2   | 6   |    |                        |       |          |          |             |
| 15 | 0      | (8       | 6       | 2   | 2 3     | 15    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5   | 7   | 7   | 1   | 7   |    | 9U(4)/S(U(1)×U(3))     |       |          | A        |             |
| 18 | 1      | (8       | 8       | 2   | 2 4     | 24    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6   | 8   | 3   | B   | 8 y |    | 50(4)                  | 8     |          |          |             |
| 21 | - 4    | 5        | 11      | 1   | L 6     | 42    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7   | 8   | 3   | B   | 8 y |    | V2(R7)=G2/SU(2)        | .14   |          |          |             |
| 21 | 2      | (8       | 10      | 2   | 2       | 35    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7   | 9   | 9   | 1 ! | 9   |    |                        |       |          |          | 10 A. C. A. |
| 24 | 3      | (8       | 12      | 2   | 2       | 48    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8   | 10  |     | 2 1 |     |    |                        |       |          |          |             |
| 27 | 0      | 14       | 12      | 4   | 1 5     | 45    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9   | 13  | 3   | 1 1 | 3   |    | Sp(4)/Sp(1) × Sp(3)    | ~     |          | A        |             |
| 30 | 1      | 14       | 14      | 4   | 1 6     | 60    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10  | 14  | 1   | 2 1 | 4   |    |                        | 14    |          |          | 1. 11       |
| 30 | 5      | . (8     | 16      | 2   | 2       | 80    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10  |     |     | 4 1 | 2   |    |                        |       |          |          | 78-26       |
| 33 | 2      | 14       | 16      | 4   | 1       | 77    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11  | 15  | 5   | 1 1 | 5   |    |                        |       |          |          |             |
| 36 | 3      | 14       | 1 18    | 4   | 1       | 96    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12  | -   | -   | 9 1 |     |    |                        |       |          |          |             |
| 42 | 9      | (8       | 24      | 2   | 2       | 168   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -   | -   | -   | 9 1 | _   |    |                        |       |          |          |             |
| 51 | 0      |          | 3       | - 8 | 3       | 153   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | -   | -   | -   | 7   |    | A                      |       |          |          |             |
| 54 | 1      | . 26     | 5 26    | 8   | 3 10    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _   | -   | _   | 2 2 |     |    | E / Fy ?               | 26    |          |          |             |
| 57 | 2      | 26       | 5 28    | 8   | 3       | 209   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   | -   | _   | 1 2 | _   |    |                        |       |          |          |             |
| 60 | 3      | 26       | 6 30    | 8   | 3       | 240   | and the second se | -   |     |     | 4 2 | _   |    |                        |       |          |          | 4           |
| 72 | 7      | 26       | 6 38    | 1 8 | 3       | 384   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24  | 32  | 2 1 | 0 3 | 2   |    |                        |       |          |          | ]           |

Vladimir G. Tkachev