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2D minimal surface theory relies heavily on the Weierstrass-Enneper representation
and complex analysis tools (uniqueness theorem, reflection principle etc).

The codimension two case is also very distinguished: any complex hypersurface in
Cn = R2n is always minimal.

The only known explicit examples of complete minimal hypersurfaces in Rn, n ≥ 3,
are the catenoids, and minimal hypercones (in particular, the isoparametric ones).

There are also known to exist some minimal graphs in Rn, n ≥ 9 (E. Bombieri, de
Giorgi, E. Giusti, L. Simon), the (immersed) analogues of Enneper’s surface by
J. Choe in Rn for 4 ≤ n ≤ 7; the embedded analogues of Riemann one-periodic
examples due to S. Kaabachi, F. Pacard in Rn, n ≥ 3, Scherk’s examples due to
Pacard. None of the latter examples are known explicitly.

W.Y. Hsiang (1967): find an appropriate classification of minimal hypercones in
Rn, at least of cubic minimal cones.

V.T. (2012): It turns out that the most natural framework for studying cubic
minimal cones is Jordan algebras (non-associative structures frequently appeared in
connection with elliptic type PDE’s); will be discussed later.
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Part I: The Additive Ansats

Let M be a minimal hypersurface in Rn given by

φ1(x1) + φ2(x2) + φ3(x3) + . . .+ φn(xn) = 0. (1)

For n = 3: J. Weingarten (1887) (see also Sergienko, V.T., 1998): except for some
trivial cases (planes, catenoids, helicoids), the only solutions are those obtained from
(φ1, φ2, φ3) satisfying

φ′i
2 = aie

−2φi + bi + cie
2φi

and the coefficients are subject to the rank one condition:

rk

 1
2
(b2 + b3) a3 a2
c3

1
2
(b1 + b3) a1

c2 c1
1
2
(b1 + b2)

 ≤ 1

This yields several (parametric) families of singly-, doubly- and triply-periodic minimal
surfaces in R3
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The Additive Ansats, n ≥ 4

For n = 4 some well-known examples of minimal hypersurfaces in R4 are:

a hyperplane, a1x1 + a2x2 + a3x3 + a4x4 = 0 φ′2i = 1

the Clifford cone I: lnx1 + lnx2 − lnx3 − lnx4 = 0, φ′2i = e±2φi

the Clifford cone II: x21 + x22 − x23 − x24 = 0; φ′2i = ±4φi

the 3D-catenoid: x21 + x22 + x23 − 1
sl2(x4)

= 0; φ′24 = 4φ4(φ2
4 − 1)

Theorem 1 (J. Choe, J. Hoppe, V.T., 2016)

The only minimal hypersurfaces in Rn satisfying (1) for n ≥ 5 are the corresponding
families above (hyperplanes, quadratic cones and higherdimensional catenoids). For
n = 4 there are two more, new solutions in R4:

(i) φ′2i = εi coshφi, ε = (−1,−1, 1, 1), one Clifford cone type singularity;

(ii) φ′2i = εi sinhφi, ε = (−1,−1, 1, 1), infinity many singularities, 4-periodic.
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The four-fold periodic minimal hypersurface in R4

Three remarkable lattices in R4 ∼= H

Identify x ∈ R4 with the quaternion x11 + ix2 + jx3 + kx4 ∈ H.

the checkerboard lattice: D4 = {m ∈ Z4 :
∑4
i=1 mi ≡ 0 mod 2}

the Lipschitz integers: Z4 = {m ∈ H : mi ∈ Z} = D4 t (1 + D4)

the Hurwitz integers H = Z4 t (h + Z4), where h = 1
2 (1 + i + j + k), (the densest possible lattice

packing of balls in R4)

±1,±i,±j,±k 1
2 (±1± i± j± k) . . . taken together

the 16-cell the 8-cell (the hypercube) the 24-cell

(after John C. Baez, Bull. Amer. Math. Soc., 2002)
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The construction

Let S(x) := s(x1)s(x2)− s(x3)s(x4), where s(t) := sn($t,
√
−1) is the lemniscatic sine, $ =

Γ( 1
4

)2

2
√

2π
.

Theorem 2.
M := {x ∈ R4 : S(x) = 0} is a connected minimal four-fold periodic embedded hypersurface in R4 with

isolated singular points at the lattice Sing(M) = Z4 t (h + D4) such that

the ‘checkerboard structure’: the translating symmetry group of M is D4

the orthogonal symmetry group of M• is D4 × Z4
2, where D4 is the dihedral group

Singularities of Z4-type: if a ∈ Z4 then

S(a + x) = ±x1x2 ± x3x4 + O(|x|4), as x→ 0.

Singularities of D4-type: if a =∈ h + D4 then

S(a + x) = ±(x
2
3 + x

2
4 − x

2
1 − x

2
2) + O(|x|4), as x→ 0,
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Some cross-section chips of M
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Clifford cone singularities

Let

Φ(x) :=
s(x1)s(x2)− s(x3)s(x4)

(1 + s2(x1+x2
2

)s2(x3+x4
2

)) · (1 + s2(x1−x2
2

)s2(x3−x4
2

))

and

A =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , B =
1

2


−1 −1 −1 −1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .

Then A2 = I (A is a reflection in x1 − x2 − x3 − x4 = 0), B3 = I, and

Φ−1(0) = M

M is invariant under the A-action: Φ(Ax) = Φ(x) ⇒ AM = M

BM = −1 +M , B2M = −h +M

A is a reflection in R4 leaving invariant the ’holes’ D4 + h2.

Question: Does there exist an explicit quaternionic representation of Φ(x) (as a H-theta
series, for example).
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Some remarks and speculations

Characterize embedded minimal submanifolds of Rn with isolated singularities. L.
Caffarelli, R. Hardt, L. Simon (1984): the existence of (bordered) embedded
minimal hypersurfaces (non-cones) in Rn, n ≥ 4, with one isolated singularity.
N. Smale (1989): the existence of stable embedded minimal hypersurfaces with
boundary, in Rn, n ≥ 8, with an arbitrary number of isolated singularities.

One can show that there is no regularly embedded minimal hypersurfaces in R4

with exactly the same symmetry group as M . Does there exist a D4-periodic
embedded non-singular minimal hypersurface in R4?

Do there exist minimal hypersurfaces in R8 and in R24 with E8 and the Leech
lattice symmetry groups resp.?

Is it possible to glue minimal cones along periodic lattices in Rn as skeletons to
obtain complete embedded (periodic) minimal hypersurfaces?

What kind of isolated singularities can occur for higher-dimensional periodic
minimal hypersurfaces? Are they necessarily algebraic?
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Part II: Cubic minimal cones

Cartan isoparametric cubics

The set u−1
1 (0) ∩ S4 ⊂ R5 is an (isoparametric) minimal submanifold, where

u1(x) = x
3
5 +

3

2
x5(x

2
1 + x

2
2 − 2x

2
3 − 2x

2
4) +

3
√

3

2
(x4(x

2
2 − x

2
1) + 2x1x2x3).

É. Cartan (1938): u1 and its counterparts in R8, R14 and R26

ud :=
3
√

3

2

∣∣∣∣∣∣∣
x2 − 1√

3
x1 z̄1 z̄2

z1 −x2 − 1√
3
x1 z̄3

z2 z3
2√
3
x1

∣∣∣∣∣∣∣ , (x, z) ∈ R3d+2 ∼= R2 × A3
d, (2)

(A1 = R, A2 = C, A4 = H, A8 = O the Hurwitz algebras) are the only cubic polynomial solutions of

|Du(x)|2 = 9|x|4, ∆u(x) = 0, x ∈ Rn.

u−1
d (t) ∩ S3d+1 ⊂ R3d+2 (t ∈ [−1, 1]) is an isoparametric foliation by hypersurfaces with exactly 3

distinct constant principal curvatures.

ud(x) =
√

2N(x) on the trace free subspace of the formally real Jordan algebra J = h3(Ad),

d = 1, 2, 4, 8. A general fact also holds (V.T., J. Algebra, 2015)

N. Nadirashvili, S. Vlăduţ, V.T. (2011): ud(x) give rise to unusual (singular) viscosity solutions of a

uniformly elliptic equation F (D2u) = 0.
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... More cubic cones

u = Re(z1z2)z3, zi ∈ Ad, the triality polynomials in R3,R6,R12 and R24

u = Re(z1z2)z3, zi ∈ ImA8 in R21

u = detx, where x ∈H ′
4 (C) ∼= R15, a Hsiang cone (a cubic member thof a

Pfaffian family constructed recently by Hoppe-Linardopoulos-Turgut, 2016).

u =

∣∣∣∣∣∣
x1 x2 x3
x4 x5 x6
x7 x8 x9

∣∣∣∣∣∣ in R9, a member of the determinant family by V.T., 2009.

u = (x21 − x22)y1 + 2x1x2y2 = 〈x,A1x〉y1 + 〈x,A2x〉y1, (Lawson’s cubic cone),

A1 =

(
1 0
0 −1

)
, A2 =

(
0 1
1 0

)
In general (V.T. 2010): if A2

i = I and AiAj +AjAi = 0, i 6= j then

uA(z) =
∑q

i=1
〈x,Aix〉yi, z = (x, y) ∈ R2p × Rq

is a cubic minimal cone. The existence of a symmetric Clifford system is equivalent
to

q − 1 ≤ ρ(p),

where ρ(p) is the Hurwitz-Radon function (= 1+ the number of vector fields on
Sp−1)
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All u satisfy

∆1u(x) := |∇u|2∆u−
n∑

i,j=1

uijuiuj = λ|x|2 · u (the Hsiang equation)

All u are generic norms on a suitable cubic Jordan algebra ...WHY?
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The dichotomy of Hisang cubics

Definition. A Hsiang cubic u is said to be of Clifford type if u ∼= uA up to an
orthogonal transformation; otherwise, it is called exceptional.

Representation theory of Clifford algebras yields a complete classification of Hsiang
cubics of Clifford type.

How to determine all exceptional Hsiang cubics?

Proposition. Isoparametric Hsiang cubics, the cubics in R15 and R21 are exceptional
Hsiang cubics. Nevertheless, the triality cubics in R3,R6,R12 and R24 are of Clifford
type (in fact are mutants)
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The main results (an analytical point of view)

Main Theorem, Part I
If u is a cubic homogeneous polynomial solution of

|Du(x)|2∆u(x)− 1
2
〈Du(x), D|Du(x)|2〉 = λ|x|2u(x)

then

either ∆u(x) = 0 or u is trivial (depends on one variable, ∼ x31)

the cubic trace identity holds:

tr(D2u)3 = 3λ(n1 − 1)u, n1 ∈ Z+

n2 = 1
2
(n+ 1− 3n1) ∈ Z+

u(x) is exceptional Hsiang cubic iff n2 6= 2 and the quadratic trace identity holds

tr(D2u)2 = C|x|2, C ∈ R
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The main results (an analytical point of view)

Main Theorem, Part II
There exists finitely many isomorphy classes of exceptional Hsiang algebras.

n 2 5 8 14 26 9 12 15 21 15 18 21 24 30 42 27 30 33 36 51 54 57 60 72

n1 1 2 3 5 9 0 1 2 4 0 1 2 3 5 9 0 1 2 3 0 1 2 3 7

n2 0 0 0 0 0 5 5 5 5 8 8 8 8 8 8 14 14 14 14 26 26 26 26 26

In the realizable cases (uncolored):

If n2 = 0 then u = 1
6
〈z, z2〉, z ∈H ′

3 (Ad), d = 0, 1, 2, 4, 8.

If n1 = 0 then u(z) = 1
12
〈z2, 3z̄ − z〉, z ∈H3(Ad), d = 2, 4, 8.

If n1 = 1 then u(z) = Re〈z, z2〉, z ∈H3(Ad)⊗ C, d = 1, 2, 4, 8.

If (n1, n2) = (4, 5) then u = 1
6
〈z, z2〉, z ∈H3(O)	H3(R)

H3(Ad) is the Jordan algebra of 3× 3-hermitian matrices over the Hurwitz algebra Ad
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Key steps of the proof: a nonassociative algebra approach

u is a solution of a PDE ⇒ a metrized algebra V (u) with an identity

A commutative nonassociative algebra V with an inner product 〈, 〉 is called metrized if
the multiplication operator Lxy := xy is self-adjoint, i.e.

〈xy, z〉 = 〈x, yz〉, ∀x, y, z ∈ V.

The Freudenthal-Springer construction: given a cubic form u, define an algebra by

u(x) = 1
6
〈x, x2〉 ⇔ x · y := (D2u(x))y

In this setting,

the algebra V = V (u) is metrized

Du(x) = 1
2
x2

Lx = D2u(x), i.e. the multiplication operator by x is the Hessian of u at x
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Key steps of the proof: a nonassociative algebra approach

Let u(x) be a Hsiang cubic, i.e.

|Du(x)|2∆u(x)− 1
2
〈Du(x), D|Du(x)|2〉 = λ|x|2u(x)

and let V = V (u) be the corresponding Freudenthal-Springer algebra. Then

〈x2, x2〉 trLx − 〈x2, x3〉 = 2
3
λ〈x, x〉〈x2, x〉

Def. A metrized commutative algebra is called Hsiang if the latter identity satisfied.

The correspondence: if V is a Hsiang algebra then u(x) = 1
6
〈x, x2〉 is a Hsiang cubic.

In the converse direction, if u(x) is a Hsiang cubic then V (u) is a Hsiang algebra.

Theorem A (The Dichotomy)

Any nontrivial Hsiang algebra is harmonic: trLx = 0.

u is a Hsiang cubic of Clifford type iff V (u) admits a non-trivial Z2-grading
V = V0 ⊕ V1 such that V0V0 = 0.
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Key steps of the proof: a nonassociative algebra approach

The set of idempotents of V (u) is nonempty: any maximum point of u(x) on Sn−1 gives
rise to an idempotent:

Du(x0) = kx0 ⇔ 1
2
x20 = kx0 ⇔ c2 = c for c = x0/2k

Given an idempotent c ∈ V , Lc is a self-adjoint. Consider the Peirce decomposition

V =

k⊕
α=1

Vc(tα), Vc(tα) := ker(Lc − tα)

A key point is by using the original PDE, to determine the multiplicative properties of
the Peirce decomposition:

Vc(tα)Vc(tβ) ⊂
⊕
γ

Vc(tγ)

If the PDE is ‘good enough’, there are some hidden (e.g., Clifford or Jordan) algebra
structures inside V .

Aspects of Membrane Dynamics 18/25

http://agenda.albanova.se/conferenceDisplay.py?confId=5416


Key steps of the proof: a nonassociative algebra approach

Theorem B (The hidden Clifford algebra structure)

Let V be a Hisang algebra. Then

(i) given an idempotent c ∈ V , the associated Peirce decomposition is

V = Vc(1)⊕ Vc(−1)⊕ Vc(− 1
2
)⊕ Vc( 1

2
), dimVc(1) = 1;

(ii) the Peirce dimensions n1 = dimVc(−1), n2 = dimVc(− 1
2
) and n3 = dimVc(

1
2
) do

not depend on a particular choice of c and

n3 = 2n1 + n2 − 2;

(iii) the following obstruction holds:

n1 − 1 ≤ ρ(n1 + n2 − 1),

where ρ is the Hurwitz-Radon function.
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Key steps of the proof: a nonassociative algebra approach

The Peirce decomposition

Setting V0 = Vc(1), V1 = Vc(−1), V2 = Vc(− 1
2
), V3 = Vc(

1
2
) we have

V0 V1 V2 V3

V0 V0 V1 V2 V3

V1 V1 V0 V3 V2 ⊕ V3

V2 V2 V3 V0 ⊕ V2 V1 ⊕ V2

V3 V3 V2 ⊕ V3 V1 ⊕ V2 V0 ⊕ V1 ⊕ V2

In particular, V0 ⊕ V1 and V0 ⊕ V2 are subalgebras of V .

Aspects of Membrane Dynamics 20/25

http://agenda.albanova.se/conferenceDisplay.py?confId=5416


Jordan algebras

An algebra V with a commutative product • is called Jordan if

[Lx, Lx2 ] = 0 ∀x ∈ V.

Main examples

1) The Jordan algebra Hn(Ad) of Hermitian matrices of order n, d = 1, 2, 4 with

x • y = 1
2
(xy + yx)

2) The spin factor S (Rn+1) with (x0, x) • (y0, y) = (x0y0 + 〈x, y〉; x0y + y0x)

Theorem (Jordan-von Neumann-Wigner, 1934)

Any finite-dimensional formally real Jordan algebra is a direct sum of the simple ones:

the spin factors S (Rn+1);

the Jordan algebras Hn(Ad), n ≥ 3, d = 1, 2, 4;

the Albert algebra H3(A8).
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Key steps of the proof

Theorem C (The hidden Jordan algebra structure)

Let V be a Hisang algebra. For any idempotent c ∈ V , the subspace

Jc := Vc(1)⊕ Vc(− 1
2
)

carries a structure of a formally real rank 3 Jordan algebra, and the following conditions
are equivalent:

(i) the Hsiang algebra V is exceptional ;

(ii) Jc is a simple Jordan algebra;

(iii) n2 6= 2 and the quadratic trace identity trL2
x = c|x|2 holds for some c ∈ R.

The proof of the first part of the theorem is heavily based on the McCrimmon-Springer
construction of a cubic Jordan algebra.
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The proof of the finiteness of exceptional Hsiang algebras

Let V be an exceptional Hsiang algebra. Then Jc := Vc(1)⊕ Vc(− 1
2
) is simple

formally real Jordan algebra of rank≤ 3 and dim Jc = 1 + n2.

The Jordan-von Neumann-Wigner classification implies that either dim Jc = 1 or
dim Jc = 3d+ 3, where d ∈ {1, 2, 4, 8}. Thus, n2 = 0 or n2 = 3d+ 2.

Using the obstruction
n1 − 1 ≤ ρ(n1 + n2 − 1)

and the fact that ρ(m) ∼ lnm implies the finiteness and the possible values in the
table.
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Towards a finer classification

Theorem D. (The tetrad decomposition)

Let V be an exceptional Hsiang algebra, n2 = 3d+ 2. Then

V = S1 ⊕ S2 ⊕ S3 ⊕M1 ⊕M2 ⊕M3, Sα = Sα ⊕ S−α,

Mα are nilpotent;

each Sα is a real division algebra isomorphic to Ad;

Any ’vertex-adjacent’ triple (Sα, Sβ , Sγ) is a triality
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Thank you!

Aspects of Membrane Dynamics 25/25

http://agenda.albanova.se/conferenceDisplay.py?confId=5416

	Introduction

