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@ 2D minimal surface theory relies heavily on the Weierstrass-Enneper representation
and complex analysis tools (uniqueness theorem, reflection principle etc).

o The codimension two case is also very distinguished: any complex hypersurface in
C™ = R*" is always minimal.

o The only known explicit examples of complete minimal hypersurfaces in R™, n > 3,
are the catenoids, and minimal hypercones (in particular, the isoparametric ones).

o There are also known to exist some minimal graphs in R", n > 9 (E. Bombieri, de
Giorgi, E. Giusti, L. Simon), the (immersed) analogues of Enneper’s surface by
J. Choe in R™ for 4 < n < 7; the embedded analogues of Riemann one-periodic
examples due to S. Kaabachi, F. Pacard in R™, n > 3, Scherk's examples due to
Pacard. None of the latter examples are known explicitly.

o W.Y. Hsiang (1967): find an appropriate classification of minimal hypercones in
R™, at least of cubic minimal cones.

o V.T. (2012): It turns out that the most natural framework for studying cubic

minimal cones is Jordan algebras (non-associative structures frequently appeared in
connection with elliptic type PDE’s); will be discussed later.
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Part |: The Additive Ansats

Let .# be a minimal hypersurface in R™ given by

b1(x1) + ¢2(22) + ¢3(x3) + ... 4 Pn(zn) = 0. (1)

For n = 3: J. Weingarten (1887) (see also Sergienko, V.T., 1998): except for some
trivial cases (planes, catenoids, helicoids), the only solutions are those obtained from
(41, @2, ¢3) satisfying

2 = aie % 4 b; + ;e

and the coefficients are subject to the rank one condition:

%(bz + b3) as asz
rk c3 %(bl + bg) ai <1
C2 c1 %(bl + b2)

This yields several (parametric) families of singly-, doubly- and triply-periodic minimal
surfaces in R®
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The Additive Ansats, n > 4

For n = 4 some well-known examples of minimal hypersurfaces in R* are:

o a hyperplane, a1x1 + asx2 + asrs + asxrqg = 0 2 =1

o the Clifford cone I: Inz1 +Inzs —Inxz — Inxzs = 0, 22 = T2¢i

o the Clifford cone II: 2% + 23 — 22 — 23 = 0; 12 = +4¢;

o the 3D-catenoid: z? + x2% + 2 — m =0 2 = Adpa(p3 — 1)

Theorem 1 (J. Choe, J. Hoppe, V.T., 2016)

The only minimal hypersurfaces in R" satisfying (1) for n > 5 are the corresponding

families above (hyperplanes, quadratic cones and higherdimensional catenoids). For
n = 4 there are two more, new solutions in R*:

(i) ¢ = e;coshgy, e = (—1,—1,1,1), one Clifford cone type singularity;
(i) ¢ = e;sinh ¢y, € = (—1,—1,1,1), infinity many singularities, 4-periodic.
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The four-fold periodic minimal hypersurface in R*

Three remarkable lattices in R* = H

Identify =z € R* with the quaternion 11 + izo + jrs + kay € H.
O the checkerboard lattice: Dy = {m € Z* : >%_, m; =0 mod 2}
O the Lipschitz integers: Z* = {m € H : m; € Z} = D4 U (1 + Dy)

O the Hurwitz integers H = Z* U (h + Z*), where h = 1(1+1i+j+ k), (the densest possible lattice

packing of balls in R*)
. W ’

SR N

+1, +i, £+j, £k %(iliiijik) ...taken together
the 16-cell the 8-cell (the hypercube) the 24-cell

/

(after John C. Baez, Bull. Amer. Math. Soc., 2002)
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The construction

Let S(z) := s(z1)s(xz2) — s(x3)s(xa), where s(t) := sn(wt,/—1) is the lemniscatic sine, w =

Theorem 2.

M :={z € R* : S(z) = 0} is a connected minimal four-fold periodic embedded hypersurface in R* with
isolated singular points at the lattice Sing(M) = Z* U (h 4 D) such that

O the ‘checkerboard structure’: the translating symmetry group of M is D4

O the orthogonal symmetry group of M® is Dy X Z2, where Dy is the dihedral group

O Singularities of Z*-type: if a € Z* then
S(a+x) = o120 + wgws + O(|z|*), asz — 0.
@ Singularities of Dy-type: if a =€ h + Dy then

S(a+z) = j:(mg +a:i — xf — xg) +0(z|*), as z —0,
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o the 'holes' of M



http://agenda.albanova.se/conferenceDisplay.py?confId=5416

Some cross-section chips of M



http://agenda.albanova.se/conferenceDisplay.py?confId=5416

Clifford cone singularities

Let
®(x) = s(x1)s(x2) — s(w3)s(4)

: (1_}_82(%)32(%)).(1_’_82(%)52(%))

and
1 1 1 1 -1 -1 -1 -1
1 1 1 -1 -1 1 1 1 -1 -1
A=3l1 a1 1 | B3 1 -1 1 -1
1 -1 -1 1 1 -1 -1 1

Then A2 =1 (A is a reflection in 1 — x2 — x3 — xa = 0), B%® =1, and
0 7' 0)=M
0 M is invariant under the A-action: ®(Az) = ®(z) == AM =M
© BM=-1+M,B2M =-h+M
)

A is a reflection in R* leaving invariant the 'holes’ D4 + h2.

Question: Does there exist an explicit quaternionic representation of ®(x) (as a H-theta
series, for example).
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Some remarks and speculations

o Characterize embedded minimal submanifolds of R™ with isolated singularities. L.
Caffarelli, R. Hardt, L. Simon (1984): the existence of (bordered) embedded
minimal hypersurfaces (non-cones) in R™, n > 4, with one isolated singularity.

N. Smale (1989): the existence of stable embedded minimal hypersurfaces with
boundary, in R™, n > 8, with an arbitrary number of isolated singularities.

o One can show that there is no regularly embedded minimal hypersurfaces in R*
with exactly the same symmetry group as M. Does there exist a D4-periodic
embedded non-singular minimal hypersurface in R*?

o Do there exist minimal hypersurfaces in R® and in R?* with Es and the Leech
lattice symmetry groups resp.?

o lIs it possible to glue minimal cones along periodic lattices in R™ as skeletons to
obtain complete embedded (periodic) minimal hypersurfaces?

o What kind of isolated singularities can occur for higher-dimensional periodic
minimal hypersurfaces? Are they necessarily algebraic?
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Part |l: Cubic minimal cones

Cartan isoparametric cubics

O The set u ' (0) N S* C R® is an (isoparametric) minimal submanifold, where

3 3v3
uy(x) = ’I)g + 51,'5(1,‘? + ;r; - 2:L'§ - 2263) + 5 (.zq(x% - t?) + 2z x223).

E. Cartan (1938): u; and its counterparts in R®, R and R26

1 _ _
Ty — =ay z )
3v3 V3 2 3d+2 2 3
ua = —— z1 w2 — a1 Z3 |, (z,2) eR**TZ=R2x A3, (2
zZ2 z3 ﬁﬂil

(A1 =R, Ay =C, Ay = H, Ag = O the Hurwitz algebras) are the only cubic polynomial solutions of
\Du(:l:)|2 = 9|w\4, Au(z) =0, =xeR".

Q u;l(t) N §34+1 ¢ R34+2 (¢ € [—1,1]) is an isoparametric foliation by hypersurfaces with exactly 3
distinct constant principal curvatures.

O wug(x) = v/2N(x) on the trace free subspace of the formally real Jordan algebra J = bh3(Aqg),
d=1,2,4,8. A general fact also holds (V.T., J. Algebra, 2015)

@ N. Nadirashvili, S. VIadut, V.T. (2011): uq(x) give rise to unusual (singular) viscosity solutions of a
uniformly elliptic equation F(D?u) = 0.
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... More cubic cones

0 u = Re(z122)23, 2 € Ay, the triality polynomials in R®* R R'? and R?*
0 u=Re(z122)23, z; € ImAg in R2!
o u = detx, where z € 5/ (C) = R'®, a Hsiang cone (a cubic member thof a

Pfaffian family constructed recently by Hoppe-Linardopoulos-Turgut, 2016).

X1 i) xrs3
ou=| x4 x5 w6 |inR? a member of the determinant family by V.T., 2009.
xT7 Tg X9

0 u= (2} — 3y + 212202 = (x, A1x)y1 + (2, Asz)y1, (Lawson’s cubic cone),
1 0 0 1
w=(o ) ()
In general (V.T. 2010): if AZ? =T and A;A; + A;A; =0, i # j then

ua(z) = Z;l(m,Am)yi, 2= (z,y) € R x R

is a cubic minimal cone. The existence of a symmetric Clifford system is equivalent

to

q—1<p(p),
where p(p) is the Hurwitz-Radon function (= 14 the number of vector fields on
sP—h)
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o All u satisfy

Aju(z) = |[Vu>Au — Z ugjuin; = Az|? - u (the Hsiang equation)

3,j=1

o All w are generic norms on a suitable cubic Jordan algebra ... WHY?
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The dichotomy of Hisang cubics

Definition. A Hsiang cubic u is said to be of Clifford type if ©w = ua up to an
orthogonal transformation; otherwise, it is called exceptional.

Representation theory of Clifford algebras yields a complete classification of Hsiang
cubics of Clifford type.

How to determine all exceptional Hsiang cubics?

Proposition. Isoparametric Hsiang cubics, the cubics in R'® and R?' are exceptional
Hsiang cubics. Nevertheless, the triality cubics in R®, R R'? and R?* are of Clifford
type (in fact are mutants)
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The main results (an analytical point of view)

Main Theorem, Part |

If u is a cubic homogeneous polynomial solution of
|Du(x)|* Au(z) — 3(Du(z), D|Du(x)[*) = A|z|*u(=)

then

o either Au(x) = 0 or wu is trivial (depends on one variable, ~ %)
o the cubic trace identity holds:

tr(D*u)® = 3\(n1 — 1)u, n €zt
ony=1(n+1-3n1) €zt

o u(x) is exceptional Hsiang cubic iff na # 2 and the quadratic trace identity holds

tr(D’u)® = Clz|?>, CeR
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The main results (an analytical point of view)

Main Theorem, Part Il

There exists finitely many isomorphy classes of exceptional Hsiang algebras.

n 2 5 8| 14| 26| 9 12| 15( 21| 15| 18| 21| 24| 30| 42| 27| 30| 33| 36| 51| 54| 57| 60| 72

nq| 1 2| 3| 5| 9 0 1 2 4 0 1 2 3 5 © 0 1 2 3 0 1 2 3 7

no| 0| O o O 0 5 5 5 5 8 8 8 8 8 8 14| 14| 14| 14| 26| 26| 26| 26| 26

In the realizable cases (uncolored):
0 If ng =0 then u = (2,2%), z € 4 (Aa), d=10,1,2,4,8.
0 If n1 =0 then u(z) = 5(2%,32 — 2), z € #4(Aq), d =2,4,8.
o If ny =1 then u(2) = Re(z,2%), z € #4(Ay) ®C, d =1,2,4,8.
0 If (n1,n2) = (4,5) then u = (2, 2°), z € #4(0) & H#4(R)

H3(Ag) is the Jordan algebra of 3 X 3-hermitian matrices over the Hurwitz algebra A,
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Key steps of the proof: a nonassociative algebra approach

u is a solution of a PDE = a metrized algebra V' (u) with an identity

A commutative nonassociative algebra V' with an inner product (,) is called metrized if
the multiplication operator L,y := xy is self-adjoint, i.e.

<"'I:y7'z> = <m7 yz>7 vm?:l/?’z E ‘/'

The Freudenthal-Springer construction: given a cubic form w, define an algebra by
u(z) = g(z,a”) & w-y:=(Du(x))y

In this setting,
o the algebra V' = V' (u) is metrized
o Du(z) = 2°
o L, = D?u(x), i.e. the multiplication operator by z is the Hessian of u at x
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Key steps of the proof: a nonassociative algebra approach

Let u(z) be a Hsiang cubic, i.e.
|Du(z)|* Au(z) - 5(Du(), D|Du(z)[*) = Mz u(z)
and let V' = V(u) be the corresponding Freudenthal-Springer algebra. Then

<$2,l‘2>tI'LI - <.Z'2,ZE3> = %A<$,$><$2,{E>

Def. A metrized commutative algebra is called Hsiang if the latter identity satisfied. J

The correspondence: if V is a Hsiang algebra then u(z) = é(m, x?) is a Hsiang cubic.

In the converse direction, if u(z) is a Hsiang cubic then V(u) is a Hsiang algebra.

Theorem A (The Dichotomy)

o Any nontrivial Hsiang algebra is harmonic: tr L, = 0.

o wu is a Hsiang cubic of Clifford type iff V' (u) admits a non-trivial Zs-grading
V = Vo & Vi such that Vo Vp = 0.
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Key steps of the proof: a nonassociative algebra approach

The set of idempotents of V (u) is nonempty: any maximum point of u(z) on S"* gives
rise to an idempotent:

Du(zo) = kzo < %xg:k:xo & A=c for ¢ = x0/2k

Given an idempotent ¢ € V, L. is a self-adjoint. Consider the Peirce decomposition

k
V=@ Velta),  Velta) :=ker(Lc — ta)

A key point is by using the original PDE, to determine the multiplicative properties of
the Peirce decomposition:

Ve(ta)Ve(ts) € @D Velty)

~

If the PDE is ‘good enough’, there are some hidden (e.g., Clifford or Jordan) algebra
structures inside V.
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Key steps of the proof: a nonassociative algebra approach

Theorem B (The hidden Clifford algebra structure)
Let V' be a Hisang algebra. Then

(i) given an idempotent ¢ € V, the associated Peirce decomposition is
V=Ve(1) ®Ve(-1)®Ve(—3)®Ve(3), dimVe(l)=1;
(ii) the Peirce dimensions n; = dim V.(—1), nz = dim Vc(—%) and n3 = dim Vc(%) do
not depend on a particular choice of ¢ and

ns = 2n; + ng — 2;

(iii) the following obstruction holds:

ny — 1< p(ni1 +n2 — 1),

where p is the Hurwitz-Radon function.
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Key steps of the proof: a nonassociative algebra approach

The Peirce decomposition

Setting Vo = Ve(1), Vi =Ve(-1), Va=V(—3), Vz=Ve(3) we have
Vo \%1 % Vs
Vo Vo |4 Va Vs
1% i Vo Vs Va® V3
Va Va Vi | Vo @ V2 Viol,
7 Vs | Va@d Vs | VieVe | o@ Vi@ Ve

In particular, Vo & Vi and Vp @ V4 are subalgebras of V.
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Jordan algebras

An algebra V' with a commutative product e is called Jordan if

Ly L,2]=0 VzeV.

Main examples
1) The Jordan algebra 7, (A4) of Hermitian matrices of order n, d = 1,2, 4 with

zey=;(zy+yx)

2) The spin factor .7 (R™*) with (zo0,2) ® (v0,¥) = (zoyo + (z,¥); Toy + yox)

Theorem (JORDAN-VON NEUMANN-WIGNER, 1934)

Any finite-dimensional formally real Jordan algebra is a direct sum of the simple ones:
o the spin factors .7 (R™1);
o the Jordan algebras J#,(Aq), n > 3, d =1,2,4;
o the Albert algebra J#3(As).
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Key steps of the proof

Theorem C (The hidden Jordan algebra structure)
Let V' be a Hisang algebra. For any idempotent ¢ € V/, the subspace
Je:=Vo(1) ® Ve(—1)

carries a structure of a formally real rank 3 Jordan algebra, and the following conditions
are equivalent:

(i) the Hsiang algebra V is exceptional;

(ii) Je is a simple Jordan algebra;

(iii) m2 # 2 and the quadratic trace identity tr L2 = c|z|? holds for some ¢ € R.

The proof of the first part of the theorem is heavily based on the McCrimmon-Springer
construction of a cubic Jordan algebra.
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The proof of the finiteness of exceptional Hsiang algebras

o Let V be an exceptional Hsiang algebra. Then J. := V.(1) & V.(—1) is simple
formally real Jordan algebra of rank< 3 and dim J. = 1 + no.

o The Jordan-von Neumann-Wigner classification implies that either dim J. = 1 or
dim J. = 3d + 3, where d € {1,2,4,8}. Thus, na =0 or no = 3d + 2.

o Using the obstruction
n1—1<p(ni+n2—1)

and the fact that p(m) ~ Inm implies the finiteness and the possible values in the
table.
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Towards a finer classification

Theorem D. (The tetrad decomposition)
Let V' be an exceptional Hsiang algebra, no = 3d + 2. Then
V=S'aS?eSPaM oM &M, S*=S5.85_a,
o M* are nilpotent;

O each S, is a real division algebra isomorphic to Ag;

o Any 'vertex-adjacent’ triple (Sa, Sg, Sy) is a triality
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Thank you!
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