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0 Minimal cubic cones via Clifford algebras

Vladimir Tkachev

Abstract. In this paper, we construct two infinite families of algebraic minimal
cones in R

n. The first family consists of minimal cubics given explicitly in
terms of the Clifford systems. We show that the classes of congruent minimal
cubics are in one to one correspondence with those of geometrically equivalent
Clifford systems. As a byproduct, we prove that for any n ≥ 4, n 6= 16k + 1,
there is at least one minimal cone in R

n given by an irreducible homogeneous

cubic polynomial. The second family consists of minimal cones in R
m

2

, m ≥

2, defined by an irreducible homogeneous polynomial of degree m. These
examples provide particular answers to the questions on algebraic minimal
cones in R

n posed by Wu-Yi Hsiang in the 1960’s.

Mathematics Subject Classification (2000). Primary 53C42, 49Q05; Secondary
53A35.

Keywords. Minimal submanifolds; Clifford algebras; Clifford systems; alge-
braic minimal cones.

1. Introduction

In 1916, S. Bernstein proved his famous theorem asserting that any entire solution
u = u(x1, x2) of the minimal surface equation

div
∇u

√

1 + |∇u|2
= 0, (1)

must be an affine function. In general, the left hand side of (1) is the mean curvature
of the graph xn = u(x1, . . . , xn−1) in R

n. The question whether the Bernstein
result holds true in any dimension n ≥ 3 (Bernstein’s problem) was a long standing
problem until J. Simons [18] proved that the Bernstein property holds in lower
dimensions n ≤ 8 and E. Bombieri, E. Di Giorgio and E. Giusti in [2] constructed a
non-affine minimal graph over R9. An important role in establishing of Bernstein’s
problem and the constructing of non-affine examples for n ≥ 9 played Simon’s
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cone {(x, y) ∈ R
4 × R

4 : |x|2 = |y|2} in R
8 and its generalizations in R

p+q given
by the implicit equation

(q − 1)(x21 + . . .+ x2p) + (p− 1)(y21 + . . .+ y2q) = 0, p, q ≥ 2. (2)

We refer the interested reader to [17], [15] for the further details, and mention
a very recent discussion of the breakdown of Bernstein’s theorem and geometry
of quadratic minimal cones in context of critical dimensions for the stable cone
solution of brane in the braneblack-hole system [7], [6].

The Clifford-Simons cones being defined by a quadratic equation are the
simplest examples of algebraic minimal cones. It is well known that any minimal
quadratic cone can be brought into the form (2) in some orthogonal coordinates
in Rn. In particular, any quadratic minimal cone is completely determined by a
non-ordered integer pair (p, q).

On the other hand, finding classification of minimal algebraic cones of higher
degrees remains a long-standing problem [16], [9], [5]. Even in the case of minimal
cubic cones there are only few examples known. For our further convenience, we
give a short description of these examples.

Example 1. By using the representation theory of the compact Lie groups SO(3)
and SU(3), one gets two homogeneous minimal cubic cones in R4 and R7 respec-
tively. For example, the defining equation of the first cone is x3(x

2
1−x22)+2x4x1x2 =

0. This cone is also a member of the Lawson family [11] of compact minimal sur-
faces in the unit sphere S3 ⊂ R4.

Example 2. Another series of minimal cubic cones is obtained from four isopara-
metric surfaces with three constant principal curvatures discovered by É. Cartan
[3] in 1939. These correspond to standard Veronese embeddings of a projective
plane FdP

2 into the unit sphere in R
3d+2, d = 1, 2, 4, 8, where Fd is one of the four

only possible classical division algebras: F1 = R, F2 = C, F4 = H and F8 = O.
The corresponding defining polynomials are given explicitly by (cf. [3, p. 34])

fd(x) = x3n − 3xnx
2
n−1 +

3

2
xn(X0X̄0 +X1X̄1 − 2X2X̄2)

+
3
√
3

2
xn−1(X0X̄0 −X1X̄1) +

3
√
3

2
((X0X1)X2 + X̄2(X̄1X̄0)),

where x = (X0, X1, X2, xn−1, xn), the vectors Xk = (xkd+1, . . . , xkd+d) are identi-
fied with the corresponding elements of Fd, k = 0, 1, 2, and X̄ denotes the conjugate
of X in Fd. It is well known that f−1

d (0) are minimal cubic cones in Rn, n = 3d+2
(thus, n = 5, 8, 14 and 26).

Example 3. W. Y. Hsiang [9] gave an elegant construction of two minimal cubics,
in R9 and R15 respectively. The first example exploits some special properties of
the orthogonal invariants of the spaceG′(4,R) of quadratic forms of 4 real variables
with trace zero. By identifying G

′(4,R) with R9, the defining polynomial of the
first cubic is given by b3(Y ) = 0, where

det(Y − tIR4) = t4 + b2(Y )t2 + b3(Y )t+ detY, Y ∈M,
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and IV stands for the identity operator on V . We discuss an explicit representation
of this cubic in Section 5 below. The second cubic is similarly constructed by
making use of the space G

′(4,C) of Hermitian forms of 4 complex variables with
trace zero.

In this paper, we construct two new families of minimal cones. We show that
any Clifford system A0, A1, . . . , Aq in R2m generates an irreducible minimal cubic
cone in R2m+q+1; see explicit formulas in Section 3 below. This yields a partial
answer to the Problem 1 posed earlier by Hsiang in [9]. Namely, we show that for
any n ≥ 4, n 6= 16k + 1, there is at least one irreducible minimal cubic in Rn. In
Section 4 we show that the congruence classes of the constructed minimal cubics
are in one-to-one correspondence with those of geometrically equivalent Clifford
systems.

In Section 5 we describe another family of minimal cones given by irreducible
homogeneous polynomials of arbitrary high degree. More precisely, for any integer

n ≥ 2 we construct a minimal cone in R
n2

given by an irreducible homogeneous
polynomial of degree n. If n = 3, the corresponding cone agrees under an isometry
with the Hsiang minimal cubic cone in R9 mentioned in Example 3 above.

2. Preliminaries

Let f ∈ R[x1, . . . , xn] be a homogeneous irreducible polynomial with real coeffi-
cients of degree s ≥ 1. If we assume that F(f) contains regular points of f , then
F(f) := f−1(0) defines an (n− 1)-dimensional cone in R

n. Then it is well known
(see, for instance, [9]) that the cone F(f) := f−1(0) is minimal if and only if

L(f) ≡ 0 mod f, (3)

where the normalized mean curvature operator L is defined by

L(f) := |∇f |3 div ∇f
|∇f | = |∇f |2∆f −

n
∑

i,j=1

fxi
fxj

fxixj
. (4)

For linear forms (i.e. s = 1) one has L(f) ≡ 0, which reflects the well-known fact
that hyperplanes in Rn have zero mean curvature.

Note that the above congruence also is well-defined for general homogeneous
polynomials f , thus we have the following definition.

Definition 2.1. A homogeneous polynomial f satisfying (3) is called an eigenfunc-
tion of L. If deg f = 3 it is called a minimal cubic. The ratio λ(f) := L(f)/f will
be called the weight of f .

For a minimal cubic, its weight λ(f) is a quadratic form, hence its diagonal
form has an invariant meaning (recall that the operator L is invariant under or-
thogonal substitutions [9, Lemma 2]). In this paper, we are primarily interested in
the case when

λ(f) = c|x|2, c ∈ R. (5)
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Any minimal cubic f satisfying (5) will be called a radial minimal cubic. Notice
that for a radial minimal cubics, the weight function λ(f) is rotationally invariant
and it contains a complete information about all variables of f , which makes it
possible to define the dimension of f as the dimension of the vector x.

Remark 2.2. The notion of dimension for general eigenfunctions of L is not well
defined because any eigenfunction in Rn also is (by adding ‘redundant variables’)
an eigenfunction in a larger Rn+k.

Definition 2.3. Two homogeneous polynomials f1 and f2 are called congruent if
f1(x) = cf2(Ux), where U is an orthogonal endomorphism of Rn and c ∈ R, c 6= 0.

Proposition 2.4. Two irreducible cubics f1 and f2 in Rn are congruent if and only
if the corresponding cones F(f1) and F(f2) are congruent.

The proof is based on the following lemma.

Lemma 2.5. Let f be an irreducible cubic, f 6≡ 0. Then F(f) contains a regular
point of f .

Proof. First we notice that in some orthogonal coordinates, f can be written as
follows:

f(x) = ax3n + xnφ(x1, . . . , xn−1) + ψ(x1, . . . , xn−1), a 6= 0. (6)

Indeed, the restriction of f(x) on the unit sphere |x|2 = 1 is continuous, hence it
attains its maximum at some point x0 (since f(x) is a non-identically zero odd
function, the maximum is strictly positive). By Lagrange principle, the gradient
of f is collinear to the unit vector ∇|x|2 at x0, i.e. ∇f(x0) = ax0. We have by the
homogeneity of f ,

a = 〈∇f(x0), x0〉 = 3f(x0) > 0.

Setting en = x0 and completing en to an orthonormal basis of Rn, one can easily
see that f(x) takes the required gap form (6) in the new coordinates.

We shall proceed by contradiction. Suppose that F(f) contains no regular
points of f , i.e. f = 0 implies ∇f = 0. Since f is irreducible, ψ 6≡ 0, hence there
exists u = (u1, . . . , un−1) 6= 0 such that ψ(u) 6= 0. Then the cubic polynomial
P (t) ≡ at3 + bt + c has a real root t1 6= 0, where b = φ(u) and c = ψ(u).
Denote by T the set of all real roots of P (t). Then for any ti ∈ T , the point
(u1, . . . , un−1, ti) ∈ F(f), thus ∇f(u1, . . . , un−1, ti) = 0. The latter implies that
the partial derivative ∂xn

f(u1, . . . , un−1, ti) = 0. Thus P ′(ti) = 0 for any ti ∈ T ,
that is any real zero of the polynomial P (t) must be also a zero of its derivative
P ′(t). But it is possible only if P (t) ≡ at3, which contradicts to c = ψ(u) 6= 0. The
lemma is proved. �

Proof of Proposition 2.4. It suffices to prove the ‘only if’ part. Suppose that the
cones F(f1) and F(f1) are congruent, i.e. F(f2) = UF(f1) for some orthogonal
endomorphism U of Rn. Consider the new cubic g(x) = f2(Ux). Then g(x) = 0
whenever f1(x) = 0. By Lemma 2.5, the cone F(f1) contains a regular point.
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Applying the real Nullstellensatz for the algebraic set F(f1) given by a single
polynomial equation (see, for instance, Lemma 2.5 in [12]), we conclude that g(x)
must be a multiple of f1. Since deg g = deg f1 = 3, we conclude that g = cf1(x)
for some real c 6= 0. This shows that cf1(x) = f2(Ux), the theorem follows. �

3. Clifford minimal cubics

We shall exploit the well-known fact that any Clifford algebra has a linear represen-
tation in a Euclidean space R2m such that all algebra generators act as orthogonal
endomorphisms. This link between the representation theory of Clifford algebras
and the so-called Clifford systems can be described as follows [1]. Recall that a
q-tuple A = (A0, . . . , Aq), q ≥ 1, of symmetric endomorphisms of R2m is called a
(symmetric) Clifford system on R2m, or A ∈ Cliff(R2m, q), if

AiAj +AjAi = 2δij · IR2m , 0 ≤ i, j ≤ q. (7)

Recall that by IV we denote the identity operator on V .

Remark 3.1. Notice that all Ai are orthogonal matrices and they are necessarily
trace free. Indeed, since the trace is invariant under cyclic permutations, we have
from (7) for i 6= j: trAi = − trAjAiAj = − trAiA

2
j = − trAi.

Given a finite collection of matrices Ai ∈ Rs×s, 0 ≤ i ≤ q, and a vector
z = (z0, z1, . . . , zq) ∈ Rq+1, we make use the following notation:

Az :=

q
∑

i=0

ziAi.

Now we are ready to expose the first family of examples announced in the
introduction.

Theorem 3.2 (Clifford cubics). Let A = (A0, . . . , Aq) ∈ Cliff(R2m, q). Then

Φ(x) ≡ ΦA(x) := ytAzy, x = (y, z) ∈ R
2m ⊕ R

q+1, (8)

is a radial minimal cubic satisfying (3) with the weight

λ(Φ) = −8|x|2. (9)

Proof. By Remark 3.1, all Ai are trace free. Hence ∆Φ = 0 and

Φyi
= 2etiAzy, Φzi = ytAiy, (10)

and Φyiyj
= 2etiAzej to (4), where {ei}1≤i≤2m is the standard orthonormal basis

in R2m (we interpret ei as a vector-column). We have

−L(Φ) = 8

2m
∑

i,j=1

etiAzy · etiAzej · etjAzy + 8

2m
∑

i=1

q
∑

k=0

etiAzy · etiAky · ytAky

=: S1 + S2.

(11)
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We find by virtue of (7) that

Az′Az′′ +Az′′Az′ =

q
∑

i,j=0

z′iz
′′
j (AiAj +AjAi) = IR2m

q
∑

i,j=0

2δijz
′
iz

′′
j

= 〈z′, z′′〉IR2m ,

(12)

where 〈·, ·〉 is the standard scalar product in Rq. In particular, A2
z = |z|2IR2m ,

hence

A3
z = |z|2Az . (13)

On the other hand,
∑2m

i=1 eie
t
i = IR2m , thus we obtain

S1 = 8

2m
∑

i,j=1

ytAz(eie
t
i)Az(ejej

t)Azy = 8ytA3
zy = 8|z|2 · ytAzy.

Now applying (12) to z′ = z and z′′ = (ytA0y, . . . , y
tAqy), we find

ytAzAz′′y =
1

2
yt(AzAz′′ +Az′′Az)y = |y|2〈z, τ〉 = |y|2 · ytAzy,

which yields

S2 = 8

q
∑

j=0

ytAzAjy · ytAjy = 8ytAzAτy = 8|y|2 · ytAzy.

Substituting the found relations into (11) yields L(Φ) = −8(|z|2 + |y|2)Φ, hence
(9) is proved.

In order to show that Φ is irreducible, we assume the contrary. Then any
specialization of Φ must be reducible too. For instance, by setting zi = 0, 2 ≤ i ≤ q,
we see that the cubic form

z0 · ytA0y + z1 · ytA1y (14)

is reducible. Since A0 and A1 also form a Clifford system, one can choose new
orthogonal coordinates (u, v) ∈ Rm × Rm such that A0(u, v) = (u,−v) and
A1(u, v) = (v, u); see [1, Lemma 5.4.7]. Then setting ui = vi = 0, 2 ≤ i ≤ m,
in (14) we conclude that the resulted specialization g := z0(u

2
1 − v21) + 2z1u1v1

must be reducible too. The latter expression, however, cannot be reducible even
over a bigger complex polynomial ring C[z0, z1, u1, v1] because the discriminant
of g with respect to u1 is 4v21(z

2
0 + z21), not a perfect square. The contradiction

finishes the proof. �

Definition 3.3. We shall call ΦA(x) a Clifford minimal cubic.

It follows from the general theory of Clifford systems (see, for example, [14])
that a necessary and sufficient condition for existence of a symmetric Clifford
system A in R

2m of cardinality q is that q ≤ ρ(m), where ρ is the Hurwitz-Radon
function

ρ(2s · odd) = 8a+ 2b, where s = 4a+ b, 0 ≤ b ≤ 3. (15)
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Thus, an irreducible Clifford minimal cubic ΦA does exist in R
n precisely if equa-

tion n = 2m+ q+1 has a solution (q,m) satisfying 1 ≤ q ≤ ρ(m). In that case we
say that n is realizable, and the pair (q,m) is admissible for the number n.

The above results yield a partial answer to Problem 1 posed by Hsiang in [9]
on the existence of irreducible cubics in a given dimension n ≥ 4.

Corollary 3.4. Let n ≥ 4 and n 6≡ 1 mod 16. Then there is at least one irreducible
radial minimal cubic in Rn.

Proof. It easily follows from the definition of the Hurwitz-Radon function that
ρ(2sk) ≥ 2s for s = 0, 1, 2, 3 and any integer k ≥ 1.

If n is even then (q,m) = (1, n−2
2 ) is admissible for n because ρ(m) ≥ 1 for

any m ≥ 1. Thus any even n ≥ 4 is realizable.

Now assume that n is odd. A simple verification shows that there is exactly
two non-realizable values of n for n ≤ 16, namely n = 5 and n = 9. On the other
hand, in R5 there is an isoparametric minimal cubic considered in Example 2 and
in R9 the Hsiang minimal cubic given in Example 3. These cubics are easily shown
to be radial.

Thus, we can suppose that n is odd and n ≥ 16. Write n = 16k + s, where
k ≥ 1, s is odd and s ≤ 15. If s ∈ {3, 5, 7, 9} then the pair (s−1, n−s

2 ) ≡ (s−1, 8k)
is admissible for n because one has ρ(8k) ≥ 8.

If s ∈ {11, 15} then n has the form n = 4p+3, hence the pair (2, n−3
2 ) ≡ (2, 2p)

is admissible for n because ρ(2p) ≥ 2. If s = 13 then n has the form n = 8p + 5,
hence the pair (4, n−5

2 ) ≡ (4, 4p) is admissible for n because ρ(4p) ≥ 4. The
corollary is proved. �

Remark 3.5. A more delicate argument shows that some terms of the exceptional
sequence n = 16k + 1 are really non-realizable (for example, those corresponding
to k ≤ 27 = 128). On the other hand, all terms of the form n = 211 p+ 17, p ≥ 1,
are realizable.

Conjecture 1. There is no irreducible radial minimal cubics in R17.

Example 4. For any integer m ≥ 1, the following matrices define a Clifford system
on R2m:

A0 =

(

IRm 0
0 −IRm

)

, A1 =

(

0 IRm

IRm 0

)

.

Setting y = (x1, . . . , x2m), z = (x2m+1, x2m+2), we obtain by Theorem 3.2 the
following irreducible radial minimal cubic in R2m+2:

ΦA = x2m+1(x
2
1+ . . .+x2m−x2m+1− . . .−x22m)+ 2x2m+2(x1xm+1+ . . .+xmx2m).

For m = 1, we get the Lawson minimal cubic mentioned in Example 1 above.
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4. Congruent Clifford minimal cubics

Recall that two cones are called congruent if they agree under an orthogonal
endomorphism in Rn. After the new examples of minimal cubics were shown to
exist, a natural question is to characterize all congruent Clifford minimal cubics
in Rn. The aim of this section is to show that the congruence classes of Clifford
minimal cubics are in one to one correspondence with those of the geometrically
equivalent Clifford systems.

We begin with mentioning several well-known basic facts about representa-
tion theory of Clifford systems [1, Section 5.5]. Recall that two Clifford systems
A = (A0, . . . , Aq) and B = (B0, . . . , Bq) in Cliff(R2m, q) are called geometrically
equivalent if there is an orthogonal endomorphism a of R2m such that

S(A) = at S(B) a, (16)

where S(A) = {Az : |z| = 1} is the unit sphere in the span(A0, . . . , Aq).
A Clifford system A on R2m is called irreducible if it is not possible to write

R2m as a direct sum of two non-trivial subspaces that are invariant under all of
the Ai. Then it is well known that

• each Clifford system is geometrically equivalent to a direct sum of irreducible
Clifford systems;

• an irreducible Clifford system (A0, . . . , Aq) on R2m exists precisely whenm =
2s and

ρ(
m

2
) < q ≤ ρ(m), (17)

where ρ is the Hurwitz-Radon function (15). In particular, for small values
q, the possible pairs (q,m) are

q 1 2 3 4 5 6 7 8 9 10 11

m 1 2 4 4 8 8 8 8 16 32 64

• For any q ≥ 1 there is exactly one class of geometrically equivalent irreducible
systems.

Our first observation is the following formula for the cardinality q of the
Clifford system A in ΦA.

Proposition 4.1.

τ(ΦA) :=
|x|2 trH3(ΦA)

24L(ΦA)
= q − 1, (18)

where H(f) denotes the Hessian matrix of f .

Proof. Write the Hessian matrix of Φ := ΦA in the block form

H(Φ) ≡
(

Φyy Φyz

Φzy Φzz

)

=

(

2Az Q
Qt 0

)

,
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where Q is the matrix with entries Qij = Φyizj = 2etiAjy. Thus

trH3(Φ) = 8 trA3
z + 6 trAzQQ

t. (19)

By virtue of (13) and Remark 3.1, the first term in (19) is zero. In order to
determine the second term, we note that

trAzQQ
t =

2m
∑

i,j=1

(Az)ij(QQ
t)ij =

2m
∑

i,j=1

(Az)ij

q
∑

k=0

QikQjk

= 4
2m
∑

i,j=1

(Az)ij

q
∑

k=1

etiAky · etjAky

= 4

q
∑

k=0

ytAk(

2m
∑

i,j=1

(Az)ij ei · etj)Aky

= 4

q
∑

k=0

ytAkAzAky.

(20)

Note also that A3
k = Ak, hence on applying (12) we obtain
q

∑

k=0

AkAzAk =

q
∑

k=0

(AkAz +AzAk)Ak −
q

∑

k=0

AzA
2
k

= 2

q
∑

k=0

zkA
3
k − (q + 1)Az = (1− q)Az ,

which by virtue of (20) and (19) yields

trH3(Φ) = 24(1− q)Φ. (21)

The latter relation yields the required formula (18) by virtue of (9). �

Corollary 4.2. Consider two Clifford minimal cubics in Rn

ΦA(x) =

q
∑

i=0

ziy
tAiy, ΦB(X) =

Q
∑

j=0

ZiY
tBiY, (22)

where x = (y, z) ∈ R
2m ⊕ R

q ≈ R
n, X = (Y, Z) ∈ R

2M ⊕ R
Q ≈ R

n, and A ∈
Cliff(R2m, q), B ∈ Cliff(R2M , Q).

If the cubics ΦA(x) and ΦB(X) are congruent then q = Q.

Proof. Notice that for any homogeneous cubic polynomial f , τ(f) is an invariant
operator under orthogonal transformations and dilatations:

τ(f(x)) = τ(f(U(x))), τ(f(cx)) = τ(f(x)).

Indeed, the first property follows from the facts that both the operator L (see,
for example, [9, Lemma 2]) and the trace trH3(f) are invariant under orthogonal
transformations. The second property follows from the homogeneity of f . Thus
τ(ΦA) = τ(ΦB), which implies by (18) that q = Q, the corollary is proved. �
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Theorem 4.3 (Congruence criteria). The Clifford cubics ΦA(x) and ΦB(X) given
by (22) are congruent in Rn if and only the Clifford systems A and B are geomet-
rically equivalent.

Proof. We first prove the ”if” part. Then q = Q, and (A0, . . . , Aq) and (B0, . . . , Bq)
are geometrically equivalent. Denote by a the corresponding orthogonal endomor-
phism of R2m in (16). Then

Ai = atBwi
a, 0 ≤ i ≤ q, (23)

where |wi| = 1, wi ∈ Rq+1. We have Bwi
=

∑q
k=0 wikBk, where

∑q
k=1 w

2
ik = 1.

By virtue of (23) and (7),

2δijIR2m = AiAj +AjAi =

q
∑

k,l=0

wikwjl · atBkBla

= 2IR2m

q
∑

k,l=0

wikwjlδkl = 2IR2m

q
∑

k=0

wikwjk,

thus d := (wij)0≤i,j≤q is an orthogonal matrix. Furthermore, by (23)

Az ≡
q

∑

k=0

ziAi = at(

q
∑

k=0

wikziBk)a ≡ atBdza, (24)

and thus y⊤Azy = (ay)tBdz ay. Write R2m+q+1 ∼= Vy ⊕Vz according to the vector
decomposition x = y ⊕ z. Then ΦA(x) = ΦB(Ux), where U is an orthogonal
endomorphism of Vy ⊕ Vz :

U =

(

a 0
0 d

)

,

which yields that ΦA and ΦB are congruent.
Conversely, suppose ΦA and ΦB are congruent Clifford minimal cubics given

by (22). Then q = Q by Corollary 4.2, so that the congruence relation (after scaling
by a constant factor, if needed) reads as

ΦA(x) = ΦB(Ux), (25)

where U is an orthogonal endomorphism of R2m+q+1. Let R2m+q+1 = Vy ⊕ Vz be
the decomposition associated with A and x = y+ z. Then U can be written in the
block form as follows

U =

(

a b
c d

)

, UU t = U tU = IRn .

It follows from (25) that

|∇ΦA|2|(y,z) = |∇ΦB|2|U(y,z). (26)

By using (10),

|∇ΦA|2 = 4|Azy|2 +
q

∑

i=0

(ytAiy)
2 = 4|y|2|z|2 +

q
∑

i=0

(ytAiy)
2,
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and on applying (26), the relation (26) reads as follows:

4|y|2|z|2+
q

∑

i=0

(ytAiy)
2 = 4|ay+ bz|2|cy+dz|2+

q
∑

i=0

((ay+ bz)tBi(ay+ bz))
2. (27)

Setting z = 0 in the latter identity yields 4|bz|2|dz|2 +
∑q

i=0((bz)
tBi(bz))

2 = 0,
which is equivalent to the system

4|bz|2|dz|2 = 0, (28)

(bz)tBi(bz) = 0, 0 ≤ i ≤ q. (29)

Since the polynomial ring over R contains no zero divisors, (28) implies that either
(i) bz ≡ 0 or (ii) dz ≡ 0.

Consider first (ii). Then d ≡ 0, and (29) additionally yields for any i, 0 ≤ i ≤
q, that vtBiv ≡ 0 for any v ∈ W := b(Vz). Since Bi is a symmetric endomorphism,
we conclude that the restriction Bi|W ≡ 0; in particular, Bibz ≡ 0 for any z ∈ Vz .
Since d = 0, we find from the orthogonality relation U tU = 1Rn that atb ≡ 0.
Thus (27) becomes

4|y|2|z|2 +
q

∑

i=0

(ytAiy)
2 = 4(|ay|2 + |bz|2)|cy|2 +

q
∑

i=0

((ay)tBi(ay))
2. (30)

By homogeneity, |y|2|z|2 = |bz|2|cy|2, thus btb = IVz
and ctc = IVy

. On the other
hand, by the orthogonality relation U tU = 1Rn we have ata + ctc = IVy

, so that
ata = 0. It follows that a ≡ 0 and substituting this into (30) yields

q
∑

i=0

(ytBiy)
2 = 0,

a contradiction.
Consider now the remaining alternative (i). Then b ≡ 0 and from the orthog-

onality relations UU t = U tU = 1Rn we infer aat = IVy
, c = 0 and dtd = IVz

.
Therefore a (resp. d) is an orthogonal endomorphism of Vy (resp. of Vz). Substi-
tuting this into (25) yields

ytAzy = (ay)tBdz(ay). (31)

Since both Az and Bdz are symmetric matrices, the latter identity implies Az =
atBdza. Since a and d are orthogonal transformations, we arrive to (16), thus A
and B are geometrically equivalent. The theorem is proved completely. �

Applying the facts about irreducible Clifford systems given in the beginning of
the section, one can determine the number c(n) of non-congruent minimal Clifford
cubics in Rn. These numbers for values n ≤ 21 are given in the table below.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

c(n) 1 0 2 2 2 0 4 4 8 4 6 6 6 0 9 9 18 9
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5. Minimal cones of arbitrary high degree

In [9, Problem 2], Hsiang asks the following question. For a given dimension n ≥ 4,
are there irreducible homogeneous polynomials in n real variables of arbitrary high
degree, which give minimal cones of codimension one in Rn? Below we give a
partial answer on this question by showing that there are irreducible minimal
cones of arbitrary high degree.

Let X = (xij)1≤i,j≤m be an m-by-m square matrix, m ≥ 1. Consider the
determinantal function

Ψm(X) = det(xij)

which is an element of the polynomial ring R[x11, . . . , xmm]. It is well known that
Ψm(X) is a irreducible polynomial in the polynomial ring C[x11, . . . , xmm] (see,
for example, [22, § 30], [10, p. 630]).

Theorem 5.1. Ψm(X) is an irreducible eigenfunction of L of degree m.

Proof. The case m = 1 is trivial and for m = 2 the theorem is equivalent to the
well-known fact that the Clifford cone x11x22−x12x21 = 0 is a minimal submanifold
in R

4. Thus, we may suppose that m ≥ 3.
We have ∂xij

Ψm = (−1)i+j detX i|j . Here and in what follows, Xα|β denotes
the submatrix of X obtained by deleting the rows indexed by i ∈ α and columns
indexed by j ∈ β for the index sets α, β ⊂ {1, . . . ,m}. Similarly, Xα|β denotes the
submatrix of X that lies in the corresponding rows and columns. Note that in the
given notation, xij = Xi|j .

Thus, the second derivative is found as:

∂2xijxkl
Ψm = (−1)i+j+k+lǫi,j;k,l · detX i,k|j,l, (32)

where ǫi,j;k,l is the sign of (i−k)(j− l) when the product is nonzero and ǫi,j;k,l = 0
otherwise. Since Ψm is linear in each variable, ∆Ψm = 0, thus

L(Ψm) = −
∑∗

∂2xij xkl
Ψm ∂xij

Ψm∂xkl
Ψm

= −
∑∗

ǫi,j;k,l detX
i,k|j,l detX i|j detXk|l

(33)

where
∑∗

denotes the sum over all indices satisfying (i− k)(j − l) 6= 0.
On the other hand, ǫi,j;k,l = −ǫi,l;k,j and detX i,k|j,l = detX i,k|l,j , hence

L(Ψm) = −
∑∗

∂2xil xkj
Ψm ∂xil

Ψm∂xkj
Ψm

= −
∑∗

ǫi,l;k,j detX
i,k|l,j detX i|l detXk|j

=
∑∗

ǫi,j;k,l detX
i,k|j,l, detX i|l detXk|j

(34)

thus

L(Ψm) = −1

2

∑∗
ǫi,j;k,l(detX

i|j detXk|l − detX i|l detXk|j) detX i,k|j,l

= −1

2

∑∗
ǫi,j;k,l

∣

∣

∣

∣

detX i|j detX i|l

detXk|j detXk|l

∣

∣

∣

∣

· detX i,k|j,l.
(35)
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By using the representation of the inverse matrix X−1 in terms of its adjoint,

(X−1)ij =
(−1)i+j

detX
detX i|j,

we find for the 2× 2 determinant in (35),
∣

∣

∣

∣

detX i|j detX i|l

detXk|j detXk|l

∣

∣

∣

∣

= (−1)i+j+k+l(detX)2 ·
∣

∣

∣

∣

det(X−1)ij det(X−1)kj
det(X−1)il det(X−1)kl

∣

∣

∣

∣

≡ (−1)i+j+k+l(detX)2 · ǫi,j;k,l det(X−1)ik|jl

On the other hand, there is a formula relating the minors of X−1 to those of
X (see [8, § 0.8.4]), which reads in our notation as follows:

det(X−1)α|β detX = (−1)|α|+|β| detXβ|α,

where |α| = ∑

i∈α i. Combining this with (35) we obtain

L(Ψm) = −detX

2

∑∗
(detX ik|jl)2. (36)

Thus, we see that Ψm satisfies (3) with λ(Ψm) = − 1
2

∑∗
(detX ik|jl)2.

�

Example 5. Consider the case m = 3 in Theorem 5.1. Then

Ψ3 = det





x1 x2 x3
x4 x5 x6
x7 x8 x9



 = x1x5x9+x2x6x7+x3x4x8−x3x5x7+x2x4x9+x1x6x8,

and the corresponding weight function is found as:

λ(Ψ3) = −1

2

∑∗
(detX ik|jl)2 = −1

2

9
∑

i=1

x2i .

The latter relation shows that Ψ3 is a radial minimal cubic in R9. In fact, it can
be shown by a direct computation that the Hsiang cubic b3(X) from Example 3 is
congruent to Ψ3.

6. Concluding remarks

There is some formal resemblance between an appearance of Clifford systems in the
above constructions (cf. (8)) and in the well-known examples of the isoparametric
hypersurfaces with four principal curvatures given by Ferus, Karcher andMzünzner
in [4]. Recall that the latter are the level-sets in the unit sphere of following quartic
polynomials:

F (y) = |y|4 − 2

q
∑

i=0

(ytAiy)
2, y ∈ R

2m.
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Since these isoparametric hypersurfaces generates minimal quartics (as focal vari-
eties), it would be interesting to learn whether there is any reasonable connection
between the FKM-quartics and the Clifford minimal cubics constructed on the
present paper (cf. [19]).

Another curious observation is that all the irreducible minimal cubics men-
tioned in Examples 1–3, as well as the new examples of Clifford minimal cubics
constructed in Section 3, are the radial minimal cubics. On the other hand, re-
ducible minimal cubics need not to be radial as the following example shows. Con-
sider a reducible cubic f = x6(2x

2
1+2x22−x23−x24−x25). Then it is an eigenfunction

with the weight

λ(f) = −28(x21 + x22)− 10(x23 + x24 + x25)− 16x26.

In a forthcoming paper [21] we study the general radial cubics in more detail. Some
further observations make the following conjecture is plausible.

Conjecture 2. Any minimal irreducible cubic is radial.

Note also that among all minimal cubics considered here, only isoparametric
minimal cubics given in Example 2 are properly immersed, i.e. the corresponding
defining polynomial f satisfies the non-degenerating property |∇f | 6= 0 on F(f) \
{0}. It follows from a recent result of O. Perdomo [13] that there are no properly
immersed minimal cubics in R

4. It would be interesting to know if this property
extends to higher dimensions.
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[20] Tkachev, V.G.: É. Cartan’s theorem for general cubic forms. Proc. Amer. Math.
Soc., 138, no. 8, 2889–2895 (2010)

[21] Tkachev V.G., Classification of radial minimal cubics, in preparation.

[22] Waerden, van der: Algebra I, Springer-Verlag, (1966)

Vladimir Tkachev
Mathematical department, Royal Institute of Technology, S-10044, Stockholm, Sweden
e-mail: tkatchev@kth.se


	1. Introduction
	2. Preliminaries
	3. Clifford minimal cubics
	4. Congruent Clifford minimal cubics
	5. Minimal cones of arbitrary high degree
	6. Concluding remarks
	Acknowledgment

	References

