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On a theorem of S.Y. Cheng and S.T. Yau

Tkachev Vladimir G.

1. Introduction

In their paper [2], Cheng and Yau have established the following result generalizing
the classical Bernstein theorem for minimal surface equation.

Theorem A (Corollary 1 in [2]). Let H(t) be a function of constant sign on R1 such
that

H ′(t) ≥ 0. (1)

Then any entire solution f = f(x1, x2) of the mean curvature equation

2∑
i=1

∂

∂xi

(
fxi√

1 + |∇f(x)|2

)
= H(f(x)) (2)

is a linear function.

The proof given in [2] exploits a new technique based on Liouville type theorems on
Riemannian manifolds with polynomial volume growth assumptions 1

In this note, we show that Theorem A is a corollary of the classical Bernstein theorem
[1] and an elementary capacity estimate given in Theorem 1 below. In fact, our method
implies a generalization of Theorem A for weak solutions of a wider class PDEs without
any sign assumptions on H(t).

Let us fix some notation. Let D be a domain in R2 and let Ai(x, ξ), i = 1, 2 be a
Baire functions defined for any x = (x1, x2) ∈ D and ξ = (ξ1, ξ2), and such that

a)
∑2

i=1 ξiAi(x, ξ) ≥ 0,

1The sign of the derivative H ′(t) is important as one can see from the following example: f(x) =

r2/
√
1 + r2, where r =

√
x2
1 + x2

2 + x2
3 is a (covex) C∞-solution in R2 of (2) with 0 < H ≤ 4 and

H ′(t) < 0. Notice that the origin version [2] use another sign convention on H in (2), such that
Theorem A in [2] is valid under the nonincreasing condition ∂H/∂x3 ≤ 0 instead.
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b)
∑2

i=1A
2
i (x, ξ) ≤ 1.

A locally Lipschitz function f(x) in D is said to be a (weak) solution of the equation

2∑
i=1

d

dxi
Ai(x,∇f(x)) = 0 (3)

if for any Lipschitz function ϕ(x) with a compact support in D the following equality
holds: ∫∫

D

2∑
i=1

Ai(x,∇f(x))ϕ′
xi
dx1dx2 = −

∫∫
D

ϕ(x)H(f(x)) dx1dx2. (4)

It is easy to see that f(x) is a classical solution of (3) in D provided Ai and f are smooth
enough.

Further, given a pair of disjoint closed subsets P,Q of R2, define the capacity of the
condenser (P,Q) as

cap(P,Q) = inf

∫∫
D

|∇ϕ(x)|2 dx1dx2,

where the infimum is taken over all locally Lipschitz functions ϕ(x) such that ϕ(x) ≡ 1
on P and ϕ(x) ≡ 0 on Q.

Theorem 1. Let H(t) be a function subject to the condition (1) and let f(x) be a
weak solution of (3) in D ⊂ R2. Then for any compact subset F b D∫∫

D

H2(f(x)) dx1dx2 ≤ 4 cap(F,R2 \D). (5)

Proof. Let ψ(x) be a Lipschitz function with a compact support in D, ψ ≡ 1 on
F . Then φ := ψ2(x)H(f(x)) is also a Lipschitz function with a compact support in D.
Thus, we have∫∫

D

2∑
i=1

Ai(x,∇f)
∂

∂xi
(ψ2H(f)) dx1dx2 = −

∫∫
D

ψ2H2(f) dx1dx2.

Taking into account (1) and the condition (a) above, we arrive at

−2

∫∫
D

ψH(f)
2∑

i=1

Ai(x,∇f)
∂ψ

∂xi
dx1dx2 ≥

∫∫
D

ψ2H2(f) dx1dx2.

Using (b), we get

2

∫∫
D

|ψH(f)| · |∇ψ| dx1dx2 ≥
∫∫
D

ψ2H2(f) dx1dx2,
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and the Cauchy inequality yields∫∫
D

ψ2H2(f) dx1dx2 ≤ 4

∫∫
D

|∇ψ|2 dx1dx2.

Taking into account that ψ ≡ 1 on F we arrive at (5). �

As an application, we obtain the following generalization of Theorem A above without
requirement of constant sign on H. Indeed, we have for the mean curvature operator
(2):

Ai(x, ξ) =
ξi√

1 + ξ21 + ξ22
, i = 1, 2,

which obviously satisfies the conditions (a) and (b) above. Let f(x) be a classical solution
of (2), where H ′(t) ≥ 0. Using the well-known fact that R2 has parabolic conformal type,
any compact subset F b R2 has capacity zero, i.e. there exists a sequence of open sets
F b Fi b Fi+1 and ∪∞i=1Fi = R2 such that

lim
i→∞

cap(F,R2 \ Fi) = 0,

we obtain for any entire solution f of (2) by (5) that∫∫
F

H2(f(x)) dx1dx2 = 0

for any compact set F , thus H(f(x)) ≡ 0 everywhere in R2. Using the classical Bernstein
theorem [1], we get that f is an affine function.
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