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DOUBLY PERIODIC MAXIMAL
SURFACES WITH SINGULARITIES

V. V.Sergienko* and V. G. Tkachev**

Abstract

We consider almost entire solutions to the maximal surface equation which satisfy
certain structure conditions. This approach allows us to construct a large class
of periodic solutions by using generating matrices. We describe the analytic
behavior of such solutions with mixed-type singular points.

Key words and phrases: maximal surface, doubly periodic maximal surface,
singularity.

1. Introduction

1.1. This article is devoted to studying almost entire doubly periodic '
solutions to the following nonlinear equation:

(L= 2 fie + 28 fyfay + (L= 22) fpy = 0. (1)

It is well known that, outside the set £ of points where the norm of the gra-
dient of the function f(z,y) equals 1, the graph z = f(z,y) of a solution to (1)
represents a surface of mean curvature zero in the Minkowski space R:f (z,9,2)
endowed with the indefinite metric

ds® = dz? + dy? — d22.

As follows from the results by Calabi [1] and Cheng and Yau [2], every
entire solution to (1), i.e. a solution defined everywhere in R?, is an affine
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function f(z,y) = az + by + ¢, provided that the extra requirement

|Vf(a:,y)] <1 (2)

is satisfied. Inequality (2) may be interpreted as the space-like condition for
the graph z = f(z,y) in R}. In this case, equation (1) can be written down in
the divergence form

div—ad =9 3)

V1-1VfP

and is referred to as the maximal surface equation. Thus, every solution to
the maximal surface equation (3) (or problem (1),(2)) which is defined over
the whole plane R? must have singularities whenever it is not an affine function.

We call a function f(z,y) of the class C? an almost entire solution to (1)

if it is defined everywhere in R? outside some set I of isolated points and
differs from an affine function.

In the case when the space-like condition (2) holds everywhere in R? \Zy,
the results by Ecker [3] and Klyachin and Miklyukov [5] imply that in a neigh-
borhood of each point a € Xy the solution f(z,y) has the same asymptotic
structure as the light cone. In other words, for €2 = 1 we have the expansion

f@=s@+elo-al+o(lu-al), w-a (@

where w = (z, y). ,

It is unknown whether (4) holds in the general case for an arbitrary
almost entire C2-solution to (1). We note that the minimal surfaces in R®
have no isolated singularities, as it follows from the results about removable
singularities for two-dimensional minimal surfaces [4, 6].

We also note that there is a certain analog of the Weierstrass representa-
tion for solutions to (3). This makes it possible to parametrize solutions locally
via holomorphic functions. In particular, such solutions are analytic functions
outside the singular set. There is no analogous representation in the general
case of equation (1). This follows from the mixed elliptic-parabolic type of
equation (1) and the existence of solutions to (1) of a low smoothness class,
Indeed, every function of the form

f(z,9) =z + h(y) (5)

satisfies (1) under the only condition that A € C2(R). Moreover, it is obvious
that [Vf? =144 2(y) > 1 everywhere in R2.
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1.2. Most articles devoted to equation (1) deal only with the space-
like case (2) in which the equation is of elliptic type. An important but
almost uninvestigated case is that of mixed solutions, i.e. solutions to (1) for
which there are points at which IVf (z, y)' < 1 as well as points at which
]V f(z, y)] > 1. In this article we, for the first time, construct families of such
mixed-type solutions which are bounded and analytic as functions in (z,y)
outside the set of singularities. It is worth to note that the singularities of
these solutions also have the asymptotic structure of the light cone.

In view of the above-mentioned circumstances, we use a method that dif-
fers essentially from the Weierstrass representation and allows us to construct
doubly periodic solutions to equation (1) in nondivergent form, i.e. solutions
satisfying

f(z + nin,y + mom) = f(z,v)

for some 7, 7 > 0 and arbitrary integers n and m. Under certain assumptions,
the solution f(z,y) has isolated singularities at the nodes of the rectangular
lattice ¢ = 71 Z @ 12Z. The structure and functional-geometric properties of
these solutions depend on the so-called generating matrix A whose definition

is given in the next section.

We do not dwell upon the case of periodic solutions. They are the topic
of the recent article [7], whercin examples were exhibited of periodic almost
entire maximal surfaces with isolated singular points on a straight line. These
examples result from one general assertion of this article in which the authors
completely classified solutions to (1) with the so-called “harmonic” level lines.

Theorem 1. Let f(z,y) be a C%-solution to (1) of the form F o ¢(z,y),
where ¢(z,y) is a harmonic function and F is a function of the smoothness
class C?(R). Then

~Re [ X
<p(:c,y) = Re g(c)’

where g(¢) is one of the foﬂowing functions:

1) 9(¢) =a¢ +c;

2) 9(¢) =ae¥;

3) g(¢) =asin(b¢ + ¢).
Here { =z +iy € C, a®,b* € R, and c € C. The function F(t) is a solution to
the functional-differential equation F"(t)+£(F(t)) = 0, with the real function
&(F) soundly defined from the relation

§(fp(a:,y)) 4 |2 Reg'(¢) = 0.

l9(¢)
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The cases 1 and 2 give classical examples of maximal surfaces: planes,
maximal catenoids, helicoids, and maximal Scherk surfaces. In the case 3
the surface is space-like only if a,b € R; then there are infinitely many isolated
singular points on a straight line. An implicit representation for this surface

up to translation and homothety of the (z,y, z) space is as follows

n(7) = Gy

where k' = VI—K2, k € (Ok, 1), and sn(t; k) is the Jacobi sine defined in
Section 6. :

2. Generating matrices

2.1. Throughout the sequel, by a matrix we mean a square 3 X 3-matrix
with real entries. The set of permutations of the index set {1, 2,3} is denoted
by S. In this section we define the notion of generating matrix and cons1der
its properties.

Definition 2. A matrix A = (aij), not identically equal to zero, is
a generating matriz, or A € M, if

QiaGif = Qjy Oy | (6)

for arbitrary permutatiohs (4,7,k), (e, B,7) € S.
The associate matriz A’ of A is defined as follows:

aj; a2 a3z “ ‘

/

A'=|a3 a3 a2 |. - (7
azz a3 a

Obviously, the generation condition (6) amounts to vanishing of all second
order minors of the matrix A’. Since A is a nonzero matrix, A is a generat-
ing matrix if and only if rank A’ = 1. This means in particular that every
generating matrix A can be written down as

P1P2 QT2 T1Q2
A= rr2 ;e ap2 |, (8)
q1q2 T1p2 piTe .

where p? + q? + r,-2 #0,1=1,2. Indeed, since rank A’ = 1, there are a nonzero
vector £ = (p1,q1,71) and numbers p2, g2, and r2, not vanishing simultane-
ously, such that the columns of A’ are proportional to §{ with the respectxve
coefficients p2, g2, and ro; hence, (8) follows.

We point to a useful simple consequence of the generation condition:
the product of the entries in one column or in one row of a generating matrix
always equals the same number. The latter is called the modulus of A and
denoted by 6(A). If (A) # 0 then we say that A is nondegenerate.
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Lemma 3. If A € M is degenerate, i.e., 0(A) = 0, then after a suitable
permutation of rows and columns A takes one of the following forms:

0 a2 a3
D, = (021 0 aza) :
az1 a3z O
0 a2 ai3
Dy = (azl 0 O ) , (9)
azl 0 0 1

a;; O 0
Dj = ( 0 app O ) ;
0 0 as33

with a;j # 0, or A has a zero row or a zero column.

Proof. Using the above representation (8) for a generating matrix, we
come to the sought result by nullifying by turns the components of the vectors

(p1,q1,m1) and (p2,q2,72). O
Lemma 4. The quantity
Aq = (aja + oo — aia)2 — 4a;paiy, (10) .
where (i, j, k), (a, B,7) € S, depends only of the index a.
Proof. From the generation relations we obtain

2 2
Ay = Gjaq + Gkq + a?a +2(ajalka — 20,80y ~ Qjalia — Ckalia)

2 2
= Qjq + ap, + a?a . 2(ajaaka + @jalia + akaaia)

3
=D ala= ) Goalpa
o=l o#p
The last expression depends only on a. O
Below we use the quantity A := %Ag, calling it the discriminant of A.

2.2. Let R* ® Rt be the direct product of two multiplicative groups of
positive real numbers which is endowed with the conventional multiplication;
i.e., RY ® R* is furnished with the operation X * & = (Aqp1, A2p2), where
A= (M1,A2) and & = (i1, p2). Define the action of this group on the set of all
matrices as follows:

Lo ez A
A(A4) = }%azl a2  A2a33 . (11)
MA2az1 @3 xx;033

It is easy to see that if A € M then also X(A) € M; moreover, 6(A(A4)) = 6(A).

From the viewpoint of further consideration, the matrices X\(A) and A generate
the same surface; therefore, it is convenient to identify them.
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Definition 5. A matrix D is said to be X-equivalent to a matrix A if
D = X(A) for some X = (M1, X2) € Rt @ Rt

It is easy to verify that A-equivalence is in fact an equivalence relation.

Lemma 6. Let A € M be a generating matrix whose modulus differs
from zero: 6(A) # 0. Then A is X-equivalent to a matrix of the form

a b c
e2e3¢ €20 €3b |, e2=€2=1. (12)
€2e3b e9¢ e3a

Proof. Put ¢ = sign(azr/a11), k = 2,3, and choose \; = €2a11/ase and
A2 = €3a33/a11. Then ); > 0 and, setting a = e3a29, b = a33, and ¢ = £3032,
we conclude that X(A) has the form (12), as desired. O

Remark 7. It is easy to see that the matrices (12) are pairwise A-
nonequivalent for distinct choices of (g2, €3).

3. Doubly periodic solutions

~ 3.1. To construct doubly periodic solutions to (1), we consider the special
class of solutions z(z,y) defined implicitly as follows:

((z(z,)) = olz)(y), o (19)
where ¢, 9, and (¢ are some C2-smooth functions. We use relation (13) to
transform equation (1). We have

C’(z)z:'n = 90,1/”
: ' 14
C'(2)zy = oy '

and ", 2 ! "
¢ z::+czza:=§0 Y,

C”zz:zy"‘i“ C’zzy - ‘Plll)', ; ' (15)
c”zs + C,Zyy — ()01/)”. T
Multiplying the last three expressions by
' (1 _ z;)clz = CIZ _ ¢2¢l2,
2z:czy<,2 = 209"y,
(1 _ 212‘_)412 = CI2 _ (pl2¢2 °
respectively and summing the results, in view of (1) we obtain
¢z + 7) = (@Y + ") — ol = 202 + P y).
Using (14) on the left-hand side together with equality (13), we finally derive

that
CH " b+ 09") = (" — 20" + @ 2y") — (P22 + *P'2) = 0. (16)
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Lemma 8. Let z(x,y) be a solution to (1) and let ¢, v, and { be functions
satisfying (13) and such that

(i) ¢ and v have zeros;
ii) there are functions P, Q, an or whic
h fi ions P, @, and H for which

¢'2 = P(4?),
¥ = Q) (17)
¢ =H(E).

Then P and @ are polynomials of degree at most 2.
Proof. From (17) we find

¢" = P'(¢*)e,
¢” = Q,(¢2)¢1
" _ H’(Cz)(-
Together with (16), this gives
CHE) PP + QW) |
- (PP PR - 2P + VR WP
—¢H'(¢Y) [¢2P(¢2) - ¢2Q(¢2)] =0.

Differentiating the last equality with respect to ¢ and nullifying ¢ and % by
turns, we come to the equalities

(ho — pov)Q'(v) + 2poQ(v) + hopr — hapov = 0,
(ho — qouw)P'(u) + 2q0P(u) + hog1 — higou = 0,

where pp = P(0), pp = P'(0), g0 = Q(0), 1 = Q'(0), ho = H(0), and
hy = H'(0). For pg = 0 (go = 0), this implies that Q(v) (P(u)) is a linear
function. Otherwise, solving the ordinary differential equations (18), we have

2
P(u) = au® + (h1 - ZaE)u - L (ho(h1 +q) — 2aﬁg),
o 240 ]

© ho 1 h2
=b 2+(h _2b__) _.._(h hi + _2b_0)’
Q(v) = bv 1= 2= Ju— 5 o(h1 + 1) 2

with a,b € R arbitrary numbers. This completes the proof of the lemma. O

Note that the absence of condition (i) essentially enlarges the class of
solutions to the functional-differential equation (16) owing to the existence
of, for example, radially symmetric solutions and solutions of the form (5).

This means in particular that solutions may be unbounded and be of a low
smoothness class.

(18)
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3.2. Define the functions ¢, 9, and ¢ in (13) by the equations

©? =ay — 2b1p® + c1¢,

P'% = ay — 2b39® + oyt - (19)
¢ = c3 + 2b3¢% + as¢?,
where a;, b;, and ¢; (i = 1, 2, 3) are some real numbers. We demonstrate that to
each solution of (1) satisfying (13) and (19) there corresponds some generating
matrix A € M. Observe that ' ‘ '
¢" = 2p(c1® - by),
P = 2¢(ca® — b)), (20)
¢" = 2(¢(as¢® + bs).

Inserting (19) and (20) in (16), we obtain

C4(c1cz —agb; — azbg) + C2 [(a;;az —c1b3 — clbz)(p2 + (aza; — bicy — 02b3)1/)2]

+ (a1b3 +ajby — 6263)11)2 + (a2b1 —cic3+ a2b3)<,02 + bocs + bicg—ajay =0.

By independence of the functions ¢(z) and ¥(y), all coefficients of 2, 2,
and ¢* in the last equality vanish. Putting §; = bj + by for an arbitrary
permutation (i, j, k) € S, we arrive at the generation conditions for the matrix

| o A a
A= (az Ba c:) . ' (21)
a3 P3 c3

We have thus proven the following
Theorem 9. The function z(x,y) defined implicitly by the relation

((2(z,v) = o(z)¥(y),

where , v, and ( satisfy (19), is a solution to (1) if and only if the matrix A
in (21) is generating. - ‘

Remark 10. Choosing the entries of the matrix A in (21) so that
the elliptic functions ¢ and 9 of (19) are periodic, we obtain doubly periodic
solutions to (1). |

We list some properties of the discriminant A of a matrix 4 € M which
was introduced in Subsection 2.1.
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Lemma 11. The discriminant A of the generating matrix (21) has the fol-
lowing representation:

A = b? — aic; = —(bibe + b3fa),

where b; = %(ﬂj + Bi — B;) for arbitrary (i,j,k) € S; in particular, it is
independent of i = 1,2, 3. ‘

Proof. The sought identity is immediate from the definition of the dis-
criminant A. Using the generation conditions of the matrix (21), we easily
arrive at the sought representation

A = b —ajc; = b} —Bafis = b3 —(b1+b3) B3 = b1 (b1 —P3) —b3f3 = —brb2—b3Ps.

In what follows, we only consider solutions to (1) generated by the matri-
ces Ae M.

4. Singularities of doubly periodic solutions

4.1. Let f(z,y) be a C%-solution to (1) in the domain R? \ £, where Iy
is a set of isolated points. If f(z,y) does not extend to a C?-solution in some
neighborhood of a point mg = (zo,Y0) € Ty, then we call mq a singular point

(singularity) of the solution f(z,y). Clearly, one of the following conditions is
necessary for mg = (Zg, ¥o) to be a singular point of a solution 2(z,y) defined

implicitly by the relation F(z,y, z(z,y)) = 0: (i) VF(mo) = 0; (ii) VF(my)
does not exist. Note that, for the solutions satisfying (13) and (19), the con-
dition VF(mg) = 0 can be written down as
(a1 = 2b19F + c190)¥ =0,
(a2 — 2029 + c29g) 0 = 0, (22)
cs + 2b3¢3 + a3(h =0,
where ¢y = ¢(z0), Yo = ¥(y0), and (o = wovbo-
Theorem 12. Let mg = (zq,yo) be an isolated singular point of a so-

lution z(z,y) to (1) corresponding to some generating matrix A € M. Then
the discriminant A is greater than 0 and the following equalities hold:

¢ (z0) = (b1 +6VA) /a,
¥ (yo) = (by + 6VA) /c2,

where 62 = 1. In particular, ¢'(z0) = ¢¥'(yo) = ('(20) = 0.
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" Proof. Put F(z,y,2(z,9)) = o@)¥() — ¢(2(z,y)). Then VF =
{o'Y, o', —('}, and it is easy to see that VF(mg) = 0, since my is an isolated
singular point.

First, suppose that A < 0. Since A = b2 — azcs < 0, it follows that c3 +
2b3¢3+a3(§ # 0, and equations (22) then imply VF(mp) # 0; a contradiction.
Hence, A > 0. In the case of A = 0 we have trivial solutions Wlthout smgular
points: linear functions. Thus, A > 0.

We demonstrate that ¢(zg)¥(yo) # 0. Assume the contrary; for example,
let ¢(zg) = 0. Then from the last equation of (22) we have c¢3 = 0, since
o = wove. The following two cases are possible: a; # 0 and a; = 0.
Suppose that a; # 0. Then it follows from (22) that ¥(yp) = 0; moreover,
¢'? = 2b3¢2 + a3¢?, ((20) = 0. Hence, 1/¢(2) equals one of the functions
sin(pz+A), sinh(pz+ M), or cosh(uzz+X). Therefore, it has a zero zp € R, which
is impossible. Consider the second case, a; = 0. From the first equation of
(22) we infer that (zg, y) is a singular point for every y € R; i.e., mg = (zg, yo)
is not an isolated singular point. This contradiction with the hypothesis of
the theorem implies that ¢(z¢)¥(yo) # 0. In particular, from (22) and (19) we
have ¢'(zg) = ¥'(y0) = 0. Using the fact that the discriminant A is greater
than 0, from the first two equations of (22) we find

(pz(.'L‘o) . (bl + 5\/1_3-)/01,
¥ (yo) = (b2 + 6VA) fcs,
 withé2=1. To complete the proof of the theorem, it suffices to check the ful-

fillment of the third equation in (22) for {; = ¢(z0)¥(v0). From the generation
conditions of the matrix A we have

1
woto = ;c;(m +6VA) (b2 +6VA)
———(blbz + ﬂ36\/K + A)
= ﬁ ——(b1by + A) + -—5\/75.
Using the representation of Lemma 11, we ﬁnally obtain

Cg = (-—b3 + 6\/1_3-)/0.3.

It is easy to verify that the found value {p is really a root of the last equatxon
in (22), which completes the proof of the theorem. O
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4.2. Suppose that a solution z(z,y) to (1) generated by a matrix A € M

is defined implicitly as ¢ (z(z,y)) = ¢(z)¥(y). Denote by F' the surface that
is defined by this solution. In the next theorem we prove that, in a sufficiently
small neighborhood about an isolated singular point, the surface F behaves
asymptotically like the light cone.

Theorem 13. Let mg = (xo, yb) be an isolated singular point of a solu-
tion 2(z,y) to (1) generated by a matrix A € M. Then the following expansion
holds:

z(m) = zg + d|lm — mo|| + 5(“m = moll), m — my,

where §2 = 1, m = (z,y), and 2 = 2(zg, yo)-
Proof. By the Taylor formula for (13) we have
1
o+ Cplz — z0) + 5(6'(2 — 20)?
= poto + Yowp(z — Z0) + woto(y — ¥o)

+ %(Wpﬁ(ﬂv — 20)? + oty — v0)? + wh(z — z0) ( ~ )
+6([lm’ - mgl®), (23)

where mj) = (z0,30,20), m' = (2,4,2) — mb, and g0 = p(z0), %o = H(w0),
Co = {(20). Since mg is an isolated singular point, the preceding theorem
implies that ¢'(zo) = ¥'(y0) = ('(20) = 0 and moreover {(z0) = p(z0)¥(y0).
Simplifying (23), we then obtain

A(z — 20)* = B(z — 20)? + C(y — 0)? + &(||m’ — mf]]), m' — m§,

where A = (, B = pyg, and C = gyy. The theorem will be proven if we
demonstrate that A = B = C # 0. Taking (20) into account, we find that

A = (g = 2¢o(a3(? + bs),
B = 1o = 2{o(c1¢5 — by), (24)

C = wovy = 2Co(c2¥f — b2).
By Theorem 12 we have

(p% = (b1 + 5\/&)/01,

W = b2+ VE) /o,

@ = (—bs + 5\/5)/%,

where §2 = 1. Inserting the last three relations in (24), we obtain

A=B=C=2(6VA #0.

We have thus verified that the surface F near an isolated singular point exhibits
a behavior like that of the light cone. O
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-+ 8. Classification of solutions with isolated singularities

5.1. Here we study the behavior of the gradient of a solution 2(z, y)
to (1), generated by a matrix A € M, in infinitely small neighborhoods O(m)
of isolated singular points m. It turns out that the surfaces F defined by these
solutions can be split into the following three types depending on the behavior
of the surfaces in the neighborhoods of singular points: :

1) space-like (|Vz| < 1) everywhere in the neighborhood O(m);

2) the neighborhood O(m) includes two alternating connected components
of the space-like domain and the time-like domain for the surface F;

3) the neighborhood O(m) includes four alternating connected compo-
nents of the space-like domain and the time-like domain for the surface F.

We linearize the level sets le(a:, y)] = 1 in the infinitely small neighbor-
hood O(m) of an isolated singular point m = (zg,yo) for a solution 2(z,y)
to (1) generated by a matrix A € M. Since |[Vz|* = (p?y'? + @292 /¢
therefore, [Vz| = 1 if and only v f

(P’2'¢2 + ¢2¢’2 _ (12 =0. (25)
We now find expansions of the functions ¢ and ¥ and their derivatives. We do

this in the general form, defining the function g(«) by the relation ¢'% = P(g?),
where P(t) = a + 2bt + ct?. Put go = g(ug) and observe that by Theorem 12

96 =(-b+ 6\/5 )/c, with A = b2 — ac. Therefore,
90 = 2(b+ cg) g0 = 26v/Ago = 2410,
where p = §v/A. For the third and fourth dérivatives of g at up we have
95) = 2}(b + 3cg?) = 0,
since gy = 0, and |
g(g4) = 295 (b + 3cgf) + 294(b + 3cgg)’ = 2g4(b + 3cgd) = 4dpgo(b + 3egg).

Thus, g = go + pgoh? + %gou(b + 3cgd)h? + 6(h*), where h = u — ug, and
g% = g2 (1 + 2uh? + h? (#2 + %p.(b + 3cg§))) + o(h*). (26)
For the derivative of g we obtain the expansion

. 1 ‘ _ : :
9% =P(gi) + P'(g3)p + 5P (3)e* + ("), - (21)
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with p = g2 — g. Calculating P(g3) = 0, P'(g8) = 2p, P"(¢?) = 2¢ and
applying (26), we deduce

g% =2p (2u93h2 + hgf (P2 + -l-u(b + 3693))) + 4cgou®h® + 6(ht)
= 4u*gih? + kg (2u + 3k 2(b+ 3cgl) + 4p cgg) +6(h?)
= 4u®g2h? + higd (2p3 + §u2(b +'9cg3)) + a(h4).
Note that b+ 9cg2 = —8b + 96vA = 9 — 8b. Therefore,
't = 4u?gln? (1 + 2h? (p, - %b)) + a(hY). (28)

Substituting the found expansions (26) and (28) for the concrete functions ,
1, and ( in equation (25), we obtain

2
03 (1 + 2phl)4u*yih; (1 +2h; (n + §b2)>
2
+ B3 (1 + 2ph2)4pP oFh2 (1 +2h% (p + §b1))
— 4p2¢ER? (1 + 2h2 (u - §b3)) =0. (29)

Since by Theorem 13 the surface F' in the neighborhood O(m) behaves like
the light cone; therefore, h2 = h2 + h§. Simplifying equation (29), we hence
deduce that

ba(h2 + h2)? + byh, + byhg = 0.

Setting £ = h2/h2, we obtain b3(1 + €)% + bp¢2 + by =0, or

B1€% + 2b3¢ + B2 =0, (30)

where f; = b; + by for arbitrary permutations (i, 7, k) € S.

Observe that the discriminant D of the quadratic equation (30) is positive,
because D = 4(b3—p;8;) = 4A > 0. We thus obtain the following linearization
of the level sets |Vz(z,y)| = 1:

(h3 — E1h2)(h2 - &5h2) | (31)

where £; and &3 are roots of the quadratic equation (30). Depending on the sign
of &1 and &, we come to the sought classification of the surfaces generated by
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matrices A € M and having isolated singular points:

1st type 2nd type 3rd type
p1>0,62>0,b3>0)|51<0,6>0]|p>0,6>0,b3<0]
AL <0,5<0,b3<0 P1<0,62<0,b3>0

6. Examples of construction of doubly periodic solutions

We now exhibit examples of the surfaces generated by matrices A € M
for each of the three types in the above classification. Given an arbitrary
real k € (0,1), we define the conjugate number k' = /1 — k%, We denote by
sn(t; k) the Jacobi sine with parameter k which is defined by the equality

. psn(t;k) . du .
/o - JO=u)(1 = k2

and denote by cn(t; k) the Jacobi cosine which satisfies the relation en(t; k) =

/1 —sn%(t; k). We note that the discriminant of the matrix A equals A = 1/4
" in all examples to be exhibited below. , , ‘

1st type:
sn(Az; km) = cn (:z' ——k—) cn (y' __m_)
9 ? /_"_fl + k H ,1 +_m2 ?

where \ = 1/ (km)', k,.m > 0, and 0 < km < 1. The generating matrix has
the form

1 _Q+EH)m2a2 g2
1+%2 (1+m?) 1+k% .

1 _+mHEEaz 42
1+m? (1+%%) 14+m?

2,232 1 2

k*m*A (AR (1+m?) A*

2nd type: o
cn(z; pkm) = sn (%, k) cn(y; m),

where p = 1/(k'm)', k,m € (0,1). The generating matrix is

: k2
k—}-z —(k'm'myu)? 5z
2,2
m'2 ——%—kk, —m?
1 2,2
_k2m2u2 ——2——“,. ”. m-u

3rd type:
. - sn(Az; km) =sn (%, k) sn (%, m) ,
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where A = 1/(km)’, k,m € (0,1). The generating matrix is

1 A2 kl 2 m2 k2
EZ m! k2

1 2222 m?2
m'2 k2 m'2
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