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ABSTRACT. Let Q(z,w) = −∏n
k=1[(z − ak)(w̄ − āk) − R2].

The main result of the paper states that in the case when the nodes
aj are situated at the vertices of a regular n-gon inscribed in the
unit circle, the matrix Q(ai, aj) is positive definite if and only if
R < ρn, where z = 2ρ2

n−1 is the smallest 6= −1 zero of the Jacobi
polynomial Pn−2ν,−1

ν (z), ν = [n/2].

1. INTRODUCTION

Let B := {B(aj, Rj)}1≤j≤n denote the collection of open disks centered at aj with
radii Rj > 0. The function

Q(z,w) = −
n∏
k=1

[(z − ak)(w̄ − āk)− R2
k],

defines the polarized equation of the union of disks in B. Throughout this paper
QB denotes the matrix with entries

(1.1) QBij := Q(ai, aj) = −
n∏
k=1

[aikājk − R2
k],

where

(1.2) aij = ai − aj.

We will say that a collection of disks B is positive if the corresponding matrix
QB is positive definite. Our start point is a recent result of B. Gustafsson and M.
Putinar which states: If B consists of disjoint disks, then B is positive [6, Lemma
3.1].

This result was obtained as a corollary of the general positivity property of
the exponential transform for quadrature domains. We only mention that the
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exponential transform is regarded as a renormalized Riesz potential, and it is in-
strumental in recovering a measure from its moments. The above positivity phe-
nomenon goes back to the operator theoretic origins of the exponential transform
and these involve the highly sophisticated theory of the principal function of a
semi-normal operator (the interested reader is referred to [4] and [5]). This is
why the authors of [6] proposed a problem of finding a direct proof of the above
mentioned positivity results.

One of the interesting and intriguing aspects of the above problem is a rather
unexpected interplay between geometry and analysis (the disjointness condition
and the positivity of a certain matrix). Nevertheless, it turns out that in gen-
eral the positivity of a collection of disks does not yield its disjointness. Namely,
straightforward calculations for n = 2 show that matrix QB remains positive defi-
nite even if the discs overlap a little. It is easy to check that the positive definiteness
is equivalent to the inequality

R2
1 + R2

2 < |a1 − a2|2,
whereas the disjointness condition is expressed as

R1 + R2 < |a1 − a2|.
On the other hand, the method of [6] is completely based on the geometry of

disjoint disks and it is no more applicable to general collections. In this connec-
tion, the main problem is to find an adequate language, geometrical or functional,
for understanding of the above phenomena in the general case.

In the present paper, we completely solve this problem in the case when B
consists of n congruent disks centered in the vertices of a regular n-gon. The
main result, Theorem 2.1 below, states that the positivity of such a collection can
be characterized in terms of the zeroes of the Jacobi polynomials.

The paper is organized as follows: In Section 2 we introduce the main nota-
tion and state the main results. In Section 3 we treat the general collections. In
Section 4 we establish an explicit factorization of the determinant function and
reformulate the positivity problem to a problem for the zero distribution of the
Jacobi polynomials. The concrete study of the zeroes is given in Section 5. In
Section 6 we give the proof of Theorem 2.1. In the final sections we establish
two-side estimates on the maximal radius.

2. MAIN RESULTS

Let aj = ωj , j = 1, . . . , n, be the vertices of the regular n-gon inscribed in the
unit circle, where ω = e2π i/n denotes the nth root of unity. We will denote by

(2.1) Bn(r) = {B(ωj, r), j = 1, . . . , n}
the corresponding collection consisting of n congruent disks and introduce

(2.2) ρn = sup{ρ > 0 | Bn(r) is positive for all r ∈ (0, ρ)},
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which we refer to as the maximal radius of Bn(r).
We recall also the definition of Bessel function of the first kind

Jk(x) =
(
x
2

)k ∞∑
m=0

(−1)m(x/2)2m

m!Γ(m+ k+ 1)
.

It is well-known that Jk(z) has an infinite sequence of positive zeroes; we denote
them jk,i.

Theorem 2.1. In the above notation, ρ2 =
√

2, ρ3 = 1, and for n ≥ 4

ρn =
√

1+ µn,

where µn denotes the smallest 6= −1, zero of the hypergeometric polynomial

zνF
(
−ν, ν−n; 1−n; −1

z

)
.

Here F is the classical Gauss hypergeometric function and ν = [n/2] is the integer
part of n/2. Furthermore, the following asymptotic holds

(2.3) lim
n→∞nρn = j1,1,

where j1,1 = 3.831706 . . . is the first positive zero of the Bessel function J1(z).

The above asymptotic behavior admits a clear geometric interpretation. Namely,
given a general (not necessarily symmetric) collection B, let us define

β(B) := min
i6=j

Ri + Rj
|ai − aj| .

This quantity can be characterized as a measure of overlapping of the disks in B
in the following sense: β ≤ 1 if and only if B is a disjoint collection. In the
symmetric case Bn(r) this quantity is easily found as

β(Bn(r)) = r
sin(π/n)

.

Hence, the measures of overlapping for positive symmetric collections of n con-
gruent disks lie in the following interval

0 < β(Bn(r)) < ρn
sin(π/n)

=: βn.

Due to (2.3), we have the following asymptotic behaviour for the upper bound of
the previous interval

βn ∼ j1,1

π
= 1.219669891 . . .
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as n goes to infinity. It is interesting to note that asymptotically the overlapping
measure stays greater than 1.

A straightforward computation for small values of n ≥ 2 shows that β2n and
β2n−1 are increasing subsequences. Though we are unable to prove this observa-
tion, we show in Corollary 7.2 below that βn > 1 for all n ≥ 2. In other words,
the extremal symmetric collections Bn(ρn) have non-trivial overlapping for all
n ≥ 2.

3. GENERAL COLLECTIONS AND THE MAXIMAL RADIUS

In this section we consider the general collections B := {B(aj, Rj)}j≤n if not
stated otherwise. Such a collection is said to be admissible if for any k, 1 ≤ k ≤ n,
and any j 6= k

(3.1) 0 < Rk < |aj − ak|.

Geometrically (3.1) means that ak 6∈ B(aj, Rj) for all k 6= j.
Proposition 3.1. Let {aj}j≤n be an arbitrary collection of pairwise distinct

points. Then there is an ε > 0 such that the collection {B(aj, Rj)}j≤n is positive
for any choice of radii, subject to condition 0 < Rj < ε.

Proof. By (3.1) we have

|aikajk| > R2
k

for all k 6= i, j. Hence for i = j

Qii = R2
i |αi|2

∏
k6=i

(
1− R2

k
aikāik

)
,

and for i 6= j by virtue of (1.2)

Qij = R2
i R

2
j
αiᾱj
|aij|2

∏
k6=i,j

(
1− R2

k
aikājk

)
,

where

αi :=
n∏

k=1,k6=i
aik 6= 0.

In particular, Qij ≡ 0 if all Rj = 0.
Let E denote the matrix with normalized entries

Eij =
∏
k

(
1− R2

k
aikājk

)
,
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where the product is taken over all indices k such that k 6= i, j, and set

Sij =
1, j = i,
RiRj/|aij|2, j 6= i,

so that Qij = EijSij · (Riαi) · (Rjᾱj). Hence the quadratic form

Q(ξ) =
n∑

i,j=1

Qijξiξ̄j

is equivalent (up to a linear change of variables: ηi = Riαiξi) to the form

Q′(η) =
n∑

i,j=1

EijSijηiη̄j.

But for the latter form we have

lim
R→0

EijSij = I,

where R = (R1, . . . , Rn) and I denotes the unit matrix. Hence by a continuity
argument, Q′(η) is positive definite for all vectors R with sufficiently small norm
and the desired property follows. ❐

Proposition 3.2. Let {B(aj, Rj)}j≤n be a positive collection. Then the following
assertions hold:

(i) Any subcollection {B(ai, Ri)}i∈I where I ⊂ {1,2, . . . , n} is positive.
(ii) For 0 < rj ≤ Rj the new collection {B(aj, rj)}j≤n is positive.

Proof. It suffices to prove (i) only for I = {1, . . . , n − 1}. Consider the qua-
dratic form

Q(ξ1, . . . , ξn) :=
n∑

i,j=1

Qijξiξ̄j,

where ‖Qij‖ is the matrix in (1.1), and let

(3.2) QI(η1, . . . , ηn−1) :=
n−1∑
i,j=1

QIijηiη̄j,

where ‖QIij‖ corresponds to the reduced system {B(ai, Ri)}i∈I . We have

QIij = −
n−1∏
k=1

[aikājk − R2
k],
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where aij = ai − aj .
Since Q is positive definite we have

(3.3) Q(η1, . . . , ηn−1,0) =
n−1∑
i,j=1

Qijηiη̄j > 0

for all nontrivial vectors (η1, . . . , ηn−1) 6= 0.
On the other hand, for 1 ≤ i, j ≤ n− 1 we have

Qij = −
n∏
k=1

[aikājk − R2
k] = (ainājn − R2

n)Q
I
ij.

Hence substituting the last identity into (3.2) and using (3.1) yields

QI(η1, . . . , ηn−1) =
n−1∑
i,j=1

Qij
ainājn − R2

n
ηiη̄j(3.4)

=
∞∑
m=1

n−1∑
i,j=1

1
ainājn

(
R2
n

ainājn

)m
Qijηiη̄j

=
∞∑
m=1

R2m
n Q

(
η1

am+1
1n

, . . . ,
ηn−1

am+1
n−1,n

,0
)

≥ 0,

and the series above converges absolutely because of (3.1).
Taking into account (3.3), we see that the strict inequality in (3.4) holds for

all (η1, . . . , ηn−1) 6= 0, and the first assertion of the theorem is proved.
In order to prove (ii) we assume that Q is a positive definite form, and let rj

be any arbitrary reals subject to condition 0 < rj < Rj and denote by ‖qij‖ the
corresponding matrix. Then we have

qij = −
n∏
k=1

[aikājk − r 2
k] = Qij

n∏
k=1

aikājk − r 2
k

aikājk − R2
k
.(3.5)

We claim that for any k the matrix with the entries

(3.6) αij = aikājk − r 2
k

aikājk − R2
k

is positive definite. Indeed, αij = r 2
k/R

2
k when i = k or j = k, and

αij − 1 = R2
k − r 2

k

aikājk − R2
k
= (R2

k − r 2
k)

∞∑
m=0

1
aikājk

(
R2
k

aikājk

)m
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otherwise. Thus
n∑

i,j=1

αijξiξ̄j =
r 2
k

R2
k
|ξk|2 + 2

r 2
k

R2
k

ReX + |X|2 +
n∑

i,j 6=k
(αij − 1)ξiξ̄j(3.7)

= r 2
k

R2
k
|ξk +X|2 +

R2
k − r 2

k

R2
k

|X|2

+ (R2
k − r 2

k)
∞∑
m=0

R2m
k

n∑
i,j 6=k

ξiξ̄j

(
1

aikājk

)m+1

,

where

X :=
n∑

i=1,i6=k
ξi.

Hence the last expression in (3.7) is non-negative for all vectors ξ 6= 0.
In order to prove that it is in fact strictly positive, we assume the opposite.

Since all the terms in the right hand side of (3.7) are non-negative we conclude
that

X = ξk = 0.

Hence there is p 6= k such that ξp 6= 0. On the other hand we see that

∞∑
m=0

R2m
k

n∑
i,j 6=k

ξiξ̄j

(
1

aikājk

)m+1

=
∞∑
m=0

R2m
k

∣∣∣∣ n∑
i6=k

ξi
am+1
ik

∣∣∣∣2

whence our assumption yields

n∑
i6=k

ξi
am+1
ik

= 0, m = 0,1,2, . . . .

The last system of linear equations, together with the characteristic Vandermonde
determinant property and the fact that ξp 6= 0, imply that there are two indices
i 6= j distinct from k such that

aik = ajk.
But the latter immediately yields ai = aj and this contradiction proves that (3.6)
is a positive definite matrix.

By (3.5) we have
qij = Qijαij,

where ‖Qij‖ and ‖αij‖ are Hermitian positive definite matrices. Hence the theo-
rem of I. Schur about the Hadamard product yields that (qij) is positive definite
and the proposition is proved completely. ❐
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4. FACTORIZATION OF THE DETERMINANT FUNCTION

Now we return to the symmetric collections B = Bn(r) given in (2.1). Then the
corresponding matrix (1.1) takes the form

(4.1) Qij(r) = −
n∏
k=1

(εkij + 1− r 2),

where
εkij =ωi−j −ωk−j −ωi−k.

Lemma 4.1. Let ρn be given by (2.2). Then for all n ≥ 2, ρn is equal to the
smallest positive zero of the determinant function det‖Qij(r)‖. Moreover, ρn is the
maximal possible in the sense that Bn(r) is positive if and only if r ∈ (0, ρn).

Proof. By Proposition 3.1 Bn(r) is positive for all r > 0 sufficiently small.
Hence for those values r the corresponding matrices ‖Qij(r)‖ have only positive
eigenvalues.

On the other hand, the first principal minor of ‖Qij(r)‖ (i.e., the first diag-
onal element Q11(r)) changes its sign at rk = |a1k| > 0 for all k = 2, . . . , n.
Hence ‖Qij(r)‖ cannot be positive definite for all r > 0. The latter implies (by
Sylvester’s criterium and a standard continuity argument) that det‖Qij(r)‖ has a
zero in the semi-interval (0,mink{rk}].

Denote by α the smallest zero of det‖Qij(r)‖. By virtue of positivity of
Bn(r) for small r , ‖Qij(r)‖ stays positive definite until r reaches α. Hence, by
virtue of (2.2) we have ρn = α.

In order to prove the last assertion of the lemma, let us assume that ‖Qij(r)‖
is positive definite for some r > ρn. Then property (ii) in Proposition 3.2 would
yield the positive definiteness of ‖Qij(α)‖. But the latter contradicts the defini-
tion of α. ❐

Now we change the notation by setting

Aij(z) := −Qij(
√

1+ z) =
n∏
k=1

(εkij − z),

where

(4.2) z = r 2 − 1 ≥ −1.

Then the corresponding determinant function takes the form

A(z) := det‖Aij(z)‖1≤i,j≤n.

Corollary 4.2. ρn =
√

1+ ζn, where ρn is given by (2.2) and ζn is the smallest,
but not equal to −1, zero of A(z).
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We will see below that the above matrix has a rather special form which allows
us to express its discriminant explicitly. First we recall some standard definitions
and facts from linear algebra. A matrix is called circulant if each of its rows is
obtained from the previous row by displacing each element, except the last, one
position to the right, the last element being displaced to the first position:

G = C(g1, . . . , gn) =


g1 g2 · · · gn
gn g1 · · · gn−1
...

...
...

...
g2 g3 · · · g1


or what is the same,

gij =
{
gj+1−i, j ≥ i,
gn+j+1−i, j < i.

The determinant of a circulant matrix admits the following factorization (see [11,
p. 80]):

(4.3) detC(g1, . . . , gn) =
n∏
k=1

n∑
j=1

ωk(j−1)gj.

Hence the characteristic polynomial of G is

det(G − λI) = C(g1 − λ,g2, . . . , gn) =
n∏
k=1

[
− λ+

n∑
j=1

ωk(j−1)gj
]
,

and the eigenvalues of G are

(4.4) λk =
n∑
j=1

ωk(j−1)gj.

Lemma 4.3. Let

(4.5) Tn,m(z) :=
n∑
j=1

ωm(j−1)Aj(z),

where

(4.6) Aj(z) = A1,j(z), j = 1, . . . , n,

and ω = e2π i/n. Then

(4.7) A(z) =
n∏

m=1
Tn,m(z).
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Furthermore, the eigenvalues of theAmatrix are exactly the values of the T -polynomials
at point z:

λk = Tn,k(z), 1 ≤ k ≤ n.

Proof. By using the identity

εki+m,j+m =ωi−j −ωk−j−m −ωi−k+m = εk−mi,j ,

we get

Ai+m,j+m(z) =
n∏
k=1

(εki+m,j+m − z) =
n∏
k=1

(εk−mi,j − z) = Aij(z).

This shows that A(z) = ‖Aij(z)‖1≤i,j≤n is a circulant matrix.
Furthermore, we have A(z) = C(A1(z),A2(z), . . . , An(z)), where Aj(z) are

defined by (4.6). Applying (4.3) and (4.4) we obtain for the determinant

A(z) =
n∏
k=1

n∑
j=1

ωk(j−1)Aj(z).

and for the eigenvalues of A(z)

λk =
n∑
j=1

ωk(j−1)Aj(z), k = 1, . . . , n,

which completes the proof. ❐

Corollary 4.4. The symmetric collection Bn(r) is positive if and only if all the
numbers Tn,m(r 2−1) are negative, 1 ≤m ≤ n. In particular, ρ2

n−1 is the smallest,
greater than −1, zero of polynomials Tn,m(z), 1 ≤m ≤ n.

Our next step is to express the above T -polynomials in terms of the hypergeo-
metric functions. We recall that the Gauss hypergeometric function is defined by
the series

(4.8) F(a, b; c;x) = 1+
∞∑
k=1

(a)k(b)k
(c)k

xk

k!
,

where (a)0 = 1, and (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer sym-
bol. Note that in the case when a and b are negative integers, the corresponding
hypergeometric function is just a polynomial in x of degree min{−a,−b}.
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Theorem 4.5. Let n ≥ 2. Then for 1 ≤m ≤ n− 1

(4.9) Tn,m(z) = nCmn (−z)n−mF
(
−m,m−n; 1−n;−1

z

)
,

where Cmn denote the binomial coefficients and

(4.10) Tn,n(z) = n((−z)n − 1).

Proof. We have from (4.6)

Aj(z) = A1j(z) =
n∏
k=1

(ω1−j −ωk−j −ω1−k − z)

= (−1)n
n∏
k=1

ω−j−k(ω2k + (zωj −ω)ωk +ωj+1)

= (−1)nωn(n+1)/2
n∏
k=1

(ω2k + (zωj −ω)ωk +ωj+1).

In order to reorganize the last product we consider an auxiliary quadratic poly-
nomial

(4.11) ζ2 + (zωj −ω)ζ +ωj+1 = (λj − ζ)(µj − ζ).

where λj and µj are the corresponding zeroes. In view of ωn(n+1)/2 = (−1)n−1

we obtain

Aj(z) = −
n∏
k=1

(λj −ωk)(µj −ωk).

Applying
n∏
k=1

(x −ωk) = xn − 1,

and λnj µ
n
j =ω(j+1)n = 1, we arrive at

(4.12) Aj(z) = −(λnj − 1)(µnj − 1) = (λnj + µnj )− 2.

The latter expression, as a symmetric function of λj and µj , may be polyno-
mially expressed in the coefficients of polynomial (4.11). Namely, by the Cardan
identity [8] we have

xn +yn =
[n/2]∑
k=0

(−1)k
n

n− kC
k
n−k ·αn−2kβk,
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where α = x + y and β = xy , and [p] stands for the integer part of x. Hence,
applying Viète’s formulas

α = λj + µj =ω− zωj, β = λjµj =ωj+1,

we can rewrite (4.12) as follows:

(4.13) Aj(z) = −2+
[n/2]∑
k=0

(−1)k
n

n− kC
k
n−k · (ω− zωj)n−2kω(j+1)k.

On the other hand, for any m

(4.14)
n−1∑
j=0

ωmj = nδm,

where

δm =
1, if m ≡ 0 modn;

0, otherwise,

is the Kronecker symbol modulo n. Therefore we have from (4.5) and (4.13)

Tn,m(z) = −2nδm +
[n/2]∑
k=0

(−1)k
nCkn−k
n− k

n−1∑
j=0

(1− zωj)n−2kωj(k+m)(4.15)

= −2nδm +
[n/2]∑
k=0

(−1)k
nCkn−k
n− k Sm,k,

where

Sm,k =
n−1∑
j=0

(1− zωj)n−2kωj(k+m) =
n−1∑
j=0

n−2k∑
p=0

Cpn−2kω
j(k+m)(−z)pωjp

=
n−2k∑
p=0

Cpn−2k(−z)p
n−1∑
j=0

ωj(k+m+p).

Applying (4.14) we obtain

(4.16) Sm,k = n
n−2k∑
p=0

Cpn−2k(−z)pδk+m+p = n
∑
q∈Z

Cqn−m−kn−2k (−z)nq−m−k,

where Cji = 0 for j > i and j < 0.
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For q ≤ 0 we have Cqn−m−kn−2k = 0. On the other hand, in view of k ≥ 0 and
m ≥ 1 we have for all q ≥ 3

qn−m− k ≥ 3n−m− k > n− 2k,

hence Cqn−m−kn−2k = 0.
Thus the only non-trivial terms in (4.16) may occur for q = 1 and q = 2,

which yields

(4.17) Sm,k = nCn−m−kn−2k (−z)n−m−k +nC2n−m−k
n−2k (−z)2n−m−k.

The first binomial coefficient in (4.17) is non-trivial if{
n−m− k ≥ 0
n−m− k ≤ n− 2k

⇐⇒
{
k ≤m
k ≤ n−m

which gives
0 ≤ k ≤m∧n := min{m,n−m}.

A similar analysis of the second binomial coefficient in (4.17) shows that it is
non-trivial only if 0 ≤ k ≤m−n, which is equivalent to

m = n and k = 0.

In order to finish the proof we return to (4.15). Assume first that m = n.
Then m ∧ n = 0, that is, Sn,k is non-zero only for k = 0. Applying the above
argument we obtain

Tn,n(z) = −2n+n(1+ (−z)n) = n((−z)n − 1),

which proves (4.10).
Now let m satisfy 1 ≤m ≤ n− 1. Then the second term in (4.17) vanishes

and the first term is non-trivial only if 0 ≤ k ≤m∧n, which implies

Tn,m(z) =
m∧n∑
k=0

(−1)k
n

n− kC
k
n−kSm,k(4.18)

= (−z)n−m
m∧n∑
k=0

n2

n− kC
k
n−kC

n−m−k
n−2k z−k.

After simple reorganizing

n2

n− kC
k
n−kC

n−m−k
n−2k = n2 · (n− k− 1)!

k!(m− k)!(n−m− k)! ,
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and using the Pochhammer notation we obtain

n2

n− kC
k
n−kC

n−m−k
n−2k = (−1)knCmn

(−m)k(m−n)k
(1−n)kk!

,

which finally yields, in view of (4.18),

Tn,m(z) = Cmn n(−z)n−m
m∧n∑
k=0

(−m)k(m−n)k
(1−n)kk!

(−z)−k

= Cmn n(−z)n−mF
(
−m,m−n; 1−n;−1

z

)
and the theorem is proved completely. ❐

We complete this section by identifying the T -polynomials with the classical or-
thogonal polynomials. Recall that the Jacobi polynomials of degree k are defined
for two real parameters α > −1, β > −1 by the following formula

Pα,βk (z) =
(
z − 1

2

)k
Ck2k+α+β(4.19)

× F
(
−k,−k−α;−2k−α− β,− 2

z − 1

)
(see [7, p. 212]). Within the above restrictions on α and β, these polynomials
constitute an orthogonal family on (−1,1) with respect to the weight function
w(z) = (1 − z)α(1 + z)β, as k runs through Z+. It is well known that the
zeroes of orthogonal polynomials are real, distinct, and lie in the interior of the
orthogonality interval (−1,1).

Nevertheless, for general α and β the mentioned orthogonality property is no
longer valid, but the corresponding Jacobi polynomials are still applicable and a
part of their properties can be suitably extended to the general case. The corre-
sponding facts needed for the proof of Theorem 2.1 are summarized in the next
section.

Our formula (4.9) gives for m ≤ n− 1

(4.20) Tn,m(z) = (−1)n−m
n2zn−2m

n−m Pn−2m,−1
m (2z + 1).

Returning to the old variable r by (4.2), we get the following explicit representa-
tion of the determinant function.

Corollary 4.6. Let ‖Qij(r)‖ be the matrix in (4.1). Then

det‖Qij(r)‖ = cn[1− (1− r 2)n]
n−1∏
m=1

Pn−2m,−1
m (2r 2 − 1),

where cn = (−1)(n−1)(n−2)/2n2n−1/(n− 1)!.
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5. THE DISTRIBUTION OF ZEROES

Throughout this section we will suppose that 1 ≤m ≤ n− 1 if not stated other-
wise. Let us consider the auxiliary polynomials

Vn,m(ζ) = 1
n
Cmn F(−m,1−m; 1−n;ζ).

which are obviously of degree exactly m − 1. Applying the Pfaff transformation
[7, p. 47]

F(a, b; c;x) = (1− x)−aF
(
a, c − b; c;

x
1− x

)
we obtain

F
(
−m, m−n; 1−n; −1

z

)
= (1+ z)m

zm
F
(
−m, 1−m; 1−n; − 1

1+ z
)
,

that in view of (4.9) yields

(5.1) Tn,m(z) = (−1)n−mn2zn−2m(1+ z)mVn,m
(

1
1+ z

)
.

Lemma 5.1. For all m = 1, . . . , n− 1

Vn,n−m(ζ) = (1− ζ)n−2mVn,m(ζ),(5.2)

Vn,m−1(x) = 1
(n+ 1−m)(m − 1)

L[Vn,m],(5.3)

where
L[f] := xf ′′ − (n− 1)f ′.

Proof. The first formula follows easily from the symmetry of the hyperge-
ometric function with respect to permutation of a and b, and the second Pfaff
transformation [7, p. 47]:

F(a, b; c;x) = (1− x)c−a−bF(c − a, c − b; c;x).

In order to prove the recurrence relation, we apply the standard formula

d
dx

(xc−1F(a, b; c;x)) = (c − 1)xc−2F(a, b; c − 1;x),

hence

d
dx

(
x−nVn,m(x)

) = −Cmn x−n−1F(−m,1−m;−n;x)(5.4)

= −(n−m+ 1)x−n−1Vn+1,m(x).
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We rewrite this formula as Vn+1,m = ∂n,mVn,m, where

∂n,mf = − xn+1

n−m+ 1
d
dx

(x−nf).

On the other hand, applying formula for the derivative of the hypergeometric
function

d
dx

F(a, b; c;x) = ab
c
F(a+1, b+1; c+1; x),

we get

Vn−1,m−1 = − 1
m− 1

d
dx

Vn,m.

Hence,

(5.5) Vn,m−1 = ∂n−1, m−1Vn−1, m−1 = − 1
m− 1

∂n−1, m−1(V ′n,m),

which is equivalent to (5.3). The lemma is proved. ❐

Now we are ready to formulate the main result of this section.

Theorem 5.2. Let n ≥ 4 and

ν = [n/2].

Then Vn,m(x) has only real zeroes and
(i) if 2 ≤ m ≤ ν, then all zeroes of Vn,m(x) are distinct and contained in the

interval (1,+∞);
(ii) if ν + 1 ≤m ≤ n − 1, then Vn,m(x) has exactly n−m − 1 simple zeroes in

the interval (1;+∞) and x = 1 is a zero of multiplicity 2m−n.

Proof. The proof will be given by induction on the index n. For n = 4 we
have ν = 2 and

V4,2 = 3− 2x
2

, V4,3 = (x − 1)2,

which easily yields our claim.
Now suppose that the theorem is valid for some n = N ≥ 4.
First we establish (i) for n = N + 1. By the induction hypotheses, for any

m such that 2 ≤ m ≤ [N/2], the polynomial VN,m(x) has exactly m − 1 real
distinct zeroes in the interval (1;+∞). Denote them in the ascending order ξ1 <
· · · < ξm−1 and note that ξ1 > 1.

Consider an auxiliary function

f(x) = VN,m(x)x−N.
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Then f(x) has exactlym−1 distinct finite zeroes, and since degVn,m =m−1 <
N,

lim
x→+∞f(x) = 0.

Applying Rolle’s theorem we conclude that the derivative f ′(x) has at leastm−1
distinct finite zeroes. On the other hand, by virtue of (5.4),

VN+1,m(x) = x−N−1

m−N − 1
f ′(x).

Since VN+1,m(x) is a polynomial of degree m − 1, it has exactly m − 1 distinct
zeroes. Denote them by {ηk}1≤k≤m−1. Then

ξ1 < η1 < ξ2 < · · · < ηm−2 < ξm−1 < ηm−1 <∞.

This proves (i) for all m ≤ [N/2], and since [N/2] = [(N + 1)/2] for even N, (i)
is proved for even N.

To complete this inductive step we suppose that N is odd. Then N = 2ν + 1,
where [N/2] = ν. By induction hypothesis (ii) is valid for n = N and m = ν+1.
This shows that VN,ν+1(x) has one zero x = 1 of multiplicity 2(ν + 1) −N = 1
and additionally it has

N − (ν + 1)− 1 = ν − 1 =m− 2

real distinct zeroes, all in (1;+∞). Hence VN,ν+1(x) has m− 1 distinct zeroes.
Arguing as above, we conclude that the polynomial VN+1,ν+1 hasm−1 simple

real zeroes {ηk}1≤k≤m−1 such that

1 < η1 < ξ1 < · · · < ηm−2 < ξm−2 < ηm−1 <∞

which finishes the proof of (i).
In order to prove (ii) we make use of the symmetry property (5.2). Namely,

let ν1 = [(N + 1)/2] and take m such that

ν1 + 1 ≤m ≤ N.

Then we have for the complement index m′ = N + 1−m:

1 ≤m′ = N + 1−m ≤ N − ν1.

Since N is integer, we have 2ν1 ≥ N. Hence

1 ≤m′ ≤ ν1,
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that is, m′ satisfies the hypotheses of item (i) for n = N + 1. Next, by virtue of
(5.2)

(5.6) VN+1,m(ζ) = (1− ζ)m−m′
VN+1,m′(ζ).

By the first part of our proof, we know that VN+1,m′(ζ) has exactlym′−1 distinct
zeroes in (1,+∞). Hence by virtue of (5.6), VN+1,m(ζ) has the same zeroes and
additionally it has a zero at ζ = 1, of multiplicity m −m′ = 2m −N − 1. This
proves the inductive step for (ii) and the theorem is proved completely. ❐

Our next result establishes the collective properties of the zeroes.

Theorem 5.3. Let n ≥ 4 and 2 ≤m ≤ ν = [n/2]. Denote by {ξi} and {ηj}
the zeroes of Vn,m and Vn,m−1 respectively. Then

1 < ξ1 < η1 < ξ2 < · · · < ηm−2 < ξm−1.

Proof. Let ϕm(x) = Vn,m(x). Then by (5.5)

(5.7) ϕm−1(x) = 1
(n+ 1−m)(m− 1)

L[ϕm],

where L[f] = xf ′′ − (n−1)f ′. The second derivativeϕ′′
m(x) can be eliminated

by using the basic hypergeometric equation for F(a, b; c;x):

(1− x)xF ′′ + (c − (a+ b + 1)x)F ′ − abF = 0.

Namely, by virtue of the definition of ϕm = Vn,m we can write

ϕ′′
m =

1
1− x[(n+ 1− 2m)xϕ′

m +m(m− 1)ϕm],

hence applying the definition of L and (5.7), we arrive at

(5.8) L[ϕm] = −2(n−m)
x − 1

d
dx

(q(x)ϕ′
m(x)+αϕm(x)),

where
α = m(m− 1)

2(n−m) > 0, q(x) = x − n− 1
2(n−m).

Since ν = [n/2] and m ≤ ν we have

n− 1
2(n−m) ≤

n− 1
2(n− ν) < 1.

Therefore q(x) > 0 for all x ≥ 1.
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Thus, we may rewrite (5.8) as follows

L[ϕm] = − 2(n−m)
(x − 1)qα−1(x)

· d
dx

(qα(x)ϕm(x)),

so that (5.3) in our new notation becomes

ϕm−1 = M(x) · ddx(q
α(x)ϕm(x)),

where
M(x) = − 2(n−m)

(n+ 1−m)(m− 1)(x − 1)qα−1(x)
.

Now the theorem easily follows from Rolle’s theorem. ❐

The following property is a corollary of the previous theorem and symmetry rela-
tion (5.2).

Corollary 5.4. Let n ≥ 4. Then the maximal zero among all polynomials Vn,m
when m runs between 2 and n − 1 coincides with the maximal zero of polynomial
Vn,ν , where ν = [n/2].

6. PROOF OF THEOREM 2.1

The trivial cases n = 2 and n = 3 are straightforward in view of (4.7) and (4.9).
Namely, we find ρ2 =

√
2 and ρ3 = 1.

Now let n ≥ 4 and denote the full set of zeroes of family {Tn,m(z)}1≤m≤n by
E. Then Corollary 4.4 reads as

ρ′n := ρ2
n − 1 = min{E ∩ (−1,+∞)}.

On the other hand, the first statement of Theorem 2.1 is equivalent to that ρ′n
is the smallest 6= −1 zero of the central polynomial Tn,n−ν(z), where ν = [n/2].
So, what we have to do is to prove that the number ρ′n is the smallest 6= −1 zero of
the central polynomial Tn,n−ν(z), where ν = [n/2].

First we note by using (4.8) that for m = 1

Tn,1(z) = n2(−1)n−1(1+ z)zn−2.

Hence 0 ∈ E and it follows that −1 < ρ′n ≤ 0. Furthermore,

Tn,n(z) = n((−z)n − 1),

whence Tn,n(ρ′n) 6= 0.
Therefore ρ′n can be characterized as the smallest greater than −1 zero of

subfamily
{Tn,m(z)}1≤m≤n−1,
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or equivalently,
z = (1+ ρ′n)−1

is the largest real zero of family {Vn,m(z)}1≤m≤n−1. But by Corollary 5.4 we
know that this maximum is attained for m = ν, hereby becoming the maximal
zero of Vn,ν(z). Moreover, the symmetry relation (5.2) shows that the same holds
also for Vn,n−ν(z).

Hence by virtue of (5.1) we conclude that

0 = Tn,n−ν(ρ′n) = Tn,n−ν(ρ2
n − 1)

which proves the first assertion of Theorem 2.1.
In order to finish the proof we return to the asymptotic behavior (2.3). In

view of (4.20) we see that
2ρ′ + 1 = 2ρ2

n − 1

is the smallest 6= −1 real zero ofPn−2ν,−1
ν (z). By using the transformation formula

[10, p. 59]

(6.1) Pα,βk (x) = (−1)kPβ,αk (−x),

we obtain for even n = 2p

(6.2) P0,−1
p (z) = (−1)pP−1,0

p (−z),

and for odd n = 2p + 1

P−1,−1
p+1 (z) = (−1)pP−1,−1

p+1 (−z).

Thus, z = 1− 2ρ2
n is the largest zero of P−1,σ

ν−σ (z), where ν = [n/2], and

(6.3) σ = 2ν −n =
{

0, n is even;
−1, n is odd.

Now we can apply a Mehler-Heine type formula [10, Theorem 8.1.2]:
Let ξk,1 > ξk,2 > · · · be the zeroes of Pα,βk (x) in (−1,1) in decreasing

order (α, β real but not necessarily greater than −1). If we write ξk,q = cosθk,q,
0 < θk,q < π , then for a fixed q,

(6.4) lim
k→∞

kθk,q = jα,q,

where jα,q is the qth positive zero of Jα(z), and Jα(z) is the Bessel function of
order α.
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In our notation q = −1, so we have

ξn,1 = 1− 2ρ2
n,

where {ξn,j} denotes the sequence of zeroes of P−1,σ
ν−σ (z) in the interval (−1,1)

encountered in decreasing order. Then we have from (6.4)

lim
n→∞(ν −σ) arccos(1− 2ρ2

n) = j−1,1,

which in view of (6.3) is equivalent to

lim
n→∞nρn = j−1,1.

On the other hand, the Bessel function J1(x) = −J−1(x), so j1,1 = j−1,1, which
yields (2.3) and completes the proof. ❐

7. TWO-SIDE ESTIMATES FOR ρn

Denote by xn,k(a, b) the sequence of zeroes, in decreasing order, of the Jacobi
polynomial Pa,bn (z). A classical result of A. Markov states that

(7.1) xn,k(a, b) < xn,k(α,β), ∀n ∈ N, ∀k = 1, . . . , n,

if −1 < α < a and b < β < 1 ([10, p. 120], see also [1]).
Note that this result is still true in the limit case: α = −1 and β < 1. Indeed,

for −1 < α < β < 1, Pα,βn (z) is a polynomial of degree exact n and its coefficients
(in view of (4.19)) are continuous functions of u, v outside the lines

u+ v = −n− 1, . . . ,−2n.

Therefore for any k, 1 ≤ k ≤ n, functions xn,k(u,v) are continuous everywhere
outside these lines. Hence (7.1) extends by continuity for all a > α ≥ −1 and
b < β ≤ 1.

We will also need the extension of the above monotonicity result in the degen-
erate case due to Stieltjes [9] (see also [2] and [3] for further discussions). Namely,
in the ultraspherical case a = b = λ− 1

2 the positive zeroes

xn,k(λ) = xn,k
(
λ− 1

2
, λ− 1

2

)
, k = 1, . . . , ν = [n/2]

decrease when λ increase.
Now we are ready to formulate the main result of this section.

Theorem 7.1. The sequence ρn has the following properties:
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(i) it is decreasing for n ≥ 3;
(ii) for all n ≥ 3 the lower estimate holds

ρn ≥ sin
π

2[n/2]

with equality only if n = 3;
(iii) for all n ≥ 4

ρn ≤ sin
3π

4[(n+ 1)/2]
,

with equality only if n = 5.

Proof. Let us apply the Markov result for a = b = − 1
2 and α = −1, β = 0.

In the first case we obtain the Chebyshev polynomials of the first kind

P−1/2,−1/2
n (z) = (2n)!

22nn!2
cosnθ, z = cosθ,

so the corresponding zeroes are

xn,k
(
−1

2
,−1

2

)
= cos

π(2k− 1)
2n

.

Then it follows from the proof of Theorem 2.1 and formula (6.2) that for
n ≥ 2 z = 1− 2ρ2

2n is the largest zero of P−1,0
n (z) which is distinct from 1. Since

z = 1 is a simple zero of P−1,0
n (z) (see [10, Section 6.7.2]) we have

(7.2) xn,1(−1,0) = 1, xn,2(−1,0) = 1− 2ρ2
2n,

and by virtue of (7.1)

xn,2
(
−1

2
,−1

2

)
= cos

3π
2n

< xn,2(−1,0) = 1− 2ρ2
2n.

Thus for n ≥ 2

(7.3) ρ2n < sin
3π
4n
.

Let now λ1 = 0 and λ2 = − 1
2 in the Stieltjes theorem. Then for all n ≥ 4

xn,2
(
−1

2

)
= 1− 2ρ2

2n−1 > xn,2(0) = cos
3π
2n
,

that is,

ρ2n−1 < sin
3π
4n
.
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Notice also that ρ5 =
√

2/2 so that the previous inequality becomes an equality
for n = 3. Combining this with (7.3) we obtain (iii).

By (6.2), z = 1 − 2ρ2
2n−1 is the largest zero of P−1,−1

n (z) which is distinct
from 1. Hence, by repeating the argument similar to that in the beginning (but
for a = b = −1) we obtain

1− 2ρ2
2n−1 < 1− 2ρ2

2n.

Hence we have for all n ≥ 2

(7.4) ρ2n−1 > ρ2n.

We recall the alternation formula [7, p. 210]

(7.5) CknP−k,mn (x) = Ckn+m
(
x − 1

2

)k
Pk,mn−k(x).

Then for k = 1, m = −1 this formula and (6.1) yield

C1
nP−1,−1

n (x) = C1
n−1

x − 1
2

P1,−1
n−1 (x) = (−1)n−1C1

n−1
x − 1

2
P−1,1
n−1 (−x),

hence

(7.6) C1
nP−1,−1

n (x) = (−1)n−1C1
n−1

x − 1
2

P−1,1
n−1 (−x).

On the other hand, by using (6.1) and making the change of variables x → −x
in (7.6), we see that

nP−1,−1
n (x) = (n− 1)

1+ x
2

P−1,1
n−1 (x).

Hence in our notation we have xn,n(−1,−1) = −1, and also for k = 1, . . . , n−1:

xn,k(−1,−1) = xn−1,k(−1,1).

Furthermore, applying (7.1) to P−1,1
n (x) and P−1,0

n (x), we obtain

xn,k(−1,0) < xn,k(−1,1),

and as a consequence

xn,k(−1,0) < xn,k(−1,1) = xn+1,k(−1,−1).
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Substituting k = 2 into the latter inequality we obtain for all n ≥ 2

xn,k(−1,0) = 1− 2ρ2
2n < xn+1,k(−1,−1) = 1− 2ρ2

2n+1,

or ρ2n > ρ2n+1. Combining this with (7.4), we conclude that ρk is a decreasing
sequence for all k ≥ 3. Since ρ2 =

√
2 > 1 = ρ3, the statement (i) in the theorem

is proved completely.
In order to prove (ii), we apply again (7.5) with k = 1,m = 0, which together

with (6.1) yields

P−1,0
n (x) = (−1)n

1− x
2

P0,1
n−1(−x).

Hence we have for the zeroes: x1(−1,0) = −1, and also for k = 1, . . . , n− 1:

xn,n+1−k(−1,0) = −xn−1,k(0,1).

In particular, by (7.2)

xn,2(−1,0) = 1− 2ρ2
2n = −xn−1,n−1(0,1).

Then applying (7.1) for a = b = 1
2 and α = 0, β = 1 we obtain

(7.7) xn−1,n−1

(
1
2
,
1
2

)
< xn−1,n−1(0,1) = 2ρ2

2n − 1.

On the other hand,

P1/2,1/2
n−1 (z) = (2n)!

22n−1n!2
sinnθ
sinθ

, z = cosθ

(see, for example, formula (4.1.7) in [10]). Hence xn−1,k( 1
2 ,

1
2) = cos(πk/n),

k = 1, . . . , n− 1. Applying these formulas to (7.7) we obtain for all n ≥ 2

ρ2n > cos
(n− 1)π

2n
= sin

π
2n
.

Letting k = 1, m = −1 in (7.5) and repeating the above argument, we get

nP−1,−1
n (x) = (n+ 1)

x2 − 1
4

P1,1
n−2(x),

which implies xn,2(−1,−1) = xn−2,1(1,1). Therefore by the Stieltjes inequality
in the beginning of this section we obtain for all n ≥ 3

xn,2(−1,−1) = xn−2,1(1,1) < xn−2,1

(
1
2
,
1
2

)
= cos

π
n− 1

,
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that is,
1− 2ρ2

2n−1 < cos
π

n− 1
.

Hence we have
ρ2n−1 > sin

π
2n− 2

.

Moreover, ρ3 = 1 and we have the equality sign in the latter inequality for n = 2.
Thus (ii) is proved, and the theorem follows. ❐

Corollary 7.2. For all n ≥ 2 we have

ρn > sin
π
n
.

In particular, for all n ≥ 2 the overlapping coefficient βn satisfies the inequality βn >
1.

8. APPENDIX: CASE n = 3

Let and define

B(R1, R2, R3) := {B(ω,R1), B(ω2, R2), B(ω3, R3)}

denote the collection of three circles with arbitrary radii Rj and centered at the
vertices of the right triangle:

aj =ωj, j = 1,2,3, ω = e2π i/3,

Theorem 8.1. B(R1, R2, R3) is positive if and only if

(8.1) R2
1 + R2

2 + R2
3 < 3.

Proof. Define xi = R2
i and note that Rj are subject to the condition (3.1)

which is equivalent to xj < 3 in the new notation. Let Q := (Qij)1≤i,j≤3 denote
the matrix in (1.1) and by ∆i its principal minor of order i. Then

∆1 ≡ Q11 = x1(3− x2)(3− x3)

and the second principal minor

∆2 = q[(3− p)x2
3 − x3(18+ q − 6p)+ 9(3− p)],

where p = x1 + x2 and q = x1x2. The third minor is found by straightforward
computation as

(8.2)
x−1

1 x−1
2 x−1

3 ·∆3

27(3− x1 − x2 − x2)
= 9+ x1x2 + x2x3 + x1x3 − 3(x1 + x2 + x3).
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Then by Sylvester’s inertia law, B(x1, x2, x3) is positive if and only if ∆j > 0
for all j = 1, 2, 3.

First we prove that (8.1) is a sufficient condition for positivity. Indeed, by
0 < xj < 3 we have ∆1 > 0. On the other hand, xi > 0 and applying (8.1) we see

3(3− (x1 + x2 + x3))+ x1x2 + x2x3 + x1x3 > 0,

which immediately yields ∆3 > 0.
In order to prove that ∆2 > 0 we notice that 0 < p = x1 + x2 < 3 and

consider the quadratic polynomial

f(x3) := ∆2

q(3− p) = x
2
3 − x3

18+ q − 6p
3− p + 9.

We see that ∆2 and f(x3) have the same sign. On the other hand, the symmetry
point x3 = v of the parabola f(x3) is

v = 18+ q − 6p
2(3− p) = 3+ 4(3− p)+ q

2(3− p) > 3,

hence f(x3) is decreasing in (0,3). Therefore x3 < 3− p implies

f(x3) > f(3− p) = p2 − q = x2
1 + x1x2 + x2

2 > 0.

Thus ∆j > 0 for all j = 1, 2, 3 and positivity of B(R1, R2, R3) is proved.
Now we assume that B(R1, R2, R3) is positive. As above, it suffices only to

consider the variable x = (x1, x2, x3) ranges in the cube Q: 0 < xj < 3 for all
j = 1, 2, 3.

Letϕ(x1, x2, x3) denote the polynomial in the right hand side of (8.2). Since
ϕ is a harmonic polynomial we obtain by the strong minimum principle

(8.3) ϕ(x) > min
∂Q

ϕ, ∀x ∈ Q.

In order to estimate the minimum in the right hand side we denote by G0
i and G3

i
the edges of Q which correspond to the planes xi = 0 and xi = 3 respectively.
One can readily check that the following symmetry relation holds

ϕ(3− x1,3− x2,3− x3) = ϕ(x1, x2, x3).

Hence it suffices only to evaluate the minimum on the edges G0
i . Moreover, by

the usual permutation symmetry, it suffices only to consider one edge G0
3. Then

we have x ∈ ∂Q and x3 = 0, so that

ϕ(x1, x2,0) = (3− x1)(3− x2) ≥ 0,
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which implies inf∂Q ϕ ≥ 0.
Hence by virtue of (8.3) we have ϕ > 0 in Q. By (8.2) we conclude that

inside the cube Q, the function 3− x1 − x2 − x3 is either zero or it has the same
sign as ∆3. But the latter sign is positive for all values of x corresponding the
positivity condition. Hence positiveness of 3 − x1 − x2 − x3 is proved and the
theorem follows. ❐
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