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The complex moment sequence �ðPÞ is assigned to a univalent polynomial PðzÞ by the Cauchy transform
of the domain PðUÞ, where U is the unit disk. We establish the representation of the Jacobian det d�ðPÞ in
terms of roots of the derivative P0ðzÞ. Combining this result with the special decomposition for the Hurwitz
determinants, we prove a formula for det d�ðPÞ, which was previously conjectured by Ullemar. As a
consequence, we show that the boundary of the class of all locally univalent polynomials in U is contained
in the union of three irreducible algebraic surfaces.
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1. INTRODUCTION

Let f ðzÞ, f ð0Þ ¼ 0, be an analytic function defined in a neighborhood of the unit disk U
and k � 0 be a nonnegative integer. Then the complex moments of f ðzÞ are defined by

Mkð f Þ ¼
i

2�

ZZ
U

f kðzÞjf 0ðzÞj2 dz ^ dz:

This notion appears in several problems of complex analysis and its applications.
In particular, if f ðzÞ is a univalent function in U, then the latter sequence constitutes
an infinite family of invariants of the Hele–Shaw problem [12]. On the other hand,
the sequence ðMkð f ÞÞk�0 defines the germ at infinity of the Cauchy transform of the
domain D ¼ f ðUÞ:

�̂�D ¼
i

2�

ZZ
D

d� ^ d�

z� �
¼
X
k�0

Mkð f Þ

zkþ1
:
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Since the above definition may be regarded as a two-dimensional extension of the
Stieltjes moments on the real line [2], it makes natural the corresponding inverse prob-
lem of defining f ðzÞ by its moment sequence. It follows from the result of Sakai [13]
that without any additional restrictions, f ðzÞ (or the domain D) cannot be uniquely
determined by its moments. Some recent results concerning the reconstruction of a
domain by its complex moments can be found in [7,8,10].

Throughout this article we suppose that f ðzÞ is a polynomial

PðzÞ ¼ a1zþ � � � þ anz
n; a1 > 0; ð1Þ

of degree n � 2. Then PðUÞ is an example of quadrature domain (see [1] and [4, p. 11]).
It follows from a formula of Richardson (see (9)) that in this case the corresponding
sequence ðMkðPÞÞk�0 is finite and

MkðPÞ ¼ 0; k � n ¼ degP: ð2Þ

Moreover,

M0ðPÞ ¼
Xn
j¼1

jjajj
2 > 0; Mn�1ðPÞ ¼ an1an 6¼ 0:

Then it follows from (2) and Richardson’s formula (9) that the complex moment
sequence induces the moment mapping as a polynomial mapping

�CðPÞ ¼ ðM0ðPÞ; . . . ;Mn�1ðPÞÞ : R
þ
� C

n�1
! R

þ
�C

n�1: ð3Þ

Similarly, in the case of the real polynomials PðzÞ, i.e. ak 2 R, (3) induces a real poly-
nomial mapping

�ðPÞ ¼ ðM0ðPÞ; . . . ;Mn�1ðPÞÞ : R
þ

�R
n�1

! R
þ

� R
n�1

: ð4Þ

Thus the above mentioned inverse problem can be reformulated as an injectivity
problem for the preceding polynomial mappings.

Let PnðUÞ denote the class of all polynomials (1) univalent in a neighborhood of the
closed unit disk, ak 2 R, 1 � k � n. By Pn, locðUÞ we denote the class of the locally
univalent polynomials; equivalently, PðzÞ 2 Pn, locðUÞ iff P0ðzÞ 6¼ 0 in U. It is clear,
that PnðUÞ is a proper subclass of Pn, locðUÞ for n � 3.

The main difficulty in the study of the injectivity problem of � and �C is a highly
involved structure of the class of univalent polynomials PnðUÞ. Only some low
degree (n � 3) results are known (see [9,3,15]).

It was proven by Ullemar in [16] that � is globally injective on P3ðUÞ and the
injectivity property fails on P3, locðUÞ. The first general result for the locally univalent
polynomials (actually, even with complex coefficients) is due to Gustafsson [6] and
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states that � is locally injective on Pn, locðUÞ. The question whether � is globally injective
on PnðUÞ for n � 4 is still open.

In her paper, Ullemar conjectured the following formula for the Jacobian of �:

JðPÞ � det d�ðPÞ ¼ 2�nðn�3Þ=2a1
nðn�1Þ=2P0ð1ÞP0ð�1Þ�nðeP0P0ðzÞÞ; ð5Þ

which will be in focus in the present article. Here �nðeP0P0ðzÞÞ denotes the main Hurwitz
determinant for the Möbius transformation of the derivative P0ð�Þ (see exact definitions
in Section 4).

A useful feature of (5) is that it immediately implies the local injectivity property.
Indeed, by the well-known Hurwitz theorem the inner determinant in (5) is positive
when P0ðzÞ has no roots in a right half-plane.

Our first result gives the following alternative formula for evaluation of JðPÞ via the
inner characteristics of P.

THEOREM 1 (Derivative Roots Formula) Let PðzÞ ¼ a1zþ � � � þ anz
n, ak 2 R and

�1, . . . , �n�1 are all zeroes of the derivative P0ðzÞ. Then

JðPÞ ¼ 2a
nðn�1Þ=2
1 ðnanÞ

n
�
Y
i� j

ð�i�j � 1Þ

¼ 2a
nðn�1Þ=2
1 ðnanÞ

n�2 P0ð1ÞP0ð�1Þ
Y
i< j

ð�i�j � 1Þ: ð6Þ

Actually, the right hand side of (6), as a symmetric function of the roots, can be
represented as a homogeneous form

JðPÞ ¼ 2a
nðn�1Þ=2
1 Vn�1ðb1; . . . ; bnÞ

Xn
j¼1

bj
Xn
k¼1

ð�1Þkbk;

where bk ¼ kak are the coefficients of P
0ðzÞ and Vn�1 is a homogeneous irreducible poly-

nomial of degree ðn� 1Þ (see Section 6 for precise definitions).

THEOREM 2 (Resultant Formula) Let A�ðzÞ ¼ zpAð1=zÞ be the reciprocal polynomial to
AðzÞ ¼ �0 þ �1zþ � � � þ �pz

p. Then

JðPÞ2 ¼ 4ð�1Þn�1a
nðn�1Þ
1 RðP0;P0�Þ � P0ð�1ÞP0ð1Þ;

where RðA;BÞ denotes the resultant of the corresponding polynomials.

Now, the Ullemar formula (5) can be obtained as a consequence of Theorem 1 and
certain auxiliary properties of the Hurwitz determinants which we get in Section 4.

As another application we give an alternative proof of the above mentioned result of
Gustafsson.

COROLLARY 1 The mapping �ðPÞ is locally injective on the set Pn, locðUÞ, n � 1.

Proof Indeed, given any polynomial PðzÞ 2 Pn, locðUÞ with real coefficients we have
an 6¼ 0 and a1 ¼ P0ð0Þ 6¼ 0. Moreover, jP0ð�Þj 6¼ 0 in U and it follows that all zeroes
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�k of the first derivative satisfy j�kj > 1, k ¼ 1; . . . ; n� 1. Thus (6) implies that
JðPÞ 6¼ 0. g

It turns out that JðPÞ can be associated with the structural properties of the class
Pn, locðUÞ as follows. Let us identify a polynomial PðzÞ ¼

Pn
j¼1 ajz

j with the point
ða1; . . . ; anÞ 2 R

n and put

Pn
loc ¼ [1� j�nPj, locðUÞ:

THEOREM 3 Let n � 3; then the boundary of Pn
loc is contained in the union of the follow-

ing three irreducible algebraic varieties: the hyperplanes

�þ : P0ð1Þ ¼ a1 þ 2a2 þ � � � þ nan ¼ 0;

�� : P0ð�1Þ ¼ a1 � 2a2 þ � � � þ ð�1Þn�1nan ¼ 0;
ð7Þ

and an algebraic surface of ðn� 1Þth order given by

A : Vn�1ða1; 2a2; . . . ; nanÞ ¼ 0: ð8Þ

It follows from the preceding results that Pn
loc is exactly an open component of the set

fP: JðPÞ 6¼ 0g.
The similar result for the univalent classes PnðUÞ is due to Quine [11]. But only upper

estimates for the degree of the boundary @PnðUÞ have been established there.
We notice that the previous formulae as well as the suitable modifications of basic

facts below are still valid for polynomials with complex coefficients. This will be accom-
plished in a forthcoming paper.

2. PRELIMINARY RESULTS

Following to Richardson [12] one can write the following expressions for MkðPÞ

MkðPÞ ¼
X

i1ai1 � � � aikþ1
ai1þ���þikþ1

; ð9Þ

where the sum is taken over all possible sets of indices i1, . . . , ik � 1. It is assumed that
aj ¼ 0 for j � nþ 1. These formulae are easy to use for straightforward manipulations
with the complex moments and it follows that �C as well as � are polynomial
mappings. Nevertheless, this representation is useless for the further study of analytic
properties of �.

We shall use in the sequel the following simple residue representation of the moment
sequence for real polynomials

MkðPÞ ¼
1

kþ 1
res
�¼0

Pkþ1ð�ÞP0 1

�

� �
1

�2

� �
: ð10Þ
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Indeed, it follows from Stokes’ formula that

i

2�

ZZ
G

wk dw ^ d w ¼
i

2�ðkþ 1Þ

Z
@G

wkþ1 d w; ð11Þ

where G is an arbitrary 2-chain in the complex plane. Letting G ¼ PðUÞ and taking into
account that ��� ¼ ��1 on @U, and the fact that P0ðzÞ ¼ P0ðzÞ for polynomials with real
coefficients, we obtain from (11)

MkðPÞ ¼
i

2�ðkþ 1Þ

Z
@U

Pkþ1ð�ÞP0ð�Þ d ��� ¼
1

2�iðkþ 1Þ

Z
@U

Pkþ1ð�ÞP0 1

�

� �
d�

�2
:

This proves (10).
Moreover, since Pð0Þ ¼ 0, it follows that Pð�Þ ¼ zP1ðzÞ, where P1 is a polynomial.

Thus, the expression

P0 1

�

� �
Pkþ1ð�Þ

1

�2
¼ �k�nða1�

n�1 þ � � � þ nanÞða1 þ � � � þ an�
n�1Þ

kþ1

is also a polynomial for all k � n and it follows from (10) that

MkðPÞ ¼
1

kþ 1
res
�¼0

�kþ1Pkþ1
1 ð�ÞP0 1

�

� �
¼ 0

which proves (2). Therefore, the mapping � in (4) is well defined.
Given two meromorphic functions H1 and H2 we write

H1ðzÞ � H2ðzÞ mod½m1;m2�

if the Laurent series of H2 �H1 does not contain zm with m1 � m � m2.

LEMMA 1 For any k; 0 � k � n� 1;

P0ðzÞ PkðzÞ þ Pk 1

z

� �� �
�
Xn
�¼1

@MkðPÞ

@a�
� z��1 mod½0; n� 1�: ð12Þ

Proof Let �mð f ðzÞÞ ¼ resz¼0ð f ðzÞz
�1�mÞ; then it follows from the relations

@Pð1=zÞ

@a�
¼

1

z�
;

@P0ðzÞ

@a�
¼ �z��1;

and (10) that

@MkðPÞ

@a�
¼ �0 Pkð1=zÞP0ðzÞz1��

� �
þ

�

kþ 1
�0 Pkþ1ð1=zÞz�
� �

: ð13Þ
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On the other hand, integrating by parts yields

�0 z�Pkþ1ð1=zÞ
� �

¼
1

2�i

Z
@U

Pkþ1 1=zð Þz��1 dz ¼
1

2�i�

Z
@U

d z�Pkþ1 1=zð Þ
� �

þ
kþ 1

2�i�

Z
@U

Pk 1=zð ÞP0 1=zð Þz��2 dz ¼
kþ 1

�
�0 Pk 1=zð ÞP0 1=zð Þz��1
� �

;

and taking into account that �0ð f ð1=zÞÞ ¼ �0ð f ðzÞÞ we arrive at

�0 Pkþ1 z�1
� �

z�
� �

¼
kþ 1

�
�0 PkðzÞP0ðzÞz1��
� �

: ð14Þ

Combining (14) and (13), we get

@MkðPÞ

@a�
¼ �0 P0ðzÞz1��

�
PkðzÞ þ Pk z�1

� ��� �
¼ ���1 P0ðzÞ

�
PkðzÞ þ Pk z�1

� ��� �
and the required formula (12) follows. g

We notice that for any index k 2 f0; . . . ; n� 1g the following expansion

PkðzÞ þ Pk z�1
� �

¼
Xnk

m¼�nk

hðkÞm zm; ð15Þ

yields the symmetry property: hðkÞm ¼ hðkÞ�m.
To study (12) it is convenient to consider a slightly more general case. Namely, given

an arbitrary vector x ¼ ðx0; x1; . . . ; xn�1Þ, we define the following Toeplitz matrix

T ðxÞ ¼

x0 x1 � � � xn�1

x1 x0 � � � xn�2

..

. ..
. . .

. ..
.

xn�1 � � � � � � x0

0BB@
1CCA:

Then we can introduce the dual matrix BðyÞ, y ¼ ðy0; y1; . . . ; yn�1Þ, by

T ðxÞ � y> ¼ BðyÞ � x>; 8x 2 R
n: ð16Þ

Unlike T ðxÞ, the matrix BðyÞ is not symmetric and has a more complicated structure.
We shall study BðyÞ in more detail in the next section.

Let HkðzÞ be rational functions having Laurent series of the form

HkðzÞ ¼
XN

m¼�N

h
ðkÞ
jmj z

m;
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and let

BðzÞ ¼ b0 þ b1zþ � � � þ bn�1z
n�1

be a polynomial such that bn�1 6¼ 0.
Then we can define polynomials

�kðzÞ ¼
Xn�1

�¼0

’ðkÞ� z�; 0 � k � n� 1

such that

BðzÞ �HkðzÞ � �kðzÞ mod½0; n� 1�: ð17Þ

Further, we consider the vectors hðkÞ ¼ ðh
ðkÞ
0 ; . . . ; hðkÞn�1Þ and b ¼ ðb0; . . . ; bn�1Þ. It

follows then from (17) that the following matrix identity holds

ð’ðkÞ0 ; . . . ; ’ðkÞn�1Þ
>
� ’ðkÞ

>
¼ T ðhðkÞÞ � b>;

which by virtue of (16) implies ’ðkÞ
>
¼ BðbÞ � hðkÞ

>
, 0 � k � n� 1: Therefore, denoting

by � andH the matrices formed by combination of the columns ’ðkÞ
>
and hðkÞ

>
respect-

ively, we get � ¼ BðbÞH and

det � ¼ det BðbÞ � det H: ð18Þ

To apply the preceding arguments to our case we let BðzÞ ¼ P0ðzÞ andHkðzÞ ¼ PkðzÞþ
Pkð1=zÞ. Hence, we obtain from (12)

’ðkÞ� ¼
@MkðPÞ

@a�
; d�ðPÞ ¼ �: ð19Þ

Thus, the problem of evaluating the Jacobian JðPÞ can be reduced, by virtue of (18),
to the corresponding problem for the determinants of BðbÞ and H (here bj�1 ¼ jaj
corresponds to the coefficients of P0ðzÞ).

The latter determinant can be found as follows. First note that kh
ðkÞ
i k is a lower tri-

angular matrix in our case. Indeed, we have PðzÞ ¼ zP1ðzÞ, where P1ðzÞ is a polynomial,
and it follows that

PkðzÞ þ Pk z�1
� �

¼ zkPk
1ðzÞ þ

1

zk
Pk
1 z�1
� �

¼
Xkn
m¼k

ðzm þ z�mÞhðkÞm :

This representation easily implies that hðkÞm ¼ 0, where 0 � m � k� 1. Moreover, we
have for the diagonal elements h

ð0Þ
0 ¼ 2 and h

ðkÞ
k ¼ ak1. This yields

det H ¼ det kh
ðkÞ
i k ¼ 2 � a1 � a

2
1 � � � � � a

n�1
1 ¼ 2a

nðn�1Þ=2
1 : ð20Þ
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3. TOEPLITZ DETERMINANTS

The explicit expression of detBðyÞ in terms of the coefficients y0; . . . ; ym is messy and
useless for the further analysis. However, it turns out that this determinant can be
easily written in terms of certain intrinsic characteristics of y. Namely, let us associate
with any vector y 2 R

m the polynomial

ByðzÞ ¼ y0 þ y1zþ � � � þ ymz
m; ym 6¼ 0:

THEOREM 4. Let �1, . . . , �m be the roots of Byð�Þ counted according to their multiplicities.
Then

detBðyÞ ¼ ymþ1
m

Y
i� j

ð�i�j � 1Þ; ð21Þ

Proof First note that the left-hand side of (21) is an algebraic function of y0, . . ., ym
and, hence, it is sufficient to prove (21) for any � ¼ ð�1; . . . ; �mÞ outside a proper
algebraic submanifold of C

m. Namely, we will suppose that �i 6¼ �j for i 6¼ j and
�i�j 6¼ 1 for all i, j.

Given a nonnegative integer k and � 2 C we define the following vector

f�gk ¼ ð0; . . . ; 0; 1; �; �2; . . . ; �m�kÞ
>
2 C

mþ1; f�g � f�g0:

Then letting x ¼ f�g> in (16) we get

T ðf�g>Þ � y> ¼ Byð�Þ � f�
�1g þ

Xm�1

i¼0

yi f�gi � f��1gi
� �

and changing � by ��1 in the preceding formula we arrive after summation at

T ðf�g> þ f��1g>Þ � y> ¼ Byð�Þ � f�
�1g þ Byð�

�1Þ � f�g: ð22Þ

Let � ¼ �i be a root of Byð�Þ; then it follows from (22) that

T ðf�ig
> þ f��1

i g>Þ � y> ¼ Byð�
�1
i Þ � f�ig ð23Þ

and

T ðeÞ � y> ¼ Byð1Þ � e
>; ð24Þ

where e ¼ ð2; . . . ; 2Þ 2 C
mþ1. Applying (16) to the left-hand sides of (23) and (24) we

obtain

BðyÞðf�ig þ f��1
i gÞ ¼ Byð�

�1
i Þ � f�ig; 8i ¼ 1; . . . ;m;
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and

BðyÞ � e> ¼ Byð1Þ � e
>:

Combining the preceding expressions into the matrix form we arrive at the following
relation for determinants

detBðyÞ detWð1; �1; . . . ; �mÞ

¼ 2Byð1Þ det

1 1 . . . 1

1 �1 . . . �m1

..

. ..
. . .

. ..
.

1 �m . . . �mm

0BBBBBB@

1CCCCCCA
Ym
j¼1

Byð�
�1
j Þ

¼ 2ð�1ÞmByð1Þ
Ym
k¼1

Byð�
�1
k Þ �

Y
i< j

ð�j � �iÞ �
Ym
i¼1

ð1� �iÞ; ð25Þ

where Wð�0; �1; . . . ; �mÞ denotes the matrix with the entries

W ij ¼ k�i
j þ ��i

j kmi;j¼0:

The determinant of Wð�0; . . . ; �mÞ can be found by the same method as the
Vandermonde determinant (see also [17, Part 4]):

det Wð�0; . . . ; �mÞ ¼
2

ð�0 . . .�mÞ
m

Y
i< j

ð�j � �iÞ
Y
i< j

ð�i�j � 1Þ

and it follows that

det Wð1; �1; . . . ; �mÞ ¼
2

ð�1 � � � �mÞ
m

Y
i< j

ð�j � �iÞ
Y
i< j

ð�i�j � 1Þ
Ym
j¼1

ð1� �jÞ
2: ð26Þ

On the other hand,

Ym
k¼1

Byð�
�1
k Þ ¼ ð�1Þm

ymm
ð�1 � � � �mÞ

m

Ym
j¼1

Ym
i¼1

ð�i�j � 1Þ:

Thus, applying the previous identities to (25) we obtain

det BðyÞ ¼
Byð1Þy

m
mQm

i¼1ð1� �iÞ

Y
j� i

ð�i�j � 1Þ
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which implies by virtue of

Byð1Þ ¼ ym
Ym
i¼1

ð1� �iÞ

the required identity. g

Proof of Theorem 1 It follows from (19) that d�ðPÞ ¼ �. Then applying (20) and
Theorem 4 to (18) we obtain

JðPÞ � det
@MkðPÞ

@ai

� �
¼ 2a

nðn�1Þ=2
1 � bnn�1

Y
i� j

ð�i�j � 1Þ;

where bn�1 ¼ nan is the leading coefficient of BðzÞ � P0ðzÞ and the theorem follows.
g

4. HURWITZ DETERMINANTS AND ULLEMAR’S FORMULA

Let us consider an arbitrary polynomial RðzÞ ¼ r0 þ r1zþ � � � þ rmz
m of degree m � 1.

Let us extend the sequence of the coefficients rk such that rk ¼ 0 for all k > m and
k < 0. Then the m�m-matrix

GðRÞ �

rm�1 rm�3 . . . r1�m

rm rm�2 . . . r2�m

..

. ..
. . .

. ..
.

r2m�2 r2m�4 . . . r0

0BB@
1CCA

is called the Hurwitz matrix of the polynomial RðzÞ [5]. More specifically, the entries of
the matrix have the form

GijðRÞ ¼ rmþi�2j : ð27Þ

The main diagonal minor �ðRÞ of the ðm� 1Þth order of GðRÞ is said to be the
Hurwitz determinant of R. It immediately follows from the above definition that

detGðRÞ ¼ r0 �ðRÞ: ð28Þ

THEOREM 5 The Hurwitz determinant of RðzÞ; degR ¼ m; has the following representa-
tion

�ðRÞ ¼ ð�1Þðm
2�mÞ=2rm�1

m

Y
1� i< j�m

ðzi þ zjÞ; ð29Þ

where zi are the roots of RðzÞ counted according to their multiplicity.
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Before we give the proof of the theorem let us formulate some of its corollaries. Let
us consider the Möbius transformation of the polynomial RðzÞ given by

eRRðzÞ ¼ ðzþ 1ÞmR
z� 1

zþ 1

� �
�err0 þerr1zþ � � � þerrmzm:

Obviously, �k ¼ ð1þ zkÞ=ð1� zkÞ are the roots of eRRðzÞ whenever z1, . . . , zm are the roots
of RðzÞ. In particular, all the roots of RðzÞ are contained in the unit disk if and only if
the roots of eRRðzÞ lie in the right half-plane. Moreover,

Y
1� i< j�m

ð�i þ �jÞ ¼ 2mðm�1Þ=2
Y

1� i< j�m

ð1� zizjÞ
Ym
i¼1

ð1� ziÞ

 !1�m

:

Then the following identities

Ym
i¼1

ð1� ziÞ ¼
Rð1Þ

rm
;

errm ¼ lim
z!1

z�meRRðzÞ ¼ Rð1Þ;

together with (29) yield

COROLLARY 2 In the previous notations

�ðeRRÞ ¼ 2ðm
2�mÞ=2rm�1

m

Y
1� i< j�m

ðzizj � 1Þ; ð30Þ

where rm is the leading coefficient of R and fzig1�i�m are the roots of R.

Now, Ullemar’s conjectured formula (5) is a simple consequence of (30) and
Theorem 1.

COROLLARY 3 (Ullemar Formula) The Jacobian of the complex moment mapping � has
the following representation

JðPÞ � det d�ðPÞ ¼ 2�nðn�3Þ=2a1
nðn�1Þ=2P0ð1ÞP0ð�1Þ�nðeP0P0ðzÞÞ;

where n ¼ degP.

Proof of Theorem 5 Similarly to the proof of Theorem 1 we can assume that RðzÞ has
no multiple roots. Then we have from (27) for any � 2 C and any index i, 1 � i � m,
that

Xm
j¼1

GijðRÞ�
2m�2j ¼

Xm
j¼1

rmþi�2j�
2m�2j ¼ �m�i

X?

k
�krk;

where the kth index in the last sum has the form kði; jÞ ¼ mþ i � 2j, j ¼ 1; . . . ;m.
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Now suppose that i 2 ½1;m� and let �ii ¼ m� i. It is clear that k takes only the even
(or only odd) values which range between � �ii and 2m� 2� �ii with changing j between
1 and m. Moreover, both k and �ii have the same parity and

� �ii � kði; jÞ � 2m� 2� �ii; �ii ¼ 0; 1; . . . ;m� 1:

Hence, for each i from ½1;m� the indices kði; jÞ take all the values of �ii from interval
½0;m� 1� when j 2 ½0;m�. By virtue of this property we conclude that

Xm
j¼1

GijðRÞ�
2m�2j ¼ �m�iR½ �ii �ð�Þ; ð31Þ

where R½p�ð�Þ is the even part of Rð�Þ for even p and the odd part of Rð�Þ for odd p:

R½ p�ð�Þ ¼
1

2

�
Rð�Þ þ ð�1ÞpRð��Þ

�
:

Let now � ¼ zk be the kth root of Rð�Þ. Taking into account that

R½p�ðzkÞ ¼ RðzkÞ � R½pþ1�ðzkÞ ¼ �R½pþ1�ðzkÞ;

we obtain

R½p�ðzkÞ ¼ ð�1ÞpRevðzkÞ:

Here Revð�Þ ¼ R½0�ð�Þ is the even part of Rð�Þ and we see from (31) that

Xm
j¼1

GijðRÞz
2m�2j
k ¼ ð�zkÞ

m�iRevðzkÞ:

Combining the last identities for k ¼ 1; 2; . . . ;m into the matrices we obtain for their
determinants

detGðRÞ detVðz21; . . . ; z
2
mÞ ¼ ð�1Þmðm�1Þ=2 detVðz1; . . . ; zmÞ

Ym
k¼1

RevðzkÞ; ð32Þ

where Vða1; . . . ; amÞ ¼ kak�1
j kmj;k¼1 is the Vandermonde matrix.

On the other hand, we have for the even part

RevðzkÞ ¼
1

2
Rð�zkÞ ¼ ð�1Þm

rm

2

Ym
i¼1

ðzi þ zkÞ;
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and it follows from (32) that

detGðRÞ �
Y

1� i< j�m

ðz2j � z2i Þ ¼
ð�1Þmðmþ1Þ=2rmm

2m

Ym
i, j¼1

ðzi þ zjÞ
Y

1� i< j�m

ðzj � ziÞ:

Hence, applying (28) we find

�ðRÞ ¼
ð�1Þðm

2þmÞ=2rmm
2mr0

Y
1� i� j�m

ðzi þ zjÞ

and rewriting the last product as

Y
1� i� j�m

ðzi þ zjÞ ¼
Y
i¼1

ð2ziÞ
Y

1� i< j�m

ðzi þ zjÞ ¼
ð�2Þmr0

rm

Y
1� i< j�m

ðzi þ zjÞ;

we arrive at the required identity and the theorem is proved. g

5. REPRESENTATIONS VIA THE RESULTANTS

Recall that given two polynomials

AðzÞ ¼ An

Yn
k¼1

ðz� �kÞ ¼ A0 þ A1zþ � � � þ Anz
n;

and

BðzÞ ¼ Bn

Yn
k¼1

ðz� �kÞ ¼ B0 þ B1zþ � � � þ Bnz
n;

the product

RðA;BÞ ¼ An
nB

n
n

Yn
i; j¼1

ð�i � �jÞ

is called the resultant of A and B.
If AðzÞ and BðzÞ are the mutually reciprocal polynomials

BðzÞ ¼ znAð1=zÞ � A�ðzÞ;
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then Bn�j ¼ Aj, j ¼ 0; . . . n and we have for their roots: �j ¼ 1=�j. Then the correspond-
ing resultant can be rewritten in the matrix form

RðA;A�Þ ¼ det

A0 A1 . . . . . . An

A0 A1 . . . . . . An

. . . . . . . . . . . . . . .

A0 A1 . . . . . . An

An An�1 . . . . . . A0

An An�1 . . . . . . A0

. . . . . . . . . . . . . . .

An An�1 . . . . . . A0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
: ð33Þ

It is easy to see that the last matrix is of 2nth order and with A0 as its diagonal
elements. On the other hand,

RðA;A�Þ ¼ An
nA

n
0

Yn
i; j¼1

�i �
1

�j

� �
¼

An
nA

n
0

ð�1 . . .�nÞ
n

Yn
i> j

�i�j � 1
� �2Yn

i¼1

ð�2
i � 1Þ

and by Viète’s theorem

�1 � � ��n ¼ ð�1Þn
A0

An
; Að1ÞAð�1Þ ¼ A2

n

Yn
i¼1

ð�2
i � 1Þ;

we conclude that

RðA;A�Þ ¼ ð�1ÞnAð�1ÞAð1ÞA2n�2
n

Yn
i> j

�i�j � 1
� �2

¼
ð�1ÞnA2nþ2

n

Að1ÞAð�1Þ

Yn
i� j

�i�j � 1
� �" #2

: ð34Þ

Thus, we have from (34)

W2
n ðAÞ ¼ ð�1ÞnRðA;A�ÞAð�1ÞAð1Þ ð35Þ

where

WnðAÞ ¼ Anþ1
n

Y
i� j

ð�i�j � 1Þ: ð36Þ

68 O.S. KUZNETSOVA AND V.G. TKACHEV

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
p
p
s
a
l
a
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
0
9
:
4
5
 
1
5
 
O
c
t
o
b
e
r
 
2
0
0
8



As an immediate consequence of its definition, WnðAÞ � WnðA0;A1; . . . ;AnÞ is a
homogeneous form of order nþ 1 ¼ degAþ 1. Moreover, it admits the following
factorization

WnðAÞ ¼ Að�1ÞAð1ÞVnðAÞ; VnðAÞ ¼ An�1
n

Y
i< j

ð�i�j � 1Þ; ð37Þ

where VnðAÞ is a homogeneous form of degree ðdegA� 1Þ.
On the other hand, it follows from

VnðAÞ ¼ An�1
0

Y
i< j

1�
1

�i�j

� �
; ð38Þ

that we have the recursion formula

VnðA0;A1; . . . ;Ak; 0; . . . ; 0Þ ¼ An�k
0 VkðA0;A1; . . . ;AkÞ:

Here are the explicit expressions for Vk:

V3ðAÞ ¼ A2
0 � A0A2 þ A1A3 � A2

3

V4ðAÞ ¼ A4ð�A2
1 þ A3A1 þ A2

4 � A4A2 � A0A4 þ 2A0A2 � A2
0Þ

þ A0ðA
2
0 � A0A2 þ A1A3 � A2

3Þ:

Proof of Theorem 2 Substituting the derivative

P0ðzÞ ¼ a1 þ 2a2zþ � � � þ nanz
n�1 � b1 þ b2zþ � � � þ bnz

n�1; bk ¼ kak;

as AðzÞ to (34) and (35) we obtain

bnn

Yn�1

i� j

�i�j � 1
� �" #2

¼ ð�1Þn�1
RðP0;P0�ÞP0ð�1ÞP0ð1Þ: ð39Þ

Then comparing the last relations with the definition (36) we arrive at the following
formula

Wn�1ðP
0Þ
2
¼ ð�1Þn�1

RðP0;P0�ÞP0ð�1ÞP0ð1Þ:

Finally, combining the preceding identity with (6) we attain the required representation
of JðPÞ

J2ðPÞ ¼ 4bn
2�n

1 W2
n�1ðP

0Þ ¼ 4bn
2�n

1 ð�1Þn�1
RðP0;P0�ÞP0ð�1ÞP0ð1Þ

which with a1 ¼ b1 completes the proof. g

The following property of Vk will be used in the next section.

THEOREM 6 VnðAÞ � VnðA0;A1; . . . ;AnÞ 2 C½½A0;A1; . . . ;An�� is an irreducible
polynomial.
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Proof A simple analysis of the denominator of the right-hand side of (38) shows that
An cannot be a divisor of VnðAÞ. On the other hand, we noticed that VnðAÞ can be repre-
sented as a symmetric polynomial function of the roots ð�kÞ1�k�n of AðzÞ ¼ 0.

Let H1ðAÞ and H2ðAÞ be two nontrivial (i.e. different from the identical constants)
divisors of VnðAÞ. It is a consequence of the homogeneity of VnðAÞ that both of
HkðAÞ are homogeneous too. Moreover, in our assumptions hk ¼ degHk � 1.

By Viéte’s theorem

Ak ¼ An	kð�1; . . . ; �nÞ

where 	k is kth symmetric function of ð�1; . . . ; �nÞ. Then substituting the last expres-
sions for HkðAÞ yields by virtue of the homogeneity of Hk that

HkðAÞ ¼ Ahk
n Ykð�1; . . . ; �nÞ

where the Yk, k ¼ 1; 2, are polynomials in �j. On the other hand, it follows from (37)
that h1 þ h2 ¼ n� 1 and the each Yk must be a divisor ofY

i< j

ð�i�j � 1Þ:

But the last product consists of irreducible factors ð�i�j � 1Þ only. Moreover, if one
ð�i�j � 1Þ occures in Y1 as a divisor then by symmetry the others have to be the divisors
as well.

It follows that one of Yk contains none �i, i.e. it has the form Ap
n. Thus, applying the

remark in the beginning of the proof we see that p ¼ 0. But this means that Yk must be
a constant factor that contradicts to our assumption and proves the theorem. g

6. PROOF OF THEOREM 3

Let PðzÞ ¼ a1zþ � � � anz
n, P 2 Pn

loc, be a locally injective in the unit disk polynomial.
We identify P0ðzÞ with the vector of its coefficients

b ¼ ðb1; b2; . . . ; bnÞ 2 R
n;

where bk ¼ kak. We also write Rðp; qÞ ¼ RðP0;Q0Þ for the corresponding vectors p and
q. Moreover, by S we denote the differential operator regarded as a linear transform
in R

n:

SðPÞ ¼ P0ðzÞ : Rn
! R

n:

Then the following consequence of (35) and (37)

b 2 kerWn�1 , Rðb; b�Þ ¼ 0 ð40Þ

is useful. Here b� ¼ ðbn; . . . ; b1Þ corresponds to P0�.
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LEMMA 2 The set Pn
loc is an open connected subset of R

n. A polynomial PðzÞ is an element
of the boundary @Pn

loc if and only if the following properties hold

(i) P0ðzÞ contains no zeroes in U;
(ii) RðP0;P0�Þ ¼ 0.

Proof The openness of Pn
loc obviously follows from the fact that

min
z2U

jP0ðzÞj > 0; 8P 2 Pn
loc: ð41Þ

Furthermore, let P 2 Pn
loc; then the homotopy

a� ¼ ða1; a2t; . . . ; ant
n�1Þ; t 2 ½0; 1�;

corresponds to the dilatation PtðzÞ ¼ ð1=tÞPðtzÞ and connects PðzÞ and QðzÞ ¼ a1z inside
of Pn

loc since P0
tðzÞ ¼ P0ðtzÞ 6¼ 0 in U. In particular, this shows that all the polynomials

PðzÞ with a1 > 0 are contained in a single open component of Pn
loc.

Property (i) easily follows from the continuity arguments and (41).
To prove (ii) we suppose that P 2 @Pn

loc. Then

min
z2U

jP0ðzÞj ¼ 0

and it follows from (i) that there is a root �k of P0ðzÞ such that j�kj ¼ 1. On the other
hand, the coefficients of P are real and it follows that �k ¼ 1=�k is a root of P0 as
well. But this means that P0ðzÞ and P0�ðzÞ has a common root and by the characteristic
property of the resultant the latter is equivalent to RðP0;P0�Þ ¼ 0. g

Proof of Theorem 3 Let us consider a real-valued continuous function

f ðaÞ ¼ ð�1Þ jRðSðaÞ;SðaÞ�Þ : Pj; loc ! R

where the star is used for the corresponding reciprocal polynomial.
We note that f does not change sign on Pn

loc. Indeed, given an arbitrary PðzÞ 2 Pk; loc,
k � n, we have that all the roots �j of P

0ðzÞ are outside U. Thus,

j�i�jj > 1; 8 i; j � n� 1:

and by (34) f ðaÞ 6¼ 0. The last inequality together with (40) implies the claimed
property. It easily follows from the normalization a1 > 0 and (34) that f > 0 on Pn

loc.
Hence, Pn

loc 	 � for certain open component � of f > 0. On the other hand, by
property (ii) in Lemma 2 we have f ðaÞ ¼ 0 for all a 2 @Pn

loc. Then applying (40) we
get � ¼ Pn

loc.
Thus, we conclude that Pn

loc coincides with a certain open component of

R
n
nkerWn�1 ¼ R

n
nS�1ðker f Þ:
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To finish the proof we only have to check that the three algebraic surfaces in the
statement of Theorem 3 have nonempty intersection with the boundary components
of Pn

loc ( for n � 3). Indeed, we notice that the hyperplanes �
 in (7) correspond to
the polynomials P 2 @Pn

loc which have their critical points on the real axis:
P0ð
1Þ ¼ 0. On the other hand, A in (8) represents the component of @Pn

loc which
consists of the polynomials with the complex roots � 62 R, j�j ¼ 1, P0ð�Þ ¼ 0. The
theorem follows. g
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