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1. Introduction. In biological populations, density-dependent regulation rep-9
resents change in individual fitness caused by changes in population size or density.10
The negative density-dependency, often explained by intra-specific competition and11
overcrowding effect, is characterized by decline in fitness with increase in populations12
size or density. In sharp contrast with this is the positive density-dependency, or13
the Allee effect, characterized by increase in fitness with increase in population size.14
Various mechanisms have been considered as a source of the Allee effect, [1, 4, 5],15
pointing out that increase in fitness can come though increase in birth rate, decrease16
in death rate or both.17

Mathematical models of age structured populations usually use density dependent18
vital rates without any special regard to the type of feedback that density-dependence19
produces; see for example [2, 3, 9, 10, 11, 17]. On the other hand, some authors20
investigate consequences of the Allee effect in age-structured populations, see for21
instance [6, 7], or intraspecific competition [16].22

The importance of this article is twofold. First, we expand mathematical theory23
of age-structured population dynamics by including density-dependent regulation.24
Second, Allee effect may have a positive contribution to population survival. In the25
age of massive extinction of species, it is therefore important to study under which26
conditions population may survive.27

In this paper we study consequences of different types of density-dependence on28
permanence of age-structured populations. We improve the assumption used in [16]29
that intraspecific competition occurs only among individuals of the same age by using30
more realistic age, and density-dependent mortality µ(a, P (t)) and fertility β(a,Q(t)),31
where P (t) =

∫∞
0
p(a)n(a, t) da, Q(t) =

∫∞
0
q(a)n(a, t) da are weighted populations32

and n(a, t) is the number of individuals of age a at time t and p(a), q(a) are weight33
functions.34

One of our main assumptions is that mortality rate tends to infinity with the35
population size. This assumption is having a biological explanation: intraspecific36
competition is increasing in any large population due to limited resources in the37
habitat. Important consequence of this assumption, stated in Section 3, is existence38
of an upper bound for a population. Moreover, this result is an improvement of a39
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similar result in [13], which is made possible by allowing two different weight functions40
for the mortality and fertility rates and by relaxing condition of Lipschitz continuity41
for the weight functions.42

In Section 4 a stability analysis is performed on the trivial equilibrium (ρ, P,Q) =
(0, 0, 0). The stability of the trivial equilibrium depends on the net reproductive rate

R0 =

∫ ∞
0

β(a, 0)e−
∫ a
0
µ(v,0)dvda.

In Section 5 we study the global stability of the system in terms of newborns only.43
We restrain the mortality rate to be increasing with P and thus we do not incorporate44
the Allee effect on the mortality. Under this assumption we derive conditions based45
on the net reproduction rate R0 for extinction and persistence. In the case R0 ≤ 1 the46
population will go extinct and in the case R0 > 1 the population will be persistent.47

In Section 6 we remove the restriction on the mortality function made in chapter48
5. This allows for the Allee effect. If R0 < 1 we conclude that the population either49
becomes extinct or is persistent. We note that if the number of newborns ever is50
small enough then this implies extinction. This effectively means that the trivial51
equilibrium is locally stable.52

2. The model setup. Density dependent regulation acts on a population by53
changing its birth and death rates. Gurtin and MacCamy [11] and Chipot [3] as-54
sumed that the strength of density dependent regulation always depend on the total55
population, while Kozlov et al. [16] took the opposite approach by assuming that56
competition occurs only within each age-class. Here, we will follow the model from57
Chapter 5 of [14] with some restrictions. In order to encompass various mechanisms58
through which density dependent regulation can manifest, we introduce the weighted59
age-class functions60

P (t) =

∫ ∞
0

p(a)n(a, t) da,(2.1)61
62

and63

Q(t) =

∫ ∞
0

q(a)n(a, t) da,(2.2)64
65

where n(a, t) is the number of individuals of age a at time t and p(a) and q(a) are66
non-negative weight functions. The balance equation is then:67

∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −µ(a, P (t))n(a, t), a, t > 0,(2.3)68

69

where the function µ(a, P (t)) is the death rate dependent on the weighted age-class70
function P (t). The boundary condition is given by71

n(0, t) =

∫ ∞
0

β(a,Q(t))n(a, t) da, t > 0,(2.4)72
73

where the birth rate β(a,Q(t)) incorporates effect of age-class density through the74
weighted age-class function Q(t). The initial condition is given by:75

n(a, 0) = g(a), a > 0.(2.5)7677
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The boundary-initial value problem (2.3)–(2.5), together with the weighted age-78
class-functions (2.1) and (2.2), constitutes a density-dependent population growth79
model. For purposes of our analysis and in line with the theory in Chapter 5 of [14],80
we assume that the parameters satisfy following conditions:81

(H1) The function µ(a, x) is assumed to be of the form82

(2.6) µ(a, x) = µ0(a) + M (a, x),83

where for some a† > 084

(2.7) µ0 ∈ L1
loc([0, a†)), µ0(a) ≥ 0 a.e. in [0, a†],

∫ a†

0

µ0(σ)dσ = +∞85

and M (·, x) is a continuous operator that for each x ∈ R+ = {x ∈ R : x ≥ 0},
gives a function in L1(0, a†), that is

M (·, x) ∈ C(R+, L
1(0, a†)).

We also assume that86

M (a, x) ≥ 0 a.e. in [0, a†]× R+(2.8)8788

and89

M (a, 0) = 0 a.e. in [0, a†].9091

(H2) The function β satisfies92

β(·, x) ∈ C(R+, L
∞(0, a†)) with(2.9)93

0 ≤ β(a, x) ≤ β+ a.e. in [0, a†]× R+.(2.10)9495

In addition we assume that β(a, x) and µ(a, x) are Lipschitz continuous with96
respect to the second argument on bounded sets, uniformly on a ∈ [0, a†].97
That is, for all M > 0 there exists a constant H(M) > 0 such that, if98
x, x̄ ∈ [0,M ], then99

|µ(a, x)− µ(a, x̄)| ≤ H(M)|x− x̄|,(2.11)100

|β(a, x)− β(a, x̄)| ≤ H(M)|x− x̄|.(2.12)101102

(H3) The weight functions are assumed to be non-negative and belong to L∞(0, a†)103

p, q ∈ L∞(0, a†), 0 ≤ p(a) ≤ ||p||∞ and 0 ≤ q(a) ≤ q+ a.e. in [0, a†].104

(H4) The initial distribution f satisfies105

f ∈ L1(0, a†), g(a) ≥ 0 a.e. in [0, a†].106

These assumptions can be found in [14]. In order to study behavior of a population107
for large t, some additional properties of the birth rate β and the weight function p108
are needed. Namely, we suppose that there exist constants a2 > b2 > b1 > a1 > 0109
and δ > 0 such that110

β(a, x) = 0 a /∈ (a1, a2),(2.13)111

β(a, x) > δ for a ∈ (b1, b2),(2.14)112113
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and that there exist p2 > p1 > 0 such that114

(2.15) p(a) > δ for all a ∈ [p1, p2].115

We begin our analysis by deriving an integral formulation to the model (2.3)–116
(2.5). Our results are based on the reduction of the initial-boundary problem to the117
system of nonlinear integral equations for the number of newborns, denoted by118

ρ(t) = n(0, t), t > 0,(2.16)119120

and for the functions P (t) and Q(t).121
As stated in Section 5.1 of [14], using the change of variables a = x and t = x+ y122

and integrating along characteristic lines y = C, where C is a constant, the balance123
equation (2.3) becomes124

(2.17) n(a, t) =

{
ρ(t− a)e−

∫ a
0
µ(v,P (v+t−a))dv, a < t,

f(a− t)e−
∫ a
a−t µ(v,P (v+t−a))dv, a ≥ t.

125

From (2.4), (2.16) and (2.17) we obtain the system of integral equations:126

(2.18)
ρ(t) =

∫ t

0

β(a,Q(t))ρ(t− a)e−
∫ a
0
µ(v,P (v+t−a))dv da

+

∫ ∞
t

β(a,Q(t))f(a− t)e−
∫ a
a−t µ(v,P (v+t−a))dv da,

127

128

(2.19)
P (t) =

∫ t

0

p(a)ρ(t− a)e−
∫ a
0
µ(v,P (v+t−a))dv da

+

∫ ∞
t

p(a)f(a− t)e−
∫ a
a−t µ(v,P (v+t−a))dv da,

129

and130

(2.20)
Q(t) =

∫ t

0

q(a)ρ(t− a)e−
∫ a
0
µ(v,P (v+t−a))dv da

+

∫ ∞
t

q(a)f(a− t)e−
∫ a
a−t µ(v,P (v+t−a))dv da.

131

The main result of this section proves existence and uniqueness of a solution to132
the problem (2.18)-(2.20).133

Theorem 2.1. Let assumptions (H1)–(H4) hold. Then there exist unique non-134
negative functions ρ, P,Q ∈ C(R+) satisfying problem (2.18)-(2.20).135

For the proof of this theorem we refer to Section 5.1 in [14], where one can find136
a more general result for a model that involves arbitrarily many sizes.137

3. Boundedness of solution. The negative density-dependence is observed in138
biological populations as intraspecific competition or overcrowding effects, and in-139
vestigated both practically and theoretically. Mathematical representation of the140
negative-density dependence begins with the Verhulst model for unstructured popu-141
lation, see for example [12], and the consequence of this type of regulation are bounded142
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growth and stabilization of population around its carrying capacity. Effects of the neg-143
ative density-dependence on the age-structured population are studied in [16]. Under144
the assumption that only members of the same age-class compete, the existence of145
a bounded solution has been proven. In what follows, we will prove the existence146
of a bounded solution considering more general mortality function which includes147
competition between different age classes. To this end we consider the problem (2.3)–148
(2.5), where the non-negativity condition onM in (H1) is removed, and instead the149
following holds:150

(A1) There exist a function ψ ∈ C(R+) such that151

M(a, x) ≥ ψ(x) ≥ − supµ0(a) for all a and x152

where153

ψ(·) is non-decreasing, lim
x→∞

ψ(x) =∞.154

(A2) There exists a constant c > 0 such that β(a) ≤ cp(a) for all a.155
Assumption (A1) corresponds to the fact that for large populations mortality is156

increased by increase in population size and also generalizes mortality rate used in [16].157
Note that for small populations this correlation does not need to hold. This allows158
us to include mortality functions that satisfy: µ(a, P ) is decreasing for P ∈ (0, δ) and159
increasing for P > δ. These types of mortality functions can be related to the Allee160
effect to describe situations when, for small population sizes, increase in population161
size increases fitness by reducing mortality. Condition (A1) implies that the density-162
dependent mortality rate is unbounded, which corresponds to our expectations since163
intraspecific competitions increases with population size.164

Assumption (A2) does not restrict birth rate β or the weight function p, since β165
is already bounded and p is non-negative, according to (H2) and (H3). However, it166
does provide a relation between individuals contribution to fecundity and mortality:167
individuals in every fertile age group are competing for resources and contributing to168
mortality rate of individuals of their age or older.169

In what follows, we will show that the assumptions (A1) and (A2) are sufficient170
for boundedness of the functions P (t), Q(t) and ρ(t) for all t. This improves the result171
in [13], where the weight function p(a) is supposed to be Lipschitz continuous. We172
begin by formulating the following lemma.173

Lemma 3.1. Let ρ be a non-negative continuous function on [0,∞) and let ψ(x)174
satisfy (A1). We define ψ−1(x) as max{y;ψ(y) = x}. Let γ = 1−ψ(0). If there exist175

constants c > 0 and M > 1 + ψ(ρ(0)c ) such that176

(3.1) ρ(t) ≤M max
x≤t

ρ(x)

ψ(ρ(x)c ) + γ
for all t,177

then178

(3.2) ρ(t) ≤M max
k≤cψ−1(M−γ)

k

ψ(kc ) + γ
<∞.179

Proof of this lemma can be found in the Appendix C. We now state and prove the180
main result of this section.181

Theorem 3.2. If the functions β, µ, f , p and q satisfy (H2)–(H4) with the ad-182
ditional assumptions (A1) and (A2), then the functions ρ, P and Q are bounded.183
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Proof. Using the variable changes x = t − a and vnew = vold + x in the first184
integrals of (2.18) and (2.19), and assuming that t ≥ a†, we obtain185

ρ(t) =

∫ t

0

β(t− x,Q(t))ρ(x)e−
∫ t
x
µ(v−x,P (v))dv dx,(3.3)186

P (t) =

∫ t

0

p(t− x)ρ(x)e−
∫ t
x
µ(v−x,P (v))dv dx,(3.4)187

Q(t) =

∫ t

0

q(t− x)ρ(x)e−
∫ t
x
µ(v−x,P (v))dv dx.(3.5)188

189

This together with assumption (A2) implies that190

P (t) =

∫ t

0

p(t− x)ρ(x)e−
∫ t
x
µ(v−x,P (v))dv dx191

≥ 1

c

∫ t

0

β(t− x,Q(t))ρ(x)e−
∫ t
x
µ(v−x,P (v))dv dx192

≥ 1

c
ρ(t).(3.6)193

194

Using (A1), (A2) and (3.6), from equation (3.3) follows an estimate of ρ:195

ρ(t) ≤
∫ t

t−a†
βmaxρ(x)e−

∫ t
x
ψ(P (v))dv dx196

≤
∫ t

t−a†
βmaxρ(x)e−

∫ t
x
ψ(

ρ(v)
c )dv dx.197

198

Multiplying both the nominator and the denominator with ψ(ρ(x)c ) + γ > 0 we get.199

p(t) ≤
∫ t

t−a†
βmax

ρ(x)

ψ(ρ(x)c ) + γ
(ψ(

ρ(x)

c
) + γ)e−

∫ t
x
ψ(

ρ(v)
c )dv dx200

≤ βmax max
x<t

ρ(x)

ψ
(
ρ(x)
c

)
+ γ

(∫ t

t−a†
ψ

(
ρ(x)

c

)
e−

∫ t
x
ψ( ρ(v)c )dvdx201

+

∫ t

t−a†
e−

∫ t−x
0

ψ(
ρ(v)
c )dv dx

)
202

≤ βmax max
x<t

ρ(x)

ψ
(
ρ(x)
c

)
+ γ

([
e−

∫ t
x
ψ(

ρ(v)
c )dv

]t
t−a†

+

∫ t

t−a†
γ dx

)
203

≤ βmax(γ + a†) max
x≤t

ρ(x)

ψ(ρ(x)c ) + γ
.204

205

Lemma 3.1 infers that ρ is bounded by206

(3.7) M max
k≤cψ−1(M−γ)

k

ψ(kc ) + γ
,207

where208

M = max

(
βmax(γ + a†), γ + ψ(

ρ(0)

c
)

)
.209
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Finally, to prove that P and Q are bounded, it is sufficient to use boundedness of ρ210
and (2.19)211

4. Local stability of the trivial equilibrium. In order to investigate the212
local stability of the trivial equilibrium (ρ, P,Q) = (0, 0, 0), problem (2.1)–(2.3)213
is linearized. Let (ρ, P,Q) = (z,P,Q) be a solution to (2.1)–(2.3) and assume214
(z(a, t),P(t),Q(t)) is close to zero. In order to linearize, we assume, in addition215
to the previous assumptions on β and µ, that β(a, x) and µ(a, x) have continuous216
partial derivatives with respect to the second argument, uniformly in a ∈ [0, a†]. By217
linearization around zero we get218

∂z(a, t)

∂t
+
∂z(a, t)

∂a
= −µ(a, 0)z(a, t),(4.1)219

z(0, t) =

∫ ∞
0

β(a, 0)z(a, t) da.(4.2)220
221

If z is known, P and Q can be calculated from formulas (2.1)-(2.2).222
In the age-structured population models, the net reproduction rate defined by223

(4.3) R0 =

∫ ∞
0

β(a, 0)e−
∫ a
0
µ(τ,0)dτ da224

measures the number of offspring of an individual during its lifetime [15, 16]. It is225
often used as an indicator of the large time population behavior and a dichotomy226
between population survival for R0 > 1 and extinction for R0 ≤ 1 has been proven227
in [15, 16]. Stability of the trivial equilibrium (ρ, P,Q) = (0, 0, 0) of linear problem228
(4.1)–(4.2) can be assessed using R0 and we have the following result.229

Proposition 4.1. If R0 < 1, then the solution of (4.1)–(4.2) converge to zero,230
and if R0 > 1, it increases to infinity. If R0 = 1 then the solution is bounded and231
persistent.232

Proof. Let λ be such that233

(4.4)
∫ ∞
0

β(a, 0)e
∫ a
0
µ(v,0)dv−λada = 1234

Observe that the left-hand side of (4.4) is a strictly decreasing continuous function235
with respect to λ, with values ranging from ∞ to 0. Thus, λ is well defined. By236
Theorem 3.2 and Theorem 3.3 in [15], for σ = λ and z(0, t) 6= 0, there exist constants237
C1, C2 > 0 such that238

(4.5) C1e
λt ≤ z(0, t) ≤ C2e

λt.239

If R0 < 1, then λ < 0 and if R0 > 1, then λ > 0. This, together with (4.5), implies240
the theorem.241

Remark 4.1. As a consequence of the "Principal of Linearised Stability" in [8],242
it follows that asymptotic stability and instability of the linearised problem (4.1)-(4.2)243
implies asymptotic stability and instability respectively for the non-linear problem244
(2.1)-(2.5). This means that for our original problem (2.1)-(2.5) we can conclude245
that the trivial equilibrium is locally stable if R0 < 1 and locally unstable if R0 > 1246

We will not go into the details of [8], but for guidance we note that (2.3)–(2.5)247
defines a family of operators T (t) : L1(0, a†)→ C(R) which takes in an initial distri-248
bution f(a) and gives the solution of (2.3)–(2.5) evaluated at t, that is n(·, t). This249
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family, as it turns out, is a semigroup and the Fréchet derivative of T (t) is the corre-250
sponding operator derived from the linear problem (4.1)–(4.2).251

In the next section we improve on our recent results about local stability by252
deriving conditions for persistence of the solution and for global extinction.253

5. Global stability analysis. The net reproduction rate R0 defined by (4.3)254
can be used to determine the large time behaviour of the solution to the problem255
(2.3)-(2.5). Our next theorem claims that the functions ρ, Q and P are separated256
from zero if the net reproduction rate is greater than one, and that the functions ρ,257
Q and P converge to zero otherwise.258

Theorem 5.1. Under the assumptions that259

ψ(P ) > 0, for all P > 0,(5.1)260

β(a, 0) > β(a,Q), for all Q > 0,(5.2)261262

the following holds: a) If R0 ≤ 1, then ρ(t) → 0, P (t) → 0 and Q(t) → 0 as t → ∞.263
b) If R0 > 1, then there exists positive constants 0 < ak < bk, k = 1, 2, 3, independent264
of f such that265

a1 ≤ ρ(t) ≤ b1, a2 ≤ P (t) ≤ b2 and a3 ≤ Q(t) ≤ b3 for large t.266267

To prove Theorem 5.1, we need the following lemma, which we formulate here and268
leave its proof for Appendix A.269

Lemma 5.2. Let ρ = ρ(t) be a non-negative function defined for t > 0 and satis-270
fying271

c1

∫ t−b1

t−b2
ρ(τ) dτ ≤ ρ(t) ≤ c2

∫ t−a1

t−a2
ρ(τ) dτ for t > a2(5.3)272

273

where 0 < a1 < b1 < b2 < a2 and c1 and c2 are positive constants. Let also274 ∫ t∗−β1

t∗−β2

ρ(τ) dτ ≤ c3Λ for certain t∗.(5.4)275
276

for some constants β1 and β2 Then for each t̂ there exist constants t1 and c∗ inde-277
pendent of Λ, ρ and t such that if t∗ ≥ t1, then278

max
t∗−t̂≤τ≤t∗

ρ(τ) ≤ c∗Λ.(5.5)279
280

Equation (2.18) together with the fact β is bounded implies that the number of281
newborns (5.3). Since P is bounded and β is bounded from below on (b1, b2) we have282
that the left-hand side of (5.3) is true as well. Lemma 5.2 now tells us that, for large283
t, if the integral over ρ is small i.e. Λ is small, we have that ρ also has to be small in284
the interval over which ρ was integrated.285

Proof of theorem 5.1. a) Suppose that R0 < 1, ε > 0 and ρ∗ = lim supt→∞ ρ(t).286
From (3.3) it follows that287

ρ(t) ≤
∫ ∞
0

β(a,Q(t))(ρ∗ + ε)e−
∫ a
0
µ(v,P (t))dv da288

≤
∫ ∞
0

β(a, 0)(ρ∗ + ε)e−
∫ a
0
µ(v,0)dv da289

= (ρ∗ + ε)R0,290291
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for large t. Moreover, there exists a sequence {tk}, k = 1, 2, ..., such that tk →∞ and292
ρ(tk) ≥ ρ∗ − ε. From here we have that293

ρ∗ − ε ≤ (ρ∗ + ε)R0,294295

and
ρ∗ ≤ ε1 +R0

1−R0
,

implying that ρ∗ = 0. This and equations (2.19) and (2.20) lead us to the conclusion296
that P (t)→ 0 and Q(t)→ 0 as t→∞.297
Let us now consider the case when R0 = 1. Using (A1) and equation (3.3), we obtain298

ρ(t) ≤
∫ t

0

β(a, 0)e−
∫ a
0
µ(v,P (v+t−a))dvρ(t− a) da(5.6)299

+

∫ ∞
t

β(a, 0)f(a− t)e−
∫ a
a−t µ(v,P (v+t−a))dv da,(5.7)300

301

and for t > a† we have302

ρ(t) =

∫ t

0

β(a, 0)e−
∫ a
0
µ(v,P (v+t−a))dvρ(t− a) da.(5.8)303

304

Similarly, from (A1) and equation (3.4), we get305

P (t) ≤
∫ t

0

p(a)e−
∫ a
0
µ0(v)+ψ(P (v+t−a))dvρ(t− a) da(5.9)306

+

∫ ∞
t

p(a)f(a− t)e−
∫ a
a−t µ0(v)+ψ(P (v+t−a))dv da.(5.10)307

308

After the change of variables x = t−a, y = v+ t−a in (5.6) and (5.9), and x = a− t,309
y = v + t− a in (5.7) and (5.10), we obtain310

ρ(t) ≤
∫ t

0

β(t− x, 0)ρ(x)e−
∫ t
x
µ0(y−x)+ψ(P (y))dy dx311

+

∫ ∞
0

β(t+ x, 0)f(x)e−
∫ t
0
µ0(y+x)+ψ(P (y))dy dx,312

313

and314

P (t) ≤
∫ t

0

p(t− x)ρ(x)e−
∫ t
x
µ0(y−x)+ψ(P (y))dy dx315

+

∫ ∞
0

p(t+ x)f(x)e−
∫ t
0
µ0(y+x)+ψ(P (y))dy dx,316

317

which we can rewrite as318

ρ(t) ≤
∫ t

0

β(t− x, 0)e−
∫ t−x
0

µ0(y)dyρ(x)e−
∫ t
x
ψ(P (y))dy dx319

+

∫ ∞
0

β(t+ x, 0)e−
∫ t+x
0

µ0(y)dyf(x)e
∫ x
0
µ0(y)dye−

∫ t
0
ψ(P (y))dy dx,320

321
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and322

P (t) ≤
∫ t

0

p(t− x)e−
∫ t−x
0

µ0(y)dyρ(x)e−
∫ t
x
ψ(P (y))dy dx323

+

∫ ∞
0

p(t+ x)e−
∫ t+x
0

µ0(y)dyf(x)e
∫ x
0
µ0(y)dye−

∫ t
0
ψ(P (y))dy dx.324

325

Multiplying both equations by e
∫ t
0
ψ(P (y))dy and introducing the notations326

α1(t) = ρ(t)e
∫ t
0
ψ(P (y))dy, α2(t) = P (t)e

∫ t
0
ψ(P (y))dy,(5.11)327

M(a) = β(a, 0)e−
∫ a
0
µ(v,0)dv, S(a) = p(a)e−

∫ a
0
µ0(v)dv(5.12)328329

and330

F (a) = f(a)e
∫ a
0
µ0(v)dv(5.13)331332

we get333

α1(t) ≤
∫ t

0

M(t− x)α1(x) dx+

∫ ∞
0

M(t+ x)F (x) dx,(5.14)334

α2(t) ≤
∫ t

0

S(t− x)α1(x) dx+

∫ ∞
0

S(t+ x)F (x) dx.(5.15)335
336

We note that α1(t) is the number of newborns to a density-independent variant of
the original problem (2.3)–(2.5), with R0 = 1 and initial age distribution F (a). Since
R0 = 1, then by Theorem 3.2 in [15] with σ = 0 we have that α1(t) ≤ C and from
(5.15) it follows that α2(t) is also bounded. From (5.11) we get

ρ(t)e
∫ t
0
ψ(P (y))dy ≤ C and P (t)e

∫ t
0
ψ(P (y))dy ≤ C.

To prove convergence of ρ, P and Q we distinguish two cases.337
If ρ(t) → 0 then P (t) → 0 and Q(t) → 0 as t → ∞, and the claim holds. If the

above does not hold, then
∫∞
0
ψ(P (y)) dy ≤ C. In this case by assumption (5.1) there

exists a sequence tk →∞ as k →∞ such that εk = P (tk)→ 0 as k →∞. We can in
addition require that |tk − tk−1| < 1. From equation (2.19) and condition (H3), this
implies that there exists a constant c such that for all k,∫ tk−p1

tk−p2
ρ(τ) dτ ≤ cεk, supp(p) = [p1, p2].

By Lemma 5.2 with comments, for large enough k, we have maxtk−1≤τ≤tk ρ(τ) ≤ c∗εk.338
By the requirement |tk − tk−1| < 1 we can now conclude that ρ(t)→ 0. From (2.19)339
and (2.20) we now also see that P (t)→ 0 and Q(t)→ 0.340

Finally, we consider the case R0 > 1 and we will show that ρ(t) ≥ δ1 > 0 for large
t. To this end, assume that there exist a sequence tk →∞ as k →∞ such that εk =
ρ(tk)→ 0. Without loss of generality we can assume that ρ(tk) = inftk−a2≤t≤tk ρ(t).
Since

∫ tk−b1
tk−b2 ρ(τ) dτ ≤ c1ρ(tk), by Lemma 5.2 it follows that

max
tk−t̂≤τ≤tk

ρ(τ) ≤ c3ρ(tk) = c3εk,

which implies that
max

tk−t̂≤τ≤tk
P (τ) ≤ cεk.
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Using (3.3), for t = tk we get

ρ(tk) ≥ ρ(tk)

∫ tk

0

β(a, 0)e−
∫ a
0
(µ(v,P )−µ(v,0))dv da ≥ ρ(tk)R0(1 + o(εk)),

which is impossible because of R0 > 1. We can now conclude that a1 < ρ(t) < b1.341
Suppose now that there exists a sequence tk →∞ as k →∞, such that P (tk)→ 0

or Q(tk)→ 0 as k →∞. Then from (3.4) and (3.5) it follows that

εk ≥ c
∫ tk−p′1

tk−p′2
ρ(τ) dτ.

By Lemma 5.2 we get that
lim inf
t→∞

ρ(t) = 0,

which is impossible according to the previous part of the proof.342

Note that in the case when the maximum of β(a, ·) and minimum of µ(a, ·) is not343
attained in 0, we can still come to similar conclusions using the same technique by344
redefining R0. For example, assume there exist functions µ− and β+ such that345

µ(a, p) ≥ µ−(a)(5.16)346

β(a,Q) ≤ β+(a)(5.17)347348

for all a. Let349

(5.18) R+
0 =

∫ ∞
0

β(a,Q)e−
∫ a
0
µ−(v)dvda350

then if R+
0 < 1 we have that ρ(t)→ 0, P (t)→ 0, Q(t)→ 0351

6. Permanence by positive density-dependence. Let us assume that influ-352
ence of the Allee effect manifests though changes in the death rate. This means that353
in a small population, every increase in age-class decreases death rate. In other words,354
for every a, death rate µ(a, P ) is a decreasing function of P for P ∈ (0, δ).355

We prove that if R0 = 1 survival is possible due to the Allee effect.356

Theorem 6.1. If µ(a, P )− µ(a, 0) < 0 for P ∈ (0, δ) and R0 = 1, then

lim inf
t→∞

ρ(t) > 0 and lim inf
t→∞

P (t) > 0.

Proof. Let357

(6.1) M(a) = β(a,Q(t))e−
∫ a
0
µ(v,0)dv358

Using (3.3), (6.1) and the assumption of the theorem, for P < δ and sufficiently large359
t we obtain360

ρ(t) =

∫ t

0

M(a)ρ(t− a)e−
∫ a
0
(µ(v,P (v+t−a))−µ(v,0))dv da361

≥
∫ t

0

M(a)ρ(t− a) da.362
363

This manuscript is for review purposes only.



12J. ANDERSSON, V. KOZLOV, S. RADOSAVLJEVIC, V. TKATJEV, AND U. WENNERGREN

To prove the claim, we suppose that lim inft→∞ ρ(t) = 0. Then there exists a sequence
{tk} such that ρ(tk) → 0 as k → ∞. Without loss of generality we can assume that
ρ(tk) = inftk−a2<t<tk ρ(t). To show that ρ(t) is small on [tk−1, tk], notice that

εk = ρ(tk) =

∫ t

0

β(a,Q(t))ρ(tk − a)e−
∫ a
0
µ(v,P (v+t−a))dv da,

and ∫ tk−a1

tk−a2
ρ(τ) dτ ≤ cεk.

Then by Lemma 5.2 it follows that

max
tk−t≤τ≤tk

ρ(τ) ≤ c∗εk,

which implies that

P (t) =

∫ t

0

p(a)ρ(t− a)e−
∫ a
0
µ(v,P (v+t−a))dv da ≤ δ

on tk − t̂+M ≤ τ ≤ tk. This also implies

ρ(tk) >

∫ ∞
0

M(a)ρ(tk) da = ρ(tk),

which is impossible.364

We aim to prove conditions for extinction and permanence in the case of the Allee365
effect. Under assumption that the weighted age-class function are constant P (t) = P366
and Q(t) = Q are constant over individuals life time, the weighted net reproduction367
rate R(P,Q) is defined by368

(6.2) R(P,Q) =

∫ ∞
0

β(a,Q)e−
∫ a
0
µ(v,P)dvda.369

Notice that R(0, 0) = R0 as defined in (4.3).370

Lemma 6.2. Assume that R(P,Q) < 1 for P < P ∗, Q < Q∗. Let ρ∗ > 0 be such371
that372

(6.3) ρ∗ <
P ∗∫∞

0
p(a)da

and ρ∗ <
Q∗∫∞

0
q(a)da

,373

then if ρ(t) < ρ∗ on some interval t∗ − a† < t < t∗, then ρ,Q, P → 0374

Remark 6.1. Lemma 6.2 tells us that, to conclude extinction, in some cases it375
might be enough to look at the number of newborns during a time period of the maximal376
lifetime.377

Remark 6.2. In [14] it is concluded that R0 < 1 implies asymptotic stability of
the trivial equilibrium in the sense that there exists δ such that if ||f(a)||1 < δ then

lim
t→∞

||n(·, t)||1 = 0.

Lemma 6.2 is a similar result but differs in the way that we look at the number378
newborns to conclude pointwise convergence of ρ, P and Q.379
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As we will see the restriction on ρ∗ is chosen as to guarantee that if ρ(t− v) < ρ∗380
on 0 < v < a† then P (t) < P ∗ and Q(t) < Q∗. Which then implies that, for all time,381
each individual would live a life with net reproductive rate less then one. This in turn382
would imply extinction.383

Proof. Let ρ+ be the theoretical maximum of ρ as in (3.7) and let ||p||∞ = sup p.384
Let385

εP =
P ∗ −

∫∞
0
p(a)ρ∗da

2||p||∞ρ+
> 0,

εQ =
Q∗ −

∫∞
0
q(a)ρ∗da

2||p||∞ρ+
> 0,

δP = (1−
ρ∗
∫∞
0
p(a)da

2P ∗
),

δQ = (1−
ρ∗
∫∞
0
q(a)da

2Q∗
),

386

and furthermore let ε = min(εP , εQ). For t∗ < t < t∗ + ε we have387

(6.4)

P (t) =

∫ t

0

p(a)ρ(t− a)e−
∫ a
0
µ(v,P (v+t−a))dv da

+

∫ ∞
t

p(a)f(a− t)e−
∫ a
a−t µ(v,P (v+t−a))dv da,

=

∫ ε

0

p(a)ρ(t− a)e−
∫ a
0
µ(v,P (v+t−a))dv da

+

∫ t

ε

p(a)ρ(t− a)e−
∫ a
0
µ(v,P (v+t−a))dv da

< εP ||p||∞ρ+ +

∫ ∞
0

p(a)ρ∗da = δPP
∗

388

In the same way for t∗ < t < t∗ + ε we have389

(6.5) Q(t) < δQQ
∗.390

Let391

(6.6) R1 = max
P≤δPP∗,Q≤δQQ∗

R(Q,P).392

We overestimate the number of newborns ρ on the interval t∗ ≤ t < t∗ + ε,393
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ρ(t) =

∫ t

0

β(a,Q(t))ρ(t− a)e−
∫ a
0
µ(v,P (v+t−a))dv da394

+

∫ ∞
t

β(a,Q(t))f(a− t)e−
∫ a
a−t µ(v,P (v+t−a))dv da395

≤ ρ∗
∫ t

ε

β(a,Q(t))e−
∫ a
0
µ(v,P (v+t−a))dv da396

+ ρ+

∫ ε

0

β(a,Q(t))e−
∫ a
0
µ(v,P (v+t−a))dv da(6.7)397

+ ρ∗
∫ ∞
t

β(a,Q(t))e−
∫ a
a−t µ(v,P (v+t−a))dv da398

≤ ρ∗R1 + ερ+.(6.8)399400

If ε ≤ ρ∗(1−R1)
2ρ+

, from the above inequality it follows that ρ ≤ 1+R1

2 ρ∗ < ρ∗ on401

t∗ < t < t∗ + ε. So let402

(6.9) γ = min(ε,
ρ∗(1−R1)

2ρ+
)403

then ρ(t) < 1+R1

2 ρ∗ on t∗ < t < t∗ + γ. Iterating a finite amount of time we get that404

ρ(t) < 1+R1

2 ρ∗ on t∗ < t < t∗ + a†. We can use this result yet again to conclude that405

ρ(t) < ( 1+R1

2 )2ρ∗ on t∗+a† < t < t∗+2a†, ρ(t) < ( 1+R1

2 )3ρ∗ on t∗+a† < t < t∗+3a†406
and so on. This implies that ρ converges to zero. From (2.19) and (2.20) we see that407
also Q and P converge to zero.408

In the next theorem we will see that a population that is not converging to zero409
is necessarily persistent.410

Theorem 6.3. If R0 < 1, then either ρ,Q, P → 0 or there exist ερ, εP , εQ > 0411
such that ρ > ερ, P > εP , Q > εQ i.e the population is persistent.412

Proof. If ερ exist, then from (H2) and (H3) it follows that εP and εQ necessarily413
exists. Conversely, if ερ does not exist, then there exist a sequence tk > a† such that414
tk → ∞ and ρtk → 0 as k → ∞. Let ε > 0 be arbitrary. There exist K such that if415
k > K then ρ(tk) < ε. For these k we have416 ∫ tk

0

β(a,Q(tk))ρ(tk − a)e−
∫ a
0
µ(v,P (v+tk−a))dv da < ε.417

This together with Theorem 3.2 and (H2) implies that there exists C > 0 such that418 ∫ t−b1

t−b2
ρ(t− a)da < Cε419

Using Lemma 5.2 we get that there exist constants t1 and c∗ independent from ε such420
that if tk > t1 then421

max
tk−a†≤τ≤tk

ρ(τ) ≤ c∗ε.422

Choosing ε to satisfy c∗ε < min( P∗∫∞
0
p(a)da

, Q∗∫∞
0
q(a)da

) Lemma 6.2 now guarantees that423

ρ→ 0 and we reach a contradiction.424
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Appendix A.462

s

τ
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b 1

|

t
−
β
2
−
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−
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t− β1−
τ = s+ b2

τ = s+ b1

Fig. 1: The parallelogram is the area over which ρ is integrated in (.12). The colored
area is the domain over which ρ is integrated in (.13).

463

Proof of lemma 5.2. We will repeatedly use the following identity: For constants464
β1 < β2 and b1 < b2 we have465 ∫ t−β1

t−β2

∫ τ−b1

τ−b2
ρ(s) ds dτ =

∫ t−β1−b1

t−β2−b2

∫ min(t−β1,s+b2)

max(t−β2,s+b1)

ρ(τ) dτ ds.(.10)466
467

Figure 1 in shows this fact.468
Using the left hand side of (5.3) to estimate (5.4) from below we get469

c3Λ ≥
∫ t∗−β1

t∗−β2

ρ(τ)dτ ≥
∫ t∗−β1

t∗−β2

∫ τ−b2

τ−b1
ρ(τ) dτ ds.(.11)470

471

Let b′1, b′2 be constants such that b1 < b′1 < b′2 < b2. By (.10) we get472

c3Λ ≥ c1
∫ t−β1−b1

t∗−β2−b2

∫ min(t∗−β1,s+b2)

max(t∗−β2,s+b1)

ρ(τ) dτ ds(.12)473

≥ c1
∫ t−β1−b′1

t−β2−b′2

∫ min(t−β1,s+b2)

max(t−β2,s+b1)

ρ(τ) dτ ds.(.13)474
475
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Since
∫min(t−β1,s+b2)

max(t−β2,s+b1)
ρ(τ)dτ > γ > 0 is bounded from below on the interval476

s ∈ [t− β2 − b′2, t− β1 − b′1] (see figure1 in Appendix.) we get that477

(.14) γc1

∫ t∗−β1−b′1

t∗−β2−b′2
ρ(s) ds ≤ c′kΛ.478

Iterating k times we get479 ∫ t∗−β1−kb′1

t∗−β2−kb′2
ρ(s) ds ≤ c′Λ,(.15)480

481

for some c′ > 0 depending on b1, b2, b′1, b′2,m, β1, β2 and k. Using the right-hand side482
of (5.3) we derive from the previous inequality483

ρ(T ) ≤ c2
∫ T−a1

T−a2
ρ(τ) dτ ≤ c2

∫ t∗−β1−kb′1

t∗−β2−kb′2
ρ(τ) dτ ≤ c2c′Λ,484

485

where d1 = t∗ − β2 − kb′2 + a2 ≤ T ≤ t∗ − β1 − kb′1 + a1 = d2. Here d1 and d2 are486
required to be bigger then a2 which gives us the value of t1487

(.16) t1 = β2 + kb′2.488

We assume that k is chosen large enough to satisfy d2 − d1 > a2 − a1. Then for
T ∈ [d2, d2 + a1] we have

ρ(T ) ≤ c
∫ T−a1

T−a2
ρ(τ) dτ ≤ c

∫ T−a1

T−a2
c′Λ dτ ≤ cc′(a2 − a1)Λ

according to (.15). Hence, there exist a constant c1 such that

ρ(T ) ≤ cΛ for d1 ≤ T ≤ d2 + a2.

Continuing this procedure we get a constant c̃ such that

ρ(T ) ≤ c̃Λ for d1 ≤ T ≤ d2 + la2.

Choosing k large enough to satisfy d1 ≤ t∗ − t̂ and then choosing l large enough to489
satisfy d2 + la2 ≥ t∗, we arrive at (5.5).490
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Appendix B.491

Equilibrium points. Here we derive the equilibrium points to the model, i.e.492
solutions constant in time, and then continue with performing a stability analysis for493
these equilibrium points. Similarly, in Section 5.3 and Chapter 6 of [14], equilibria494
and their stability is investigated for a more general model including arbitrary many495
weighted sizes.496

We assume that (ρ∗, P ∗, Q∗) are constant solutions. From equations (2.18), (2.19)497
and (2.20) we get498

ρ∗ =

∫ ∞
0

β(a,Q∗)ρ∗e−
∫ a
0
µ(v,P∗) dv da,

P ∗ =

∫ ∞
0

p(a)ρ∗e−
∫ a
0
µ(v,P∗) dv da,

Q∗ =

∫ ∞
0

p(a)ρ∗e−
∫ a
0
µ(v,P∗) dv da.

499

If ρ∗ = 0 it follows that (ρ∗, P ∗, q∗) = (0, 0, 0). Otherwise, we have that500

ρ∗ =
P ∗∫∞

0
p(a)e−

∫ a
0
µ(v,P∗))dvda

,501

502

Q∗ = P ∗Γ(P ∗),503

where504

Γ(P ∗) :=

∫∞
0
q(a)e−

∫ a
0
µ(v,P∗)dvda∫∞

0
p(a)e−

∫ a
0
µ(v,P∗)dvda

505

and506

(.17) 1 =

∫ ∞
0

β(a, P ∗Γ(P ∗))e−
∫ a
0
µ(v,P∗)dvda.507

So first we solve the last equation (.17) with respect to P ∗ and then compute Q∗ and508
ρ∗ from the other two equations. If R0 > 1 then a solution necessarily exists since509
the right-hand side of (.17) goes continuously from R0 to zero as P ∗ goes to infinity.510

Stability analysis. Let ρ∗(a) be an equilibrium point. We set

n(a, t) = ρ∗(a) + z(a, t), where z is a small perturbation

For this analysis we need to assume that µ and β are differentiable with respect to511
the second argument. We denote µP and βQ the derivative of µ and β with respect512
to the second argument. Linearising equation (2.3) we get513

∂z(a, t)

∂t
+
∂ρ∗(a))

∂a
+
∂z(a, t)

∂a
514

= −µ(a, P (t))(ρ∗(a) + z(a, t))515

= −(µ(a, P ∗) + P(t)µP (a, P ∗))(ρ∗(a) + z(a, t))516

= −µ(a, P ∗)ρ∗(a)− P(t)µP (a, P ∗)ρ∗(a)− µ(a, P ∗)z(a, t).517518
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From equation (2.4) it follows519

ρ∗(0) + z(0, t) =

∫ a†

0

β(a,Q(t)) (ρ∗(a) + z(a, t)) da520

=

∫ ∞
0

(β(a,Q∗) +Q(t)βQ(a,Q∗)) (ρ∗(a) + z(a, t)) da,521

=

∫ ∞
0

β(a,Q∗)ρ∗(a) + β(a,Q∗)z(a, t) +Q(t)βQ(a,Q∗)ρ∗(a) da,522
523

and from 2.1 and 2.2 we get524

P (t) =

∫ ∞
0

p(a)(ρ∗(a) + z(a, t))da = P ∗ + P(t), P(t) =

∫ ∞
0

p(a)z(a, t)da,525

Q(t) =

∫ ∞
0

q(a)(ρ∗(a) + z(a, t))da = P ∗ +Q(t), Q(t) =

∫ ∞
0

q(a)z(a, t)da.526
527

Using the fact that ρ∗(a) is an equilibrium point we get528

∂z(a, t)

∂t
+
∂z(a, t)

∂a
= −P(t)µP (a, P ∗)ρ∗(a)− µ(a, P ∗)z(a, t),529

z(0, t) =

∫ ∞
0

(Q(t)βQ(a,Q∗)ρ∗(a) + β(a,Q∗)z(a, t)) da,530

P(t) =

∫ ∞
0

p(a)z(a, t) da,531

Q(t) =

∫ ∞
0

q(a)z(a, t) da.532
533

We look for solutions of the following form534

z(a, t) = g(a)eλt,535

z(0, t) = C1e
λt ⇒ C1 = g(0),536

P(t) = C2e
λt,537

Q(t) = C3e
λt.538539

From the above we get the following540

∂g(a)eλt

∂t
+
∂g(a)eλt

∂a
= −C2e

λtµP (a, P ∗)ρ∗(a)− µ(a, P ∗)g(a)eλt,541

C1e
λt =

∫ ∞
0

(
C3e

λtβQ(a,Q∗)ρ∗(a) + β(a,Q∗)g(a)eλt
)
da,542

C2e
λt =

∫ ∞
0

p(a)g(a)eλt da,543

C3e
λt =

∫ ∞
0

q(a)g(a)eλt da,544
545
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which is equivalent to546

g(a)λ+
dg(a)

da
= −C2µP (a, P ∗)ρ∗(a)− µ(a, P ∗)g(a),(.18)547

C1 =

∫ ∞
0

C3βQ(a,Q∗)ρ∗(a) + β(a,Q∗)g(a) da,(.19)548

C2 =

∫ ∞
0

p(a)g(a) da,(.20)549

C3 =

∫ ∞
0

q(a)g(a) da.(.21)550
551

Equation (.18) can solved with respect to g(a) using the integrating factor method,552
with the solution553

g(a) =
C1 −

∫ a
0
C2µP (σ, P ∗)ρ∗(σ)eσλ+

∫ σ
0
µ(τ,P∗)dτdσ

eaλ+
∫ a
0
µ(σ,P∗)dσ

.(.22)554
555

Inserting (.22) in the system of equations (.19)–(.21), we get556

C1 =

∫ ∞
0

(C3βQ(a,Q∗)ρ∗(a)557

+β(a,Q∗)
C1 −

∫ a
0
C2µP (σ, P ∗)ρ∗(σ)eσλ+

∫ σ
0
µ(τ,P∗)dτdσ

e
∫ a
0
λ+µ(σ,P∗)dσ

)
da,558

C2 =

∫ ∞
0

p(a)
C1 −

∫ a
0
C2µP (σ, P ∗)ρ∗(σ)eσλ+

∫ σ
0
µ(τ,P∗)dτdσ

eaλ+
∫ a
0
µ(σ,P∗)dσ

da,559

C3 =

∫ ∞
0

q(a)
C1 −

∫ a
0
C2µP (σ, P ∗)ρ∗(σ)eσλ+

∫ σ
0
µ(τ,P∗)dτdσ

eaλ+
∫ a
0
µ(σ,P∗)dσ

da.560
561

To simplify calculations we introduce the following notations562

A1 =

∫ ∞
0

βQ(a,Q∗)ρ∗(a) da,563

A2(λ) = −
∫ ∞
0

β(a,Q∗)

∫ a

0

µP (σ, P ∗)ρ∗(σ)e−σλ−
∫ a
a−σ µ(τ,P

∗)dτdσda,564

A3(λ) =

∫ ∞
0

β(a,Q∗)e−aλ−
∫ a
0
µ(τ,P∗)dτda,565

A4(λ) = −
∫ ∞
0

p(a)

∫ a

0

µP (σ, P ∗)ρ∗(σ)e−σλ−
∫ a
a−σ µ(τ,P

∗)dτdσda,566

A5(λ) =

∫ ∞
0

p(a)e−aλ−
∫ a
0
µ(τ,P∗)dτda,567

A6(λ) = −
∫ ∞
0

q(a)

∫ a

0

µP (σ, P ∗)ρ∗(σ)e−σλ−
∫ a
a−σ µ(τ,P

∗)dτdσda,568

A7(λ) =

∫ ∞
0

q(a)e−aλ−
∫ a
0
µ(τ,P∗)dτda.569

570

With the notations above the system of equations can be written571 A3(λ)− 1 A2(λ) A1

A5(λ) A4(λ)− 1 0
A7(λ) A6(λ) −1

C1

C2

C3

 = 0.(.23)572

573
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There exist small non-zero solutions C1, C2 and C3 to (.23) if and only if574

det

A3(λ)− 1 A2(λ) A1

A5(λ) A4(λ)− 1 0
A7(λ) A6(λ) −1

 = 0.575

For the trivial equilibrium we get576

(.24) A3(λ) =

∫ ∞
0

β(a, 0)e−aλ−
∫ a
0
µ(τ,0)dτda = 1.577

If we let Re(λ) = γ and Im(λ) = φ (.24) turns into578 ∫ ∞
0

β(a, 0)e−aγ−
∫ a
0
µ(τ,0)dτe−aφi da =

∫ ∞
0

β(a, 0)e−aγ−
∫ a
0
µ(τ,0)dτ cos(aφ) da579

− i
∫ ∞
0

β(a, 0)e−aγ−
∫ a
0
µ(τ,0)dτ sin(aφ) da580

= Re(A3)(γ, φ) + iIm(A3)(γ, φ) = 1(.25)581582

We observe that Re(A3)(·, 0) : R→ (0,∞) is strictly decreasing and onto, so the583
equation584

Re(A3)(γ, 0) = 1585

has a unique solution γ∗. Furthermore, Re(A3)(γ∗, ·) has its unique maximum when586
φ = 0. Then for all solutions with φ 6= 0 to equation (.25), we have γ < γ∗. Let587

R0 = Re(A3)(0, 0) =

∫ ∞
0

β(a, 0)e−
∫ a
0
µ(τ,0)dτda588

If R0 < 1, we have that γ∗ < 0, implying γ < 0 for all solutions and we can conclude589
that the trivial equilibrium point is stable. If R0 > 1, we have that γ∗ > 0 and the590
trivial equilibrium point is unstable.591
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Appendix C.592

Proof of Lemma 3.1. If the right-hand side of (3.2) is greater or equal to the right-593
hand side of (3.1), then (3.2) follows from (3.1). Let γ = 1−ψ(0). Assume that there594
exist T ≥ 0 such that595

max
x≤T

ρ(x)

ψ(ρ(x)c ) + γ
> max

0<k≤cψ−1(M−γ)

k

ψ(kc ) + γ
.596

Due to the condition on M , we have that T > 0. There exists 0 < t1 ≤ T such that597

ρ(t1)

ψ(ρ(t1)c ) + γ
= max

x≤T

ρ(x)

ψ(ρ(x)c ) + γ
= max

x≤t1

ρ(x)

ψ(ρ(x)c ) + γ
,598

and since599

ρ(t1)

ψ(ρ(t1)c ) + γ
> max

0<k≤cψ−1(M−γ)

k

ψ(kc ) + γ
,600

we have that ρ(t1) > cψ−1(M − γ). Note that by the definition of ψ−1 this means601

that ψ(ρ(t1)c ) > ψ( cψ
−1(M−γ)

c ) = M − γ. Now from (3.1) we get602

ρ(t1) ≤M max
x≤t1

ρ(x)

ψ(ρ(x)c ) + γ
= M

ρ(t1)

ψ(ρ(t1)c ) + γ
< ρ(t1)603

and we reach a contradiction. This proves the lemma.604
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