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DENSITY-DEPENDENT FEEDBACK IN AGE-STRUCTURED
POPULATIONS*
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Abstract. We study positive and negative effects of increased population density in age-
structured populations.
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1. Introduction. In biological populations, density-dependent regulation rep-
resents change in individual fitness caused by changes in population size or density.
The negative density-dependency, often explained by intra-specific competition and
overcrowding effect, is characterized by decline in fitness with increase in populations
size or density. In sharp contrast with this is the positive density-dependency, or
the Allee effect, characterized by increase in fitness with increase in population size.
Various mechanisms have been considered as a source of the Allee effect, [1, 4, 5],
pointing out that increase in fitness can come though increase in birth rate, decrease
in death rate or both.

Mathematical models of age structured populations usually use density dependent
vital rates without any special regard to the type of feedback that density-dependence
produces; see for example [2, 3, 9, 10, 11, 17]. On the other hand, some authors
investigate consequences of the Allee effect in age-structured populations, see for
instance [6, 7], or intraspecific competition [16].

The importance of this article is twofold. First, we expand mathematical theory
of age-structured population dynamics by including density-dependent regulation.
Second, Allee effect may have a positive contribution to population survival. In the
age of massive extinction of species, it is therefore important to study under which
conditions population may survive.

In this paper we study consequences of different types of density-dependence on
permanence of age-structured populations. We improve the assumption used in [16]
that intraspecific competition occurs only among individuals of the same age by using
more realistic age, and density—dependent mortality u(a P(t)) and fertility B(a, Q(t)),
where P(t) = [[“p (a,t)da, Q(t) = [ q (a,t) da are weighted populations
and n(a, t) is the number of individuals of age a at tlme t and p(a), g(a) are weight
functions.

One of our main assumptions is that mortality rate tends to infinity with the
population size. This assumption is having a biological explanation: intraspecific
competition is increasing in any large population due to limited resources in the
habitat. Important consequence of this assumption, stated in Section 3, is existence
of an upper bound for a population. Moreover, this result is an improvement of a
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similar result in [13], which is made possible by allowing two different weight functions
for the mortality and fertility rates and by relaxing condition of Lipschitz continuity
for the weight functions.

In Section 4 a stability analysis is performed on the trivial equilibrium (p, P, Q) =
(0,0,0). The stability of the trivial equilibrium depends on the net reproductive rate

Roz/ B(a,0)eJo #@:0dv g,
0

In Section 5 we study the global stability of the system in terms of newborns only.
We restrain the mortality rate to be increasing with P and thus we do not incorporate
the Allee effect on the mortality. Under this assumption we derive conditions based
on the net reproduction rate Ry for extinction and persistence. In the case Ry < 1 the
population will go extinct and in the case Ry > 1 the population will be persistent.

In Section 6 we remove the restriction on the mortality function made in chapter
5. This allows for the Allee effect. If Ry < 1 we conclude that the population either
becomes extinct or is persistent. We note that if the number of newborns ever is
small enough then this implies extinction. This effectively means that the trivial
equilibrium is locally stable.

2. The model setup. Density dependent regulation acts on a population by
changing its birth and death rates. Gurtin and MacCamy [11] and Chipot [3] as-
sumed that the strength of density dependent regulation always depend on the total
population, while Kozlov et al. [16] took the opposite approach by assuming that
competition occurs only within each age-class. Here, we will follow the model from
Chapter 5 of [14] with some restrictions. In order to encompass various mechanisms
through which density dependent regulation can manifest, we introduce the weighted
age-class functions

(2.1) P(t) = /O ~ pa)n(a,t) da,
and
(2.2) Q) = / " y(ayn(a, ) da,

where n(a,t) is the number of individuals of age a at time ¢ and p(a) and g(a) are
non-negative weight functions. The balance equation is then:

on(a,t) . on(a,t)

8t aa = _:u(a7 P(t))n(a”t)7 a7t > 07

(2.3)

where the function u(a, P(t)) is the death rate dependent on the weighted age-class
function P(t). The boundary condition is given by

(2.4) n(0,t) = /000 B(a,Q(t))n(a,t)da, t >0,

where the birth rate 8(a,Q(t)) incorporates effect of age-class density through the
weighted age-class function @Q(t). The initial condition is given by:

(2.5) n(a,0) = g(a), a>0.

This manuscript is for review purposes only.
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DENSITY-DEPENDENT FEEDBACK IN AGE-STRUCTURED POPULATIONS 3

The boundary-initial value problem (2.3)—(2.5), together with the weighted age-
class-functions (2.1) and (2.2), constitutes a density-dependent population growth

model.

For purposes of our analysis and in line with the theory in Chapter 5 of [14],

we assume that the parameters satisfy following conditions:

(Hy)

(Hs)

(Ha)

The function u(a,x) is assumed to be of the form
(2.6) (a,2) = pola) + 4 (a,2),

where for some a; > 0

ar
(2.7)  po € Ll ([0,a1)), po(a) >0 ae. in [0,a4], / to(o)do = 400
0

and . (-, x) is a continuous operator that for each z € Ry = {z € R: x > 0},
gives a function in L'(0,a;), that is

M (- x) € C(Ry, L0, a4)).
We also assume that
(2.8) M (a,x) >0 ae. in [0,a4] x Ry
and

M (a,0) =0 a.e. in [0,a4].

The function g satisfies
(2.9) B(-,x) € CRL, L>®(0,a3)) with
(2.10) 0<pB(a,z) < By ae in [0,a4] x Ry.

In addition we assume that 8(a,x) and p(a, z) are Lipschitz continuous with
respect to the second argument on bounded sets, uniformly on a € [0,a4].
That is, for all M > 0 there exists a constant H(M) > 0 such that, if
x,Z € [0, M], then

(2.11) ln(a, z) — p(a, )| < H(M)|z — ZI,
(2.12) |8(a, z) — B(a,z)| < H(M)|z — ZI.
The weight functions are assumed to be non-negative and belong to L>°(0, a+)

p,q € L(0,at), 0<p(a) <|[pll« and 0<g(a) <gqy ae in [0,a4].

The initial distribution f satisfies

f € LY0,at), gla) >0 ae. in [0,ai].

These assumptions can be found in [14]. In order to study behavior of a population
for large t, some additional properties of the birth rate 5 and the weight function p
are needed. Namely, we suppose that there exist constants as > by > by > a3 > 0
and § > 0 such that

(2.13)
(2.14)

Bla,z) =0 a¢ (a1,a2),
Bla,z) > 3§ for a € (by,ba),
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4. ANDERSSON, V. KOZLOV, S. RADOSAVLJEVIC, V. TKATJEV, AND U. WENNERGREN

and that there exist po > p; > 0 such that
(2.15) p(a) >0 for all a € [p1,pa).

We begin our analysis by deriving an integral formulation to the model (2.3)-
(2.5). Our results are based on the reduction of the initial-boundary problem to the
system of nonlinear integral equations for the number of newborns, denoted by

(2.16) p(t) =n(0,t), t>0,

and for the functions P(t) and Q(t).

As stated in Section 5.1 of [14], using the change of variables a = x and t = x +y
and integrating along characteristic lines y = C', where C' is a constant, the balance
equation (2.3) becomes

p(t _ CL)G_ I /1,(1),P(1)+t—a))dv7 a<t,
(2.17) n(a,t) =

f(a . t)€7 fa‘Lt ,u(v,P(ertfa))d'u? a>t.

From (2.4), (2.16) and (2.17) we obtain the system of integral equations:

t
plt) = /0 Bla, Q(1)p(t — aye™ JonlePltt=aldy dq

(2.18) A
+/ Bla, Q1)) f(a — t)e™ Ja—e po:Plott=a)dv g,
t
t a
P(t) :/ pla)p(t — a)e Jo #Plott=a)dv g,
(2.19) o
+/ p(a)f(a — t)@_ S, p(v,P(vtt—a))dv da,
t
and
t
Q) = / qla)p(t — a)e~ Jo wwPloti=a)dv g,
(2.20) 0

+ / g(a)fla — t)e~ Jino Ptt—a)dv go
t

The main result of this section proves existence and uniqueness of a solution to
the problem (2.18)-(2.20).

THEOREM 2.1. Let assumptions (Hy)-(Hy) hold. Then there exist unique non-
negative functions p, P,Q € C(R..) satisfying problem (2.18)-(2.20).

For the proof of this theorem we refer to Section 5.1 in [14], where one can find
a more general result for a model that involves arbitrarily many sizes.

3. Boundedness of solution. The negative density-dependence is observed in
biological populations as intraspecific competition or overcrowding effects, and in-
vestigated both practically and theoretically. Mathematical representation of the
negative-density dependence begins with the Verhulst model for unstructured popu-
lation, see for example [12], and the consequence of this type of regulation are bounded
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DENSITY-DEPENDENT FEEDBACK IN AGE-STRUCTURED POPULATIONS 5

growth and stabilization of population around its carrying capacity. Effects of the neg-
ative density-dependence on the age-structured population are studied in [16]. Under
the assumption that only members of the same age-class compete, the existence of
a bounded solution has been proven. In what follows, we will prove the existence
of a bounded solution considering more general mortality function which includes
competition between different age classes. To this end we consider the problem (2.3)—
(2.5), where the non-negativity condition on M in (H;) is removed, and instead the
following holds:
(A1) There exist a function ¢ € C'(Ry) such that

M(a,z) > p(x) > —suppp(a) for all a and =

where
¥(+) is non-decreasing,  lim ¥ (x) = occ.
r—00

(A2) There exists a constant ¢ > 0 such that S(a) < ¢p(a) for all a.

Assumption (A;) corresponds to the fact that for large populations mortality is
increased by increase in population size and also generalizes mortality rate used in [16].
Note that for small populations this correlation does not need to hold. This allows
us to include mortality functions that satisfy: u(a, P) is decreasing for P € (0,6) and
increasing for P > §. These types of mortality functions can be related to the Allee
effect to describe situations when, for small population sizes, increase in population
size increases fitness by reducing mortality. Condition (A;) implies that the density-
dependent mortality rate is unbounded, which corresponds to our expectations since
intraspecific competitions increases with population size.

Assumption (A3) does not restrict birth rate 5 or the weight function p, since g
is already bounded and p is non-negative, according to (H) and (Hs3). However, it
does provide a relation between individuals contribution to fecundity and mortality:
individuals in every fertile age group are competing for resources and contributing to
mortality rate of individuals of their age or older.

In what follows, we will show that the assumptions (A;) and (As) are sufficient
for boundedness of the functions P(t), Q(¢) and p(t) for all ¢. This improves the result
in [13], where the weight function p(a) is supposed to be Lipschitz continuous. We
begin by formulating the following lemma.

LEMMA 3.1. Let p be a non-negative continuous function on [0,00) and let (x)
satisfy (A1). We define =1 (x) as max{y;¥(y) = x}. Let v = 1—1(0). If there exist
constants ¢ >0 and M > 1+ w(@) such that

p(x)
. < —_—
(3.1) p(t) < Mrgrglgi( w(M) o for all t,
then
k
(3.2) pt) <M max

— <
k<cp=t(M—) (&) +

Proof of this lemma can be found in the Appendix C. We now state and prove the
main result of this section.

THEOREM 3.2. If the functions 8, u, f, p and q satisfy (Hs)—(Hy4) with the ad-
ditional assumptions (A1) and (As), then the functions p, P and Q are bounded.

This manuscript is for review purposes only.
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184 Proof. Using the variable changes © = t — a and vpew = Voig + « in the first
185 integrals of (2.18) and (2.19), and assuming that ¢ > a;, we obtain

t
186 (3.3) p(t) = / Bt —z,Q(t)p(x)e” [ pv—=z,P(v))dv da,
0
t
187 (3.4) P(t) :/ p(t —z)p(x)e” J2 no=a,P(0))dv g
0
t
185 (3.5) Q) = / q(t — 2)p(x)e e pO=2P@d gy
189 0

190 This together with assumption (As) implies that

t
191 P(t) = / p(t —z)p(x)e” JEp(o—z,P())dv g,
0
1/t .
192 > 7/ ﬂ(t -z, Q(t))p(x)e_ Sy n(v—z,P(v))dv dx
¢ Jo
1
9: . > Zo(t).
60 > L

195 Using (A1), (A2) and (3.6), from equation (3.3) follows an estimate of p:

t

196 p(t) < Bmazp(x)e” e P@)dv gy,
t—ay
¢ ¢ p()
197 S ﬁmazp(w)e_ fT ¥( € )d'u d.’E
198 t—ay

199 Multiplying both the nominator and the denominator with ¢/(2%) + v > 0 we get.

C

t
200 PO < [ Buae— () e v g
t—az (P(:)) + Yy c
t
< B s — 2 ( [ (M) g,
(0 (p o) Ty \Jtmaes ¢
¢ t— (v)
202 + / e~ Jo TY(EF)dv g
t—ay
t v t t
203 S Bmaw max % |:6_ f:’ w(%)dv] + / 'Y d.’I}
<t ,¢J (P(CI)) + o t—ay t—a;
p(z)
204 < Bmam ('Y + aT) max p
205 o<t () 4y
206 Lemma 3.1 infers that p is bounded by
k
207 (3.7) M max —
k<ep=H (M=) () + 7
208 where
0
209 M = max (Bmw(v—i—aT),'y+w(p(C))> )

This manuscript is for review purposes only.
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DENSITY-DEPENDENT FEEDBACK IN AGE-STRUCTURED POPULATIONS 7

Finally, to prove that P and @ are bounded, it is sufficient to use boundedness of p
and (2.19) d

4. Local stability of the trivial equilibrium. In order to investigate the
local stability of the trivial equilibrium (p, P,Q) = (0,0,0), problem (2.1)—(2.3)
is linearized. Let (p, P, Q) = (2, P,Q) be a solution to (2.1)-(2.3) and assume
(z(a,t),P(t), Q(t)) is close to zero. In order to linearize, we assume, in addition
to the previous assumptions on S and pu, that S(a,z) and p(a,z) have continuous
partial derivatives with respect to the second argument, uniformly in a € [0,a4]. By
linearization around zero we get

0z(a,t) = 0z(a,t)

(4.1) 5 + 5a = —u(a,0)z(a,t),

(4.2) 20,1) = /O ~ 8(a,0)(a, 1) da.

If z is known, P and Q can be calculated from formulas (2.1)-(2.2).
In the age-structured population models, the net reproduction rate defined by

(4.3) Ro :/ B(a,0)e= J5 nr0 g
0

measures the number of offspring of an individual during its lifetime [15, 16]. It is
often used as an indicator of the large time population behavior and a dichotomy
between population survival for Ry > 1 and extinction for Ry < 1 has been proven
in [15, 16]. Stability of the trivial equilibrium (p, P,Q) = (0,0,0) of linear problem
(4.1)—(4.2) can be assessed using Ry and we have the following result.

PROPOSITION 4.1. If Ry < 1, then the solution of (4.1)-(4.2) converge to zero,

and if Ry > 1, it increases to infinity. If Ry = 1 then the solution is bounded and
persistent.

Proof. Let A be such that
(4.4) / B(a,0)elo #v0dv=Aag, _ 1
0

Observe that the left-hand side of (4.4) is a strictly decreasing continuous function
with respect to A\, with values ranging from oo to 0. Thus, A is well defined. By
Theorem 3.2 and Theorem 3.3 in [15], for 0 = X and 2(0,¢) # 0, there exist constants
C4,Cy > 0 such that

(4.5) CreM < 2(0,t) < Coe.

If Ry < 1, then A < 0 and if Ry > 1, then A > 0. This, together with (4.5), implies
the theorem. 0

REMARK 4.1. As a consequence of the "Principal of Linearised Stability" in [8],
it follows that asymptotic stability and instability of the linearised problem (4.1)-(4.2)
implies asymptotic stability and instability respectively for the mon-linear problem
(2.1)-(2.5). This means that for our original problem (2.1)-(2.5) we can conclude
that the trivial equilibrium is locally stable if Ry < 1 and locally unstable if Ry > 1

We will not go into the details of [8], but for guidance we note that (2.3)—(2.5)
defines a family of operators T'(t) : L'(0,a+) — C(R) which takes in an initial distri-
bution f(a) and gives the solution of (2.3)-(2.5) evaluated at ¢, that is n(-,¢). This

This manuscript is for review purposes only.
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family, as it turns out, is a semigroup and the Fréchet derivative of T'(¢) is the corre-
sponding operator derived from the linear problem (4.1)—(4.2).

In the next section we improve on our recent results about local stability by
deriving conditions for persistence of the solution and for global extinction.

5. Global stability analysis. The net reproduction rate Ry defined by (4.3)
can be used to determine the large time behaviour of the solution to the problem
(2.3)-(2.5). Our next theorem claims that the functions p, @ and P are separated
from zero if the net reproduction rate is greater than one, and that the functions p,
@ and P converge to zero otherwise.

THEOREM 5.1. Under the assumptions that

(5.1) Y(P) >0, forall P>0,
(5.2) B(a,0) > B(a,Q), forall @ >0,

the following holds: a) If Ry < 1, then p(t) — 0, P(t) — 0 and Q(t) — 0 as t — oo.
b) If Ry > 1, then there exists positive constants 0 < ay, < b, k = 1,2, 3, independent
of f such that

ap <p(t) <by, ax < P(t)<by and a3 <Q(t) <bs forlarget.

To prove Theorem 5.1, we need the following lemma, which we formulate here and
leave its proof for Appendix A.

LEMMA 5.2. Let p = p(t) be a non-negative function defined for t > 0 and satis-
fying

t—b1 t—ay
(5.3) cl/ p(r)dr < p(t) < 02/ p(r)dr  for t>as
t—bo t—az
where 0 < a1 < by < by < as and ¢ and co are positive constants. Let also
t"—p1
(5.4) / p(T)dr < csA  for certain t*.
t*—B2

for some constants By and o Then for each t there exist constants t; and ¢* inde-
pendent of A, p and t such that if t* > t1, then

(5.5) max p(7) < c*A.
tr—i<r<t*

Equation (2.18) together with the fact 5 is bounded implies that the number of
newborns (5.3). Since P is bounded and § is bounded from below on (b1, b2) we have
that the left-hand side of (5.3) is true as well. Lemma 5.2 now tells us that, for large
t, if the integral over p is small i.e. A is small, we have that p also has to be small in
the interval over which p was integrated.

Proof of theorem 5.1. a) Suppose that Ry < 1, € > 0 and p* = limsup,_, ., p(t).
From (3.3) it follows that

p(t) < /OOO Bla, Q(t))(p" +e)e” Jo' plv,P(E))dv g,

< / Bla,0)(p* + £)e~ Jo 10 gq
0

= (p* + €)R07

This manuscript is for review purposes only.
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for large t. Moreover, there exists a sequence {t;}, k = 1,2, ..., such that ¢, — co and
p(ti) > p* —e. From here we have that

p* —€ S (p* + E)R()v

and LR
Pl
1—Ro
implying that p* = 0. This and equations (2.19) and (2.20) lead us to the conclusion
that P(t) — 0 and Q(t) — 0 as t — oo.

Let us now consider the case when Ry = 1. Using (A;) and equation (3.3), we obtain

t
(5.6) p(t) S/ B(a,0)e” foa#(v,P(ertfa))dvp(t_a) da
0
(5.7 + [ Bl e s g,
¢
and for ¢t > a; we have
t
(5.8) plt) = [ Bla,0je S P 1 ) o
0
Similarly, from (A;) and equation (3.4), we get
¢
(5.9) P(t) < / pla)e” Io Mo(v)er(P(ertfa))dvp(t —a)da
0
(5.10) + / p(a) fa — t)e™ Jime o)V (Pott=a)dv g,
¢

After the change of variables x =t—a, y = v+t—ain (5.6) and (5.9), and z = a — 1,
y=v+t—ain (5.7) and (5.10), we obtain

p(t) < / t B(t — z,0)p(z)e Jz mou=m)Fv(PW)dy gy
0
+ /OO B(t + x,0)f(z)e Jo molyta) +v(PW)dy go.
0
and
P(t) < /tp(t —z)p(x)e” Ji mo(y—2)+0(P(v)dy 4,
0
+ /OO p(t+x)f(x)e” Jo mo(y+z)+¥(P(y))dy dz,
0
which we can rewrite as
p(t) < / t Bt — x,0)e Jo " roWIdy p( )= Lo ¥ PWIdY g,
0

+ /OO B(t+z,0)e” o noW)dy f(pyels moW)dy o= 5 $(PW)y ga
0

This manuscript is for review purposes only.
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and
t
P(t) < / p(t — z)e= Jo oWy o3y~ SV (PW)dY gy
0

+ /OO Pt + z)e= Jo oWy § () S5 moW)dy o= [T U (PW)dy gy
0

Multiplying both equations by elo ¥(PWNdy anq introducing the notations

(5.11) a1(t) = p(t)elo YEWIAY o, (1) = P(t)elo YPW)dy,
(5.12) M(a) = B(a,0)e” Jo ,u(vyo)dv7 S(a) = pla)e” S po(v)dv
and

(513) F(a) = f(a)efoa po(v)dv

we get

(5.14) / Mt —z)oq(z der/ M(t + x)F () dz,
(5.15) /St—xal dx—i—/ S(t+ z)F(z) de.

We note that «;(t) is the number of newborns to a density-independent variant of
the original problem (2.3)—(2.5), with Ry = 1 and initial age distribution F'(a). Since
Ry = 1, then by Theorem 3.2 in [15] with o = 0 we have that a;(t) < C and from
(5.15) it follows that az(t) is also bounded. From (5.11) we get

p(t)elo VP < ¢ and  P(t)elo YW < ¢,

To prove convergence of p, P and ) we distinguish two cases.

If p(t) — 0 then P(t) — 0 and Q(t) — 0 as ¢ — oo, and the claim holds. If the
above does not hold, then [ #(P(y))dy < C. In this case by assumption (5.1) there
exists a sequence t; — 0o as k — oo such that e, = P(t;) — 0 as kK — co. We can in
addition require that |t; — tx—1| < 1. From equation (2.19) and condition (H3), this
implies that there exists a constant ¢ such that for all k,

tr—p1
/ p(7)dr < cex, supp(p) = [p1,p2].
tk—p2

By Lemma 5.2 with comments, for large enough k, we have maxy, _1<-<¢, p(7) < c*ey.
By the requirement |t; — tx—1| < 1 we can now conclude that p(t) — 0. From (2.19)
and (2.20) we now also see that P(t) — 0 and Q(t) — 0

Finally, we consider the case Ry > 1 and we will show that p(¢) > é; > 0 for large
t. To this end, assume that there exist a sequence t;, — co as k — oo such that ¢, =
p(tr) — 0. Without loss of generality we can assume that p(¢) = infy, _q, <1<z, p(1).

Since ft - bl (1) dr < e1p(tx), by Lemma 5.2 it follows that

max_ p(r) < eaplti) = csei,
tk—tSTStk

which implies that

max P(7) < cep.
te—t<7<tg

This manuscript is for review purposes only.
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Using (3.3), for t = ¢, we get

tr v
pltr) = P(tk)/ Bla,0)e™ o W PImeN® do > p(ty) Ro(1 + oler)),
0

which is impossible because of Ry > 1. We can now conclude that a; < p(t) < b;.
Suppose now that there exists a sequence t;, — oo as k — oo, such that P(t;) — 0
or Q(tx) — 0 as k — oo. Then from (3.4) and (3.5) it follows that

t—p)
€ > c/ p(T)dr.
t

k=D
By Lemma 5.2 we get that
liminf p(t) = 0,

t—o0
which is impossible according to the previous part of the proof. 0

Note that in the case when the maximum of 5(a,-) and minimum of u(a,-) is not
attained in 0, we can still come to similar conclusions using the same technique by
redefining Ry. For example, assume there exist functions p— and §; such that

(5.16) u(a,p) > p—(a)
(5.17) B(a, Q) < By(a)

for all a. Let
(5.18) RS':/ B(a, Q)e Jo r-()dv gy
0

then if Rj < 1 we have that p(t) — 0, P(t) = 0,Q(t) — 0

6. Permanence by positive density-dependence. Let us assume that influ-
ence of the Allee effect manifests though changes in the death rate. This means that
in a small population, every increase in age-class decreases death rate. In other words,
for every a, death rate u(a, P) is a decreasing function of P for P € (0, ).

We prove that if Ry = 1 survival is possible due to the Allee effect.

THEOREM 6.1. If p(a, P) — pu(a,0) <0 for P € (0,0) and Ry =1, then
hgg}lf pt) >0 and hglorgf P(t) > 0.
Proof. Let
(6.1) M(a) = f(a, Q(t))e” Ji #lv:0

Using (3.3), (6.1) and the assumption of the theorem, for P < ¢ and sufficiently large
t we obtain

t

p(t) = / M(a)p(t — a)e™ Jo' (n(-Plott=a)=u(v.0)dv g,
0
t

> ; M(a)p(t — a) da.

This manuscript is for review purposes only.
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To prove the claim, we suppose that liminf; ., p(t) = 0. Then there exists a sequence
{tx} such that p(t;) — 0 as k — oco. Without loss of generality we can assume that
p(tr) = infy, _gy<i<t,, p(t). To show that p(¢) is small on [tx_1, tx], notice that

t
er = p(ty) = / Bla, Q(t))p(ty, — a)e Jo #-Plurt=adv gq,
0

and
tkfal
/ p(T)dr < ceg.
t

k—az

Then by Lemma 5.2 it follows that

max T) < c*ep,
te—t<T<tp P(7) ’

which implies that
t
P(t) = / pla)p(t — a)e Jo mv-Plrt=addv qq < 5
0
on ty — t+M<r1< ti. This also implies

o(tr) > / " M(a)p(t) da = p(ty),

which is impossible. O

We aim to prove conditions for extinction and permanence in the case of the Allee
effect. Under assumption that the weighted age-class function are constant P(t) = P

and Q(t) = Q are constant over individuals life time, the weighted net reproduction
rate R(P, Q) is defined by

(6.2) R(P,Q) - / ~ Ba, Qe Ji nwPrdvg,
0

Notice that R(0,0) = Ry as defined in (4.3).
LEMMA 6.2. Assume that R(P,Q) <1 for P < P*, Q < Q*. Let p* > 0 be such

that
P* Q*
(6.3) pP<——— and p* < -—-—s——,
Jo pla)da Jo a(a)da
then if p(t) < px on some interval t* — ay <t <t*, then p,Q,P — 0

REMARK 6.1. Lemma 6.2 tells us that, to conclude extinction, in some cases it
might be enough to look at the number of newborns during a time period of the mazimal
lifetime.

REMARK 6.2. In [1/] it is concluded that Ry < 1 implies asymptotic stability of
the trivial equilibrium in the sense that there exists 6 such that if ||f(a)|]1 < & then

Jim [In(-.1)] = 0.

Lemma 6.2 is a similar result but differs in the way that we look at the number
newborns to conclude pointwise convergence of p, P and Q.

This manuscript is for review purposes only.
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380 As we will see the restriction on p* is chosen as to guarantee that if p(t —v) < p*
381 on 0 < v < ay then P(t) < P* and Q(t) < @*. Which then implies that, for all time,
382 each individual would live a life with net reproductive rate less then one. This in turn
383 would imply extinction.

384 Proof. Let py be the theoretical maximum of p as in (3.7) and let ||p||cc = supp.
385 Let
P* — [ p(a)p*da
- Jo pla)prda
2[[pllsop+
*— [ q(a)p*da
=9 Jo_a@)pda
sp= (1 Jo~ p(a)da
2P ’
p* fooo q(a)da
bo=01—-—L—"—),
2Q*

387 and furthermore let ¢ = min(ep,eg). For t* <t <t* + ¢ we have

t
P(t> = / p(a)p(t — a)e_ Jo (v, P(v+t—a))dv da
0 - )
+/ pla)f(a —t)e~ Jo_y p(v,P(v+t—a))dv da,
t
€
38 (6.4) = / p(a)p(t —a)e” Jo w(,P(v+t—a))dv 7,
0
t
+ / p(a)p(t — a)e_ foa w(v,P(v+t—a))dv da
g

o0
<ep|pllecp+ +/ p(a)p*da = 6pP*
0

389 In the same way for t* <t < t* + ¢ we have

390 (6.5) Q(t) < 0Q™.
391 Let
392 (6.6) R(Q,P).

1= max
P<spP*,Q<6QQ"

393 We overestimate the number of newborns p on the interval ¢t* <t < t* 4 ¢,

This manuscript is for review purposes only.
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t
= [ BlaQp(t - aje i re - gg
o )
+ [ Bl Q) fla e e g
t
t
<p' / Bla, Q(t))e™ Jo mv-Plott=adv 4
g
(6.7) oy / Bla, Q(t))e™ I Mo P=)dv g
+p / B a, Q )) — [, w(v,P(o+t— a))dvda
(6.8) < p*Ry +epy.
If e < %ffl), from the above inequality it follows that p < 1+R1 p* < p* on
t" <t<t'+4e. Solet
o pr(1— Ry)
6.9 vy = min(e, ————
(6.9) € )
then p(t) < HRl p*on t* <t < t*+ . Iterating a finite amount of time we get that

p(t) < 1+R1 p* on t* <t < t*+ a+. We can use this result yet again to conclude that
p(t) < (1+R1) pront*+ap <t <t +2ay, p(t) < (FF1)3p* on t* +ap <t < t*+3ay
and so on. This implies that p converges to zero. From (2.19) and (2.20) we see that
also @ and P converge to zero. ]

In the next theorem we will see that a population that is not converging to zero
is necessarily persistent.

THEOREM 6.3. If Ry < 1, then either p,Q,P — 0 or there exist €,,ep,eq > 0
such that p > €,, P > ep,Q > €q i.e the population is persistent.

Proof. If ¢, exist, then from (H) and (Hs) it follows that ep and e necessarily
exists. Conversely, if ¢, does not exist, then there exist a sequence ¢, > a; such that
ty — oo and py, — 0 as k — oo. Let ¢ > 0 be arbitrary. There exist K such that if
k > K then p(t;) < €. For these k we have

k
Bla, Q(ti))p(te — a)e™ Jo #-Plotti=a)dv g ¢
0

This together with Theorem 3.2 and (Hs) implies that there exists C' > 0 such that

t—bq
/ p(t —a)da < Ce
t

—bo

Using Lemma 5.2 we get that there exist constants ¢; and ¢* independent from e such
that if ¢, > ¢; then

max  p(1) < c’e.
tp—ai <7<ty

Choosing ¢ to satisfy ¢*e < min( foo Lemma 6.2 now guarantees that

a)da I q(a)da)
p — 0 and we reach a contradiction. O
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Appendix A.

f
t—p1
T=5+by
t — Bo \
T=5+b
\lm JN \|—< ~ — $
= = = = = =
| | | | | I
2 N — [\ — —
Q. Q. Q. Q. Q. Q.
| | | I | I
-~ +~ -~ -~ -~ -~

Fig. 1: The parallelogram is the area over which p is integrated in (.12). The colored
area is the domain over which p is integrated in (.13).

Proof of lemma 5.2. We will repeatedly use the following identity: For constants
[1 < B2 and by < by we have

(.10)

t—B1 t—p1—b1 pmin(t—pP1,5+b2)
/ / s)dsdr = / / p(7) dr ds.
t—pB2—bo max(tfﬁQ,erbl)

Figure 1 in shows this fact.
Using the left hand side of (5.3) to estimate (5.4) from below we get

(.11)

t* —51 t*—p1
csA 2/ T)dT >/ / T)drds.
- t*

Let b}, b, be constants such that by < b) < by < by. By (.10) we get

(.12)

(.13)

t—B1—b1 mm(t 7[‘31,S+b2)
csh > cl/ / p(7)drds
t* ﬁg bo max ﬁQ,Serl)

t—B1—b} mm(t B1,5+b2)
/ p(7) dr ds.
t—B2—by Jmax(t—Bz2,5+b1)
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Since f;“;:é::g; ‘;IZ]?)) p(T)dT >~ > 0 is bounded from below on the interval

s €[t — P2 — by, t — By — b}] (see figurel in Appendix.) we get that
t*7517b3
(.14) 7c1/ p(s)ds < ¢ A.
t*—BQ—bIQ
Iterating k times we get

t* —B1—kb),

(.15) / p(s)ds < A,
t*— By —kb)

for some ¢’ > 0 depending on by, by, by, b, m, 51, B2 and k. Using the right-hand side
of (5.3) we derive from the previous inequality

Tfal t*fﬁlfkb/l
p(T) < 02/ p(T)dr < 02/ p(T)dr < cad A,
Tfaz t 7[‘327]61)’2

where dy = t* — B — kby +as < T < t* — 81 — kb + a1 = dy. Here dy and dy are
required to be bigger then as which gives us the value of ¢;

(.16) t, = Po + kaQ.

We assume that k is chosen large enough to satisfy do — d; > as — a;. Then for
T € [da,d2 + a1] we have

T—ay T—ay
o(T) < c/ p(T)dr < c/ dAdr < ed(ag —ar)A
T—as T—asz

according to (.15). Hence, there exist a constant ¢; such that
p(T) <cA fordy <T <ds+as.

Continuing this procedure we get a constant ¢ such that
p(T) <cA for d; <T <dy+las.

Choosing k large enough to satisfy d; < t* — ¢ and then choosing I large enough to
satisfy dg + las > t*, we arrive at (5.5). a
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Appendix B.

Equilibrium points. Here we derive the equilibrium points to the model, i.e.
solutions constant in time, and then continue with performing a stability analysis for
these equilibrium points. Similarly, in Section 5.3 and Chapter 6 of [14], equilibria
and their stability is investigated for a more general model including arbitrary many
weighted sizes.

We assume that (p*, P*, Q*) are constant solutions. From equations (2.18), (2.19)
and (2.20) we get

p* :/ B(an*)p*e_ foa w(v,P*) dv da,
0

P* :/ ( )p*ef fDa /J'(U,P*)dv da,

v / a)pte ~ o uw P dv gq,

If p* = 0 it follows that (p*, P*,¢*) = (0,0,0). Otherwise, we have that

* P*
r fooo pla)e o WP )dv g’
Q* = P*T'(P*),
where
(v, P* )d’Ud
r(pr) = do_1) o
fo a (v, P*)dv g,
and
(17) 1 = / B(a’P*F(P*))67 foa #(U’P*)dvda.
0

So first we solve the last equation (.17) with respect to P* and then compute Q* and
p* from the other two equations. If Ry > 1 then a solution necessarily exists since
the right-hand side of (.17) goes continuously from Ry to zero as P* goes to infinity.

Stability analysis. Let p*(a) be an equilibrium point. We set
n(a,t) = p*(a) + z(a,t), where z is a small perturbation

For this analysis we need to assume that p and f are differentiable with respect to
the second argument. We denote pp and B¢ the derivative of px and 8 with respect
to the second argument. Linearising equation (2.3) we get

0z(a,t ap*(a 0z(a,t

= —ula, P(t))(p*(a) + z(a, 1))

= —(ula, P*) + P(t)pp(a, P*))(p"(a) + 2(a,1))

— —ula, P*)p"(a) — P()upla, P*)p* (@) — pula, P*)=(a,t).
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From equation (2.4) it follows

p*(0) +2(0,t) = /OaT Bla, Q1)) (p"(a) + 2(a,t)) da

/ (60, Q°) + Q()Bal@, @) (¢° (a) + 2(a, 1)) da,

0
/0 Bla, Q)" (a) + Bla, Q) 2(a t) + Q1) B (a, Q*)p* (a) da,

and from 2.1 and 2.2 we get

P(t) = /OOO p(a)(p*(a) + z(a,t))da = P* +P(t), P(t)

Q(t) = /OOO q(a)(p"(a) + 2(a,t))da = P*+ Q(t), Q(t)

/OOo p(a)z(a,t)da,
/000 q(a)z(a,t)da.

Using the fact that p*(a) is an equilibrium point we get

0z(a,t) n 0z(a,t)

= ~P(O)up(a, P*)p(a) - pla, P*)z(a, 1),

ot

Oa
2(0,1) = / (Q(t)Bala, @)p* (a) + Bla, Q")=(a 1)) da,

P(t) = /000 p(a)z(a,t) da,
o(t) = /000 q(a)z(a,t)da.

We look for solutions of the following form

From the above we get the following

dg(a)er N dg(a)e

ot

5 = ~CecMup(a, P)p" (@) - pla, PT)g(a)e™,
CreM = /0 (5 Bo(a, Q) p* (@) + B(a, Q*)g(a)e) da,
C At _ > At d

e / p(a)g(a)e™ da,

CyeM = / g(a)g(a)e™ da,
0
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546 which is equivalent to

e (18 g@r+ DY o Oypa, P (@)~ e Pga),

s (19) €= [ Cabofa, Q)" (@) + 5(a.Q)g(a) da,

549 (.20) Co = /000 p(a)g(a) da,

0 (:21) Cy = /Ooo q(a)g(a) da.

332 Equation (.18) can solved with respect to g(a) using the integrating factor method,

with the solution

ot
ot
w

55 G — foa Capp(o, P*)P*(U)60A+f°0 (T Pdr 4
%’;% (:22) 9(a) = oAt [g n(o,P*)do :

556 Inserting (.22) in the system of equations (.19)—(.21), we get

557 o) = / (CsB0(a, Q%)p*(a)
0
) cy — foa CQMP<Ua P*)p*(a)ea)\+f0" ,u('r,p*)d'rdo.
558 “V‘B(GM Q ) ef(;z Ap(o,Pdo da,
> C1 — [y Copp(o, P*)p*(0)e T n(m P17 dg
559 Gy = /0 p(a) et Jg p(o,P*)do da,
o C — a CQ,UP(Ja P*)p* (0)60/\4-[0" u(r,p*)drda
560 Cs = / q(a) Jo ar+ [ u(o,P*)do a-
561 0 e o #o
562 To simplify calculations we introduce the following notations
o

563 A = / Bola,Q")p*(a) da,

0
564 As(N) = — / B(a, Q) / pp (o, P*)p*(0)e e MOPDI o g,

0 0

565 As(\) = / B(a, Q*)e~ N Jo w(T:P)dT g

0
566 Ay(N) = —/ p(a)/ pp(o, P*)p*(o)e o Jae HmPT 1544,

0 0

567 As(\) = / p(a)e*“)‘*foa [L(T,P*)d‘f‘da,

0
568 Ag(\) = —/ q(a)/ pp(o, P¥)p*(0)e oA Jame M PO g5 g,

S
569 Az (\) = / q(a)e= =t wmPdr gy
570 0
571  With the notations above the system of equations can be written
As(\) —1 As(N) Ay Ch

572 (23) A5(/\) A4(/\) -1 0 Cg =0.
573 Az (N) Ag(N) -1 Cs
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There exist small non-zero solutions Cy, Cy and C3 to (.23) if and only if

Az(A) —1 Az(N) Ay
det A5()\) A4()\) —1 0 =0.
A7 (N) Ag(A) -1

For the trivial equilibrium we get

(:24) As(\) = / B(a, 0y~ mrOr gy — 1.
0

If we let Re(A) = v and Im(A) = ¢ (.24) turns into

o o0
/ B(a,0)e= 1~ Jo 1(m0)dr o —adi g, / B(a,0)e= 4~ Jo 10T cog(ap) da
0 0

- z/ B(a,0)e=47—Jo (04T gin(a) da
0

(-25) = Re(43)(7,¢) +ilm(A3)(7,¢) = 1

21

We observe that Re(A3)(+,0) : R — (0, 00) is strictly decreasing and onto, so the

equation

Re(43)(7,0) =1

has a unique solution v*. Furthermore, Re(A3)(y*,) has its unique maximum when

¢ = 0. Then for all solutions with ¢ # 0 to equation (.25), we have v < v*. Let

RO = RG(AQ,)((L 0) = / 5((1’ 0)6_ f()a /J«(T,O)d‘rda
0

If Ry < 1, we have that v* < 0, implying « < 0 for all solutions and we can conclude
that the trivial equilibrium point is stable. If Ry > 1, we have that v* > 0 and the

trivial equilibrium point is unstable.
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Appendix C.

Proof of Lemma 3.1. If the right-hand side of (3.2) is greater or equal to the right-
hand side of (3.1), then (3.2) follows from (3.1). Let v = 1—1(0). Assume that there
exist T' > 0 such that

p(x) k
max ————— > max N
=T (L)) 4oy T o<k<ep i (M) P(E) + 5

c

Due to the condition on M, we have that T' > 0. There exists 0 < t; < T such that

plty) o ele) @)
Gty TS () 4y mSh () 4y

c c c

and since

plty) k

_— max _—
(P 4y T o<k<en I (M—y) P(E) + 5

we have that p(t1) > cyy=1(M — 7). Note that by the definition of 1/~! this means
—1
that w(@) > w(w) = M — . Now from (3.1) we get

ple) o p(ty)

p(t1) < M max = < p(t1)
S p(BP) by () 4
and we reach a contradiction. This proves the lemma. 0
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