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1. Let Q c R" be a domain, and let P, Q c Q be closed disjoint subsets. The

conformal capacity of the capacitor (P, Q; Q) (see [1], Chapter II, §3) is defined to
be

(1) cap(P, Q; Q) =inff Yo" dx,  dx =dx,---dx,,
(9]

where the infimum is over all possible functions ¢(x) that are locally Lipschitz on
Q, continuous on , and equaltoOon Q and 1 on P. A compact set P is said to
have zero capacity if there exists a closed set Q with QNP = @ such that R"\ Q is
bounded and cap(P, Q; R") =0. A closed set P has capacity zero if every compact
subset of it does.

Let H(f), t € R, be a nondecreasing continuous function, and let f(x) =
f{xl ;v k) bea C*-solution of the equation

~ &8 fx,
(2) ' =nH(f(x))
s (\/1 +I?fz)

in the domain 2. The solutions of this equation are graphs x, , = f(x) with mean

_ ) , n+l
curvature the given function of the coordinate x, ,. For H(t) =a+bt, b > 0, the

solutions of (2) describe the phenomenon of capillarity in a column of liquid with
cross-section €2, and has been treated in [2] and [3].

We have the following estimate of the integral mean curvature H(f(x)) of the
graph F for a solution x, , = f(x) of (2).

THEOREM 1. Let f(x) be a solution of (2), and let P C Q be an arbitrary closed
set. Then

(3) fp H(f(x)|"dx < cap(P, 8Q; Q)

The 1dea of the proof consists in the following. We introduce the notation () =
t-[f|""" and fix a function @(x) that 1s admissible in the variational problem (1)
for the capacitor (P, 8Q: Q). We consider an arbitrary C'-smooth function H,\ (1)
with H;{I) > 0 such that

(4) |H\ ()| < [H()|, H(t)-H(t) 0.
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Using (2), we arrive at the inequality

> o [H ()" () ==
i=1 O \/1+|v;2_

- = n n— - - {ﬂ-"‘f:"
> nH,""(fOO)VH ()" (x) + nH" "V (£(x))p" " (x) T ——2

i=1 \/1+I?f|‘?

First using (4), we integrate the last inequality and use the Cauchy formula. As a
result,

/n@- ()| H, (f(x)] dngﬂnwl dx .

Using the condition ¢ =1 on ¢(x) for x € P, we pass to the infimum with respect
to @(x) in the inequality just obtained:

fF_ |H,(f(x))|" dx < cap(P, 89: Q).

Finally, approximating H(¢) by functions H (t) satisfying (4), we arrive at the
required estimate (3).

COROLLARY 1. Let f(x) be the solution of (2), which is defined everywhere in R"
except perhaps for a closed set P of capacity zero. Then the mean curvature satisfies
H(f(x)) =0 everywhere in R" \ P. In particular:

a)lf 2<n <7, then f(x) is a linear function.

b) If H(t) is strictly monotone, then f(x) = const for n> 2.

In the two-dimensional case, if H(¢) is of constant sign, H'(t) > 0, and the set
P is empty, assertion a) is due to Cheng and Yau [4].

2. NOTATION. B(x, R) is the ball of radius R > 0 about x € R", and dist(x, E)
1s the distance from a point x to a set E .

THEOREM 2. Let f(x) be a solution of equation (2) in the domain Q c R". Then

(5) sup{|H (f(x))] - dist(x, 0Q)} < 1.
Xe

Equality is attained in (5) in the case when Q is a ball and f (x) describes a hemi-
sphere over Q.

COROLLARY 2. Let f(x) be a solution of (2) in the ball B(0, R). Then
|H(f(0))| < 1/R.

This assertion was obtained by Bernstein [5] and Finn [3] in the cases of mean
curvature that 1s constant or bounded away from zero, respectively.
It is not hard to see that there exists a bounded radially symmetric C’-solution
f(x) of equation (2) with right-hand side
n-—1

H(f(x)) = ——(R"~|Ix|")""",  xeB(0;R),

1.e., the mean curvature H(f(x)) increases without bound in a neighborhood of any
point of the boundary 9B(0, R). It is obvious from the following assertion that
such boundary singularities cannot be isolated. Namely, we have
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THEOREM 3. Suppose that Q C R" is a domain and q € Q is a point. Let f(x) be
a solution of (2) in Q\{q}. Then the function H(f(x)) is bounded in a neighborhood
of q, and

lim |H(f(x))| < (dist(g; 6Q)) " .

X—q

3. It 1s interesting to determine the exact value of the functional on the left-hand
side of (5) in the case of an arbitrary domain Q different from a ball. Below we give
examples of domains for which this problem can be completely solved.

For any arbitrary integer 1 < p < n let 1, , be a layer in space that, to within a
motion and a homothety, is the coordinate product

(6) I1, ,=D"(a)xy""",

where "7 is an (n — p)-dimensional plane, and D”(a) is a p-dimensional disk of

radius a > 0.
THEOREM 4. Let ) coincide with one of the domains of the form (6). Then

(7) sup{|H(f(x))| - dist(x, 0Q)} < &
xeQ n

Jor any solution f(x) of equation (2) in Q. Equality is attained in cases of special
surfaces of constant mean curvature over .

We sketch the proof. Let Q = P, 58 1 <p <n-1. Using the properties of the

mean curvature of a hypersurface in R""', we can assume without loss of generality
that I1, , has the form

p
n+1 F , —
?Tn.ﬂz{.IER : Z}Ej <1 Iﬂ+]—[}},

i=1

and it suffices to establish (7) for x = 0.
Let v and w denote the projections of a vector x € R on the following
mutually orthogonal subspaces of R""': P=dx € B x;=0; 1<i<p} and

™, respectively. Consider the A-parametric family of tori
! 2 2 2
T,(R)={x=(w;v) R : (v —12e,,, | - R) +|lw|" = r},

where 0 <r <1 < R are fixed numbers, and e, , is a coordinate vector. It is clear
that 7,(r) does not intersect the surface F for sufficiently large numbers 1 > 0.
We find the infimum A, of such numbers A. Then T, (R) is everywhere not below
the £, and touches it at the same point x, € I, . Comparing the mean curvature
of the torus H.,. at the point X, ,» wWe arrive at the inequality

n+1

1 (p  n—pllyll—R
< = = | —
H((x0) < Brrg) = 7 (5 + 222100
for the mean curvature of the surface, where X, = (W, , vy) . But the point (0; f(0))
of F lies no higher than the point (xy: f(x,)) , and hence, since H(¢) is monotone,

l/fp n—-p 1
H(f(IUJ}EF(E-F' - R—i)'

The required estimate is obtained by passing to the limitas »r — 1 and R — ~.
A lower estimate 1s established similarly. The case of equality holds, for example,
when

2 2
fx)=y/1-x2—. =22,
with H = p/n.

389



The author thanks V. M. Miklyukov for his interest in this work, and for useful
discussions.

Volgograd State University Received 21/JUNE/89

BIBLIOGRAPHY

. Yu. G. Reshetnyak, Space mappings with bounded distortion, “Nauka”, Novosibirsk, 1982; rev.

English transl., Amer. Math. Soc., Providence, R.L., 1989,
2. Robert Finn, J. Analyse Math. 14 (1965), 139-160.
3, ., Z. Angew. Math. Mech. 61 (1981), 165-173, 175=177.
4. S. Y. Cheng and S. T. Yau, Comm. Pure Appl. Math. 28 (1975), 333-354.

5. S. N. Bernstein, Ann. Sci. Ecole Norm. Sup. (3) 27 (1910), 233-256.
Translated by H. H. McFADEN

390



