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Abstract. We generalize the well-known result of É. Cartan on isopara-
metric cubics by showing that a homogeneous cubic polynomial solution of
the eiconal equation |∇f |2 = 9|x|4 must be rotationally equivalent to either
x3
n − 3xn(x2

1 + . . .+ x2
n−1) or to one of four exceptional Cartan cubic polyno-

mials in dimensions n = 5, 8, 14, 26.

1. Introduction

In his paper [1] É. Cartan found all cubic homogeneous polynomials in Rn, n ≥ 3,
satisfying the isoparametric equations

|∇f(x)|2 = 9|x|4,(1.1)

Δf(x) = 0.(1.2)

Amazingly, the cubic solutions of (1.1)-(1.2) can be described by means of four real
division algebras Fd of dimension d, where F1 = R (reals), F2 = C (complexes),
F4 = H (quaternions) and F8 = O (octonians). Cartan proved that for a cubic
solution to exist the dimension n must be 5, 8, 14 or 26, i.e.

n = 3d+ 2, d = 1, 2, 4, 8,

and, in this case, the solution is congruent (i.e. rotationally equivalent) to one of
the following polynomials (cf. [1, p. 34]):

fd(x) = x3
n − 3xnx

2
n−1 +

3

2
xn(X0X̄0 +X1X̄1 − 2X2X̄2)

+
3
√
3

2
xn−1(X0X̄0 −X1X̄1) +

3
√
3

2
((X0X1)X2 + X̄2(X̄1X̄0)),

where x = (X0, X1, X2, xn−1, xn) and vector Xk = (xkd+1, . . . , xkd+d) are identified
with the corresponding elements of Fd, k = 0, 1, 2, and X̄ denotes the conjugate of
X in Fd. It is not hard to prove also that all the Cartan polynomials are irreducible.

In dimension n = 2 there is also a reducible polynomial satisfying (1.1)-(1.2),

f0(x) = x3
2 − 3x2x

2
1 = Re(x2 + x1

√
−1)3,
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which, though having no evident relation to the division algebras, can be thought
of (at least formally) as the member of the above family corresponding to d = 0,
where all Xi are supposed to be zero. It is easy to see that in higher dimensions
n ≥ 3, this polynomial f0(x) gives rise to a new family of (reducible) solutions of
the eiconal equation (1.1) alone, namely

(1.3) f0(x) = x3
n − 3xn(x

2
1 + · · ·+ x2

n−1).

Note also that f0 is not congruent to any of the fd in the corresponding dimensions
because all fd are harmonic, while Δf0 = 6(2− n)xn �= 0 for n ≥ 3.

Our main result is the following characterization of cubic solutions of equation
(1.1) alone.

Theorem 1.1. Any homogeneous cubic polynomial satisfying the eiconal equation
|∇f |2 = 9|x|4 is rotationally equivalent to either x3

n−3xn(x
2
1+ . . .+x2

n−1) or to one
of the exceptional Cartan cubic polynomials fd(x) in dimensions n = 5, 8, 14, 26.
In particular, irreducible cubic solutions of (1.1) can exist only in dimensions n =
5, 8, 14 and 26.

Remark 1.2. It is well known that for d �= 0 the focal varieties fd = 0 are minimal
cones in R3d+2 (i.e. immersed submanifolds having zero mean curvature). So far,
these four Cartan cones are the only known examples of minimal cubics besides the
cubic 2x1x2x3 + (x2

1 − x2
2)x4 (a member of Lawson’s family of algebraic minimal

surfaces in R
4 given in [3]) and two additional cubics, each in dimensions 9 and 15,

found by Wu-yi Hsiang in [2]. In a forthcoming paper [5] we provide a classification
of minimal cubics in Rn, and Theorem 1.1 above plays a crucial role in constructing
the so-called exceptional family of minimal cubics in R3k.

2. Symmetric composition formulas

Recall that a composition formula of size [r, s,m] over the field of real numbers
(see [4]) is an identity

m∑
k=1

b2k(x, y) = |x|2|y|2, x ∈ R
r, y ∈ R

s,

where bk(x, y) are real bilinear forms and |x|2 = 〈x, x〉 is the usual Euclidean norm
of x. It is well known that the existence of a composition formula of size [r, s,m] is
equivalent to solvability of the Hurwitz matrix equations

At
iAi = 1s, 1 ≤ i ≤ r,(2.1)

At
iAj +At

jAi = 0, i �= j(2.2)

(see, for instance, [4]). Here Ai ∈ Rm×s is a matrix of size m× s with real entries,
At denote the transpose matrix, and 1k stands for the unit matrix in Rk×k. It
follows from (2.1) that m ≥ max{r, s}.

If max{r, s} = m, say s = m, then the celebrated Hurwitz-Radon theorem states
that a composition formula of size [r,m,m] exists (equivalently, the Hurwitz matrix
system of size [r,m,m] is solvable) iff

r ≤ ρ(m),
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where the Hurwitz-Radon function ρ(m) is defined for positive integers m ≥ 1 by
the formula

(2.3) ρ(m) = 8a+ 2b, where m = 24a+b · odd, 0 ≤ b ≤ 3,

and ρ(m) = 0 otherwise. In particular, for positive integers we always have ρ(m) ≤
m with equality only if m = 1, 2, 4, 8. Another useful observation is that ρ(m) = 1
if and only if m is odd.

We shall need an analogue of the Hurwitz-Radon function for symmetric solutions
of (2.1)-(2.2). Given m ≥ 1 we define ρsymm(m) as the maximal possible r such
that the Hurwitz matrix equations are solvable for symmetric matrices Ai ∈ Rm×m,
i = 1, . . . , r.

Proposition 2.1. For any m ≥ 1,

(2.4) ρsymm(m) = 1 + ρ(
m

2
).

Moreover, if {Ai}1≤i≤r is a symmetric solution of (2.1)-(2.2) for r = ρsymm(m) ≥
2, then all the matrices are trace free: traceAi = 0.

Proof. First suppose that ρsymm(m) = 1. Then m must be an odd number, because
otherwise m = 2k, k ∈ Z, and the two matrices

A1 =

(
−1k 0
0 1k

)
, A2 =

(
0 1k
1k 0

)

provide a symmetric solution of (2.1)-(2.2) with r = 2. Thus m is odd and it follows
from (2.3) that ρ(m) = 1. This proves (2.4) for ρsymm(m) = 1.

Now let us consider the case r := ρsymm(m) ≥ 2. Then we can find a symmetric
solution {Ai}1≤i≤r of (2.1)-(2.2). Without loss of generality we can assume that
Ar has the diagonal form, say Ar = diag(a1, . . . , am), where ai ∈ R. Then (2.1)
implies that a2i = 1; that is, after a suitable rotation we get

(2.5) Ar = 1t ⊕ (−1)m−t, 0 ≤ t ≤ m.

We claim that t(m − t) �= 0. Indeed, if t = 0 or t = m, then Ar = ±1m; hence
applying (2.2) to Ai and Ar we find that At

i + Ai = 0, 1 ≤ i ≤ r − 1, which in its
turn implies that Ai = 0 because the Ai are symmetric. But the latter contradicts
(2.1) for r ≥ 2. Hence Ar has eigenvalues of both signs, i.e. 1 ≤ t ≤ m− 1 in (2.5).

Write the remaining Ai in the block form associated with the polarization of Rm

given by (2.5),

Ai =

(
Ci Ei

Et
i Di

)
, 1 ≤ i ≤ r − 1.

Here Ci ∈ Rt×t andDi ∈ R(m−t)×(m−t) are symmetric matrices, and Ei ∈ Rt×(m−t).
Applying again (2.2) to Ai and Ar we find immediately that Ci and Di are zero
matrices for i ≤ r − 1. Furthermore, (2.1) yields

(2.6) EiE
t
i = 1t, Et

iEi = 1m−t,

and setting 1 ≤ i, j ≤ r − 1 in (2.2) we get

(2.7) EiE
t
j + EjE

t
i = 0.

Now observe that identity EiE
t
i = 1t implies m − t ≥ t, and similarly, Et

iEi =
1m−t implies t ≥ m − t. Hence m = 2t; in particular, m is an even number. It
follows that all Ei are quadratic matrices and equations (2.6)-(2.7) are equivalent
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to the Hurwitz matrix equations of size [r−1, t,m− t] ≡ [r−1, m
2 ,

m
2 ]. This implies

by the definition of ρ that r − 1 ≤ ρ(m/2), i.e.

ρsymm(m)− 1 ≤ ρ(m/2).

In order to prove the inverse inequality, let us fix an even m ≥ 2 and set

r := ρ(m/2) + 1 ≥ 2.

Let {Ei}1≤i≤r be an arbitrary solution of (2.1)-(2.2) of size [r − 1, m
2 ,

m
2 ]. Then it

is easy to check that the symmetric matrices

Ai =

(
0 Ei

Et
i 0

)
, 1 ≤ i ≤ r − 1, Ar = 1m/2 ⊕ (−1)m/2

give a solution to (2.6)-(2.7) of size [r,m,m]. Thus ρsymm(m) ≥ r = ρ(m/2) + 1,
which finishes the proof of (2.4).

The last statement of the proposition easily follows from the block form of Ai

and the fact that trace is invariant with respect to orthogonal transformations.
�

3. Proof of Theorem 1.1

Let f be any cubic polynomial satisfying (1.1). Then f �≡ 0 and it can be brought
into the normal form, i.e.

(3.1) f(x) = x3
n + 3xnA(x̄) + 3B(x̄), x̄ = (x1, . . . , xn−1),

where A is a quadratic form and B is a cubic form in x̄. Indeed, the maximum
value of f(x) on the unit sphere |x| = 1 is strictly positive and attained at some
point x0. Then ∇f(x0) = cx0; hence by homogeneity of f ,

c = 〈x0,∇f(x0)〉 = 3f(x0) �= 0,

and it is easily shown that in the new orthogonal coordinates with x0 being the nth
vector, f takes the form (3.1).

Equating |∇f |2 to 9|x|2 yields

x2
n(2A+ |∇A|2 − 2|x̄|2) + 2xn〈∇A,∇B〉+ (A2 + |∇B|2 − |x̄|4) = 0,

where x̄ = (x1, . . . , xn−1). Thus

2A+ |∇A|2 − 2|x̄|2 = 0,(3.2)

〈∇A,∇B〉 = 0,(3.3)

A2 + |∇B|2 = |x̄|4.(3.4)

We can assume without loss of generality that A is given in the diagonal form, say
A(x̄) = diag(a1, . . . , an−1), so that (3.2) yields 2a2i + ai − 1 = 0. This implies that
ai is either

1
2 or −1. We redenote the coordinates such that

(3.5) A(x̄) =
1

2

p∑
i=1

ξ2i −
q∑

j=1

η2i , p+ q = n− 1, x̄ = (ξ, η).

Denote by V1 and V2 the corresponding eigenspaces of dimensions p and q, respec-
tively. The thus obtained polarization V ≡ R

n−1 = V1⊕V2 induces the correspond-
ing decompositions in the tensor products, in particular,

V ∗⊗3 � V 3,0 ⊕ V 2,1 ⊕ V 1,2 ⊕ V 0,3, V i,j = V ∗
1
⊗i ⊗ V ∗

2
⊗(3−i).
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According to the latter decomposition we have for the cubic form B,

B = B3,0 +B2,1 +B1,2 +B0,3,

where Bi,3−i ≡ Bi,3−i(ξ, η) ∈ V i,3−i are linearly independent cubic forms. By
homogeneity one finds

〈ξ,∇Bi,3−i〉 = iBi,3−i,

〈η,∇Bi,3−i〉 = (3− i)Bi,3−i;

hence by virtue of (3.3),

〈∇A,∇B〉 = 〈ξ − 2η,

3∑
i=0

∇Bi,3−i〉 = −6B3,0 − 3B1,2 + 3B0,3 = 0.

It follows from the linear independence of Bi,3−i that B3,0 = B1,2 = B0,3 = 0. Thus
B ∈ V 2,1, i.e.

(3.6) B ≡ B2,1 =

q∑
i=1

ηiQi(ξ),

where Qi(ξ) ∈ V ⊗∗
2

2
is a quadratic form in ξ.

Note that q ≥ 1, since otherwise we would have B ≡ 0 and by virtue of (3.4),
A2 = |x̄|4, which would imply a contradiction to (3.5), because A = 1

2 |ξ̄|2 ≡ 1
2 |x̄|2

for q = 0. Thus q = dimV2 ≥ 1.
Note also that if dimV1 = p = 0, then B = 0 and A = −|η|2. It is easy to check

that (3.2)-(3.4) turn into identities and the corresponding f becomes the solution
of (1.1) in the form (1.3).

It only remains to treat the case when both V1 and V2 are nontrivial: dimVk ≥ 1,
k = 1, 2. We have from (3.4),(

1

2
|ξ|2 − |η|2

)2

+

q∑
i=1

Q2
i (ξ) + |

q∑
i=1

ηi∇Qi(ξ)|2 = (|ξ|2 + |η|2)2.

Regarding the latter equality as an identity in R[η1, . . . , ηq], one finds

(3.7)

q∑
i=1

Q2
i (ξ) =

3

4
|ξ|4

and

(3.8) 〈∇Qi,∇Qj〉 = 3δij |ξ|2,
where δij is the Kronecker delta. Write Qi in the matrix form

(3.9) Qi(ξ) =

√
2

3
ξtAiξ,

where Ai ∈ Rp×p is symmetric. It follows then from (3.8) that the symmetric
matrices {Ai}1≤1≤q solve the Hurwitz matrix equations (2.1)-(2.2) for s = m = p
and r = q; therefore

(3.10) q ≤ ρsymm(p).

If q = 1, then (3.7)-(3.8) immediately yields Q1 =
√
2
3 |ξ|2 (the choice of sign of

Q1 is immaterial because we are free to change the sign of xn in (3.1)). Thus

f(x) = x3
n +

3

2
xn(x

2
1 + . . .+ x2

n−2 − 2x2
n−1) + 3

√
3xn−1(x

2
1 + . . .+ x2

n−2).
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But the latter polynomial is exactly the solution (1.3) after a suitable rotation,
namely,

f(x1, x2, . . . , xn−1, xn) = f0(x1, x2, . . . ,
√
3
2 xn−1 +

1
2xn,− 1

2xn −
√
3
2 xn).

Finally, let us suppose that q ≥ 2. Then (3.7) means that

(3.11) y(ζ) :=
2√
3
(Q1(ζ), . . . , Qq(ζ)) : Sp−1 → Sq−1

is a quadratic map sending the unit sphere |ζ| = 1 to the unit sphere |y| = 1.
Note also that our assumption q ≥ 2 implies by virtue of (3.8) that the image of
y(Sp−1) in Sq−1 is distinct from a point. Then one result of P. Yiu [6] provides
an obstruction for a nonconstant quadratic map to exist if the dimension q − 1 of
the target sphere is too small. More specifically, let us denote by σ(k), k ≥ 1,
the minimal possible value of l for which there exists a nonconstant homogeneous
quadratic map Sk → Sl. Then the theorem of P. Yiu [6, Theorem 4] (see also [7]
for general polynomial maps) yields a recursive formula for σ(k):

σ(2a + b) =

{
2a, 0 ≤ b < ρ(2a),
2a + σ(b), ρ(2a) ≤ b < 2a.

We shall need only two easy consequences of the Yiu formula, namely, that σ(m)
is a nondecreasing function on Z+ and

(3.12) σ(2a) = 2a, a ∈ Z
+.

In this set-up, one can rewrite the existence of a nonconstant quadratic map
(3.11) as the lower estimate

q − 1 ≥ σ(p− 1).

Combining this with (3.10), we get after applying Proposition 2.1 that

(3.13) 1 + σ(p− 1) ≤ q ≤ 1 + ρ(
p

2
).

By our assumption q ≥ 2; hence the right inequality in (3.13) implies that ρ( p2 ) ≥ 1,

i.e. p is even. We write this as p = 2ν+1p0, where p0 is an odd number and ν ≥ 0.
Then (3.13) and the definition of ρ yield that

(3.14) 1 + σ(2ν+1p0 − 1) ≤ q ≤ 1 + ρ(2ν).

Notice first that p0 = 1, because otherwise we would have p0 ≥ 3 and by mono-
tonicity of σ,

σ(2ν+1p0 − 1) ≥ σ(3 · 2ν+1 − 1) ≥ σ(2ν+2) = 2ν+1.

But the latter contradicts the right inequality in (3.14) in view of ρ(2ν) ≤ 2ν . Thus
p0 = 1 and we rewrite (3.14) as

1 + σ(2ν+1 − 1) ≤ q ≤ 1 + ρ(2ν).

Now applying σ(2ν+1 − 1) ≥ σ(2ν) = 2ν and ρ(2ν) ≤ 2ν , we find

1 + 2ν ≤ q ≤ 1 + 2ν ,

where the right inequality is strong for ν ≥ 4. Thus the only possible values are
q = 2ν +1, ν = 0, 1, 2, 3, and an easy check shows that all the values are compatible
with (3.13). The corresponding values of p, q and the resulting dimension n are
displayed in Table 1.
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Table 1. Exceptional values of p and q

ν p = 2ν+1 q = 2ν + 1 n = p+ q + 1

0 2 2 5

1 4 3 8

2 8 5 14

3 16 9 26

One can see that the last column contains exactly the dimensions of the isopara-
metric cubics found by É. Cartan that were mentioned in the Introduction. To
finish the proof, it suffices only to show that for the values of p and q as in Ta-
ble 1, any solution f of (1.1) is harmonic. But this is true because q = 2ν + 1 and
p = 2ν+1; hence from (3.5) we get ΔA(x̄) = p − 2q = −2, and by virtue of (3.1)
and (3.6), we find

Δf = 3(2 + ΔA(x̄))xn + 3ΔB(x̄) =

q∑
i=1

ηiΔQi(ξ).

On the other hand, for q ≥ 2 the matrices Ai in (3.9) by Proposition 2.1 are trace
free, so that ΔQi = 2 traceQi = 0. Thus, Δf = 0 and we get (1.1)-(1.2). Applying
Cartan’s theorem finishes the proof.
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