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1, Let M be a two-dimensional noncompact orlented manifold. Consider
the surface (M, x) specified by the c2-immersion x: M~R It is assumed every-
where below that the immersion is proper, i.e., the preimage of any compact
set FCR® is a compact. This means that surface (M, x) is externally complete
and the closure x(M) of set x(M) in R3 coincides with x(M).

Surface (M, x) is termed minimal 1f its mean curvature exactly vanishes.

We introduce the following concept. Let V be a plane in R3. For an arbi-
trary point v€V, we denote by the symbol N(v) the number of points of inter-
section (taking their multiplicity into account) between set x(M) and the
straight line passing through point v orthogonally to plane V. We will assume
that, for all v€V, N(v) < = is satisfied. It is easily established that func-
tion N(v) is Lebesgue-measurable and the quantity

n(t, V)=j1v(v)|d1‘;|.

{or=¢
is determined for almost all ¢ > O.

The purpose of the present paper is to prove the following assertion re-
lecting certain specific features of the structure of surface (M, x) in the

Theorem 1. Let (M, x) be a minimal surface. If

MOV =0
and
nth V) _ (1)
}53 tint 0,

éie satisfied for some plane VR, then (M, x) is a plane.
987 by Allerton Press, Inc.
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This theorem is also of definite interest in connection with Calabi's
problem of the existence of nontrivial (i.e., different from the plane) com-
plete minimal surfaces in R3 located in a half-space. The absence of globally
minimal nontrivial surfaces lying in a half-space was proved by Miranda [1],
The absence in R3 of minimal surfaces tubular in the large located in a half-
space follows from the results of Miklyukov [2]. An example of an internally
complete nontrivial minimal surface enclosed between two parallel planes in R3
was constructed by Jorge and Xavier [3].

It follows from theorem 1, that for nontrivial minimal surfaces, the "mean"
number of points lying over the circle |v| = t grows rather quickly. The same
1s also true in the other method described below for calculating the multiplicity
of the number of points. Let S(¢)=S(x,, ) be a sphere of radius t > 0 centered
at the point xER?, S(1)=S and let €S be an arbitrary point. We denote by (1)

a ray starting at point x; and passing through point t and by M(% # the number
of points of intersection between surface (M, x) and ray Z(t) that lie in ball
B(xy; ) ={x€R:|x—x)|<#. Let Ny(s ) <oofor all =€S and all t > 0, Assume

n(t, $)=[N(z, f)da,,
S

where do_ 1s an area element on sphere S.
There holds

Theorem 2. Let (M, x) be a minimal surface in R3. Assume that, for some
polnt x,€R%,

== Int *

is satisfied. Then, if surface (M, x) is located in a half-space, (M, x) is 2
plane.

The essential part of the proof of theorem 2 consists in estimating the
growth rate of the "logarithmic area" of the set x(MNB(xXs 8- A somewhat weaker
result 1s obtained 1f, instead of the logarithmic area, one estimates the ared
of this set or that of a geodesic disk on surface (M, x), as 1is done DYy Cheng
and Yau [4]. The proof of theorem 1 is more specialized.

2. Consider the surface (M, x) specified by the C2-immersion x(m:M—K:
The standard metric induces on R3 under the mapping x(M) the Riemannian metric
and a connection on manifold M. We denote by <a, b> the scalar product of the
vectors in the tangent bundle.

We will employ the modulus-capacity technique elaborated in [5]. The

requisite concepts will be briefly introduced here. Let P, Q€M be disjoint
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closed sets and ¢(m) be an arbitrary locally Lipschitz function reverting to O
and 1 on sets P and Q respectively. We will determine the capacity of condenser

(P, Q), assuming
cap(P, Q= nf (el
A’ »

where the symbol V¢ denotes the vector-gradient ¢ in the metriec of manifold M
and |yel'={ve, ve)

We will say that surface (M, x) has parabolic conformal type if, for any
compact FCM there exists the exhaustion A,.c:A.+1.UA.=M of manifold M succes-
sively covered by sets A,oF with compact closures, for which

llmcap(F, M\ 4) =0. (3)
We will utilize the followlng concept in addition to capacity. Let T be a
family of locally rectifiable ares y in M. We will say that the Lebesgue-mea-

surable function p(m) > 0 locally bounded in essence is admissible for family
I'if, for any arc {€T,

fp(m)>1.
3 N
is satisfied. The quantity
modI‘==lnfj§' p*(m),
with the exact lower bound taken over all possible functions p(m) admissible

for family I, is called the modulus of family I,
There holds

Lemma 1, Let (P, Q) be an arbitrary condenser and T be a family of locally
reccifiaple arcs in M joining sets P and Q. Then,
cap(P, Q) =modT. (4)
Proof. The proof basically follows that of the corresponding Fuglede as-
sertion [6] for condensers in R®, and we will consequently omit it. Individual
details related to the need to conduct the argument in the general Riemannian

-
v

*tric will be found in [5], where an analogous assertion was proved for con-
densers located on the graphs of Lipschitz functions.

3. The following statement 1s supplemental in the present study, but it

1
*S of interest in itself as a test for parabolicity of conformal type in a mini-
fal surface.

Lemma 2, Let (M, x) be a minimal surface in R3. If this surface has prop-
T (1) or broperty (2),then it is of parabolic conformal type.
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We will first prove a simpler case, i.e., that in which surface (M, x) is
assumed to satisfy condition (2). It can be presumed with no loss of generality
that x5 = x. Let FcM be a compact set., Specify r > 0 so that set x(F) is
contained in the ball B(0, r). Arbitrarily chose R > r and denote by AR the
set x(M)NB(0, R). Assume A,=x"'(4,). It is clear that A;{ i1s an open subset of M
having a compact closure.

If Ry < Ry < ... and Ll.tfR.woo, the sequence of sets A cAp ... forms the
exhaustion of manifold M. In order to show that this exhaustion has property
(3), we will consider the family o of locally rectifiable arcs 71€4}, Joining
compact G to set M\ A},. By equality (4), it is sufficient to show that the
lower bound of the modulus of family I'R equals zero a‘s R » o,

Let T'(r, R) be the family of arcs lying in AR\A;} and joining set AE and
MN\A,. It is clear that modT,<modI(r, R). Our goal henceforth is to make 2
‘suitable estimate from above of mod TI'(r, R).

Take the function (m), which equals|x(m)|™' when m€A,\A; and vanishes with
all other values of m€M. Since

la!lx(rrt)llﬂ“:(‘)| [(x(m), dx(m)| <|dx(m)],

then, for any arc 4€T(r, R),

4]l
j"(’"bj 1= ;'

1s satisfied. Thus, the function po(m) =p(m)(In(R/r)™ is admissible for the family
of arcs T'(r, R) and therefore

1 P 1
modI'(r, R) < —% Jlx(rn)l" )

I 2

(n r)A;\A

We will estimate the integral on the right side of (5), which expresses the .
e

"logarithmic area" of set A,;\A,. It should be noted at the outset that, by

minimality of surface (M, x), the equality

Ala, x(m))=0, (6}

. in
is satisfied for any field a parallel in R3, where A is the Laplace operator
the metric of the surface (see [7], p. 309). Hence it follows that

T A || = ]2f + (5 Y2l @lalx] = 1),

b ' Stokes
where n is the unit vector of the normal bundle over (M, x). Applying the

formula to this equality, we obtain
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[ - j sl y— [ @) -1 -

o Jd =
ARNAL AHANA ,) aNar 0
_ 1
“Rf (vixh 9 =2 | (gl 9) — ‘T- ’\',’ @lalx]—1),
éAR oAy R\A

where v 1s the unit vector of the normal to the boundary J(Ap\A4).

There similarly follows from equallty (6) Aln|x|=(2/]<[){x, n)* and, further,

Ay

Combining (7) and (8), we arrive at the equality

,f |xP“7l" j'(v[x{, v)+ j' (T' ’I“)Z(Hm"l |)

AR r R\
Remark that

S 1+2xnl--l) (1+.21n )j‘U‘———' (1+21n—r’3)-n(1e.5),
N T

R

and therefore

—< n2 jllell+(1 +2xu§-)-n(R, S).

=P
LAV on;
Substituting the resultant estimate into [5] and passing to the limit as R + =,
Wwe obtain the required assertion.

Now assume surface S(M, x) to satisfy condition (1). Let &, €3, € be the

standard basis of R‘.x=2x’e,. It can be assumed with no loss of generality that
Laml
dlane V coincides with the plane x3 = 0. Then N(«', £)=N(v), where ov=(x!, x*, 0),

is the number of points on x(M) having the necessary first two coordinates. 1In
dccordance with condition (1), we will assume that x3(M) > O on M. Henceforth
PUC DR, n) = (mEM:lv(m)| <R, x* <}

As breviously, we choose r > 0 for a specified compact set FoM so that
FED(r,r). we take as the exhaustion of manifold M the sequence of sets D(Rk, Rk),
heTe Ry>r, Ry eo. Fix R = R, and assume T'(r, R) to be the family of locally

ra k

fectifiable arcs joining D(r, r) and M\D(R, R). We will consider that p(m)=lx(m)~!
:“‘h MED(R, RAND(r, r). and equals zero in other m€M. As in the first case, it

*3 #3s1ly shown that the function p(m)=p(m)In(RIFV3) is admissible for family

™r, R) ang thersfore
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1 Y
mdTn RA<r—5s | (9)
(ln W?) D(R. R\ Dir. 7)

We will first evaluate the integral fl/]x(m)l’ over the set E(h)=D(R, k)\D(r, k).
Assume f(m)=(1/|v(m)|)arctg((m)|v(m)]).” Using the Stokes formula, we have

;(szn vf)={f(vx°- " (10)
E(h) E(A) .

where v 1s the unit vector of the normal 3E(h). One can easlly calculate the
values of the necessary gradients.

v =i, yo=10'/]ol,

where el 1s the projection of field e on the tangent space at the corresponding
point. Consequently,

=5ivlol+- g o et 2 2ol
v/ Ao = lw(arctg“, +W)
and
|¢sr (u" 5 23 2ol )
IJF Ia" (afc gl”l lul;_‘_(x;),)'{'(v,fy an).

By the orthogonality of e3 and v in R3, we have

(O, ey = — (2, n)(es, 7), el = 1—(ey, n)?

and from (11) we obtain

1 6.8 (‘s-")_(& n) 3
T e e (et )]+ 0 v

where p=x%|7|. Utilizing the Cauchy inequality, we arrive at the estimate

A Ka.wdlp 1 ey o
P lof [(1+e’)*+(mtge+l+e’)] s vl
£,
<3 L——m, + (v/s vx).

Substituting this estimate into (10), we have

}[ <3 L=l +jf<e.»)< [ Ve AR (e ) (2)
Ja En oEM Mm» aEm

ec=
Let L(h), Ye be the segments of boundary 3E(h) lying on sets B=h |v|=t resp

tively. The validity of the Pquality

j(ea » ")

A arctg—— S(e,, V) — arc g—+j‘(v( arctg—-‘) v (13)

l2| l2]

1,UT,

b2
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is easily seen. Reasoning in the same manner as above, we can ascertain the
correctness of the followlng estimates:

e » €D et 2
‘ls‘f (ea, v) u Te] tgm JT;,—l_a.rdgl‘ﬂ_ll—
TR

Ivl) 7x%) — U(I"I>(arclgl—l—arctgl ‘),< (14)

2
UE(R)) ko

<2 He "’d«‘ dz’ + dfl(esﬂ)l-l--
lol
Y
Further, remark that

I(e;p ’)l”l(eaa V)l<|8 I
where W 1s the two-dimensional normal space along 7,Ut,, and conseqguently,
T <R nln)
fieg wi <220,
LUt

where a(R)=n(R, V). Finally, we obtaln from (12), (14)

j-‘—< [”‘R’+”—(—+2j"’“’dt! (15)

2
£l | x|

The final step in the proof entalls estimation of the integral j’l/m2

£(a, b)
where E(q, b)-—-(méM:x“(m)é(a', h), lv(m)|<r}, 0<e<b. For this purpose, we first note
that
(es, ) 1 (es, 7)Y n)
—v(5) v )= T x,(ea. v). (16)
t(c‘gn)‘xalz f(lx’" (xa) ) E(':‘:. fE). | 0[‘(;50)

The estimation of the first integral

Ey

14
(es, n)* 1 1
{es, n” ;jl(e,. ,”)[<B_’.yn(t)dt’
E(a, b) E(a, b) v ;

is obvious, as is the equality

§ (@, %)= [ (el )+ (e D+ 5<e,, .

9E(a, b) T L(a)

The latter integral is independently bounded away from a, b:
|§ ¢ed, ]| <nin),
T'

and, consequently, assuming a = 0, we have
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L_[ (e, v)‘<n(r).
O

Returning to (16), we have

'

1 _1¢; 23(r) | a(r)
TR aaf"“)d"f—, +24,
E(a. ) [ :

Hence we conclude that
L e ~1Cn 2()
jlxt’<ij’<“" a) c,j'n(t)dt+ 2,
E(a, ») E(a, o) ‘
Remarking that D(R, R\D(r r)=ER)UE(r, R); we have

1 _x(a(), (R , (220
1 cE2AQ 2R |, 2@y, 3

le<2(r'+ R +J 8 d)+c(r)
D(R. R)\ D(r.7) =

and, taking condition (1) into account, we have the required assertion when
R=Rj—'°°.

4. Proof of theorems 1 and 2. We can assume with no loss of generality
that surface (M, x) lies in the half-space x3 > 0. We conclude from lemmas 1.
and 2 that surface (M, x) is parabolic in type. Assume that x*(m)s const with neM.

Specify an arbitrary point my€M and a constant ¢>x*(m). Denote by O the
component of the connection of set {mEM:x*(m)< ¢}, containing point mj. It is
clear that set O is not empty. Consider the function w(m), which equals ¢ -
- x3(m) on set O and vanishes outside 0.

Let FcO be a compact set, and let A,cA;c.. be the exhaustion of M by the
sequence of open sets A,OF with compact closures, for which property (3) 1s
satisfied. Let ¢(m) be a Lipschitz function admissible in computing the capé”
clty of condenser (F; M\ A4,). The function w,(m) =w(m)-s*(m) 1is a Lipschitz function
with compact carrier contained in ONA,. Utilizing the Stokes formula and pro-
ceeding from (6), we have

§ (v, vx‘)=-—£w,Ax’-——-0.
M

Hence it follows that
j?’-lvﬂl’=—2jo'?m-(w. vsd).
o

Since |w(m)|<e¢, 1s fulfilled everywhere on 0,
d[?’lvx‘l’<2c(j?’lvx“l’)‘”-(flwl’)‘”-
(] (]
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and therefore

i?’lvx’l’<4c’£|w|’.

Since ¢(m) = 1 on F, after minimizing the right side of this inequality for all
functions ¢(m), we conclude that

.lex’l’< 4c*cap(F, M\ 4,).
Taking property (3) of the exhaustion into account, we establish that
)g tyes =0

Hence, by the rule of choice for compact Fc0, we arrive at the conclusion that
¥i=(Q everywhere on O. Thus, x3 = const on 0, which contradicts the definition
of manifold Q. The theorem has been proved.
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