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FINITENESS OF THE NUMBER OF ENDS OF
MINIMAL SUBMANIFOLDS IN EUCLIDEAN SPACE

Vladimir G. Tkachev

We prove a version of the well-known Denjoy-Ahlfors theorem about
the number of asymptotic values of an entire function for properly im-
mersed minimal surfaces of arbitrary codimension in RY. The finiteness
of the number of ends is proved for minimal submanifolds with finite
projective volume. We show, as a corollary, that a minimal surface of
codimension n meeting any n-plane passing through the origin in at
most k points has no more ¢(n, N )k ends.

Let z : M — R™ be a proper minimal immersion of a p-dimensional
orientiable manifold M. Then it is well-known that M is necessarily
noncompact. The simplest topological invariant of such manifolds
is the number of infinite points (or ends ) of M, i.e. the smallest in-
teger £(M) satisfying the following property: for every compact set
F C M the number of the different components with noncompact
closure of M \ F is less or equal to £(M).

We say that a manifold M (or the properly immersed surface

M = (M, z)) is manifold (surface - respectively) with finitely many
ends if {(M) < +oo.
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These definitions agree with the usual ones for Riemannian sur-
faces of finite type (see Example 1 below) and are related to the
noncompactness of the manifold.

In this paper we obtain some upper bounds for (M) in terms of
the projective volume V(M) of M and certain integral-geometric
characteristics related to the geometry in the large of minimal sur-
faces.

If dimM = 2 and M has finite total curvature K (M), R.Osser-
man [7] (see also [10]) proved that M is conformally equivalent to
a compact Riemann surface that has been punctured in a finite
number of points {my, m,,...,my}. In this case £(M) is equal to
k. We observe, however, that the quantity K (M) itself does not
represent any information about £(M). Furthermore, there exist
minimal surfaces of finite topological type with K(M) = —oo. For
a detailled discussion of these questions we refer to [4], [5].

The projective volume is one of the main tools in uniformization
theory and potential theory. Using the special technique of estimat-
ing extremal lengths in terms of a projective volume, V.M.Miklyukov
and the author in [6] showed that a minimal surface M in R®
has parabolic conformal type provided that the generic number of
points which M has in common with a line L passing through a
fixed point (possibly the infinitely far one) in R® is uniformly bound-
ed on L. In particular, an upper bound for the projective volume
of the such surfaces was established.

In part 2 we prove that £(M) is bounded by ¢(p,n)V,(M). We
consider Theorem 2 as an extension of the Denjoy-Ahlfors theorem
about the number of asymptotic values (see the beautiful review
of A.Baernstein [2]) to minimal submanifolds. As a corollary we
obtain in part 3 that a p-dimensional properly immersed minimal
surface meeting any (n — p)-plane, passing through origin, in at
most k points has no more than ¢(p,n)k ends. In particular, if
a minimal hypersurface M is starlike with respect to some point,
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then the number £(M) is less than a constant depending only on

dimM.

The results proved in this paper allow also to infer a parabolic
conformal type for properly immersed minimal submanifolds of ar-
bitrary codimension in the same way as in [6]. We wish to mention
also the paper [9] devoted to the study of surfaces of hyperbolic
type and [8] where results close to ours has been obtained.

I wish to thank V.M. Miklyukov for many useful discussions con-
cerning the topic of this paper. I also want to ezpress particular
appreciation to Professor Klaus Steffen and the referee for many
helpful suggestions that greatly improved the presentation of this

paper.

1. Some properties of the projective volume

Let a € R™ and P, be the group consisting of all conformal
transformations preserving the set {a, o0}, i.e P, is generated by
the inversions: £ = A (z — a )|z — a |~? and the homotheties:
z — A(z — a), where A is a positive factor.

Let M be a p-dimensional surface in R™ and By(R) be a ball
{z € R* : |z — a|] < R}. We denote by M,(R) the part of the
surface M inside B,(R) and abbreviate z,(m) = z(m) — a , i.e.
zq(m) is a radius-vector of M associated with @ € R™. For given
a € R™ \ (M) we define the following metric characteristic of M :

VoM a) = hgl—.sipl R / Iwa(m (1)

It is easy to see that V,(M,a) is invariant under the action of
the group P,. We call V, (M, a) the projective volume of M.
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Let yt(m) be the projection of y on the normal space to the
surface M at a point m. Then we let

st _ f l(e(m) = @)t
J Team)P# = ] Jao(m) — app+?

Qp(M, a) =

M |2
and @p(M, a) = +o0, if the last integral is divergent. For a € z(M)

we set | L( )
. z (m
B =2 S P

lza(m)|>e

Theorem 1. Let M be a properly immersed p-dimensional
minimal surface in R™ with compact boundary ¥. "Then the value
Vo(M, a) does not depend on the choice of a € R*\z(M). Moreover,
the upper limit in (1) can be replaced by a limit and

PQp(M, a) = V,(M,a) + ¢(Z; a), (2)

where ¢(X;a) is a finite constant such that ¢(2;a) = 0.

Proof. Let us assume a ¢ z(M). Denote h = dist(a,z(M)),
P = MaXmez |2(m) —a| (r =0, if ¥ = @) and ¢ = max{h;r}. It is
obvious from the properness of the immersion, that ¢ > 0. Letting
f(m) = |z(m) — a| we have

Vf(m) = 22()

 za(m)]

where ( )7 is the tangent part of the corresponding vector and hence

iv 2a (m) = 1 iv(z] (m)) = —2— z' (m
W LaamlP = Toagmp 4 () = s (Vo2 ()
_ pllzalm)l? = eI (m)?) _ plot(m)P o

|za(m)[P+? IENCO
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Applying Stokes’ formula in the last identity over M,(¢,R) =
M,(R) \ M,(t) for p <t < R we have

5 [ g [ mm=p [l

8M.(R) oM. (t) M.(t,R)

where v is the unit outward normal to the ¢-level set M, (t) of the
function f(m). It is easy to see that for any regular value ¢t > g of
f the normal v is represented on dM,(t) by

and thus the last integral expression can be rewritten in the form

L(\|2
) G, [ letml "
Rp-1 ¢p-1 2o (m)|P+2

M, (t,R)
where J(t) = t7 fopr,(s) |24 (m)|- This relation is a well-known
monotonicity formula for minimal surfaces and (4) yields the in-
creasing monotonicity of J(t)t!?.
On the other hand using the Kronrod-Federer formula ([3], The-
orem 3.2.22 ), we obtain for R > R; > p,

1 — |z (m)|? |z (m)?
|za(m)lP / |za(m)[P+2 + / |4 (m)]P+?

Mu(Ry,R) ' ° M.(Ry,R) M.(Ry,R)

_ / i e
~ ] w2 IVl |z, (m)[P+2
Jee ) OTIVA T A Team)

B / tp-1 dt / lalc?vsznil'ﬂ‘z

MR)

[J)d 1(J(R) _ J(Rl))‘ 5)

= | p—1 p—1
2 tr-1 ¢ R R}
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Now we notice that the increasing monotonicity of J(¢)t1~® yields
immediately

J(R
R-I»Too R(l-"—l) = %(M’a)’ (6)
and consequently, '
J(R
.%%5%“4@ for R>op. (7)

Then we deduce from (6) and (5) that the upper limit in (1) can
be replaced on a limit.

Now we show that really V,(M,a) does not depend on a. Let b
be a point in R® \ (M) and § = |b — a|. Then for every 0 < £ < 1
there exist R(e) > é and ¢(¢) < oo (both independent of R) such
that for R > R(e) one has

/ 1 / 1 < / 1 1
|z — b|P |z —alp| — |z —alp |z —bP
»(R) My(R) My(R(e))
|z — alP~! + |z — bJr! 1
5 < / (8
P e—tple—ap <Ot | g O
My(R(e),R) My(R)

(choosing R(e) >> 1 such that ﬁ—(f‘)s_—s [(71%()5_%)?_1 + 1] <e).
Moreover, from the obvious inclusions
M,(R - §) C My(R) C M,(R+6),
for R > 6, we have

1 1 1
—_—< —_—< —_—,
/)|:c—-b|1"" / |z —blp — ./6) |z — blP

M,(R-6 My(R) Mo(R+
From this and (8), it then follows that
1 / 1 cle) < 1
1+ EM.,(R-—S) |z —alp 14e¢ — MLR) |z — bP
< 1 1 c(€)

|z —alp  1-—c¢

€
Mo (R+5)
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and dividing by ln R one infers

1 1
T V(M 0) S V(M) < 7

Vo(M, a)

letting R — oo. In view of arbitrariness of € this implies V,(M, a) =
V,(M, b) whether both quantities are finite or not.

Now integrating (3) over M,(R), we obtain for R > o
1 T (m (m))V _
Re / (2 (m), v) —/ |zo(m)|P =P / |p+2
oM, (R) £ M, (R)

Let us denote by ¢(¥; a) the second integral in the above equation.
Then we have
J(R)
Rp-1

_ |2z (m)|?
TAEDZP ] eump
Mu(R)

Leting R — oo and using the equality (6), we complete the proof
of Theorem 1.

We denote by a# M the multiplicity of the immersion =z : M —
R™ at the point a € R™,i.e. the cardinal number of the preimage
z7l(a N z(M)).

The next property of V,(M,a) and @,(M, a) shows that these
quantities are conformal invariants of minimal surfaces in the sense

that V,(g o M;a) = Vp(M;0) for all g € P,, and a € R™ \ z(M).

Corollary 1. Let M C R™ be a properly immersed minimal
surface without boundary, dim M = p. Then both values Qy(M, a)
and V,(M, a) do not depend on choice of a € R™\ z(M) and for all

a € R"™ we have
1
; ‘/p(Mya') = QP(Mva') - wp(a#M)y

where w,, is the (p—1)-dimensional Hausdorff measure of unit sphere
gr-1.
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Proof. We observe that the first assertion of Corollary 1 follows
immediately from ¥ = @ and (2).

Let us now consider a € z(M) so that ¢ = a# M is a positive
integer. Reasoning similarly as above we get that J(¢)t!"? is a
positive monotonic function for ¢ — +0. Consequently, there exists

p= hng—)—

T o0 gp-1°

We consider any preimage my € z7!(a). Let O4(t) be an open com-
ponent of M,(t) which contains mg. It is clear that for sufficiently
small ¢ > 0 the sets Ok(t) are nonintersecting for all k£ < ¢q. Then
from (4) we have

JR) _ _ |za(m)*[*
Rp_l —p=0Pp lma(m)lp_‘_z- (9)
M,.(R)
But in virtue of the regularity of the immersion z(m),
1
lim - sup |zf(m) =0.
t—+0 ¢ mGOIk)(t)l (m)i
It follows that
T
i 1 /‘ |zg (m)| -1 measp_1(00k(t)) —w,  (10)
e B Y o T
80.(t)

and taking into consideration that for small ¢ > 0
q
OM,(t) = | 80k(2),
k=1
we obtain g = q wp.
Repeating the above arguments we conclude

1 1 J(R)

lim — = lim

)
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and by (9) and (10) Corollary 1 is proved.

From now on we write Q,(M) and V(M) instead of Q(M, a)
and V,(M, a) respectively, if a ¢ z(M).

Ezample 1. Let M, be a compact orientiable Riemannian sur-
face My of genus g > 0, and my, m,,...m; € M. Let ¢ be a
holomorphic 1-form on M, and h: My — CU{oo} a meromorphic
function. Then due to [7] the vector valued 1-form

@ = (91,92, ®a)* = (1 = A)G; i(1 + R?)¢; 2hC)’

gives a conformal minimal immersion
m
X(m)=Re / ¢
mo

which is well-defined on M} = M, \ {m,, m,,...,mi} and regular,
provided

1. No component of ® has a real period on M,

2. The poles {my,m,,...,m;} of h coincide with zeros of { and
the order of a pole my, of h is precisely the order of the corre-
sponding zero of (.

It is well-known in the case of finite total curvature that the asymp-
totic behaviour of X(m) in the neighbourhood of my is either of
flat or catenoid type [5]. In both cases the quantity @,(M) and,
consequently, V,(M) can be calculated directly and we have

V(M) = 2Q,(M) = 2xl.

We observe that the characteristic Q(M) does not depend on the
genus g of M,, and describes only the noncompactness nature of
M;.

Remark 1. It would be interesting to know in analogy with the
case of finite Gaussian curvature above, whether the set of possible
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values of the quantity Q(M) is discrete. It follows from the above
example that this is true for two-dimensional minimal surfaces of
finite topology.

2. The estimate for the number of ends of minimal sub-
manifolds

In this section we give a geometric application of the above
invariants.

Theorem 2. Let M be a properly immersed p-dimensional
minimal surface in R™ with compact boundary ¥, having finite pro-
jective volume Vo(M). Then M is a surface with finitely many
ends and

() < Zvm),

P

The proof of the theorem is based on the next auxiliary asser-
tion.

Lemma 1. Let D be a connected p-dimensional minimal surface

with boundary D C 8Bo(R,) U Bo(R;), Rz > Ri > 0. Then

mea,sp'D> ? (R22 Rl) . (11)

Proof of the lemma. We consider first the case when D is a
compact minimal submanifold such that 0 € D and 8D C 8By(R)
Let

A(t) = meas,(D N By(t)).
Then using

n

dive" (m) = Zdlvz, =) lefPP=p

=1 =1
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we shall have after integration

T
pA(t) = / diveT(m) = ¢ / 2 ml 5, a2
)]
o(t) DN&Bo(t)
that the function
PA(t) _ J(t)
T -1
is an increasing one. Moreover,
. PAR) _ . J(@) _
tl—l.r-}-lo Tt tl—l.r-qr-lo e (0#D),
and consequently, for all £ > 0 we have
meas,(D N By(t)) AR 1
> 292
thp - t];I-bTO tP P (O#D) (13)

and the first case of the lemma is proved.

Let us now assume that 0D C 0By(R;) U 0By(R;). Put R =
1(R1 + R;). We observe that the set D N 8B,(R) is not empty
by virtue of the connectivity D, and we let a be any point in D N
0Bo(R). Then for D; = DN By(r) we have

0D, C 0Bo(r)

for r = 1(R, — Ry). In view of (13) and the inclusion D; C D,
the above inclusion implies (11) and thus the proof the lemma is
concluded.

Remark 2. We note that Lemma 1 can be also obtained from
the general result of W.K.Allard [1].

Proof of Theorem 2. Without loss of generality we can arrange
that 0 ¢ M and, by Theorem 1, V,(M) = V,(M,0). We fix a
sufficiently large regular value R > 0 of f(m) = |z(m)| such that
L C Bo(R).

Let Dy,...,Dg... be the open components of M \ Mp(R). No-
tice that #(8D) C 8Bo(R) and A f(m) > 0. Then the maximum
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principle implies that the D), are domains with noncompact clo-
sure. Moreover, it follows from the regularity of R that the number
I = I(R) of components Dj is finite, and it is nondecreasing with
respect to R. Put for ¢t > R,

Ji(t) = |27 (m)].

BBo(t)nD,,

o | -

Then reasoning similarly as in the proof of Theorem 1 we arrive at
the inequality

S0 = J(0) < e, (14)

k=1
On the other hand, applying Lemma 1, we have

— P
meas,{m € Dj : |z(m)| < t} > M,
p2r
and after summing over all k£ <1 we obtain that

lw, »
measy(Mo(t) \ Mo(R)) > ;2—;(t — R)*.

Using (12) and (14) we have the sequence of inequalities:

l
St = R)? < meas,(Mo(t) \ Mo(R)) < meas,(Mo(t)) =
) _ M
p ~ p '’
and after dividing by t? and letting ¢ — oo, we obtain
P
(R)=1< LMZ
Wp

Next, from the fact that the integer-valued function I(t) is nonde-
creasing, we conclude that it is stabilized, i.e. I(R) = const for
sufficient large R.



TKACHEV 825

Let F C M be an arbitrary compact subset. Using again the
maximum principle and the properness of the immersion z(m)
we obtain that the number of componentsof M \ F with
noncompact closure is a nondecreasing function of the compact set
F. Therefore, £(M) = lim,_ I(t) and the theorem is proved.

Corollary 2. Let M be a properly immersed p-dimensional
minimal surface without boundary having finite projective volume.
Then M 1is a surface with finitely many ends and

Qp(M)2Pp .

Wp

(M) <

3. The bounded integral-geometric averages and the finite-

ness of the number of ends of minimal submanifolds

In this section we discuss certain sufficient conditions for the
finiteness of the projective volume for minimal submanifolds with
arbitrary codimension.

Suppose first that M is a hypersurface in R®. Then specifying a
point b € R™\ z(M) we can introduce the counting function N (e,b)
for the multiplicity of the radial projection relative to b, setting for
any unit direction e € R"

N(e,b) = Z a#tM = #z7Y(Ly(e) Nz(M)),

aeLb(e)

where L(e) is a ray with the origin at b directed as e. The number
N (e, d) can be interpreted as the multiplicity of the covering

—b
™ © M- Sn-ly "b(y) = Tz—:’TI, (15)

at a point e.

If codimM > 1, then the image of M after projection (15) is a
null-measure subset in $™* and the second definition of N (e, b) is
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meaningless. Therefore we give the following generalization of the
first definition.

Let G2(b) be the Grassman manifold of all nonoriented (n —
p)-dimensional planes v passing through b. Then G2(b) can be
equipped with the unique Haar measure dy which is invariant under
the action of the motion subgroup preserving b, and normalized by

/ dv = 1.
Gh(b)

Let R > 0. By Sard’s theorem we know that for dy-almost all
planes v € G(b) the set of the preimages z~!(z(M) N v N By(R))
is a discrete one. Put

N(b,7;R) = #z~'(z(M) N~ N By(R)),
- the cardinality of the corresponding set. The quantity
N(bR) = _/ N (b,7; R)dy
GA(b)

can now be interpreted as “the average multiplicity” of the intersec-
tion of (n — p)-dimensional planes with the part of M distant from
b not further than R. Moreover, N(b; R) is an increasing function
of R and hence there exists a finite or infinite limit

N(b) = I%im N(b;R).
Lemma 2. Let M be a p-dimensional properly immersed min-
imal surface in R™ without boundary and b ¢ M. Then
1
QM) < 3 N (Eapis, (16)

where wpy, is the p-dimensional Hausdorff measure of unit sphere

SP.
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Proof. Without loss of generality we can assume that b = 0 .
We specify R > 0 and denote as above

Mo(R) = {m € M : |z(m)| < R}.
We consider the composition
o: M 3SR\ {0} 5 S,

where 7 is defined as in (15) with & = 0. In order to find the
Jacobian det(do) of the map o at m we observe that

dom = dTy(m) 0 ATy : Tn M — T,,(m)S""l.

By direct calculation one can show that

X —m(a)(X,m(a))

la|

drq(X) =

’

for all a € R™\ {0} and X € T,R". Hence for any Y € T,, M
Y - 3(m)(v,5(m))
|z(m)]

where Z(m) = z(m)/|z(m)| and we identify Y with dz,(Y) and
T M with a subspace of Ty(m)R™ = R™ through the isometry dz,,.
Choose an orthonormal basis Y3,...,Y, in T,, M. We then have

dog(Y) =

det?(doy,) = (w, w)
where
w=do, (Y1) ANdom(Y2) A ... Adon(Y,) =
=[] (YA —2(11,Z)) A ... A (Y,. z(Y;, %))
= |:c|"’(Y1/\Y3/\.../\Y;,—zp:Y1/\. CAYi  AZAYiA. . AY,(E,Y5))

=1

i=1
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_Z}’I _1/\1! AK+1 Yp(51K>)

=1
and consequently,

detz(dam) | (m)lz

Ja(m)|?”
Thus we obtain

deitdon)| = Ll =

(17)

the required expression for the Jacobian of do,,. By the change of
coordinates formula we obtain from (17)

)l e ()

p+2 — +1
by T = Tamlp
= [ ldetdom)l = [ x(s)are(s), (18)
M) o (M(R)

where x(s) is the cardinality of the preimage o=*(s) N M(R) for the
given s € o(M(R)) C S™! and H? is the corresponding Hausdorff
measure on o(M(R)). According to the theorem of Federer ([3],
Theorem 3.2.48), we conclude that for every HP-measurable and
(HP, p)-rectifiable set F C S™~! and positive summable function f

on F
[ fae@ =22 [ ponpa, 09

s€F YEGR(0)

where f*(y N F) = X,c,nr f(s) is well-defined function for dv-
almost all planes v € G2(0). Then it follows from (18) and (19)

|zt (m)[*

t - w.
|z(m)|pt? < "2+1 / #o7 [yno(M(R))|dy = p2+1/\f(0,R),
M(R) v€GH(0)

and taking R — oo we arrive at the required estimate (16).

Thus using the previous lemma and Corollary 2, we have
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Corollary 3. Let M be a properly immersed p-dimensional
minimal surface in R™ without boundary. Suppose that for some
point b € R™ the cardinality of the set of intersection points (taking
into account multiplicity) of any v € GE(b) and =z(M) does not
exceed k. Then M is a manifold with finitely many ends and

U(M) < ke,
where
p~—1
& = 27 (p+ VAT (L2 r-1(BE2) - T Pon
wp

and I' is the Euler gamma-function and wpy, is as in Lemma 2.

Corollary 4. Let M be a properly embedded p-dimensional
minimal hypersurface without boundary. Assume that M 1is starlike
with respect to some point in RP*1, Then the number of ends £(M)
satisfies

{(M) < 2,

where the constant c, is from the previous lemma.
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