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Summary

Multiple viruses are widely studied because of their negative effect on the health of
host as well as on whole population. The dynamics of coinfection is important in
this case. We formulated a SIR model that describes the coinfection of the two viral
strains in a single host population with an addition of limited growth of susceptible
in terms of carrying capacity. The model describes five classes of a population: sus-
ceptible, infected by first virus, infected by second virus, infected by both viruses and
completely immune class. We proved that for any set of parameter values there exist
a globally stable equilibrium point. This guarantees that the disease always persists
in the population with a deeper connection between the intensity of infection and
carrying capacity of population. Increase in resources in terms of carrying capacity
promotes the risk of infection which may lead to destabilization of the population.
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1 INTRODUCTION

Coinfection with multiple strains in a single host is very common. Viral diseases such as AIDS/ HIV, Dengue fever, Hepatitis
B and C are the great threats to human lives. Multiple strains of these viruses made the disease more sever and complicated to
control. Sometimes coinfection may occur with multiple disease in one host such as HIV and Hepatitis B2,3, HIV and Hepatitis
C4, Malaria and HIV5, DENV and ZIKV6, ZIKV and CHIKV7.
Mathematical modelling of infectious diseases is an efficient tool for studying the dynamics of various virulent diseases which

benefits to develop the appropriate strategies to control possible outbreaks of diseases. One of the most significant aspect of
studying multi-strain epidemic models is to identify those conditions which lead to the coexistence of different strains. The
dynamics of coinfection is important in this case, because in case of co-infection treatment against one strain may agitate the
other8.
Many mathematical studies exist on interaction of multiple strains such as dengue virus9,10, Influenza11, human papilloma

virus12 and multiple disease such as HIV/malaria13, HIV/pneumonia14,15, Malaria/Cholera16. Allen et al.17 studied a SI model
with density dependent mortality and coinfection in a single host where one strain is vertically and the other is horizontally
transmitted. The model has application on hantavirus and arenavirus. An ODEs model of co-infection was designed by Zhang et
al18 to study two parasite strains on two different hosts to know the sustainability and proliferation of these strains in response to
variability in mode of action of parasites and its host types. Bichara et al19 proposed SIS, SIR and MSIR models with variable
population, and n different pathogen strains to study that under generic conditions a competitive exclusion principle holds. A two
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disease model was also used by Martcheva and Pilyugin20 to study dynamics of dual infection by considering time of infection
of primary disease.
Castillo et al21 analysed a SIS model on sexual transmitted disease by two hostile strains. Females with different susceptibility

level to any of the virulent strain were separated into two groups. Stability analysis was performed to identify conditions for the
co-existence and competitive exclusion of the two strains. Gao et al.8 studies a SIS model with dual infection. Simultaneous
transmission of infection and no immunity has been considered. The study revealed that the coexistence of multiple agents
caused co-infection and made the disease dynamics more complicated. It was observed that coexistence of two disease can only
occur in the presence of coinfection. In above models they considered that the number of births per unit time is constant.
In22 Sharp et al proposed a model for chronic wasting disease with density dependence to study the effect of density depen-

dence and time delay on wildlife population and observed that more frequent outbreaks of disease are caused by increased
carrying capacity which leads to the disruption of a deer population. In contrast to the previous studies, we formulate a SIR
model with coinfection and limited growth of susceptible population to study the effects of carrying capacity on disease dynam-
ics. We also carried out global stability analysis using a generalized Volterra function for each stable point to study the complete
dynamics of disease. The model was formulated and some of our results were recently announced in23. We analyse the model
with the possibility of transmission of two strains simultaneously. However, contrary to [11], to diminish the complexity of
model and to study the global behaviour of the system, the reduction of the system is needed to some sense. So we assume that
there is no interaction between single strains, since the co infected class is always the largest class. Our model also includes the
fact that coinfection can occur as result of interaction between co infected class and single infected class and co infected class
and susceptible class. We analyse a SIR model with cross immunity. In Sections 3 and 9 we characterize all stable equilibrium
points and give the results regarding global stability of all equilibrium points. In section 10 we analyse the effect of carrying
capacity on disease dynamics.

Acknowledgement. The authors would like to thank the reviewer for his/her detailed comments and suggestions for the
manuscript.

2 FORMULATION OF THE MODEL

We consider a SIR model with the recovery of each class and assume that infected and recovered populations can not reproduce.
A susceptible individual can be infected with both stains as a result of contact with co infected person. The disease induced death
rate is ignored. We also assume that the co-infection can occur as a result of contact with the co-infected class. This process is
illustrated in Fig. 1 .
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FIGURE 1 Flow diagram for two strains coinfection model.
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The corresponding SIR model is then described by the ODE system as follows:

S′ = (b(1 − S
K
) − �1I1 − �2I2 − �3I12 − �0)S,

I ′1 = (�1S − �1I12 − �1)I1,
I ′2 = (�2S − �2I12 − �2)I2,
I ′12 = (�3S + �1I1 + �2I2 − �3)I12,
R′ = �1I1 + �2I2 + �3I12 − �′4R.

(1)

Here and in what follows we use the following notation:

• S represents the susceptible class,

• I1 and I2 represent infected classes from strain 1 and strain 2 respectively,

• I12 represents co-infected class,

• R represents the recovered class,

• b is the birthrate in the population,

• K is a carrying capacity,

• �i is the recovery rate from infected class i,

• �i is the reduced death rate of class i,

• �i is the transmission rate of strain i (including the case of coinfection),

• �i is rate at which infected from one strain getting infection from co-infected class i.

Let us make some natural comments about the present model. First we suppose (and it also follows from (1)) that there
is no interaction between strain 1 and strain 2. According to the definition of the SIR model given in1, the individuals upon
recovery leave the infected class and do not play any further role in the dynamics. This is the main characteristic of this type
of compartmental model. We follow this definition and assume that the population carry life-long immunity to a disease upon
recovery, so that R variable is not presented in first four equations.
Note also that, to make mathematical analysis easy, we combine the terms �i + �′i , i = 1, 2, 3, where �

′
i are proper death rates

of class i, and denote them by �i. It is also reasonable to assume that the death rate of the susceptible class is less or equal than
the corresponding reproduction rate because otherwise population will die out quickly. Therefore we assume always that

b − �0 > 0. (2)

Furthermore, the system is considered under the natural initial conditions

S(0) > 0, I1(0) > 0, I2(0) > 0, I12(0) > 0. (3)

Indeed, it follows from the general theory of (1) that 1) any integral curve with (3) is staying in the non negative cone for all
t ≥ 0, and, moreover, 2) if S(0) = 0 or I�(0) = 0 for some index � then the corresponding coordinate will vanish for all t ≥ 0.
Finally, note also that since the variable R is not presented in the first four equations, we may consider only the first four

equations of system (1). Then R(t) can be easily found by integrating the last (linear in R) equation in (1).
To make a rigorous mathematical analysis of (1) it is convenient to keep the following unifying notation:

S = Y0, I1 = Y1, I2 = Y2, I12 = Y3.

Then the first four equations of (1) can be rewritten in a compact Lotka-Volterra type form:
dYk
dt

= Fk(Y ) ⋅ Yk, k = 0, 1, 2, 3, (4)

where we denote
F (Y ) = −q + AY , (5)
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with

F (Y ) =

⎛

⎜

⎜

⎜

⎜

⎝

F0(Y )
F1(Y )
F2(Y )
F3(Y )

⎞

⎟

⎟

⎟

⎟

⎠

, q =

⎛

⎜

⎜

⎜

⎜

⎝

−b + �0
�1
�2
�3

⎞

⎟

⎟

⎟

⎟

⎠

, A =

⎛

⎜

⎜

⎜

⎜

⎝

− b
K
−�1 −�2 −�3

�1 0 0 −�1
�2 0 0 −�2
�3 �1 �2 0

⎞

⎟

⎟

⎟

⎟

⎠

, Y =

⎛

⎜

⎜

⎜

⎜

⎝

Y0
Y1
Y2
Y3

⎞

⎟

⎟

⎟

⎟

⎠

(6)

A point Y = (Y0, Y1, Y2, Y3) is called an equilibrium point of (4) if

YiFi(Y ) = 0, 0 ≤ i ≤ 3. (7)

The following ratios play an essential role in our analysis:

�i ∶=
�i
�i
, 1 ≤ i ≤ 3.

We shall always assume that the strains 1 and 2 are different in the sense �1 ≠ �2. Indeed, if �1 = �2, it follows from the second
and the third equations in (1) that the behaviour of the system lose the structural stability (i.e. the qualitative picture drastically
depends on small perturbations of the system parameters, in our case on the relations between �i, �i and �i).
Then by change of the indices (if needed) we may assume that

�1 < �2. (8)

In other words, (8) means that strain 1 is more aggressive than strain 2. Furthermore, it is natural to assume that the transmission
rate of coinfection is always less than the transmission rates of the viruses 1 and 2, while the death rates �i are almost the same
for different classes (as population groups). This makes it natural to assume the following hypotheses:

�1 < �2 < �3. (9)

The vector of fundamental parameters

p = (b,K, �i, �j , �k) ∈ int(ℝ11
+ ), where 0 ≤ i ≤ 3, 1 ≤ j ≤ 3, 1 ≤ k ≤ 2, (10)

is said to be admissible if (9) holds.
A fundamentally important parameter for our study is the modified carrying capacity defined by

S2 ∶= K(1 −
�0
b
) > 0. (11)

Note that the modified carrying capacity is always less than the carrying capacity. It expresses the (susceptible) population size
in absence of any infection. More precisely, it follows from (1) that

E2 ∶= (S2, 0, 0, 0)

is an equilibrium point. Then E2 represents the ‘healthy’ state1, i.e. the equilibrium state with no infection and coinfection.

3 EQUILIBRIUM POINTS

Below we use the standard vector order relation: given x, y ∈ ℝn,

• x ≤ y if xi ≤ yi for all 1 ≤ i ≤ n,

• x < y if x ≤ y and x ≠ y, and

• x ≪ y if xi < yi for all i.

Then ℝn
+ denotes the nonnegative cone {x ∈ ℝn ∶ x ≥ 0} and for a ≤ b, a, b ∈ ℝn, [a, b] = {x ∈ ℝn ∶ a ≤ x ≤ b} is the closed

box with vertices at a and b. By 0 we denote the origin in ℝn.
By (p) we denote the set of the equilibrium points of (4) with nonnegative coordinates, i.e. those Y ∗ = (Y ∗0 , Y

∗
1 , Y

∗
2 , Y

∗
3 ) ≥ 0

satisfying
Y ∗i Fi(Y

∗) = 0, 0 ≤ i ≤ 3. (12)

1To explain the natation: we denote by E1 = 0 the trivial equilibrium point and by E2 the first nontrivial equilibrium state, see also (34) below
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One always has the trivial equilibria
E1 ∶= 0 ∈ (p)

and the healthy equilibrium state
E2 ∈ (p),

so that (p) is always nonempty. The lemma below show that the value of the susceptible class Y ∗0 for the healthy equilibrium
state E2 is the largest possible among all equilibrium points Y ∗.

Lemma 1. If Y ∗ ≠ 0 is an element of (p) then
0 < Y ∗0 ≤ S2, (13)

where the (above) equality holds if and only if Y ∗1 = Y
∗
2 = Y

∗
3 = 0. Furthermore,

�1 ≤ Y ∗0 ≤ min{S2, �3}, (14)

unless Y ∗ = (S2, 0, 0, 0). Also the following balance relations hold:

�1Y
∗
1 + �2Y

∗
2 + �3Y

∗
3 = b

K
(S2 − Y ∗0 ) (15)

�1Y
∗
1 + �2Y

∗
2 + �3Y

∗
3 = b

K
(S2 − Y ∗0 )Y

∗
0 . (16)

In particular,
max
0≤i≤3

Y ∗i ≤ b
K
max{ 1

�1
, 1
�2
, 1
�3
, b − �0} (17)

Proof. Suppose first that Y ∗ ≠ 0 and Y ∗0 = 0. If Y
∗
1 ≠ 0 then Y ∗3 = −�1∕�1 < 0, a contradiction. Therefore Y

∗
1 = 0. For the same

reason Y ∗2 = 0. Therefore it must be Y ∗3 ≠ 0. But in that case, it follows from the last equation in (12) by virtue of Y ∗1 = Y
∗
2 = 0

that −�3 = 0, a contradiction also. Therefore Y ∗0 ≠ 0, thus it is positive, which proves the left inequality in (13). Next, since
Y ∗0 ≠ 0, the relation (15) follows immediately from the first equation in (12). Also, summing up all the four equations in (12)
yields (16). Next, since Y ∗i ≥ 0 it follows from (16) that S2 − Y ∗0 ≥ 0, which proves the second inequality in (13). Finally, if
Y ∗ ≥ 0 then dividing (16) by (15) we obtain

Y ∗0 =
�1Y ∗1 + �2Y

∗
2 + �3Y

∗
3

�1Y ∗1 + �2Y
∗
2 + �3Y

∗
3
. (18)

The latter expression is the ratio of two linear functions with positive coefficients. It is also zero degree homogeneous, hence
its maximal/minimal values are attained at the simplex Π ∶= �1Y ∗1 + �2Y

∗
2 + �3Y

∗
3 = 1. It follows from the linearity of the

numerator that
max
ℝ3
+

�1Y ∗1 + �2Y
∗
2 + �3Y

∗
3

�1Y ∗1 + �2Y
∗
2 + �3Y

∗
3
= max

Π
(�1Y ∗1 + �2Y

∗
2 + �3Y

∗
3 ) = max{

�1
�1
,
�2
�2
,
�3
�3
} = �3,

and similarly

min
ℝ3
+

�1Y ∗1 + �2Y
∗
2 + �3Y

∗
3

�1Y ∗1 + �2Y
∗
2 + �3Y

∗
3
= min

Π
(�1Y ∗1 + �2Y

∗
2 + �3Y

∗
3 ) = min{

�1
�1
,
�2
�2
,
�3
�3
} = �1,

which together with (18) and (13) implies (14). Using (15) one also easily obtains (17).

4 THE FINITENESS OF (P )

Following to24 we recall some standard terminology. Given a quadratic matrix A, we denote by A[�, �] the submatrix of entries
that lie in the rows ofA indexed by � and the columns indexed by �. If � = �, the submatrix is called principal. The corresponding
determinant det A[�, �] is called the principal minor. An n-by-n matrix has

(n
k

)

distinct principal submatrices of size k; i.e.
totally, 2n − 1 principal submatrices of order 1 ≤ k ≤ n.
Since the left hand side of (12) is a quadratic polynomial map in Y ∗, it follows from the standard algebraic geometry argument

based on Bezòut’s theorem that (12) has either (i) infinitely many or (ii) at most 24 = 16 distinct solutions, counting the trivial
point E0 ∶= 0. A simple analysis shows that under condition (9), (i) is not possible. Indeed, we have the following lemma which
can be justified by an elementary verification, but it has some several important implications.
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Lemma 2. Let A = (aij)0≤i,j≤3 be the matrix in (6). Then its determinant is

det A = Δ2, Δ ∶= �1�2 − �2�1, (19)

and the only zero principal minors det A[�, �] are for

� ∈  ∶= {(0, 1, 2), (1, 2, 3), (1, 2), (1), (2), (3)}

Let ℝ4(�) denote the subset
ℝ4
+(�) = {x ∈ ℝ4

+ ∶ xi = 0 for all i ∈ �}.
For instance,ℝ4

+(∅) = ℝ4
+ andℝ

4
+(2, 3) is the face consisting of the point with coordinates (x1, 0, 0, x4), where x1, x4 ≥ 0. Given

a subset � ⊂ {1, 2, 3, 4}we denote by (p, �) the subset of (p) ⊂ ℝ4
+(�), and by �̄ we denote the complement �̄ = {1, 2, 3, 4}⧵�.

Here are some important observations following from Lemma 2.

Corollary 1. If � = ∅ then (p, ∅) consists of at most one point when Δ ≠ 0; if Δ = 0 then (p, ∅) = ∅. In particular, the
number of equilibrium points in the interior int(ℝ4

+) is at most one.

Proof. Indeed, the only nontrivial part here is the claim about the zero determinant (in this case, a priori maybe infinitely many
solutions). To show that Δ = 0 implies (p, ∅) = ∅, we assume by contradiction that there is some Y ∈ (p, ∅). Setting
� ∶= �1∕�1 = �2∕�2 one readily obtains from the second and the third equations in AY = q that Y0 − �Y3 =

�1
�1
= �2

�2
, which

contradicts to (8).

Corollary 2. card((p)) ≤ 8.

Proof. By Bezòut’s theorem we have card((p)) ≤ 8. Next, it is clear from (12) and Corollary 1 that for any admissible values
of p in (10) there can at most one equilibrium point exist in int(ℝ4

+). Any other equilibrium points must have zero coordinates.
Next, since by Lemma 1 Y ∗0 ≠ 0 except Y ∗ = 0, at most 8 = 1+3+3+1 distinct nonnegative equilibrium points may exist.

5 BASIC FACTS ABOUT THE LCP

An essential place in the further analysis plays the signs of Fi(Y ), where Y is an equilibrium point of (4). In particular the
situation when all coordinates are nonpositive is very distinguished. We have the definition.

Definition 1. An equilibrium point Y ∈ (p) of (4) is said to be F -stable if Fi(Y ) ≤ 0 for all 0 ≤ i ≤ 3.

Aswe shall see below, if p is admissible then there always exists a uniqueF -stable point. To prove the existence and uniqueness
we employ the LCP (linear complementarity problem) machinery. An application of the LCP to Lotka-Volterra systems is not
new and was firstly used by Takeuchi and Adachi25, see also26. On the other hand, in this paper we are interested primarily in
a finer structure of the F -stable points, namely how this set depends on the fundamental parameters of the system. To proceed,
we recall some basic facts about the linear complementarity problem.
The LCP (linear complementarity problem) consists of finding a vector in a finite dimensional real vector space that satisfies

a certain system of inequalities. Specifically, given a vector q ∈ ℝn and matrixM ∈ ℝn×n, the LCP is to find a vector z ∈ ℝn

such that

z ≥ 0, (20)
q +Mz ≥ 0, (21)

zT (q +Mz) = 0. (22)

We refer to27 for a comprehensive account of the modern development of LCP. recall some standard terminology and facts
following to27. A vector z satisfying the inequalities (20), (21) is called feasible. Given a feasible vector z, let

w = q +Mz.

Then z satisfies (22) if and only if ziwi = 0 for all i.
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The correspondence between the general LCP and our model is given by virtue of (6) and (7) as follows:
z↔ Y ∗

w↔ −F (Y ∗)
M ↔ −A
q ↔ q.

(23)

Indeed, we are interested in nonnegative equilibrium points, i.e. in those solutions of (7) which satisfy Yi ≥ 0, which is exactly
condition (20). Furthermore, in this dictionary, (7) becomes equivalent to equation (22). Finally, since by (5)

q +Mz = q − AY = −F (Y ) ≥ 0,

i.e. condition (21) is equivalent to saying that the corresponding equilibrium point Y is F -stable.
In summary, we have

Proposition 1. Y solves the LCP(−A, q) if and only if Y is an F -stable equilibrium point of (4).

The stability of (4) depends on the number of possible F -stable points of our model. In general, the structure of LCP(A, q)
may be very arbitrary. In some cases depending on the matrixM , however, one have a more strong information. Therefore, in
order to study this question we need to look at the matrixA in (6) more attentively. To this end, we make the following important
remark: since

A + AT =

⎛

⎜

⎜

⎜

⎜

⎝

− 2b
K
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

it follows that A is negative semi-definite in the sense of quadratic forms. Then it follows from the general LCP theory that the
following existence result holds for positive definite matrices:

Proposition 2 (Theorem 3.1.6 in Cottle27). If a matrixM is positive definite then the LCP(q,M) has a unique solution for all
q ∈ ℝn.

In the next section, we shall apply a perturbation technique to utilize Proposition 2 to derive the existence of an F -stable
point even for our semi-definite matrix A. In order to prove the uniqueness, we shall also need the following well-known result
which proof we recall for the convenience reasons.

Lemma 3. LetM be positive semi-definite in the sense of quadratic forms. Then the set of solutions of the LCP(M, q) is convex.

Proof of Lemma 3.. Let z and z̄ be any two solutions of LCP(M, q) and let � = az + bz̄, where 0 ≤ a = 1 − b ≤ 1. Then (20)
and (21) obviously hold for � . In order to verify (22) we note that zTw = z̄T w̄ = 0, wherew = q+Mz and w̄ = q+Mz̄. Hence

−z̄Tw − zT w̄ = (z − z̄)T (w − w̄) = (z − z̄)TM(z − z̄) ≥ 0.

Since z̄Tw ≥ 0 and zT w̄ ≥ 0, we conclude that actually the latter two inequalities are equalities, therefore z̄Tw = zT w̄ = 0.

�T (q +M� ) = (az + bz̄)T (aw + bw̄)
= a2zTw + b2z̄T w̄ + ab(z̄Tw + zT w̄)
= 0,

hence (22) holds true for � , and the lemma is proved.

6 THE EXISTENCE AND UNIQUENESS OF AN F -STABLE POINT

We shall prove the main result (Theorem 1) of this section. The proof of existence and uniqueness of an F -stable point relies on
the analysis of the associated linear complementarity problem for a perturbed system (4). We make an essential use of a special
structure of the matrix A in (6). Note, however, that for a general positive semi-definite matrixM the uniqueness of an F -stable
point is failed.

Theorem 1. Let A be the matrix in (6) and let p be an admissible vector. Then there exists a unique F -stable point of (4).
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Proof. We consider a perturbation of (4). LetM = I" − A, where I ∈ ℝ4×4 is the unit matrix. ThenM is positive definite for
any " > 0. Let z = z(") denote the unique solution accordingly to Proposition 2. Then using the dictionary (23) we obtain

z(") = (z0("), z1("), z2("), z3(")) ≥ 0 (24)
w(") ∶= q + (I" − A)z(") ≥ 0 (25)

wi(")zi(") = 0, 0 ≤ i ≤ 3. (26)

Our first claim is that max1≤i≤3{zi(")} is uniformly bounded when "→ 0+. We have

0 =
3
∑

i=0
wi(")zi(")

=
3
∑

i=0
(q + (I" − A)z("))izi(")

= b
K
z20(") +

3
∑

i=0
qizi(") + "zi(")2,

hence we find from (6) that

(b − �0)z0(") =
b
K
z20(") +

3
∑

i=1
�izi(") + "

3
∑

i=0
zi(")2. (27)

Since the sums in the right hand side are nonnegative, we have (b − �0)z0(") ≥
b
K
z20("), thus

z0(") ≤
K
b
(b − �0) = S2, (28)

i.e. z0(") is uniformly bounded when "→ 0+. Using this in (27) yields

�max{z1("), z2("), z3(")} ≤
3
∑

i=1
�izi(")

≤
3
∑

i=1
�izi(") + "

3
∑

i=0
zi(")2 +

b
K
z20(")

= (b − �0)z0(")
≤ (b − �0)S2,

(29)

where � ∶= min{�1, �2, �3}. Therefore,

max{z1("), z2("), z3(")} ≤
(b − �0)S2

�
(30)

hence the first claim follows from (28) and (30).
Now, with the boundedness in hands, we conclude that there exists a sequence "j → 0+ such that z("j) converges, say

lim
"j→0+

z("j) = Y ∶= (Y0, Y1, Y2, Y3).

Then for continuity reasons we have

Y ≥ 0 (31)
F (Y ) = −q + AY ≤ 0 (32)

YiFi(Y ) = 0, 0 ≤ i ≤ 3. (33)

Therefore Y is an F -stable equilibrium point of (4).
Our next claim is that there thus obtained F -stable equilibrium point is unique. In order to prove this, note that by Lemma 3

the set of F -stable equilibrium points is convex. Suppose that Y ≠ Y ′ are two F -stable equilibrium points of (4). Then the
segment between Y and Y ′ consists of F -stable equilibrium points. In other words, all points Y ′ = Y + vt, where 0 ≤ t ≤ 1 and
v = Y ′ − Y are F -stable equilibrium points. First note that Y0 = Y ′0 . Indeed, applying (16) to Y ∗ = Y + vt and differentiating
twice the obtained identity with respect to t we obtain − 2b

K
v20 = 0, hence v0 = Y

′
0 − Y0 = 0.
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All other three coordinates of the segment are a linear functions of t: Y ∗i (t) ∶= Yi + (Y ′i − Yi)t, 1 ≤ i ≤ 3, hence they are
either identically zero or have at most one zero. Therefore, modifying, if needed the ends Y and Y ′, we may assume that for
each i exactly one condition holds: (a) either Y ∗i (t) ≡ 0, or (b) Y

∗
i (t) ≠ 0 for all 0 ≤ t ≤ 1. Note also that at least one coordinate

i must satisfy (a). Indeed, by the first claim of Corollary 1, the number of equilibrium points in the interior int(ℝ4
+) is at most

one, therefore, for continuity reasons, none of Y and Y ′ can lie in int(ℝ4
+).

Thus, the above observations imply that Y and Y ′ must lie on the same face. Since by Lemma 1 Y0 = Y ′0 ≠ 0, the face equation
must be {Yk = 0 ∶ k ∈ K} for some (nonempty!) subset K ⊂ {1, 2, 3}. On the other hand, the nonzero coordinates Y ∗i (t) must
satisfy (15)–(16). Since the latter equations are linearly independent by (8), and the number of nonzero Y ∗i (t) is ≤ 3 − 1 = 2 (at
least one must satisfy the condition (a)!), we conclude that there exists at most one solution. This contradicts to the infinitely
many points in the segment between Y and Y ′, and thus finishes the proof of the uniqueness.

7 A FINER STRUCTURE OF (P )

In what follows, we are interested in the equilibrium points with non-negative coordinates only. According to Corollary 2, the
set of equilibrium points is finite (there are at most 8 distinct points in ℝ4

+). Thus, to find which of these points is actually F -
stable, is the choice problem: it suffices to check that the corresponding F -coordinates are nonpositive. Note that by Theorem 1
such a point must be unique! We make this analysis below.
Let p be an admissible parameter vector and let Y ∗ = Y ∗(p) denote the unique F -stable equilibrium point of (4). It is easily

to see that the trivial equilibrium 0 is never F -stable, i.e. the origin is the extinction equilibrium. Thus, by (13)

0 < Y ∗0 = Y
∗
0 (p) ≤ S2.

The identically zero coordinates of an equilibrium point is called its zero pattern. It follows from the structure properties of
the matrix A that if p is admissible then there can exist at most one point with a given zero pattern. A simple inspection yields
the following nontrivial equilibrium points:

E2 = (S2, 0, 0, 0 )
E3 = (S3, (S2 − S3)

b
K�1

, 0, 0 )
E4 = (S4, 0, (S2 − S4)

b
K�2

, 0 )
E5 = (S5, 0, 0, (S2 − S5)

b
K�3

)
E6 = (S6, (S5 − S6)

�3
�1
, 0, (S6 − S3)

�1
�1

)
E7 = (S7, 0, (S5 − S7)

�3
�2
, (S7 − S4)

�2
�2

)

E8 = (S8, (S8 − S7)
b�2
KΔ
, (S6 − S8)

b�1
KΔ

(S4 − S3)
�1�2
Δ

),

(34)

where
Δ = �2�1 − �1�2

and Sk = Sk(p) ∶= (Ek)0 are the susceptible coordinates of the corresponding equilibrium state Ek given respectively by

S3 = �1 < S4 = �2 < S5 = �3 (35)

(S2 − S6)
b
K�1

= (S5 − S3)
�3
�1
, (36)

(S2 − S7)
b
K�2

= (S5 − S4)
�3
�2
, (37)

S8 =
�
Δ
, (38)

� ∶= �2�1 − �1�2.

Note that modulo (35), the formulae (36) and (37) define explicitly S6 and S7 respectively. We also emphasize that E8 exists
(but maybe lie outside (p)) if and only if Δ = �2�1 − �1�2 ≠ 0 (cf. with Corollary 1).
The equilibrium point E2 is the disease free equilibrium, while the remaining equilibria Ek, k ≥ 3 are all endemic equilibria.
The above points Ek (except for E8) are well defined for all values of parameters, they can lie or not in ℝ4

+, but only one of
them is F -stable. The latter, however, must be understood in the sense that for certain values of parameter p it may happen that
two different notations Ek coincide as points, for example E3(p) = E6(p). We discuss this in more details below in Section 9.
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Remark 1. Note that by (9)
� − �1Δ = (�2 − �1)�2�1 > 0,

in particular, � and Δ cannot vanish simultaneously.

Note also that the parameters S2,… , S8 are dependent. On the other hand, we want to keep S2 as a fundamental parameter
of the model (the modified carrying capacity), and also consider S3, S4 and S5 as the fundamental parameters satisfying the
constraint (8). Then it is convenient to think of S5, S7 and S8 as depending on the first four fundamental parameters. It worthy
to mention also that one has from (36)-(37) the following additional relations:

�3Δ − � = (S5 − S8)Δ = (S6 − S7)
b�1�2
�3K

, (39)

� − �1Δ = (S8 − S3)Δ = (S4 − S3)�1�2, (40)
� − �2Δ = (S8 − S4)Δ = (S4 − S3)�2�1. (41)

Note that these formulae are well-defined even if E8 does not exist (i.e. Δ = 0).
To study the F -stability we also write down the corresponding F -parts:

F (E2) = (0, (S2 − S3)�1, (S2 − S4)�2, (S2 − S5)�3 )
F (E3) = (0, 0, (S3 − S4)�2, (S6 − S3)

�3b�1
K�1

)

F (E4) = (0, (S4 − S3)�1, 0, (S7 − S4)
�3b�2
K�2

)

F (E5) = (0, (S5 − S6)
b�1
K�3

, (S5 − S7)
b�2
K�3

, 0 )
F (E6) = (0, 0, (S6 − S8)

Δ
�1
, 0 )

F (E7) = (0, (S8 − S7)
Δ
�2
, 0, 0 )

F (E8) = (0, 0, 0 0 )

(42)

Using the obtained relation and the existence/uniqueness result, one may easily by inspection to find which of the seven points
Ei is F -stable for a given p. It is rather trivial task for a concrete value of p, but, of course, an explicit description of k(p), where
Ek(p) is F -stable, is a more nontrivial problem. Still, it is possible to get some simple conditions to outline the main idea.

Proposition 3. The following F -stability conditions holds:

(i) the point E2 is F -stable if and only if S2 ≤ �1, i.e. when the carrying capacity is small enough;

(ii) the point E3 is F -stable if and only if S6 ≤ �1 ≤ S2;

(iii) the point E5 is F -stable if and only if
�3 ≤ min{S2, S6, S7};

(iv) the point E6 is F -stable if and only if

(S6 − S8)Δ ≤ 0,
�1 ≤ S6 ≤ �3,

(v) the point E7 is F -stable if and only if

(S8 − S7)Δ ≤ 0,
�2 ≤ S7 ≤ �3,

(vi) the point E8 is F -stable if and only if

Δ > 0,
max{0, S7} ≤ S8 ≤ S6

In the borderline cases (when some inequality becomes an equality), the corresponding equilibrium points coincide; for example,
if S2 = �1 then E2 = E3.
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Proof. First, it easily follows from (42) that E2 ≥ 0 always, while F (E2) ≤ 0 if and only if Si ≥ S2 for all i = 3, 4, 5. By
the uniqueness of an F -stable point, this immediately implies (coming back to the �-notation in (35)) that (i) holds. Similarly,
E3 ≥ 0 if and only if S2−S3 ≥ 0, i.e. S2 ≥ �1. On the other hand, since (S3−S4)�2 = (�1−�2)�2 < 0, we see that F (E3) ≤ 0 is
equivalent to inequality S6−S3 ≤ 0, i.e. S6 ≤ �1. This implies (ii). Analysis of (iii)-(v) is similar. Finally, analysis ofE8 reduces
to the nonnegativity of its coordinates. The last coordinate must be nonnegative, hence (by virtue of S4 −S3 = �2 − �1 > 0) we
must have Δ > 0. This readily yields the desired inequalities.

We summarize the above observations be some remarks. According to what was done before, we a priori know that the
conditions of Proposition 3 are complementary to each other in the sense that they have no common (interior) points and give
together the whole set of admissible parameters. This, however, is very difficult to see from the explicit defining inequalities.
One reason for that is that the parameters Sk, k = 6, 7, 8 are dependent on the fundamental parameters.
Also, it is not a priori clear that any of the conditions in Proposition 3 are realizable for some p. In fact, it is an elemen-

tary exercise to verify that any of the Ek, k ∈ {2, 3, 5, 6, 7, 8} may be realizable for some admissible p. The reader can easily
verify this by expanding the explicit values for Sk, k = 6, 7, 8 in the above inequalities, but we do not give these rather cumber-
some expressions. Instead, a more important question is to study the dependence of the F -stable point on some distinguished
parameters like tha carrying capacity K . We consider this problem in more details below in Section 9.
Finally, as for many epidemiology models, the above results could also be interpreted as the threshold in terms of the basic

reproduction number R0, which is usually defined as the average number of secondary infections produced when one infected
individual is introduced into a host population where everyone is susceptible28. In the context of the present paper, the most
natural definition of the basic reproduction number for a virus would be similar to that considered by Allet et al in17. It follows
also that there are additional threshold values which depend on the dynamics of the population size at the equilibrium values,
see the discussion, cf.17 p. 198.

8 THE GLOBAL STABILITY

Now connect the concept of the F -stability to the Lyapunov stabilty. Recall that an equilibrium point Y ∗ = (Y ∗0 , Y
∗
1 , Y

∗
2 , Y

∗
3 ) ∈

(p) is called F -stable if Y ∗i ≥ 0 and Fi(Y ∗) ≤ 0 for any 0 ≤ i ≤ 3. An F -stable point Y ∗ is said to be degenerate if
Y ∗i = Fi(Y ∗) = 0 for some 0 ≤ i ≤ 3. In other words, an equilibrium point Y ∗ is degenerate if the total number of nonzero
coordinates of both Y ∗ and F (Y ∗) is less than 4.
The above terminology can bemotivated by the following observation. Given Y ∗ ∈ (p), we associate the generalizedVolterra

function29

VY ∗(y0, y1, y2, y3) =
3
∑

i=0
(yi − Y ∗i ln yi).

Then the time derivative of VY ∗ along any integral trajectory of (4) is given by

d
dt
VY ∗ ∶= (∇VY ∗)T

dy
dt

= − b
K
(y0 − Y ∗0 )

2 +
3
∑

i=0
Fi(Y ∗)yi. (43)

Therefore, if Y ∗ is an F -stable point of (4) then it is Lyapunov stable:
d
dt
VY ∗(y(t)) ≤ 0. (44)

The following elementary observation is a useful tool to sort away certain F -stable points.

Proposition 4. The equilibrium points E1 = 0 and E4 are never F -stable.

Proof. Indeed, F (E1)1 = b − �0 > 0 and (F (E4))2 = �1(�2 − �1) > 0.

Our principal result establishes the existence and uniqueness of an F -stable point.

Theorem 2. The F -stable point Y ∗(p) is globally stable, i.e. Y (t) → Y ∗(p) as t → ∞ for any solution of (1) with initial data
(3). Furthermore,

0 < min{S2, �1} ≤ Y ∗0 (p) ≤ min{S2, �3}.
In particular, Y ∗0 (p) ≤ �3 with the equality if and only if Y ∗(p) = E5.
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Remark 2. Note, however, that an explicit representation and the zero pattern of the corresponding F -stable point Y ∗(p) depends
in a tricky way on the fundamental parameter p. The proof of the global stability makes an essential use of the fact that Y0(t) has
a nonzero limit value. This allows us to obtain nontrivial first integrals which reduce the dimension of the !-limit set to 0.

Remark 3. The asymptotic behaviour of (1) maybe, however, rather complex if K = ∞ and will be treated somewhere else.
Note also that if K = ∞, the system (1) is no longer semi-definite but it has the pure skew-symmetric structure instead. More
precisely, the matrix A in (6) is skew-symmetric and can be thought of as a perturbation of the decomposable matrix

B =

⎛

⎜

⎜

⎜

⎜

⎝

0 −�1 0 0
�1 0 0 0
0 0 0 −�2
0 0 �2 0

⎞

⎟

⎟

⎟

⎟

⎠

.

The dynamic of perturbed Lotka-Volterra systems obtained by perturbation of B can be very complex and contain nontrivial
attractors in ℝ4, as the recent results of30 Part II show.

We begin by proving some auxiliary statements.

Proposition 5. If Y (t) is a solution of (4) satisfying (3) then

Y0(t) ≤
(

1
S2
(1 − e−(b−�0)t) + 1

Y0(0)
e−(b−�0)t

)−1

. (45)

In particular,
Y0(t) ≤ max{S2, Y0(0)} (46)

and
lim sup
t→∞

Y0(t) ≤ S2. (47)

Proof. It follows from the first equation of (4) that

Y ′0 − (b − �0)Y0 ≤ −
bY 20
K

,

which can be written as
(Y0e−(b−�0)t)′ ≤ −

b
K
e−(b−�0)tY 20 .

Integrating the latter inequality gives
e(b−�0)t

Y0
≥ b
K(b − �0)

(e(b−�0)t − 1) + 1
Y0(0)

,

which proves (45). Relations (46) and (47) are direct consequences of (45).

Proposition 6. If Y (t) is a solution of (4) with (3) then
3
∑

i=0
Yi(t) ≤ max{

3
∑

i=0
Yi(0),

Kb
4�̂
} (48)

for t ≥ 0, where �̂ ∶= min{�0, �1, �2, �3}. In particular, any solution of (4) with initial data (3) is bounded.

Proof. Summing up all equations of (4) gives

d
dt

3
∑

i=0
Yi(t) =

b
K
(S2 − Y0)Y0 −

3
∑

i=1
�iYi(t)

≤ b
K
(K − Y0)Y0 − �̂

3
∑

i=0
Yi(t).

Setting f (t) =
∑3
i=0 Yi(t) we find f

′(t) ≤ bK
4
− �̂f (t). By integrating the above equation we obtain the desired inequality.

Proof of Theorem 2. According to Theorem 1 there exists a unique F -stable point, we denote it by Y ∗. Let Y (t) be any solution
of (4) with initial conditions (3). First note that by (43), the Volterra function VY ∗(t) is nonincreasing for all t ≥ 0, therefore

VY ∗(Y (t)) ≤ VY ∗(0). (49)
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On the other hand, VY ∗(t) is a priori bounded from below. Indeed, it is easily verified that the function of one variable  a(x) =
x − a ln x is decreasing in (0, a) and increasing for x ∈ (a,∞), thus

 a(x) = x − a ln x ≥  a(a) = a − a ln a, x ∈ (0,∞)

(where the above inequality also holds in the limit case a = 0). It follows that

VY ∗(y) ≥ VY ∗(Y ∗), (50)

and the equality holds if and only if y = Y ∗. Thus, VY ∗(Y (t)) is uniformly bounded in ℝ4
+. Coming back to (43), note that by our

choice of Y ∗, all Fi(Y ∗) ≤ 0 and also Yi ≥ 0, therefore for any T > 0:
T

∫
0

b
K
(Y0(t) − Y ∗0 )

2 dt +
3
∑

i=0
|Fi(Y ∗)|

T

∫
0

|Yi(t)| dt = VY ∗(Y (0)) − VY ∗(Y (T )).

This immediately implies by the uniform boundedness of VY ∗(Y (t)) that

(a) the function Y0(t) − Y ∗0 ∈ L
2([0,∞));

(b) if Fi(Y ∗) ≠ 0 (i.e. Fi(Y ∗) < 0) then the function Yi(t) ∈ L1([0,∞)).

We have for any 0 ≤ i ≤ 3 that Yi(t) ≥ 0 and by Proposition 6 Yi(t) ≤ Mi < ∞ for all t ≥ 0. Therefore, it follows from (4)
that for each fixed i the derivative Y ′i (t) is uniformly bounded on [0,∞). Differentiating any equation in (4), we conclude by
induction that

for any 0 ≤ i ≤ 3, all derivatives Y ′i (t), Y
′′
i (t),… , Y (k)i (t), of any order k ≥ 1 are unifromly bounded in [0,∞). (51)

Combining (51) and (a) with Lemma 5 in Appendix, we conclude that the following limit exists:

lim
t→∞

Y0(t) = Y ∗0 . (52)

Recall also that since Y ∗0 ≠ 0 then
F0(Y ∗) = 0. (53)

Next, let I denote the subset of {1, 2, 3} such that Fi(Y ∗) ≠ 0 for some i ∈ I . Then by (12), Y ∗i = 0, and, on the other hand by
(b) we have Yi(t) ∈ L1([0,∞)). Applying Lemma 4 we find

lim
t→∞

Yi(t) = 0 = Y ∗i , i ∈ I. (54)

It remains to establsh that Yj(t) converges also for j ∈ J = {1, 2, 3} ⧵ I . Alternatively,

J = {j ≥ 1 ∶ Fj(Y ∗) = 0}.

Arguing as above and combining (51) with Corollary 3, we obtain

lim
t→∞

dk

dtk
Y0(t) = 0 for any k = 0, 1, 2,… . (55)

We have by (55) that
lim
t→∞

d
dt
Y0(t) = lim

t→∞
Y0(t)F0(Y (t)) = 0. (56)

Since limt→∞ Y0(t) = Y ∗0 ≠ 0, we obtain that
lim
t→∞

Y0(t)F0(Y (t)) = 0, (57)
hence

lim
t→∞

3
∑

i=1
�iYi(t) =

b
K
(S2 − Y ∗0 ). (58)

Since we also know that (54) holds true for any i ∈ I , we my simplify (58) to obtain

lim
t→∞

∑

j∈J
�jYj(t) =

b
K
(S2 − Y ∗0 ). (59)

On the other hand, since VY ∗(Y (t)) is nonincreasing and bounded, we similarly obtain

lim
t→∞

∑

j∈J
(Yj(t) − Y ∗j ln Yj(t)) = C, (60)
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where C is some real constant.
To proceed, we iterate (55) by virtue of (4). For example, the second derivative is obtained by

d2

dt2
Y0(t) =

d
dt
(Y0(t)F0(Y (t)) = Y ′0F0(Y ) + Y0

3
∑

i=0

)F0
)Yi

Y ′i (t)

= Y0

(

F 20 (Y ) +
3
∑

i=0
YiFi

)F0
)Yi

)

= Y0(F0),

where  is a Riccati type operator (g) = g2 +
∑3
i=0 YiFi

)g
)Yi
. Then (55) and (52) imply that

lim
t→∞

k(F0)(Y (t)) = 0, for all k = 0, 1, 2,…

For example, k = 1 yields by virtue of (52), (54), (53) and (57) that

lim
t→∞

∑

j∈J
�jYj(t)Fj(Y (t)) = 0. (61)

Next, note that if the cardinality of J is exactly one then the left hand side of (59) contains only one term, thus implying the
convergence of the corresponding J -coordinate. Therefore, we may assume without loss of generality that J contains at least
two indices.
We consider the two cases.
Case 1. Let J be maximal possible, i.e. J = {1, 2, 3}. Then it must be

F (Y ∗) = (0, 0, 0, 0).

we have from (58), (52), (61), (60) and explicit expressions for Fi that

lim
t→∞

G(Y (t)) = b
K
(S2 − Y ∗0 ), (62)

lim
t→∞

H(Y (t)) = 0, (63)

lim
t→∞

VY ∗(Y (t)) = C, (64)

where G(y) =
∑3
i=1 �iyi, and H(y) =

∑3
i=1 �iciyi + y1y3(�3 − �1)�1 + y2y3(�3 − �2)�2, and ci = �i(Y ∗0 − �i). Then (62)–(64)

implies that the !-set of the trajectory Y (t) is a subset of the variety defined by

G(y1, y2, y3) =
b
K
(S2 − Y ∗0 ), (65)

H(y1, y2, y3) = 0, (66)
VY ∗(y1, y2, y3) = C, (67)

We claim that the latter system has only finitely many solutions in ℝ3
+. Indeed, the left hand sides of (62)–(63) are algebraic

polynomials of degree 1 and at most 2 respectively. Therefore, (62)–(63) defines either a curve of order two, or a line, or a plane.
The latter is, however, possible only if the linear form � ∶=

∑3
i=1 �iyi −

b
K
(S2 − Y ∗0 ) divides H . Let us show that the latter is

impossible. Indeed, suppose that � dividesH , then must exist a linear function P of y such that
3
∑

i=1
�iciyi + y1y3(�3 − �1)�1 + y2y3(�3 − �2)�2 = (

3
∑

i=1
�iyi −

b
K
(S2 − Y ∗0 ))P .

On substitution y1 = y2 = 0 into the latter identity we obtain

�3c3y3 = (�3y3 −
b
K
(S2 − Y ∗0 ))P (0, 0, y3),

therefore S2 = Y ∗0 . But we know by Lemma 1 that the latter holds if and only if Y ∗ = E2 = (S2, 0, 0, 0) in which case we have

F (Y ∗) = F (E2) = (0, (S2 − �1)�1, (S2 − �2)�2, (S2 − �3)�3),

see (42). But by (9) there exist at least two nonzero coordinates in F (Y ∗), a contradiction with the initial assumption. This proves
that (62)–(63) define either a curve of order two or a straight line. Next, since at least one of Y ∗i is nonzero for i ≥ 1 (because
Y ∗ ≠ E2), it follows that eq. (67) is transcendent (contains a logarithm). A simple argument show that in that case (62)–(64)
must have at most finitely many (more precisely, ≤ 6) solutions. Thus the !-set is finite, implying for continuity reasons that the
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!-set is a point, i.e. all three limits limt→∞ Yi(t), 1 ≤ i ≤ 3, must exist. Then a standard argument reveals that the only possibility
here is that the limit point is Y ∗.
Case 2. It remains to consider the case when the cardinality is exactly two, i.e. J is obtained by eliminating some index i ∈

{1, 2, 3}. Write this as J = {j, k} such that {1, 2, 3} = {i, j, k}. By the made assumption, Fi(Y ∗) ≠ 0, limt→∞ Yi(t) = 0 = Y ∗i ,
and

Fj(Y ∗) = Fk(Y ∗) = 0.
Again, eliminating the trivial case Y ∗ = E2 we may assume that at least one of coordinates, say Y ∗j , is nonzero. This implies that
VY ∗(yj , yk) is a transcendent function. Repeating the argument in Case 1 we again arrive to the finiteness of the !-set, implying
the convergence of Y (t) to Y ∗. The theorem is proved completely.

9 TRANSITION DYNAMICS OF AN F -STABLE POINT

From the biological point of view, it is important to know how the dynamics of the F -stable equilibrium point Y ∗(p) depends
on the fundamental parameter p ∈ ℝ11. We have the following general result.

Theorem 3. The map p → Y ∗(p) is continuous for any admissible p. Furthermore, for any continuous perturbation of the
fundamental parameter p (keeping p admissible), the F -stable nondegenerate point Y ∗(p) = Ek(p) may change its index k(p)
only along the edges of the graph Γ drawn in Fig. 2 .

E2 E3 E6 E8 E7 E5

K

FIGURE 2 The transition graph Γ of F -stable points as a function of the carrying capacity K .

Proof. First note that an F -stable point is uniquely determined as the (unique) solution Y ∗(p) of the system
Y ∗(p) ≥ 0

F (p, Y ∗(p)) ≤ 0
Y ∗i (p)Fi(p, Y

∗(p)) = 0, ∀i = 0, 1, 2, 3,
(68)

where Fi(p, Y ) are obtained from (6). Let pk → p0 be a sequence of admissible points converging to an admissible value p0. Then
each Y ∗(pk) satisfies (68) for p = pk. It also follows from (17) that Y ∗(pk) is a bounded subset of ℝ4

+, thus has an accumulation
point, say limi→∞ Y ∗(pki) = Ŷ for some subsequence ki → ∞. Since the left hand sides of (68) ar continuous functions, Ŷ
satisfies (68) for p = p0, therefore, by the uniqueness, Ŷ = Y ∗(p0). This also implies that there can exist at most one accumulation
point of {Y ∗(pk)}k≥1, therefore Y ∗(pk must converge to Y ∗(p0), the continuity of p→ Y ∗(p) follows.

In particular, it is important to describe the dependence K → Y ∗(K) when all other parameters

q = (�i, �j , �k) ∈ ℝ8
+, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, 1 ≤ k ≤ 2,

are fixed and admissible (i.e. (9) is satisfied). A closer inspection of (14) and (34) reveals the following monotonicity result.

Theorem 4. The susceptible class Y ∗0 (p) is a nondecreasing function of K . More precisely, Y ∗0 (p) is locally strongly monotonic
increasing if Y ∗(p) = Ek with k ∈ {2, 6, 7} ant it is locally constant if Y ∗(p) = Ek with k ∈ {3, 5, 8}.
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According to Theorem 4, there can exist only three following transition scenarios (depending on the choice of q ∈ ℝ8
+).

Namely, if K is increasing in (0,∞) then exactly one of the following alternatives hold:

(i) E2 → E3;

(ii) E2 → E3 → E6 → E8;

(iii) E2 → E3 → E6 → E8 → E7 → E5;

The corresponding graphs of the susceptible class Y ∗0 (p) are pictured in Figure 3 . Recall that the modified carrying capacity
S2 = K(1 −

�0
b
) is proportional to K .

K

y

E2

�1

E3

K

y

E2

�1

�3

E3 E6 E8

K

y

E2

�1

�3

E3 E6 E8 E7 E5

FIGURE 3 Three possible scenarios of the transition dynamics

We emphasize the monotonic non-decreasing dependence of Y ∗0 (p) as a function of K . It is also interesting to point out that
the value of Y ∗0 (p) stabilizes when K ≥ K∗(q). In other words, after a certain threshold value K∗(q), the equilibrium point
Y ∗(K, q) still depends on K except for the susceptible class which becomes constant.
Let p be a fixed admissible vector. Then it easily follows from (34) and (42) that if 0 < S2 < �1 then Y ∗(p) = E2 is the

F -stable point. If S2 = �1 then E2 = E3 is the F -stable point. Similarly, using (36) we also see that if

�1 < S2 < �
′
1 ∶= �1 + (�3 − �1)

K�1�3
b�1

then Y ∗(p) = E3. When S2 = �′1, we have S3 = S6, and it follows from (36) that in fact Y ∗(p) = E3 = E6. If S2 becomes a bit
large than �′1 then Y

∗(p) = E6.
Let us consider as an example the behaviour of the equilibrium point Y ∗(p) = E5. Suppose that Y ∗(p) = E5 is F -stable for

some p but it is a degenerate point. Since (E5)0 and (E5)3 are positive, the degeneracymeans that, for instance, (F (E5))1 = 0. This
yields S5 = S6. We claim that in that case E5 = E6. Indeed, one trivially has (E5)0 = S5 = S6 = (E6)0 and (E5)i = 0 = (E6)i
for i = 1, 2. Also, using (36) we get

(E5)3 = (S2 − S5)
b
K�3

= (S2 − S6)
b
K�3

= (S5 − S3)
�1
�1
= (S6 − S3)

�1
�1
= (E6)3.

Thus, Y ∗(p) = E5 = E6. In particular, (F (E6))2 = (F (E5))2 ≤ 0. If the latter inequality is strong then Y ∗(p) = E6, hence Y ∗(p)
is nondegenerate. If (F (E5))2 = 0 then S5 = S6 = S7 which imply by the same argument that E5 = E6 = E7. Then it follows
from (39) that �3Δ = �. Using Remark 1, � and Δ are nonzero, therefore S8 =

�
Δ
= �3 = S5. In particular, this yields from (40)

that (�3 − �1)Δ = (�2 − �1)�1�2, hence Δ > 0. It follows that E8 = E5. But the latter (since E8 missing the F -components)
means that Y ∗(p) = E8 is nondegenerate.
In general, using the above argument implies that ifEk is F -stable but degenerate then there exists F -stable and nondegenrate

Em with m > k such that Em = Ek. It interesting to understand the corresponding transition dynamics. To this end, let us write
(i, j) ∈ Ek (resp. ∈ F (Ek)) if c(Si − Sj) is present in Ek (resp. F (Ek)). If (i, j) ∈ Ek (or F (Ek)) implies that either i = k or
j = k (this holds even true for E8 modulus relations (40) or (41)). A simple examination shows that the following subordination
principle holds true.

Proposition 7. (i, j) ∈ Ej if and only if (i, j) ∈ F (Ei), and if (i, j) ∈ Ej (resp. in F (Ej)) then i < j (resp. i > j).
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Let us denote by E = {(i, j) ∶ there exists Ei such that (i, j) ∈ Ei} and let Γ denote the undirected graph with nodes
{k ∶ 2 ≤ k ≤ 8} and edges E, see Figure 2 . From the biological point of view, the graph Γ shows the transition dynamics of a
F -stable point Y ∗(p) depending on continuous perturbations of p.
The trivial equilibrium E1 = 0 (i.e. when no disease or susceptible), the disease free equilibrium point E2, the equilibrium

states with the presence of 1st, 2nd strain and the presence of coinfection E3, E4, E5 and the equilibrium states corresponding
the coexistence of more than 2 classes E6, E7, E8.

10 SOME REMARKS ON THE INFINITE CARRYING CAPACITY

To complete the above picture, we announce without proofs some results on the case of very high (infinite) carrying capacity,
i.e. K = ∞. We return to this situation with detailed discussion somewhere else. The dynamics of the limit case K = ∞ is
completely different and the global stability is failed in this case, see Remark 3. Still, we have some nice properties which hold
for general parameters.
An easy analysis shows that for K = ∞ some equilibrium points from (34) disappear (‘pass to infinity’), so that, generically,

only following three equilibrium points exist:

E′
3 = (�1,

b − �0
�1

, 0, 0),

E′
5 = (�3, 0, 0,

b − �0
�3

),

E′
8 = (

�
Δ
,

2
Δ
,

1
Δ
, (�2 − �1)

�1�2
Δ

)

where we assume that

1 = �1(b − �0) − �1�3(�3 − �1)

and

2 = �2�3(�3 − �2) − �2(b − �0)

are nonzero quantities. The corresponding nontrivial F -parts are

F (E3) = (0, 0, (�1 − �2)�2,

1�3
�1

),

F (E5) = (0,−

1
�3
,

2
�3
, 0).

In the borderline case 
1
2 = 0, analysis is somewhat more delicate, here there exist two points which correspond to E6 and E7
for K <∞.
Then the stability diagram is shown in Figure 4 .

�1

�2

E′
3

P

E′
8

E′
5

FIGURE 4 Three equilibrium states for K = ∞ (the point P is given by 
1 = 
2 = 0)

Proposition 8. Suppose thatK = ∞ holds. Then for any q ∈ ℝ10
+ such that 
i ≠ 0, i = 1, 2, there exists a unique F -stable point

Y ∗(p) ∈ {E′
3, E

′
5, E

′
8}, see the Figure 4 . Moreover, in each of the three cases, the !-limit set !(Y ) of a solution to (1) is one

of the following:
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(a) If Y ∗(p) = E′
3 then,

!(Y ) = {y ∈ ℝ4 ∶ y2 = y3 = 0, y0 − Y ∗0 ln y0 + y1 − Y
∗
1 ln y1 = C1},

(b) If Y ∗(p) = E′
5 then,

!(Y ) = {y ∈ ℝ4 ∶ y1 = y2 = 0, y0 − Y ∗0 ln y0 + y3 − Y
∗
3 ln y1 = C2},

(c) If Y ∗(p) = E′
8 then,

!(Y ) = {y ∈ ℝ4 ∶ y0 − Y ∗0 ln y0 + y1 − Y
∗
1 ln y1 + y2 − Y

∗
2 ln y2 + y3 − Y

∗
3 ln y3 = C3},

where Ci are some constants.

Thus, the !-limit sets are either one-dimensional curves in the first two cases or a compact hypersurface in ℝ4
+ in the latter

case.

11 DISCUSSION

In this paper we proposed a SIR model with coinfection infection mechanism and observed the effect of density dependence
population regulation on disease dynamics. The complete stability analysis of boundary equilibrium points and coexistence
equilibrium point revealed that there is always a unique F -stable equilibrium point for any admissible set of parameters. The
existence of an endemic equilibrium point guarantees the persistence of the disease with a possible future threat of any outbreak
in the population. In the absence of dual infection, exclusion of a strain with an invading strain was also observed which proves
the existence of competitive exclusion principle. Furthermore, we have also shown that addition of a density dependence factor
in the susceptible population has played an important role in the disease dynamics. Increase in carrying capacity, increases the
number of F -stable equilibrium points which makes the dynamics even more complicated. If carrying capacity is significantly
high, then the oscillation in different classes are observed and these oscillations dampen to equilibrium point but it approaches
the equilibrium point very slowly. We also find that increasing the resources of the population, increased carrying capacity for
example by increased wealth, can increase the risk of infection which leads to a destabilization of a healthy population. This
becomes especially interesting in the limit case when carrying capacity is very large. Then the healthy population is independent
of carrying capacity (increased wealth), since the susceptible population remains constant for very large K . Instead the infected
population increase as it depends on carrying capacity yet may reach a limit for infinitely large carrying capacities. An increased
wealth may therefore only fuel the number of infected in the population which is very different from general expectations. These
dynamics resembles the top down regulation in food chains and food webs [22]. In the limit case whenK = ∞we have observed
the periodic behaviour of solution trajectories in the limit, which becomes even more complex for coexistence equilibrium point.
These results indicate that this system has dynamics closely related to the Rosenzweigs [19] famous paradox of enrichment for
predator prey models and Sharpe et al in [21] have also found the paradox for a disease model. In the future, we would also like
to see if it is possible to analysis this model with more complexity by adding the interaction between two strains and to conduct
the global stability analysis for that extended model.
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APPENDIX

A TWO AUXILIARY LEMMAS

The following results are in the spirit of the well-known Landau-Kolmogorov type estimates. On the other hand, our focus is non
on an inequality but on the convergence at infinity. We were unable to find any explicit formulations like the lemmas below. On
the other hand, these results are interesting by their own right and are very useful tools in integral estimates of a rather general
ODEs including those of Lotka-Volterra type.

Lemma 4. If f (t) ∈ Lp([0,∞)) ∩ C1([0,∞)), where p ≥ 1 and f ′ ∈ L∞([0,∞)) then there exist limt→∞ f (t) = 0.

Proof. LetM = ‖f ′‖L∞([0,∞)). Arguing by by contradiction, we can suppose that there exist tk ↗ ∞ such that tk+1 − tk >
�
M

and |f (tk)| ≥ �, for some fixed � > 0. Since the first derivative is bounded: |f ′(t)| ≤ M for all t ≥ 0, we have by the mean
value theorem for any t, tk ≤ t ≤ tk +

�
M
,

f (t) = f (tk) + f ′(�)(t − tk)
≥ � −M(t − tk)

≥M(tk − t +
�
M
).

Note that by virtue of our choice of t the right hand side of the latter inequality is nonnegative. Therefore,
tk+

�
M

∫
tk

|f (t)|pdt ≥

tk+
�
M

∫
tk

Mp(tk +
�
M

− t)pdt =M

�
M

∫
0

spds = M
p + 1

( �
M

)p+1
.

Since the latter estimate holds uniformly for any k = 1, 2, 3,…, this implies ∫ ∞
0 |f |pdt diverges, a contradiction.

Lemma 5. Let ℎ ∈ Lq([0,∞)), where q ≥ 1, and let ℎ have the bounded derivatives ℎ′, ℎ′′. Then

lim
t→∞

ℎ(t) = lim
t→∞

ℎ′(t) = 0.

Proof. Recall the standard notation: x[�] = |x|�−1x, then x[�]′ = �|x|�−1. We have
t

∫
t0

|ℎ′|2q dt =

t

∫
t0

( d
dt
(

ℎ′[2q−1]ℎ
)

− (2q − 1)ℎ′′ℎ|ℎ′|2q−2
)

dt,

= ℎ′[2q−1]ℎ||
|

t

t0
− (2q − 1)

t

∫
t0

ℎ′′ℎ|ℎ′|2q−2dt.

(A1)

Using the boundedness of ℎ, ℎ′ and subsequently Holder’s and Young’s inequalities gives
t

∫
0

|ℎ′|2q dt ≤ C1 + C2

(

t

∫
0

|ℎ′|2q dt
)

q−1
q
(

t

∫
0

|ℎ|q dt
)

1
q

≤ C1 +
C2(q − 1)

q
�

1
q−1

t

∫
0

|ℎ′|2q dt +
C2
q�

t

∫
0

|ℎ|q dt,

implying for sufficiently small � that
t

∫
0

|ℎ′|2q dt ≤ C3 + C4

t

∫
0

|ℎ|q dt.

Since ‖ℎ‖Lq([0,∞)) < ∞ we obtain ‖ℎ′‖L2q([0,∞)) < ∞, therefore applying Lemma 4 to f = ℎ′ and p = 2q we deduce that
limt→∞ ℎ′(t) = 0. Furthermore, by the made assumptions, Lemma 4 is also applicable to f = ℎ(t) and p = q ≥ 1, therefore we
have limt→∞ ℎ(t) = 0, the lemma follows.

Repeating the argument of the previous lemma one easily arrives to
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Corollary 3. Let ℎ ∈ Lq([0,∞)), where q ≥ 1, and let ℎ have the bounded derivatives ℎ(k) of any order k ≥ 1. Then

ℎ(k) ∈ L2kq([0,∞)) and lim
t→∞

ℎ(k)(t) = 0, ∀k ≥ 0.
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