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1 Introduction

Population permanence in a patchy environment is the result of a complex
interaction between spatial heterogeneity and temporal variability of the en-
vironment, dispersal, density-dependence and population structure. Each of
these factors have relative importance for population growth and it differs
for terrestrial and aquatic species, large and small populations, plants and
animals, vertebrates and invertebrates etc.; see for instance [8], [31], [41].

One way to theoretically approach the problem of population dynamics is
by formulating mathematical models that incorporate internal and external
factors of population growth. The literature on the population models with
various level of complexity is quite vast and detailed review is beyond the
scope of this paper. We mention only some of the well-established models
that have been developed over the years. Among the unstructured models,
the Malthus model of exponential growth and the Verhulst logistic model are
especially important. For the age-structured models with density-dependency
or time-dependency we refer to [23], [10], [11], [18], [39], [49], [28], [33], [34].
A significant contribution to age-structured population models was recently
made by Inaba, see [29]. The common point for the age-structured models is
that the basic reproduction number and the characteristic equation are used to
determine permanence of a population.

The spatial structure has been recognized as one of the most important
factors of growth. In this case, each individual’s birth and death rate are de-
pendent upon the habitat/patch where they are in the landscape. For simplic-
ity, let a population inhabit a discrete space which consists of several patches.
A source is a high-quality patch that yields positive population growth, while
a sink is a low-quality patch and it yields negative growth rate. In isolation,
every subpopulation has its own dynamics. Linking the patches by dispersal
lead us to the source-sink dynamics, where all local subpopulations contribute
to the unique global dynamics. For populations that inhabit several patches,
possibility to move from one patch to another can be crucial for survival. For
example, dispersal from a source to a sink can save the local sink subpopu-
lation from extinction through the rescue effect and recolonization [4], [17],
[24]. The influence of spatial heterogeneity in unstructured populations was
studied in [3], [2], [12], [13], [16], [1]. The trade-off between competition and
dispersal is investigated in [5] and the relation between dispersal pattern and
permanence was discussed in [25], [30].

The continuous age-structured models with spatial structure can be di-
vided into classes. In the first type of models individuals occupy position in
a spatial environment and spatial movement is typically controlled by diffu-
sion or taxis processes [50]. In the second class fits the models with several
species or populations occupying different regions (‘patches’) accompanying
with migration between them. The usual practice here is to have only two
classes (immature and adults) and dispersion between a few (two or three)
temporally unchangeable patches, as in e.g. [44], [46], [47], [48], [51]-
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In this paper, we provide a mathematical derivation of the results consid-
ering the existence and uniqueness of a solution in a fairly general form in
presence of migrations. Inspired by the single-patch models we come to the
fundamental questions:

— Is it possible to define an analogue of the characteristic equation and the
basic reproduction number for the several-patches model?

— If so, can they be used for the analysis of the large-time behavior of the so-
lution and for establishing the condition for the population’s permanence?

The main contribution of the paper is in the rigorous proof that the both
questions have affirmative answers in the constant, periodic and the general
time-dependent case. We develop a new approach to study asymptotic be-
haviour and global stability of the corresponding nonlinear model. Tradition-
ally, the Lyapunov function approach is used to establish (global) stability.
Unfortunately, there are no universal method for systematic construction of a
Lyapunov function and this approach is often of little use for complex dynam-
ical systems; moreover, some Lyapunov functions may provide better answers
than others.

In contrast, our present approach relies on lower and upper solution tech-
nique and essentially uses the monotonicity of certain integral operators as-
sociated with the balance equations. The method that we develop for the
time-dependent cases allows us also to consider fluctuations that are not nec-
essarily small in amplitude. Besides, we use general results to discuss the real
world problems, such as the survival of migrating species and pest control.

To set up the model, we follow the argument of [32] and [34], and assume
that a population is age-structured, density-dependent and inhabits N tempo-
rally variable and different patches. The proposed model is fairly general and
take into account both age structure, nonlinear interactions and migration.
To achieve nontrivial and significant stability results, a certain compromise
between generality and reasonable biological assumptions is needed. More pre-
cisely, we make a simplifying assumption that competition between different
populations affects only the per capita mortality rates and it only occurs be-
tween individuals of same age (pure intra-cohort competition). Even in a such
generality, we are able to establish very strong stability results.

A local subpopulation on each patch experiences intraspecific competition,
which results in additional density-dependent mortality. Let ng(a, t) denote the
age distribution in the population patch k at time ¢ with the corresponding
birth rate myg(a,t) and the initial distribution of population fi(a). Then the
assumption that only the members of the age class are competing led to the
following McKendrick-von Foerster type balance equations [32]:

on(a,t) n on(a,t)
ot Oa

= —M(n(a,t),a,t)n(a,t) + D(a,t)n(a,t) (1)

in the domain
% :={(a,t) eR?*:0< a < B(t), t >0} (2)
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subject to the birth law
n(0,1) = / m(a, )n(a,t)da, t> 0, 3)
0
and the initial age distribution

n(a,0) =f(a), a>0. (4)

Here B(t) > 0 denotes the maximal length of life of individuals in population
at age t > 0,

n(a,t) = (ni(a,t),...,nx(a,t))’,
f(a,t) = (fi(a,t),..., fn(a, b)),
m(a,t) = diag(mi(a,t),...,my(a,t)),
M(n(a,t),a,t) = diag(M;(nq(a,t),a,t),..., My(ni(a,t),a,t)).

where My (v, a,t) is the mortality rate of the population patch k, and the the
dispersion matrix D(a,t) = (Dg;(a,t))i<k,j<n describes the migration rates
between patches: the coefficients Dyj(a,t) define a proportion of individuals
of age a at age t on patch j that migrates to patch k. Then

B(t)
P(t) = /0 n(a,t)da

is the total population at time t.

The predecessor of the present model in the single patch case N =1 is the
model proposed by von Foerster [19]; a detailed analysis was given by Gurtin
and MacCamy [23] and Chipot [10], [11]. A comprehensive treatment of this
approach is given by Tannelli [27]. Priiss [39], [40] was the first to study a
mathematical model of an N-species population with age-specific interactions
in absence of migration. By using the theory of semilinear evolution equations
he established the well-posedness and the existence of an equilibrium solution
under certain constraints on the birth and death rates. He also derived some
(local or asymptotic) stability results for for the equilibrium solutions.

When D(a,t) = 0, migration between patches is absent, and the system
(1) splits into N independent balance equations. This model under an ad-
ditional assumption that M(a,t) is the logistic regulatory function (8) has
recently been studied in [34]. The case D(a,t) # 0 is much more challenging.
In modeling the source-sink dynamics, fundamentally important is the fact
that individuals can disperse and move from one patch to another. Migration,
which in the biological terms means a round-trip from a birthplace, is partic-
ularly significant. Then it is natural to expect that the global and asymptotic
behaviour of solutions to (1)—(4) is determined by both the sign pattern and
the weighted graph associated with D(a,t).

Outline. A summary of the mathematical framework and our main re-
sults are presented in Section 2. In Section 3 we discuss an auxiliary model
and derive some preliminary results on the corresponding lower and upper
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solutions. In Section 4 we prove the existence and uniqueness of a solution to
the balance equations (1)—(4) by reducing the original problem to a certain
nonlinear integral equation. In Section 5 we define the associated character-
istic equation and the maximal solution, and establish one of the key results
of the paper: the basic reproduction number dichotomy. The remaining part
of the paper is dedicated to the study of the asymptotic behavior and stabil-
ity of the solution. We consider three cases: a constant environment (i.e. the
time-independent case) in Section 5, a periodic environment in Section 6 and
an irregularly changing environment (i.e. the general time-dependent case) in
Section 7.

Notations. For easy reference we fix some standard notation used throughout
the paper. RY denotes the positive cone {z € RY : 2; > 0}. Given z,y € RV
we use the standard vector order relation: x < y if x; < y; for all 1 < i < n,
r<yifr<yandz#y,andr < yifz; < y; forall1 <i <n.Given x € R™,

Il (Cney [zklP)/P, 1 < p < oo;

x|, =
maxi<g<nN |$/c|7 P = 0.

In particular, if D = Djj is an N x N-matrix we define ||Dj||, for any

1 < p < oo in an obvious manner identifying D with an element of RV .
Given E C RY and a continuous function h : E — R, we define

1hlle(e) = sup k()] -
z€E

2 Main results
2.1 The structure conditions

Before providing the main results, we give a brief summary of the structure
conditions imposed on the balanced equations (1)—(4). We always assume that
m(a,t) and D(a,t) are continuous for (a,t) € % and M(v, a, ) is a continuous
function of (v,a,t) € R x %. Furthermore suppose the following structure
conditions hold:

(H1) there exists 0 < by < b such that by < B(t) < b for all ¢ > 0 and

B(ts) — B(t
sup B(t2) — B(t1) <1 (5)
0<ti<ta<oo  l2a—t1
(H2) for any fixed (a,t) € &, M (v, a,t) is a nonnegative nondecreasing function
of v for v > 0, and there exist real numbers po, > 0, v > 0, and a function
p(a) > poo such that

My (v,a,t) — My(0,a,t) > p(a)v”, V(v,a,t) € R x A. (6)

1 In fact, with some minor modifications, all the main results remains true under a weaker
assumption that the structural coefficients are rather L°°-functions.
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(H3) [[Dl¢(s) < oo and D(a,t) is a Metzler matriz:

Dy;(a,t) =0, k # j; (7)
(H4) |lm||¢(s) < oo and there exist 0 < an, < Ay, < by such that

suppm C [apm, Ap] x RT.

(H5) the function f(a) is continuous and supp f C [0, B(0)).

Let us briefly explain the above conditions from the biological perspective.
Concerning (H1), one usually uses a more restrictive condition that B(t) is
a constant. Nevertheless, (5) is a more reasonable assumption: it means that
the maximal length of life of individuals B(t) in a population may depend on
t but it grows not faster then the time. Mathematically, (5) asserts that the
boundary curve B(t) is transversal to the characteristics of (1).

The monotonicity assumption in (H2) ensures that increase in age-class
density increases the death rate and has a negative effect on population growth.
The classical example of the density independent mortality rate My (v, a,t) =
pr(a,t) > poo > 0 is compatible with v = 0 in (H2). Another example is the
logistic type model [34] with

v

Mi(v,a,t) = pi(a, t) (1 + m),

(8)
where Li(a,t) € L>®(Z) is the regulatory function (carrying capacity); this
example fits (H2) for v = 1.

Concerning the Metzler condition in (H3), note that the dispersion coefhi-
cient Dy;j(a,t) expresses the proportion of population ng(a,t) that from patch
J goes to patch k, which naturally yields that Dj; > 0. Furthermore, according
the support condition in (H4), the improper integral in (3) is well-defined and
actually is taken over the finite interval [ayn,, A,,] which lies within the domain
of definition of n(a,t) for any fixed ¢ > 0. The condition (H5) is a natural
assumption that the initial distribution of population is bounded by the life
length.

The accessibility condition For further applications we shall also need an ad-
ditional assumption on the structure of the dispersion matrix D. In order
to formulate it, let us recall some relevant concepts. Given a Metzler matrix
A € RV*N one can associate a directed graph I'(A) with nodes labeled by
{1,2,..., N} where an arc leads from i to j, i # j, if and only if A;; > 0. The
patch j is said to be reachable from 4, denoted i ~ j, if there exists a directed
path from 4 to j. A digraph is called connected from vertex i if i ~» j for all
j#1i[6, p. 132].

Then a patch k is said to be accessible at age a > 0 if the associated
digraph I'(D(a, t)) is connected from k for any ¢ > 0.

The accessibility condition relies on the sign pattern of the correspond-
ing dispersion matrix and can be readily obtained by the standard tools of
nonnegative matrix theory [37, Section 3].
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Now, notice that by (H4) the following value is finite:

ax = %n(f) sup{a : my(a,t) >0} < A, < cc.
>

From the biological point of view, ai is the mazimal fertility age in population
k. Our last condition reads as follows:

(H6) For any 1 < k < N there exists 0 < 8 < ax such that the patch k is
accessible at age (.

In other words, (H6) asserts that for any patch k there is a moment 35 > 0
such that a (composite) migration from any other patch j to k is possible
within the reproductive period. Namely, some biological studies indicate that
there are many different causes for dispersal, such as response to environmental
conditions, prevention of inbreeding or competition for mates, see for instance
[9]. Thus, one can think of differences with respect to life-history traits, ge-
netics and demography between dispersers and residents. When it comes to
demography, more often than not, dispersing females are young individuals in
their reproductive age, see, e.g., [20], [21]. Very old individuals usually do not
engage in breeding dispersal, which is the topic of our study.

2.2 The Net Reproductive Rate Dichotomy

Let us denote by p(t) = n(0,t) the newborn function, i.e. a vector-function
whose components denote the number of newborns on each patch. Then, the
problem (1)—(4) can be reduced to the integral equation

p(t) = Kp(t) + FE(2), (9)

where K and F are positive nondecreasing operators with bounded ranges
and Ff(t) = 0 for large t > 0. Our strategy for proving permanence results
is as follows: we first establish the permanence results for time-independent
and time-periodic coefficients, and then show that in the general situation, a
solution of (9) can be well-controlled by these cases.

If the environment is constant then the model parameters are time-independent
functions. Then it is reasonable to assume that the maximal life-time is con-
stant: B(t) = b [23], [10]. Our approach relies on a fine control of large-time
behaviour of an arbitrary solution to (9) by nontrivial solutions of the associ-
ated characteristic equation

p = Kp, (10)

where the operator K is given by the right hand side in (3) for a time-
independent solution to (1) with a constant boundary condition n(0) = p.
Clearly, p = 0 is a (trivial) solution of the characteristic equation.

Our goal is to establish when a nontrivial positive solution p > 0 ex-
ists. A crucial tool here is the so-called mazimal solution of the characteristic
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equation, i.e. a solution € of (10) such that for an arbitrary solution p there
holds p < 6. In particular, § = 0 implies that the characteristic equation has
only trivial solutions. We establish the existence of the maximal solution in
Section 5.2.

Another important ingredient is the net reproductive operator

Rop = /000 m(a)Y (a; p) da,

where Y (a; p) is the unique solution of the linearized initial problem

L) _ (M (0,0) + D(@)Y(ap). Y(0:0) = p € RY.
We show that under conditions (H1)-(H6), Z, : RY — RY is a strongly
positive operator. By Perron-Frobenius theorem, its spectral radius Ry is equal
to the largest positive eigenvalue. We call this value the basic reproduction
number.
To motivate the latter definition, observe that in the single-patch case, the
basic reproduction number Ry is given by

Roz/ m(a)e™ Jo #@d gq.
0

It it related to the solution of the Euler-Lotka characteristic equations in
the linear age-structured population model; see [28]. According to [34], Ro
is related to the solution p* of the characteristic equation in the nonlinear
age-structured model. Namely, if Ry < 1, then p* = 0 and the population is
going to extinction, while for Ry > 1, we have p* > 0 and the population is
permanent. The same is obviously valid if there are several patches without
migration (i.e. D = 0): every local subpopulation behaves accordingly to the
value of Ry on the respective patch.

The main contribution of this paper is the following dichotomy result on
the long-term dynamics of populations.

Theorem A (The Net Reproductive Rate Dichotomy) If Ry <1 then

0 = 0 and the characteristic equation (10) has no nontrivial solutions. If Ry >

1 then 8 > 0 and 0 is the only nontrivial solution of the characteristic equation.
If x(¢t) is an arbitrary solution of (9) then

— if Rg <1 then x(t) = 0 and P(t) — 0 as t — oo,
— if Ry > 1 then x(t) = 6 and P(t) — [ ¢(a;0) da ast — oo, where p(a;0)
s the solution of the initial problem

JaP(@0) = —M(p(a;0), a,t)p(a; 0) + D(a, t)p(a; 6),  »(0;0) = 0. (11)
Thus, the basic reproduction number Ry effectively determines large time

behavior of population on IV patches in a constant environment. Here, as in
the single-patch case, Ry < 1 implies extinction of a population on all patches,
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while Ry > 1 grants the global permanence of a population. We see that the
dichotomy result for a multi-patch population is completely consistent with
the single-patch case when the net reproductive operator %, coincides with
the multiplication by Ry.

Tt is also important to emphasize that the function ¢(a; ) in (11) is exactly
the unique equilibrium point of the problem (1), (3) provided that 6 satisfies
the characteristic equation. In other words, Theorem A implies the global
stability result: any solution of the principal model converges at infinity to the
unique equilibrium point given by the characteristic equation.

The proof of Theorem A, along with certain related results, occupies Sec-
tion 5 and make an essential use of the auxiliary monotonicity results col-
lected in Section 3 and functional theoretic properties of the integral equation
(9) given in Section 4. Our approach relies on the following steps and can
be described as follows. First we associate to an arbitrary solution x of (9)
certain lower and upper monotone sequences. The existence of an upper se-
quence relies on the boundedness of the image of K. The construction of a
lower sequence is more tricky and involves certain fine properties of the maxi-
mal solution and some previous auxiliary monotonicity results accompanying
by the accessibility condition (H6). The main problem here is to control a
nonzero asymptotic behaviour of the lower approximants as t — oo. Next, we
show that the large-time behaviour of x can be well controlled by the limits
at infinity constructed monotone approximants. Furthermore, we are able to
identify the common limits as the maximal solution 6. This finally establishes
that the constructed sequences converge to the equilibrium point of the original
problem. Notice that the monotonicity of the lower and upper approximations
is crucial because the convergence established in the first steps is valid only
on any bounded interval.

2.3 Two-side estimates of Ry and 6

A life-history trade-off between reproduction and migration has been noted
for many species, including migratory birds and some insects (see for example
[38], [42], [22]). This trade-off is caused by energy constraints because both
reproduction and migration are energetically costly for organisms. Keeping
the assumption that the environment is constant and using the specific form
of the balance system, we investigate the consequences of this trade-off.

The fact that individuals do not reproduce during migration is biologically
justified and mathematically it is stated as:

N
> Dij(a) <0, 1<j<N. (12)
k=1

The relation between dispersion coefficients means that some migrants that
are leaving patch j will eventually die before reaching patch k, but they will
not give birth during migration. Then, we establish in Section 5.6 the following
two-side estimates for the basic reproduction number.



10 V. Kozlov, S. Radosavljevic, V. Tkachev, U. Wennergren

Theorem B Under additional assumption that (12) holds we have

o0 oo
max / mk(a)e_ Jo (e (v) 4| Dir (v)])dv da < Ry < / m(a)e_ S8 p(v)dv da,
1<k<N Jq I

where m(a) is the mazimal birth rate and p(a) is the minimal death rate on
all patches.

In addition, in Proposition 11 below we establish a priori estimates for the
basic reproduction number and for the maximal solution 6.

2.4 Periodically and irregularly changed environment

Natural habitats are usually positively autocorrelated, see for example [45].
Therefore, the assumption that the vital rates, regulating function and disper-
sal coefficients are changing periodically with respect to time is a reasonable
approximation. In the study of the large-time behavior of a solution to equa-
tion (9) in a periodically changing environment, the pivotal role belongs to the
characteristic equation

p(t) = Kp(t),

where the operator K is given by the right hand side of (3) and n(a, t) solves
(1) with a periodic boundary condition n(0,t) = p(t), p(t + T) = p(t). We es-
tablish in Section 6 that the operator K is absolutely continuous which allows
us to extend the methods of Section 5 to the periodic case. In particular, the
corresponding net reproductive operator Z, defined on space of periodic con-
tinuous functions is strictly positive and its spectral radius Ry is equal to the
largest eigenvalue. We are also able to establish the corresponding dichotomy
result for a periodic environment.

If the environment is changing irregularly, the structure parameters the
principal model (1)—(4) can be estimated from above and below by nonnegative
periodic functions. Using these periodic functions as a structure parameters for
new models, we formulate two associated periodic problems. One of them is the
best-case scenario and its solution is an upper bound for the original problem.
The other is the worst-case scenario and its solution is a lower bound. In other
words, a solution for the general time-dependent problem can be bounded for
large values of ¢ by above and below by the solution to the associated periodic
problems, as stated in Theorem 7.

2.5 Source-sink dynamics

Using the source-sink dynamics it is possible to explain permanence of a pop-
ulation on several patches provided that at least one patch is a source and
that all patches are connected by dispersion. In Section 8.1 we assume that
the environment is constant and consists of several patches. Then it is possible
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to show that survival of population on both patches is possible provided that
emigration from the source is sufficiently small.

Furthermore, in Section 8.2, we show that permanence is possible even if
all patches are sinks provided that dispersion is appropriately chosen. This is
especially important for migratory birds, since both of their habitats can be
seen as sinks (one because of the low reproduction due to insufficient resources,
and the other because of the high mortality in the winter). This example can
be related to the results in [30], where a simple model is used for analysis
of connection between population permanence and allocation of offspring in a
population that lives on several patches. One of the results is that permanence
is possible even if all patches are sinks.

3 An auxiliary model
3.1 Upper and lower solutions

Below we establish some auxiliary monotonicity results for lower and upper
solutions to a general system of ordinary differential equations

d
Lw := %w

where F(w,z) : RN x [0,b) — R¥ is a locally Lipschitz function in w € RV
for any x € [0,b) satisfying the Kamke-Miiller condition, i.e. that the Jacobian
matrix DF (w,x) is a Metzler matrix, i.e.
OF;(w,x)
6’(1)]‘

() — F(w(x),z) =0, z €10,b), (13)

>0 i (14)

for almost all w € RY and all € [0,b). We assume additionally that F
satisfies
F(0,z) =0 for any z € [0,b). (15)

In particular, this implies that w(z) = 0 is a solution of (13).

We shall also exploit a weaker version of the concept of irreducibility. More
precisely, let F(w,z) = (Fy(w, ), ..., Fn(w,z)) be continuously differentiable
with respect to w and let DF(w,x) = (%ﬂi’jﬂ
Jacobi matrix. Then an index k € {1,2,..., N} is said to be F-accessible at
x € [0,b) if the associated digraph I'(DF(w,x)) is connected from k for any
w.

In this paper, we are mostly interested in the particular case when

) denote the corresponding

F(w,z) = —M(w, z)w + D(z)w, z € [0,b),w € RY. (16)

then DF(w,z) = D(z) and a patch k € {1,2,..., N} is accessible at age z if
I'(D(x)) is connected from k. Note also that if F is defined by (16) then (14)
is equivalent to that DF(w,x) = D(z) is a Metzler matrix. In this case the
condition (15) is trivially satisfied.
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Definition 1 A locally Lipschitz function w(z) is called an upper (resp. lower)
solution to (13) if Lw(z) > F(w(x), ) (resp. %w(x) < F(w(x),z)) holds for
all z € [0,b).

The next lemmas generalize the corresponding facts for the cooperative sys-
tem (cf. [43, Remark 1.2]) on lower (upper) solutions of (13) with Lipschitzian
F. Notice also that our proofs are somewhat different from those given in [43].
Let us agree to write

v>pu & v >wuand vy = uy for some 1 <k < N.
First notice that F satisfies the so-called quasimonotone condition [26], [43].

Lemma 1 If F satisfies the Kamke-Miiller condition then u <p v implies
Fr(u,z) < Fi(v,x) for any x € [0,b).

Proof Indeed, the function g(t) = F(u + t(v — u), ) is absolutely continuous
in [0, 1], hence applying by the fundamental theorem of calculus and (14) that

1
Fulo.o) = Pulwo) = [ gty

1 N
B OF(u+t(v —u),z), ‘
= /0 E 8w1 (Uz — ’U/l)dt (17)
i=1
al LOF,(u+t(v —u),z)
= E (’Ui — Ul)/ . dt 2 07
. - 0 8wi
i=1,i#k

as desired.

Lemma 2 Let w(x) be an upper solution of (13) a.e. in [0,b) such that w(0) >
0. Then w(x) > 0 on [0,b). Furthermore, if w;(0) > 0 then w;(z) > 0 for
x € [0,b).

Proof First we claim that w(z)™ = (w; (2),..., wy(z)) is also an upper so-
lution of (13) a.e. in [0,b), where w, () = min(0, wg(x)). Indeed, since each
wy, () is a locally Lipschitz function, there exists a full Lebesgue measure sub-
set E C (0,b) where all w, (x) are differentiable. We will show that w™ satisfy
(w™)(xz) > F(w (z),z) on E. Let 29 € Fand 1 < k < N. If wi(xg) > 0
for some k then w, (zg) = 0, hence zg is a local maximum of w, (z) (be-
cause w, () < 0 everywhere). This yields (w, )'(xz¢) = 0. Furthermore, since
0 > w_(xg), we have by Lemma 1 and (15) that

(wy ) (z0) = 0 = Fr(0,20) > Fi(w™ (o), z0).

If wi(zo) < O then by the continuity of wi(z) one has w, (z) = wg(x),
(wy )/ (x) = wy,(x) in some neighbourhood of x¢. Thus, applying (13) we have
by w(x) > w™ (z) and Lemma 1 that

(w;,) (2) = wy(2) = Fr(w(z), 2) = Fi(w™ (x), )
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holds everywhere in the neighbourhood of xy. Thus, the claim is proved.

We also claim is that any upper solution to (13) with w(0) = 0 and w(x) <
0 for = € [0, b) is identically zero in the interval. Indeed, if w is such a function
then let T be chosen as the supremum of all ¢ € [0,b) such that w(z) = 0 in
[0,t]. If T = b the claim is proved. Therefore assume that T' < b. Then by
the continuity w(T) = 0 and for any € > 0 there exists € [T,T + €] such
that w(z) < 0, and thus ||w(z)||; > 0. Since F(w, x) is locally Lipschitz in w,
there exist M > 0 and € > 0 such that ||F(w,z) —F(0,2)|; < M||w]|; for any
|lw]1 < € and any x € [0,b). Define h(z) = |Jw(z)|1 = —Zé\il w;(z) (recall
that by the assumption w;(x) < 0 for all ¢ and x € [0,b)). By the continuity
of w(zx), there exists d such that ||w(x)|; < € for any |x — T'| < J. Let the set
E be defined as above and z € [T, T + §). Since by (15) F(0,z) = 0, we have

N N
W(w) = =Y wil@) < =3 Fi(w(), ) < Mlw(@)ls = Mh(z),
i=1 =1

The latter inequality yields (h(x)e=%%)" < 0 a.e. in [T, T + 6]. Since h(x) is
locally Lipschitz it is absolutely continuous, thus h(z)e=¢(®* < h(T) = 0 in
[T,T + 6], ie. |lw(z)]1 =0 in the interval, a contradiction with the choice of
T. This yields the claim.

Now, if w(x) is an upper solution to (13) with w(x) > 0 then by the first
claim w™(x) is an upper solution solution with w~(0) = 0. Then the second
claim implies w™ (z) = 0 in [0,b), thus we have w(z) > 0 in [0,D).

To finish the proof, let us suppose that w;(0) > 0. Since F}(y, ) is locally
Lipschitz in y, for any r > 0 there exists C(r) such that (in virtue of (15))
|Fj(y,z)| < C(r)|lyll1 for all y € RY and |jy|| < r. Let 0 < 8 < b be chosen
arbitrarily and let r = sup,cp g [w;(z)|. Since w(x) >; w;(z)e;, where e; is
the jth coordinate vector, Lemma 1 and the nonnegativity of w;(z) yield that

d

%wj(x) > Fj(w(x),z) > Fj(w;(x)e;,x) > —C(r)w;(z), x €10, .
The latter yields w;(2)e€® > w;(0) > 0, thus w;(z) > 0 for every z € [0, 3],
and therefore in the whole interval [0, b).

Lemma 3 Let w(z) be an upper solution of (13) with w(0) > 0 and such that
the k-th patch is F-accessible at some 8 € [0,b) then wi(x) > 0 on (B,b).

Proof Tt follows from Lemma 2 that if wg(8) > 0 then wg(x) > 0 holds
everywhere in [3,b). Therefore we may without loss of generality assume that
wg(B) = 0. Let us suppose by contradiction that there exists 51 € (5,b) such
that wi(81) = 0. Then wi(z) = 0 in [0, 81]. In particular, wj(3) = 0. Since
w(0) > 0, there exists j such that w;(0) > 0 and, thus, w;(3) > 0. By the
assumption, there exists a directed path k ~» j in the graph I'(DF(w, §)).
Equivalently, there exists a sequence of pair-wise distinct jo = k, j1,...,Js—1,
Jm = j such that

O (w(@),8)>0,  Vi=0,1,....5—1. (18)

5’wﬁ+1
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For any ¢ =0,...,s — 1, let us define
Ui = w(ﬁ) - (wjo(/B)ejo +... +wji(ﬁ)6ji)7
where e; denotes the ith coordinate unit vector in RY. Then
w(fB) = vo Zjy v1 254, - 2., v, =05 2 0. (19)
Therefore by (13) and Lemma 1 it follows for jo = k that
0= wgo(ﬁ) > Fjo(U075) 2 Fjo(vlaﬂ) 2 Fjo(0’6> =0,
hence Fj,(vo, 8) = Fjj,(v1,8) = 0. Arguing as in (17) we find

0= Fjo(UO,B) - Fjo(vl’ﬂ)

N 1 ) .
i=1,i%j0 0 Ow;

> 0.

It follows from (20), the nonnegativity of (vo —v1); and the partial derivatives
(for ¢ # jo) that all summands of the latter sum must vanish. Since the
integrands are non-negative continuous functions, they must vanish identically
for t € [0,1]. In particular, (18) readily implies that (vo — v1);, = 0. Thus,
wj, (B) = 0, and by the above we have w} (3) =0

Repeating the same argument for the pair (ji,j2) etc. implies w;,(8) =0
etc., thus yielding that w;, (8) = w;(5) = 0, a contradiction follows.

Proposition 1 (Comparison principle) Let u(z) and v(x) be resp. upper
and lower solutions to (13)) such that w(0) > v(0). Then u(x) > v(x) for all

€ [0,b). If additionally the patch k is F-accessible at some 3 € [0,b) and
u(0) > v(0) then ug(x) > vi(z) for all x € (B,b). If particular, if (13) is
irreducible and u(0) > v(0) then u(z) > v(z) for all x € (0,b).

Proof Let w(x) = u(z) — v(x). Then
w'(z) 2 Fu(z) + w(z), z) - Fo(z), 2) = G(w(z), ),

i.e. w(z) is an upper solution to Lew = ‘Lw(z) — G(w(z), z) with G(¢,z) :=
F(v(z) + &, 2) — F(v(z), z). We have for the corresponding Jacobi matrices

DG(&,x) = DF (€ +v(x), x),

i.e. £ and £, satisfy simultaneously the Kamke-Miiller condition. This readily
yields the first claim of the proposition.

Now let us assume that w(0) > v(0) and for some k and 8 € [0,b) the
associated digraph I'(DF(w(3), 8)) is connected from k. Since DG (w(3), 8) =
DF(u(B), ) the digraph I'(DG(w(8), 8)) is also connected from k. Applying
Lemma 3 we deduce wy(z) > 0, i.e. ux(x) > vi(z) for all z € (5,b), as desired.
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Corollary 1 Let u(x) be an lower (resp. upper) solution to (13). If u(0) <0
(resp w(0) > 0) then u(x) <0 (resp. u(x) >0 ) for all x € [0,b). If additionally
the patch k is F-accessible at some § € [0,b) and u(0) < 0 (resp. u(0) > 0)
then uk(x) < 0 (resp. uk(x) > 0) for all x € (5,b).

Proof Follows immediately from the fact that w(z) = 0 is a solution of (13).

Proposition 2 (Existence and Uniqueness) Let (13) satisfy the Kamke-
Miiller condition and there exists C(F) > 0 such that

m]‘?XFk(w,m) < C(F)||w|| oo, Yw e RY, x € [0,b). (21)

Then for any & € RY there exists a unique solution w(z) € C*([0,b),RY) of
(13) with w(0) = &. Furthermore, if w(zx) is a nonnegative lower solution to
(13) then

lw(2)lloo < [lw(0) s, (22)

Proof By the Cauchy-Peano Existence Theorem, (13) has a unique solution
w(x) in some interval [0, ), 0 < 8 < b. By Lemma 2, w(z) > 0 for any = > 0
in the domain of the definition. Let [0,5") be the maximal interval of existence
of the solution:

b’ :=sup{B > 0: there exists a solution of (13) on [0, 3)}.

We claim that & = b. It suffices to show that a solution w(z) is uniformly
bounded on any existence interval [0, 3), i.e. there exists M > 0 such that for
any 8 < b’ the inequality |w(z)||cc < M holds in [0, 8). To this end, we make
a more general assumption, that w(x) is a nonnegative lower solution to (13)
on [0, 3) and consider

H(z) = [[w(@)]loo = maxwy ().

In particular, H(z) is locally Lipschitz on [0, 8), and thus a.e. differentiable
there. Then for any point of differentiability x of H there exists k such that
H(z) = wg(z) and H'(z) = w),(z). We have w(z) <; H(x)1 which implies by
Lemma 1 and (21) that

H'(z) = wy,(2) < Fy(w(z),2) < Fp(H(2)l,2) < C(F)H(z).  (23)

Integrating the latter inequality (note that H is absolutely continuous) yields
H(x) < H(0)e"® < [lw(0) e,

This proves (22). Furthermore, since the latter upper bound is independent of
3, this implies ' = b, and thus the existence and the uniqueness of solution of
(13) on [0,b).
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3.2 Further estimates for concave F

To proceed we consider some additional assumptions on F. Namely, a vector-
function F € C(RY,RY) is said to be concave if

F(oqu + azv) < o F(u) + axF(v), Ya; > 1, u,v € RY. (24)

A concave vector-function F is said to be strongly concave if for any o > 1
and any u > 0 with ug > 0 there holds

Fi(au) < aFg(u). (25)

Corollary 2 Let F be a concave vector-function satisfying the Kamke-Mdller
condition. Let v(x) be a lower and u(x) be an upper solutions of (13). Then
v(z) — u(x) is a lower solution of (13).

Proof The claim follows from (24) with a1 = ap = 1:
V' (x) — ' (x) <F(v(z),2) - Fu(z),r) <F(o(z) - u(z),z).

Corollary 3 Let F be a concave vector-function satisfying the Kamke-Mdller
condition and (21). If v(x), u(z) are solutions of (13) with v(0) > 0,u(0) >0
then

[v(x) = u(@)l e < e 0(0) = w(0)]|oo- (26)

Proof By the assumptions u(0),v(0) € RY. First suppose that v(0) > u(0) and
define w(x) = v(z) — u(z). Then by Proposition 1, w(x) > 0 for any x € [0,b).
Therefore by Corollary 2 w is a (nonnegative) lower solution to (13), thus by
Proposition 2 we have ||w(z)|cjo,5) < eCF))1(0)|| 00, which proves (26).

In the general case, let w(x) be the solution of (13) with the initial con-
ditions wy(0) = min(uk(0),v%(0)), 1 < k < N. Then u(0) > w(0) and
v(0) > w(0), hence by the above

[u(z) = w(z) e < e“FPu(0) — w(0)]|w (27)
[v(x) = w(@) o < e“FPo(0) = w(0)loo-
Since u(z) > w(z) and v(x) > w(x) for any x € [0,b) we also have
w(z) —v(z) < u(z) —o(z) < u() - w),
which by virtue of (27) yields
lu(z) = v(@)llofo,p) < e max{|[u(0) — w(0)[|e, [0(0) = w(0)]|oc}
On the other hand, by our choice, for any k there holds that
max{|uy(0) — wi(0)], [0k (0) — wr (0)[} = |ux(0) — vk (0)],
hence
max{[[u(0) — w(0)[|oc, [|v(0) = w(0)[loc} < [[u(0) = v(0)]loc-
which yields (26).
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Proposition 3 Let ¢(x,&) denote the solution w(x) of problem (13) in [0,b)
with the initial condition w(0) =€ € Rf. Suppose F satisfy the Kamke-Miiller
condition and that it is concave. Then

o(z,0f) < ad(z,§),  Va>1,Yze€0,b). (28)

Let additionally F(w, ) be strongly concave, & > 0 and « > 1. If the patch k
is F-accessible at some 3 € [0,b) then

Q/)k(xv O‘f) < O‘(bk(xvg)’ Vz € (57 b) (29)

Proof Define u(x) = ¢(x,§), v(z) = ¢(x,af) and w(z) = agd(x,&). By the
concavity condition,

Lw = L(au) > al(u) >0 Vzel0,b), (30)

where Lu = 2% — F(u(z), z). In other words, w(z) is an upper solution with

w(0) = v(0) = «k,

hence Proposition 1 yields w(x) > v(x) for x € [0,b). This yields (28).

Now, suppose that F(w,z) is strongly concave, £ > 0, @ > 1 and patch k
is F-accessible at some 3 € [0,b). By virtue of (28), it suffices to show that
the equality wy(z) = vi(x) is impossible in (3,b). Arguing by contradiction
let us assume that there exists zg € (8,b) such that wy(xg) = vg(zg). We
claim that in this case wg(x) = vg(x) for any = € [5,x0). Indeed, if not then
there exists x1 € (8, xo) such that wy(x1) > vg(z1), hence the second part of
Proposition 1 implies wy () > vi(z) for any = € (z1,b), a contradiction at the
point xg follows. Thus, wy(x) = vg(z) and, thus,

Lw(z) =0 for any = € |8, z9). (31)

On the other hand, by the assumption u(0) = ¢ > 0 and Corollary 1 we
have ux(x) > 0 for € (f,b). Using the strong concavity condition (25),
Fr(ou(x),x) < aFy(u(x),x) for v € (8,b) which yields Lw(x) = (L(au))(z) >
al(u(z)) =0, a contradiction with (31) completes the proof.

4 The main representation

We start with an auxiliary model (36) below and then prove the existence
of a unique positive solution of (1)—(4) and examine asymptotic behavior of
the obtained solution. Everywhere in this section we assume the conditions
(H1)—(H4) are satisfied.
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4.1 The balanced equations

Now we consider the particular case of (13) with F(w,x) given by (16). In
other words, we consider the differential operator
d
Lw(z) = $ + M(w(z), 2)w(z) — D(@)w(z). (32)
x
For further applications, it is useful to specify the properties of M. Recall
that in an important for us case of the Lotka-McKendrick-Von Foester model
(1) with (8), i.e. each M (v,x) is actually an increasing linear function in v.
Keeping on the monotonicity, we also impose some additional growth condi-
tions on Mj. Namely, we suppose that each My (v, z) satisfies (H2), i.e. is a
nonnegative continuous function on R x [0,b),

My (v, x) is strongly increasing in v > 0 for any fixed = € [0,b) (33)
and there exist v > 0 and ps > 0 such that
My (v, 2) — pr(x) > pocv™,  V(v,2) € Ry x[0,b), (34)

where

pr(x) = Mi(0,z) > 0. (35)

Proposition 4 Let £ be given by (32) satisfying (H2) and (H3). Then for
any & € RY there exists a unique solution w(z) € C([0,b),RY) to the initial
value problem

Lw(z) =0 x €10,b)

w(0) = &. (3)
The solution is nonnegative and bounded,
0 < wi(w) < [w(0) eI, (37)
and furthermore
lw(@)[|oo < [[w(0)[|ooe™IPIP=S5 1), (38)

where p(x) = ming pg(x).

Proof Using the notation of (16), the Metzler property on D implies that F
satisfies the Kamke-Miiller condition in [0, b). Furthermore, since M > 0 one

also has
N

Fio(w,z) < |[w]loe Y 1Dij(@)] < N[DJl]|w]lo

j=1

which implies (21) with C(F) = N||D||. Thus, the assumptions of Proposition 2
are fulfilled. This yields the existence of the initial problem (36) and (37).
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Furthermore, if H(z) = |Jw(z)||s then by (23) at any point « € [0,b) of
differentiability of H

H'(x) < max Fi(H(x)1,7)
< NI|D||H(z) — min My (H(x), 2)
< (N|D| - u(x))H(a)
which readily yields (38).

Proposition 5 (The Universal Majorant) Let £ be given by (32) satisfy-
ing (H2) and (H3). Then any solution Lw(x) = 0 satisfies

w(x)gwlel/vljv xz € (0,b), 1<k <N,

1 N 1/~
wr = (+ ”D”b> . (39)
YHoo

where

Proof Let us consider h(z) = wiz~ /71y, where w; is defined by (39). Then
using (33) and My (0,2) > 0 we have for any k= 1,..., N and z € [0,b)

My (hg(z),x) = Mk(wlx_l/'y,x) > w?uoox_l,
hence

(Lh(@))i > ~ 2L 7 4 gl a7V - N|Dfjwe /7
Y

> “3 1YY (ypsew] — 1 - N|D|)
Y

vV

%x-l-“wwmwz —1— N|D|}b)
Z 07

i.e. h(z) is an upper solution. Now, if w(z) be an arbitrary solution of Lw = 0
then by (22), w(z) is bounded on [0,b): |wi(z)| < [|w(0)]ece’®? for any
k=1,...,N and =z € [0,b). Since M > 0 one has C(F) < N|DJ. Let
¢ = |w(0)]|aeeNPIP and 2y := min{(w;/c)7,b}. Then h(z) > w(x) on the
whole interval (0, zo). This proves the claim if zy > b. If 2y < b then since h(x)
is an upper solution of (36) and h(zg) = ¢ > w(xp). Therefore Proposition 1
yields h(z) > w(z) for any © € (z¢,b), which finishes the proof.

4.2 The main represenation

Lemma 4 Let B be defined by (2) and let
B ={(a,t) e B:a>ty, B ={(a,t)e B :a<t}.

Then each of = and %+ is a connected open set.
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Proof Tt suffices to prove that for any y > 0, the set {s > 0: (s,y+s) € B} is
connected. To this end let us suppose that (0,y) € % and let S be the closed
component of {s > 0: (s,y +s) € B} containing (0, y). Let (s1,y + s1) be the
right endpoint of S. Then (s1,y+s1) € 0%. We claim that (s,y+s) € R?\ &
for s > s;1. Indeed, arguing by contradiction, one concludes that there exists
S92 > $1 such that (s2,y + s2) € 0%4. This yields B(y + s;) = 84, @ = 1,2, thus
by (5)

B(y + ks2) — B(y + ks1) -
S9 — 81

1=

The contradiction yields our claim and, thus, the desired connectedness.
Let us define

#F ={(z,y):x < Bz +vy), y >0}
B ={(z,y):0<x<T,0<y< B(z) -z},

as it is shown on Fig. 1 and 2, respectively.

¢ 0% Y
%4, a=2x
t=x+4+y
(T, T) B 2 =B@+y)
|
|
|
|
|
|
l
. a, T x
Fig. 1 The domalns %+ and Zh
t a=z+y y
t=x
(T,T)
- 5 B©
a = B(t) y=B(z)—«
-
T

Fig. 2 Bl(g()z domains #~ andaﬂf



Global stability of an age-structured population model... 21

Next, let @(x; p,y) denote respectively ¥(z;f,y) the solutions h(x) of the
initial value problems

%h(m) = —-M(h(z),z,z + y)h(z) + D(z,z + y)h(z), (40)
h(0) = p(y), (z,y) € By,

respectively

L h(x) = —M(h(z),z +y,x)h(z) + D(z + y,z)h(z),
h(0) = £(y), (z,y) € % .

(41)

Lemma 5 Let p € C(R,,RY) N L>®(R,,RY) and let f € C(R,RY) sat-
isfy (H5). Then ®(x;p,y) (resp. ¥(x;f,y)) is a nonnegative function non-
decreasing in p (resp. f). Furthermore,

P(x;p,y) < " IPIpllos (42)
(z;p,y) <wiz” Y1y, x>0 (43)

where wy is defined by (39), and
|Pr(; 0, y) = Pu; ", )| < VPP p(y) — " (y)loc, (44)
U(x;f,y) =0 Vo >0,y > B(0). (45)

Proof It follows from Proposition 4 that (40) and (41) have a unique nonnega-
tive solution. Next, given two arbitrary p and p*, let h(z) and h*(z) be the cor-
responding solutions of (40). If p > p* then Proposition 1 imply h(x) > h*(x)
for > 0 and the monotonicity &(z;p,y) > @(x; p*,y) follows. Similarly one
shows the monotonicity of ¥. Furthermore, if p(t) and p*(t) are two arbitrary
nonnegative vector-functions, then Corollary 3 and Proposition 4 yield

Dn (3 p,y) — Dr(w; ", y)| = |h(x) — b ()] < eMIPIY|p(y) = p* (1) ] oo

Proposition 5 implies (43). Finally, by (H5) f(z) = 0 for all z > B(0). Then
by the uniqueness of solution of (41), ¥(x;f,y) = 0 for all y > B(0) and = > 0.

Proposition 6 Let n(a,t) € C*(%) be a solution to the problem (1)-(4) and
let p(t) =n(0,t). Then

@(a;p7t - a)7 t> a,
n(a,t) = (46)
U(a;f,a—1t),a>t,

and

p(t) = /o m(a, t)P(a; p,t — a)da + /too m(a,t)¥(a;f,a —t)da. (47)
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Proof First let (a,t) € % and t > a. Then in the new variables (a,t) =
(z,r + y) one has (z,y) € #; and the initial value problem (1)—(4) becomes
(40) for h(z) = n(xz,x + y). This yields n(z,x + y) = &(x;p,y) for each
y > 0, thus, returning to the old variables yields n(a,t) = @(a; p,t — a) for any
t > a > 0. This proves the first part of representation (46). The second part is
similarly obtained by the change of variables (a,t) = (z + y, ). Furthermore,
the continuity of n(a,t) follows from (46) and the standard facts on continuity
of solutions on parameters. Finally, plugging (46) in (3) yields (47).

4.3 The integral equation

It is straightforward to see that if M, D, m and f are sufficiently smooth func-
tions, then the function n(a,t) in (46) is a classical solution of the boundary
value problem (1) — (4) in #. On the other hand, in application it is natural
to assume that these functions are merely continuous (or even measurable).
In that case, one can interpret the representation (46) with p satisfying (47)
as a weak solution of (1) — (4). Furthermore, since a solution p(t) of the inte-
gral equation (47) completely determines the population dynamics n(a,t), it
is natural to characterize all nonnegative solutions of (47) (with a given func-
tion f). To this end, we observe that (47) can be thought of as an (nonlinear)
operator equation on p:

p=%p:=Kp+ Ff, (48)

where the operators K and F are defined resp. by

Kp(t) = /0 m(a,t)P(a; p,t — a)da (49)
Ff(t) = /00 m(a,t)¥(a;f,a — t) da. (50)

In this section we treat some general properties of %;.
We fix some notation which will be used throughout the remained part of
the paper. Let wy be defined by (39) and let

A,
" da
i =wnmlloe [T (51)

m

where A,,, a,, are the constants from (H4) and
m = m(av t) = (ml(a7 t)a s amN(a, t))
is the birth rate. Let us also consider the following subsets of Rf :

Q- ;:{xERN: 0 <z <weln},
Qt ={z eRY: z>wln}.
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Lemma 6 Let (Hj) be satisfied. Then the operators F and K are positive
on the cone of nonnegative continuous vector-functions C(R+,Rf) and have
bounded ranges:

K:C[R,,RY) = CR,,Q7), (53)
F:OR,,RY) 5 {heCR,,Q) :supph C [0, 4,,] x R}, (54)

Furthermore, K is non-decreasing and Lipschitz continuous on C’(R+,Rf).

Proof 1t readily follows from the nonnegativity of m and Lemma 5 that I and
F preserve the cone of nonnegative functions C'(R,, Rf ) and non-decreasing
there. Furthermore, using (H4) we have from (43)

A, A
m w1Mmg (a’ t) m 1
(’Cp)k(t) § /a Tdagwlanm/ mdd:&]g.

m Am

This yields (53) and thus the boundedness of the range of K. The corresponding
property for F is established similarly. Next, by (H4) m(a,t) =0 for a > A,,,
hence for any t > A,,

Fi(t) = /OO m(a,t)¥(a;f,a —t)da =0

which implies (54). Finally, if p and p* are bounded functions then by (44),

Am
(Ko =K )e(o) < Il [ @2laip.t = @) — Bulas )] da
< (Am — am)Hm”ooeN”DHpr =" |loos

which yields that K is a Lipschitz continuous operator.

Proposition 7 Given an arbitrary f € C(R+,Rf), there exists a unique so-
lution p € C(R_,RY)NL>®(R,RY) of (48).

Proof Let us consider the sequence {p(i)}ogigw defined recursively by
Pt = Kp@ + Ff, pO =0, (55)
Since Ff > 0, we have

p(O) —0< Ff = p(l)7
pM) = Ff < KpM) + Ff = p@.

This shows that pt1) — p(® >0 for i = 0, 1. Then combining

p(”l) _ p(i) _ ,Cp(i) _ ]Cp(ifl)’ i>0,
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with the monotonicity of K implies by induction that p(*t1) — p( > 0 for any
7 > 0. In other words, {p(i)}ogigoo is a pointwise non-decreasing sequence. On
the other hand, by (53) and (54) this sequence is uniformly bounded:

Pt = Kp@ + Ff < 2wy - 1.

This implies the the existence of the limit

p = lim p® < 2w, - 1y. (56)

1—00

Using (44) and (42) we obtain for any ¢ > 1
V@ = A 0] < mlloc / [r(a; )0t — ) = P p Yt — )] da

t t
<C [t =@~ Vit - a)lda=C [ |59) - 4V a)] da
0 0

where C' = NIPll||m||,,. On iterating the latter inequality we obtain using
p) < p and (56)

. Ztl
|p,(;+1)(t) )] < C’Z// / a)daday...da;—1 < 2(.020'
1!
therefore
Jj—1 (Ct)lJrs Cztz

< 2{.«]26

o (1) = p ()] < 2w > (57)

= (i+s)!

Therefore for any fixed T' > 0 and 0 < ¢ < T, the latter expression con-
verges to 0 as i — oo uniformly in j > 1. This establishes that p(¥) — p
in L>((0,T),RY) for each T' > 0. In particular, by (55) this implies that p
satisfies (48).

In order to establish the uniqueness we assume that p and p are two solu-
tions to (48). The tautological iterations p() := p and p() := p, i =0,1,2,...
obviously satisfy (55) which by virtue of (57) yields

147

- C
o1 (t) = pr(t)] < 2w2—

—0 as 17— 00,

thus p(t) = p(¢). Finally, by Lemma 5 @, and ¥, are continuous, which yields
the continuity of operators K and F, and, thus, all iterations given by (55) are
continuous and so is the limit p. This completes the proof.
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4.4 The convolution property of X

Lemma 7 Let p € C(R,RY) and p(t) > 0 for t € [s1,s2] C R,. Let for
some k there exists Bi, < sup suppmy such that the patch k is accessible at By.
Then there exist ay, by, such that [ay, b;] € supp my, Br < ag, and (Kp(t))r >0
for allt € [s1 + ak, s2 + by].

Proof There are § > 0 and points a}, b}, a), < ap < by < b}, such that (i)
my(a) > 0 for a € [a},b}], and (ii) the patch k is accessible at S, < aj. By
Lemma 3 we have

d1:= min D(a;p,y) >0,

s1<y<ss
a;SaSb;c

hence if t € [s1 + ag, $2 + b] then

t min{t,b} }
(Kp)i(t) = / my(a)Pr(a; p,t — a)da > 5/ D (a;p, t —a)da
0 aj,
min{t,b) ,t—s1} min{b} ,t—s1}
> 55’/ da = 55'/ da
max{a,t—sz2} max{aj ,t—s2}

We claim that (ICp(t))r, > 0 for all ¢ € [s1 + ag, s2 + bg]. Indeed, the function
&(t) = min{b,,t — s1} — max{aj,t — so} is obviously concave and

€51 +af) = min{0}. o} ) — max{al. af + 1 — 52} = .
5(82 + b;c) = min{b;w b;g + 52 — 51} - max{a;w ;c} =0,

hence by the maximum principle £(t) > 0 for any t € (s1 + aj,, s2 + b},). This
yields the desired conclusion.

5 Constant environment

The model (1)—(4) is more complicated for analysis under the assumption that
a population lives in a temporally variable environment because the structure
parameters are functions of age and time. In this section we analyze a con-
stant environment, then in section 6 we continue with a periodically changing
environment, and finally in section 7 we describe an irregularly changing en-
vironment. Throughout this section, we assume the conditions (H1)-(H5) are
fulfilled. Also, it is reasonable to assume that the maximal life-time is constant:
B(t) = b. This condition is natural and is commonly used for both finite and
infinite values of b, see [23], [10], [14].
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5.1 The characteristic equation

Under assumptions that the vital rates, carrying capacity and dispersion co-
efficients are time-independent functions, the system (1)—(4) becomes

on(a,t)  On(a,t) _

—M(n(a,t),a)n(a,t) + D(a)n(a,t),

ot da
n(0,t)= [ m(a)n(a,t)da, (58)
0
n(a,0) = f(a)

According to Proposition 6, there exists a unique solution n(a,t) of the prob-
lem (58) given by

d ; 7t7 ’ <t7
n(a,t) = (aip @), @ (59)
U(a;f,a—1t),a>t,

where the newborns function

p(t) = (pr(8), ... px () = n(0,1) = / ” m(a)n(a,t) da,

satisfies the following identity:

t o}
p(t) = / m(a)®P(a; p,t — a)da + / m(a)¥(a;f,a—t)da. (60)
0 t
Using the notation of (49) and (50), we have

Proposition 8 Let n(a,t) be the solution of the problem (58). Then the new-
borns function p(t) satisfies the integral equation

p=%p:=Kp+ F~. (61)

It is natural to study stationary (i.e. time independent) solutions of (61).
Indeed, since m(a) has a compact support, it follows from (60) that Ff vanishes
for large enough ¢. This yields that any solution of (61) satisfies

p(t) = (Kp)(t) forallt> A,,. (62)

In particular, it is easy to see that if p has a limit po, = lim;_,. p(t) then
Poo itself is a stationary solution of (62). In the next section we study the
stationary solutions in more detail.

To make these observations precise, we introduce the following operator:

. A
Kp :=/0 m(a)p(a; p) daE/ m(a)p(a;p)da,  peRY,  (63)

m
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where ¢(a;p) = (p1(a;p),...,on(a;p))t is the unique solution of the initial
problem

U0 Mip(asp)a)olasn) + Dlaelesn). oy
©(0; p) = p.
In particular, this yields in the notation of (40) for any p € Rf that
p(aip) = Blaip,y) for any y € R. (65)
Corollary 4 The operator K is nondecreasing and
K: Rf - Q, (66)

where Q~ is defined by (52).
Proof The nondecreasing property is by Proposition 1 and (66) follows from
(53).
Definition 2 The equation

Kp=p. (67)
is said to be the characteristic equation for the problem (61). A nonnegative
solution p of (67) is called a stationary solution of (61).

The set of stationary solutions is nonempty because p = 0 is a (trivial)
stationary solution. In section 5.2 we characterize all nontrivial stationary
solutions.

As it was noticed before, the characteristic equation describes the possible
scenario of the limit at infinity of solutions to (61). The next lemma makes
this observation more precise. First let us note that the limit

poc = p(M) = lim p(t).
is well-defined for any p € Sj;, where
Su = {p: R, — RY such that p(t) is constant for t > M}.
Lemma 8 For any f € C(R,,RY),
Zr S = Smta,,

and for any p € Sy

(Z5p) e = Kpos. (68)
Proof Tt follows from (54) and (H4) that for any t > M + A,, there holds
Am
Zp(t) / m(a)P(a;p,t — a)da = / m(a)P(a;p,t — a)da.
0

Next, by virtue our choice of ¢ we have for any 0 < a < A, that t —a >
t— A, > M, therefore @(a; p,t —a) = P(a; poo, M) = p(a; poo ). Therefore for
allt > M+ A,

Am o
L) = [ mi@)p(aip. M) da = [ ml@plas o) da = Ko

which yields the desired conclusions.
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5.2 The maximal solution of the characteristic equation

A vector p € RY is called an upper (resp. lower) solution to equation (67) if
p > Kp (resp. p < Kp).

Lemma 9 The set of lower solutions of (67) is bounded:
{p:Kp<ptcQ .
Furthermore, any p € Q% is an upper solution of (67).

Proof Indeed, if p < Kp then applying (67), (43) and (51) one obtains

e’} Am
p < / m(a)p(a; p)da < / m(a)lN% da < woly
0 a a

m

which yields p € @, and therefore the first claimed inclusion. Next, arguing
similarly we have for any p € Q" that

p=wy- 1y > / m(a)p(a; p)da = Kp
0

which proves that p is an upper solution of (67).
Proposition 9 For any p* € QT the limit
0 := lim Kip™ (69)
i—o0
exists and 0 is a solution of the characteristic equation. Furthermore,

(i) 0 does not depend on a particular choice of p* € Q;
(ii) if p is an arbitrary lower solution of (67) then p < 6.

Proof By Lemma 9, Kpt < pt. Thus, by the monotonicity of K we have for
all ¢ > 0 that
K*lp=KiKpt < Kipt,

thus {K?pT} is a non-increasing sequence bounded from below: Kip*t > 0.
This implies the existence of the limit in (69). Let us for a moment denote
the limit by 8(p™*). It follows trivially that K6(p*) = §(p*). This proves that
O(p™) is a solution of the characteristic equation. Next, let p be an arbitrary
lower solution of (67). Then by Lemma 9

p<Kp<wly<pt.

Iterating the latter inequality yields p < Kip < Kipt, and passing to the limit
as i — oo we get p < pt(6). This proves (ii). Now suppose that pj € Q7.
Then 6(p]) is a solution of the characteristic equation, hence by (ii)

0(pF) < 0(p™),

which, by symmetry, yields the equality in the latter inequality. This estab-
lishes the independence of §(p™*) on a choice of p™, implying (i).
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Definition 3 The unique 6 defined by (69) is called the mazimal solution of
the characteristic equation.

Note that the maximal solution 6 does not depend on the initial population
distribution f(a) and it is essentially determined by the maternity function
m(a). As we shall see, the maximal solution plays a distinguished role in the
asymptotic analysis.

5.3 The basic reproduction number dichotomy

Throughout this section we assume additionally that the condition (H6) is also
fulfilled. Let us consider the scaled version of I by

Zyx = Kz, zeRY, A € (0,00). (70)

Equivalently, we have component-wise
Frx = / m(a)Y (a;x, \) da, (71)
0

where
Y(a;z,\) = $o(a; Az), x€RY.

Thus, the existence of a nontrivial solution to the characteristic equation
(67) is equivalent to the existence of a pair (e, A) , where a unit vector (a
direction) e € RY, e[| = 1 and a scalar A > 0 are such that

e = Ze. (72)

The next lemma establishes that for each direction e € Rf there is at most
one such pair.

Lemma 10 The operator % is decreasing with respect to A:
Ae>M >0 = Za>Rr YreRY. (73)
In particular, given an arbitrary direction e € RY, |le| =1,
card{A>0: de€ G} =card{A>0: e=Zre} <1.
Proof Since oo = A\3/A1 > 1 we have from (28)
pla; Aex) = p(a;ahz) < apla; A z),

ie. Y(a;x, A2) <Y(a;z,Ar). This yields the weaker inequality Zx,x > %Zx,x
for any x € RY. Next, by (H6) for an arbitrary 1 < k < N, there exists 3 <
sup supp my, such that the patch k is accessible at Sg. By (29), pr(a; aliz) <
ap(a; A\1z) holds for any a > B. Thus, Yi(a;x, A2) < Yi(a;z, A1) for a > By.
Since supp my(a) N (Bk, o0) has an nonempty interior, it follows from (71) that



30 V. Kozlov, S. Radosavljevic, V. Tkachev, U. Wennergren

(%, %), > (#r,2)k for any x € RY. By the arbitrariness of k one has (73).
Next, e € RY, |le]| = 1 be such that the set {\ > 0: e = Z\e} is nonempty,
say e = Xy, e for some Ag > 0. Then (73) yields

%)\26 KLe= %)\06 < %)\16
for any A1 < Ag < Ag. This proves that A is the only solution of e = Z)e.

In the course of the proof of the lemma we have established the following
property.
Corollary 5 For any 0 < A < 1 and any x € Rf there holds Ap(a;x) <
ola; Az).

The limit case A = 0 plays a distinguished role in the further analysis.
Notice that Y (a;x, A) is non-decreasing in A > 0 and by (42) Yi(a;2,)) <
eNIPIP wwhere the constant b is from (H1). This implies that the limit

Yi(a;z) := /\l_igl_o Yi(a;2,A)

does exist for any fixed x € Rf , and the standard argument shows that Y (a; z)
is the unique solution of the linear system

dY(a;x) .
DAL _ (Do)~ M(0,0))¥ (a2, -
Y(0;2) = x.

Here
M(0, ) = diag(p1(a), ., i (@)

with pg(z) is defined by (35). Since my, > 0, the limit

Rox = lim m(a)Y (a;x,\) da = / m(a)Y (a; z) da. (75)
A—=+0 Jo 0

is well defined for each x € Rf .
To proceed, we recall some standard concepts of the nonnegative matrix
theory. A matrix A is called reducible [37] if for some permutation matrix P

A 0
PAP' = (M >
<A21 Az )’

where A11, Ass are square matrices, otherwise A is called irreducible. There is
the following combinatorial characterization of the irreducibility, see [7, p. 27],
[36, p. 671]: the condition that a nonnegative matrix A of order n > 2 is
irreducible is equivalent to any of the following conditions:

(a) no nonnegative eigenvector of A has a zero coordinate;

(b) A has exactly one (up to scalar multiplication) nonnegative eigenvector,
and this vector is positive;

(¢) az > Az and x > 0 implies = > 0;
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(d) the associated graph I'(A) is strongly connected.

Lemma 11 The map %o : RY — RY defined by (75) is linear and strongly
positive, i.e. x > 0 implies Zox > 0. In particular, Zq is an irreducible matriz.
Furthermore,

Fre L Hox, VxR, X>0. (76)

Proof Indeed, the linearity follows immediately by (75) and (74). Since the
matrix M(0, a) is diagonal, the associated digraphs of the matrices D(a) and
D(a)—M(0, a) are equal. Therefore, using (H6) readily yields that Yj(a; x,0) >
0 for any a > . Hence, repeating the argument of Lemma 10 we have from
(75) and (H4) that (Zox)r > 0 for any k. This proves Zyx > 0. Suppose by
contradiction that % is reducible. Then for some permutation matrix P

¢ A 0
PRyP' = <A21 A22>’ (77)
where A11, Aog are square matrices. Let > 0 be a vector in Rif with all first
m coordinates zero, where m is the order of Ay;. By (77) P%oPtx has the
same property, i.e. the vector %y P'z has at least m zero coordinates which
contradicts to the fact that %o Ptz > 0. This proves the irreducibility. Finally,
(76) follows from (73).

Corollary 6 If Zoe < e for any e € RY, |le| = 1, then the characteristic
equation (67) admits only trivial solutions.

Proof Indeed, if p # 0 is a nontrivial solution of (67) then by (70) e = p/||p||
is a solution of Zy\e = e for A = ||p||. On the other hand, using the assumption
and (76) we obtain

e =%re K Hpe < e,

a contradiction follows.

Let us denote by Ry the spectral radius of the linear map %,. Combining
the irreducibility of %, with the Perron-Frobenius theorem [7, Theorem 1.3.26]
implies the following important observation.

Corollary 7 The spectral radius Ry > 0 and it is a simple eigenvalue of Z.
If x is an eigenvector of Zo then x > 0. If X\ # Ry is another eigenvalue of
Ry then |A| < Ry. Furthermore, the Collatz- Wielandt identity holds

. (Hoz);
max min = Ry.
x>0 1<i<N x5

Definition 4 The linear map % is called the net reproductive map associated
to the problem (58). Its spectral radius Ry is called the basic reproduction
number.
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The latter definition can be motivated as folows. For a single patch model,
i.e. N =1, the linear system (74) becomes a single equation

d
%Yl (a; z, 0) = —/,L(G,)Yi (a; €, 0)7

with an explicit solution Yi(a;x,0) = zexp(— [ pu(s)ds). Thus (75) yields
.@QI = R()J?, (78)

where
Ry =Ry = / m(a)e™ Jo #5)ds gq, (79)
0

The quantity Ry is well-established and is known as the (inherent) basic repro-
duction number in the linear time-independent model on a single patch [27],
[15]; see also [33] or [34]. Note that in this case,

II(a) = e~ Jo ns)ds (80)

is the survival probability, i.e. the probability for an individual to survive
to age v. Then Ry is the expected number of offsprings per individual per
lifetime. Recall that in the one-dimensional case, Ry is related to the intrinsic
growth rate of population by the characteristic equation. Namely, when Ry > 1
population is growing, while for Ry < 1 population is declining.

The next result extends this dichotomy onto the general multipatch case.
Recall that

Theorem 1 (The Net Reproductive Rate Dichotomy) If Ry < 1 then
0 =0 and the equation (67) has no nontrivial solutions. If Ry > 1 then 6 >0
and 0 is the only nontrivial solution of the characteristic equation (67).

Proof First let us assume that Ry < 1 and suppose by contradiction that
Kp = p for some p > 0. Let A = ||p|| and e = p/A, then by (70) and (76),

Foe > Fre = %I@)\e = %I@p = %p =e.

The latter easily implies that there exists ¢ > 1 such that Zye > te. On
iterating the obtained inequality yields Z%e > t*e, thus

Ry = lim || 2|V >t >1,
k—o0

a contradiction.

Now suppose that Ry > 1. By Corollary 7, there exists a positive eigen-
vector eg > 0 of Z. Since ey > 0 there exists A > 0 such that Aeg > (wo)n,
where wy is defined by (51). By (52), p™ := Aep € QT, hence Lemma 9 implies
that

6= lim K'pt €€

i—00
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is a solution to (67). On the other hand, since Ry > 1 we have
Hoeg = Roeg > eg.
hence, by the continuity argument for some A > 0 small enough there holds
Fxrep > ep.
Therefore, setting p~ := ey we obtain
Kp~ = KXleg = \M%rep > Aeg = p

i.e. p~ is an lower solution of (67). In other words, p~ € €'V, thus (ii) of
Proposition 9 yields
0>p" >0,

thus 0 is a nontrivial solution.

In order to establish the uniqueness of a nontrivial solution (i.e. that
card(¢) = 1), we will follow the idea of Krasnoselskii and Zabreiko from
[35, Ch. 6]. To this end, let us suppose that 61,62 be two nontrivial solu-
tions to (67). Then 6,605 > 0. If 6; # 62 then at least one of inequalities
01 < 05 and 05 < 6y is not valid. Suppose that 0, < 05 is not satisfied. Since
61> 0=0-6, the set {\>0:6; > X6} is non-empty and the following
supremum is well-defined

/\0 = sup{/\ Z 0: 91 Z )\92}

Since #; > 0 there exists € > 0 such that 6; > efls, hence A\g > € > 0. On the
other hand, by the assumption 6; £ 6s, therefore we also have 1 & {\ > 0 :
61 > A02}, thus A\gin(0, 1). By the continuity, 81 > A¢f2, by the monotonicity
of IC and Ao < 1 one has

0, = I€01 > I€(>\002) = /\0.@A0 (92) > /\0%1(02)
= A\oK0z = \oba,

Thus, 01 > Agbs, implying 61 > (6 + Ag)f2 for some small positive 4. The

latter inequality contradicts the definition of A\g. This finishes the proof of the
uniqueness.

5.4 Asymptotic behaviour of a general solution of (61)

Let us return to the general equation (61). If the initial distribution of popu-
lation vanishes: n(a,0) = f(a) = 0, the uniqueness of solution of (58) imme-
diately implies that the population density n(a,t) = 0 for all a,t > 0. This
conclusion also holds true even under a weaker assumption that Ff = 0. The
latter is evident from the biological point of view: the population disappears if
its initial distribution is older that the maternity period. Taking into account
these observations, it is naturally to assume that

FE#0. (81)
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The main result of this section states that under this assumption, any solution
of (61) behaves asymptotically as the maximal solution.

Theorem 2 Let x be the solution to (61) satisfying (81). Then

lim x(t) = 6. (82)

t— o0
We start with two results describing the upper and lower solutions to equa-
tion (61).
Lemma 12 Let x be a solution to (61). Then

limsup x(¢) < 6, (83)

t—o0

where the latter inequality should be understood component-wise.

Proof Let pT be an arbitrary stationary upper solution to (61), i.e.
pt > LpT (84)

Notice that that the class of stationary upper solutions is nonempty. Indeed,
it follows from (53) that, for example, 2(ws + €)1 is such a an upper solution
for any € > 0. Now, let us define the iterative sequence by

p(i) = K*pt for i > 0 and p(o) =pt,

X9 = ffi+1p+ for i > 0 and (¥ = p*.
Then applying the argument of the proof of Proposition 9 yields that {p()} is

non-increasing:
P+ < )0 i >0,

Also, since p® is a constant vector function, it follows by Lemma 8 that
Zp') € Sy4,, and also that

Dg/ﬂfp(i)(t) = ]Cp(l) (t), Yt > A,

We claim that for any j > 0

(a) xUTD < x) for all t > 0;
() X9 = pl) for t > jA,,.

The proof is by induction. Notice that (b) holds trivially for j = 0, and by the
assumption (84)
X =230 = Zpt <pt =x©

which yields (a) for 7 = 0. Let the claims (a)—(b) hold true for some j > 1.
Then (a) follows from the monotonicity of %%:

D = Zn ) < ey -1 = 1),
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Furthermore by the assumption x) € S;4, and ) = p). Hence Lemma 8
yields ‘ ‘
YUt = ) Seit1)A,,
a’nd . . . . .
NI = (Lo @) = Kx) = Kpld) = pli+D),
which yields (b) for j + 1.
Next, it follows from (a) and the boundedness of the image of £ that {x(/)}

is non-increasing and bounded from below, thus has a limit which obviously is
a solution of (61). By the uniqueness, lim; ., x")(t) = x(t). Now, let 1 < k <

N. Then the sequence of the coordinate functions X(J )( t) is non- 1ncreas1ng with
respect to j and lim;_, X(J)( t) = xx(t). Let € > 0. Since lim;_,o pk = 0,
there exists jo such that 6, < p,(j) < O + € for all j > jg. This implies that

x,(cj)(t) < O + ¢ for all 7 > jo and t > jA,,. Passing to the limit j — oo we
obtain xx(t) < 0y + € for t > jA,, which easily implies (83).

Lemma 13 Let x be a solution to (61). If there exists a lower solution p~ to
(61), i.e. Zp~ > p~ such that p~ € Sy for some M > 0 and p, # 0 then
lim; 00 X(t) = 6.

Proof As above, let us consider the sequence of iterations

X9 = ZIx® fori >0 and xO(t) = p~,
P9 = K7p® for i >0 and p@(t) = (p7 ) o,

By Lemma 8, x') € Sy 4,,. Furthermore, by (68)
= (Zp oo = Kpo = pV.
Using an induction argument readily yields
(J) =pU), vj>o. (85)

Since Zp~ > p~, we have x(!) > x| thus by the monotonicity of %,
XUt > xU) . This proves that {x/)(¢)} is a nondecreasing sequence. Further-
more, (85) implies that

pUTD =X >3 = o1,

thus, {p(j)} is also a nondecreasing sequence. Furthermore, since po, # 0,
we have that pU) > 0 for j > 1. By Lemma 6 the both sequences are
bounded from above by ws1ly. Thus, the limits p := lim;_, pU) and Y =
lim; o0 xY)(t) exist and solve Kp = p and Zx = ¥, respectively, where
p > 0. By the corresponding uniqueness results, we have p = 6 and y = x. Ar-
guing as in Lemma 12, we obtain liminf;_, o x(¢) > 6 (the latter is understood
component-wise). Hence (83) implies the existence of the limit lim;_, o x(t) =

6.
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Proof (Proof of Theorem 2)

If Ry <1, then Theorem 1 yields § = 0, then (83) immediately yields (82).
Therefore we shall suppose that Rg > 1. Let x be the unique solution to (61)
and let 6 > 0 be the unique maximal solution of (67). By Lemma 13, it suffices
to show that there exists a lower solution p~ to (60) such that p~ € Sy for
some M > 0 and po, # 0. In the remained part of the proof we shall construct
such a solution. Let us consider an auxiliary sequence of iterations

P9 = Zp® for j > 1 and p® = 0.
We claim that the new function p~(¢) defined by
_ @), 0<t< M,
p(t):{ie()tSM_ (86)

is a lower solution to equation (61) for certain M > A,,, sufficiently large
j > 1 and sufficiently small A > 0 to be specified later. To this end, first notice
that

pM = =Ff>0=p®,

hence using an induction by 5 > 1, one gets
Pt = £ p0) > L pli=1 = p0)

i.e. the sequence pl) is non-decreasing in j. It also follows from the latter
inequality that p@) < Z%pl), ie. pl¥) is a lower solution to (61). Hence,
p~ (t) defined by (86) is a lower solution to (60) in the interval ¢ € [0, M]. In
particular,
(Lp™)(t) — p~(t) >0 for t € [0, M].

Next, we assume that t € [M, M+ A,,]. By the assumption M > A,,, hence
one has (Ff)(t) = 0 and %p~ = Kp~. We have by (86) and condition (H4)
that

Am
Ko@) = [ mlalaipt = o) da

t—M Am )
= / m(a)p(a; \0) da + / m(a)®(a; pV,t — a) da
0 t—M

On the other hand, since K6 = 6, we have

Am
0= / m(a)p(a; 0)da.
0
This yields by virtue of p~(¢t) = A0 for t € (M, M + A,,) and (65) that
(Zep™ —p7)(t) = (Kp~ —p7)(t) = (Kp™ = 0)(¢)

t—M
_ /O m(a)(p(a; \0) — Ag(a: 0)) da (87)

+ / " ()@ 49— @) — AP0, @) da (55)
t—M
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We claim that the integrals (87) and (88) are nonnegative. The first integral
is nonnegative by virtue of Corollary 5. To show that (88) is nonnegative, let
us estimate function @ (a; p9),t — a) from below. By (H6), my(a) > & > 0 for
all a € |ag, b, where ap, > B and by, are the same as in Lemma 7. Since F(f)
is not identically zero, there exists an interval [s1, s — 2], where this function
is positive. Applying Lemma 7 for p = p(") = F(f), we get that

(ICp(l))k(t) >0 fort € [s;+ ag,s2+ bl
Therefore
p D () = KpW(t) + FE(t) >0 fort € [s1 +ag,s2+bi), k=1,..., N,
and, in particular this is true for k£ = 1. Repeating this argument yields
pD(t) >0 fort e [sy+ (j— ar, sz + (j — 1)bi].

This implies that
®p(a;pV,t —a) >0 fora>fyandt—a € [s1 4 (j — Dar,s2+ (5 — 1)by].
Now we choose the index j and the number M to satisfy

M — Ay, M+ Ay) C[s1+ (J — Dar, s+ (5 — 1)ba).
Then

Bp.(a;p9 t —a) >0 for a € [Br, Am] and t € [0, A,). (89)

Therefore,
By (a; p9),t — a) < APy (a;0,t — a)

for such a and t if \ is sufficiently small positive number. This gives positivity
of (88) for t > M +ay. If t < M +ay, then the first integral in (88) is estimated
from below by
by
my(a)Pp(a; p9,t — a)da
ay
and it is positive for t € [M, M + A,,]. Since the functions @, are uniformly
bounded this implies the positivity of (88) for M < ¢ < M + aj when A is
small.
Finally, if t > M + A,,, then since F£(t) = 0 we have by virtue of Corol-
lary 5 that

A
(Lep — p)ilt) = (Ko~ — plt) = / mi(a) (9(a; M) — Agx(a:0)) da > 0

This proves that the function p~(t) defined by (86) is a lower solution to
equation (67), therefore by Lemma 13 we have the desired convergence that
completes the proof.
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5.5 Asymptotics of total population

According to the assumption made in the beginning of this section, the maxi-
mal length of life is constant: B(t) = b. Then the total (multipatch) population
P(t) at time ¢ is the vector-function

b
P(t) = / n(a,t) da. (90)
0
Then we have the following result.

Theorem 3 Let n(a,t) be the solution of (58) and let the condition (81) hold.
Then the following dichotomy holds: if Ry < 1 then P(t) — 0 ast — oo, and
if Rg > 1 then

b
lim P(t) = /0 »(a;0) da, (91)

t—o00

where 0 is the mazimal solution to the characteristic equation.

Proof Denote by p(a) the newborns function determined by f(a) by virtue of
(61). We have for general ¢t > 0

min{¢,b} b
P(t) = / P(a;p,t —a)da + / U(a;f,a—t)da.
0 min{¢,b}

On the other hand, by (H5) suppf C [0, b], hence using (59) we have for any
t > b that

b
P(t) = /0 &(a; p, t — a) da.

Next, by Theorem 1 and Theorem 2 we have lim;_, o, p(t) = 6 and furthermore
by (40) there holds h(a) := @(a; p,t — a) satisfies
azh(a) = =M(h(a), a)h(a) +D(a)h(a),

(92)
h(0) = p(t — a),

By continuity of solutions (92) with respect to a parameter and (64), we have
for any fixed a > 0 that

lim ®(a;p,t —a) = ¢(a;0).

t—o0

This readily yields (91).
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5.6 Estimates for the basic reproduction number and for the maximal
solution

In this section we shall assume that the condition (12) hold, i.e.

N
> Dyj(a) <0, 1<j<N.
k=1

The biological meaning of the latter inequality is that individuals do not re-
produce during migration (but can die). This condition immediately implies
that

Throughout this section, we use the following notation:

ma) = max me(a). o) i= min ().

Proposition 10 Under the made assumptions,

max / mk(a>6_ foﬂ(/“@(’”)“Flek(U)l)d“ da < RO < / m(a)e_ f()a p(v)dv da.
1<k<N Jq - -

(93)
Proof By Corollary 7 there exists an eigenvector p > 0 of %y corresponding

the maximal eigenvalue Ry, i.e. Zop = Rop. Let us consider the problem (74)
with the initial condition & = p. Using the assumption (12) and summing up

the equations (74) for all 1 < k < N we obtain that ¥ (a) = Zgﬂ Yi(a; p)
satisfies

i Y vla) < —pla)d(a),
¢(0) = Zi:vzl pk?7
which readily yields

N
bla) < e K HODS g

k=1
Then by (75)
N N . N o
Rod g =3 (el < [ mi@)vla)da <y pr [ mlape 0 da,
k=1 k=1 0 k=1 0

Since the sum Zgzl pr > 0 we arrive at the right hand side of (93).

Now, in order to prove the left hand side inequality in (93), notice that in
the made notation by virtue of Dy;(a) > 0 for k # j and Y;(a, p) > 0 for all
admissible a we have

d%Yk(a; p) = dri(a)Yi(a; p) = —(px(a) + [Drr(a)])Yi(as p),
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which yields in virtue of Y3 (0, p) = pi, that
Yi(a; p) > pre” Jo (uk (0)+] Dir (v) ) dv

Combining this with (75) we obtain
Ropk = / mk(a)Yk(a/7 p) da Z pk/ mk(a)e_ foa(l‘k(v)-‘rlek(U)de da,
0 0

thus implying (93) by virtue of py > 0.

Remark 1 The estimates (93) are optimal. Indeed, if Dy; = 0, the system (74)
splits into separate equations

d
%Yk(a;x) = —(pr(a) + |Drx(a))Yi(a;x), Yi(0,z) =xp, 1<k<N,

implying that each ey is an eigenvector of %, with eigenvalue
(o]
A = / (@)= 8 (31(@)+1Du(@)Dds g,
0

therefore Ry = maxy, A, is exactly the left hand side of (93). On the other hand,
suppose all patches to have the same birth and death rates: my(a) = m(a)
and pg(a) = p(a) for any 1 < k < N, and also that the dispersion is absent:
D = 0. Then a similar argument yields Ry = fooom(a)e_ 3 n@)dv gq implying
the exactness of the upper estimate in (93).

In order to establish the corresponding estimates for the maximal solution
0 we consider an auxiliary function

M(ta) = 7 min 3 €Mi(Ena). >0, (94)
=1

where the minimum is taken over the simplex
N
S ={ecrY Y & =1}
i=1

Lemma 14 In the above notation, ]\7(15, a) is nondecreasing in t > 0 and

Jim Mt a) = p(a). (95)
Furthermore,
=~ p(a)
M(t,0) — pla) > B0, (96)

where p(a) is the function from (H2).
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Proof f 0 < ¢/ < ¢t then A = t//t < 1. If £ € S(t) is the minimum point of
(94) then & = X € S(¢'), hence using the monotonicity condition in (H2) and
£ > ¢ we obtain

N
Z& 57.7 %Z&Ml(&v /\ing m = (t ’a)'
=1

which yields the nondecreasing monotonicity. In particular the limit in (95)
does exist. Denote it by 7. Since My (&4, a) > pi(a) > p(a), we have M(t,a) >
p(a). In particular, r > p(a). Conversely, given ¢t > 0 let & € S(t) be the
corresponding minimum point of (94). Let the number k = k(a), 1 < k < N,
be chosen such that p(a) = My (0, a). Define n; = 0 for ¢ # k and 7, = ¢. Then

N N

M(t,a) = %ZfiMi(&, a) < %ZmMi(t, a) = My(t,a).

=1 i=1

Passing to the limit as ¢ — 40 in the latter inequality yields g < p(a), thus
implying (95).

Finally, assume again that £ € S(t) is the minimum point of (94) for ¢ > 0.
Then using (H2) and the Holder inequality we obtain

N

N
t(M(t,a) — p(a)) = Z( i(&ia) Z i(&ira) — M;(0,a))&;

N
@3 &= NSy = B,
k=1

which yields (96).

Proposition 11 In the notation of Proposition 10, if Ry > 1 then there exists
a unique 04 > 0 such that

> m(a)e” Jo w(s)ds
/ A0 Plani/s = =1, (97)
o (L+61P(a)'/
where
v [ Iy n(s)d
—_ — Jo u(s)as
P(a)_N’Y/O p(t)e™ Jo dt.
Furthermore,
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Proof Since Ry > 1, the maximal solution § > 0 and § = K6. Let ¢ (a, 0) de-
note the corresponding solution of (64) satisfying (63). Let ¢(a) = Zgzl or(a;0).
Then summing up equations (64) and using (12) and (94) we obtain

N
Lp(a) < =30 Mlipula: 0), a)puas ) < N ((a), aji(a),
k=1

The obtained inequality implies that v (a) is a (positive) decreasing function
of a > 0, in particular, 0 < ¢(a) < ¥(0) = [|0||oc. We have from (96)

L pla) + pla)u(a) < ~(V((a),0) ~ p(@)(a) < -2 y(a) .

Rewriting the obtained inequality for z(a) = v(a) exp( [, p(s)ds)as

dZ(CL) p((l) 1+ ,—v [ p(s) ds
da =T @R
yields after integrating
1 1 ¥ @ oty
_ > He=YJon)ds gy — p
2a)y 20y = Nv/o plt)e % (@)

This yields by virtue of z2(0) = ¢(0) = |10

||9Hooe—f§u(s)ds

) S P )

Next, since § = K6, it readily follows that

0o oo — Jo u(s)ds
0 < [ mlapwlarda < ol [ DS

This yields by virtue of ||0]|c > 0 that

00 m(a) e~ S 1(s)ds
/ >1,
o (1+P(a)]0]l%)/

Since the integral

B ) m(a) e~ S 1(s) ds
1) = /0 (14 P(a)t)V/~

is a decreasing function of ¢ and lim;_,. I(t) = 0, there exists (a unique)
0+ > ||0]| solving the equation (97), thereby proving (98).

Remark 2 Let us comment on (98) from the biological point of view. Notice
by Theorem 2 that 22;1 05 is the asymptotical value of the total number
of newborns on all patches. By the dichotomy, Ry < 1 implies § = 0, thus
the total asymptotical number of newborns is zero. On the other hand, in the
nontrivial case Ry > 1, hence by (93) fooo m(a)e™ Jo #) dg > 1, which easily
implies that (97) has a positive solution.
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The next proposition provides a lower estimate for the maximal solution.

Proposition 12 Let there exist a function q(a) > 0 such that

My (v,a) — Mi(0,a) < g(a)v?, V(v,a) € Ra_. (100)
If for some k
/ i (a)e 5 @+ D @Ddv o 5 1 (101)
0
then
0, <0, (102)

where 8, is the unique solution to equation

o0 = [ (1())+|Drr(a)]) ds
/ mk(cz)e 0 a=1, (103)
0

5 (0, Q)

and

Q(a):%/o o(t)e— S +HDu s gy

Proof First notice that (101) implies by (93) that Ry > 1, thus 6 > 0. Since
Dyj(a) > 0 for j # k, the k-th equation in (64) yields

d
2o Pr(a;:0) 2 —(My(er(a,0), a) — Dix(a))pr(a; 0),
hence using (100) we obtain by virtue of My(0,a) = ui(a) that
d
—oek(a:0) + (e (@) — Dix(a))pr(a) = —g(a)pr(a)™*.

Arguing similar to the proof of Proposition 11 we get from ¢ (0;6) = 0 that

e— Jo (u(s)+|Dxx(a)]) ds

:0) >0 104
#k(a;0) = O 1+ 0,Q(a)/r (104)
therefore
- ® g (a)e7 Jo' (W) +Drk(a)) ds
0, = (K(0)), >0 da.
o= ROz 0 | e da

Since 6 > 0, one has 6 > 0, hence

da < 1.

* my(a)e™” Jo' (1(8))+| Dy (a)]) ds
/O (1+ GZQ(Q))U’Y

Again, let

da.

I oo mk(a)e_’y fga(ﬂ(s))""‘Dkk(a)D ds
t) =

0=

Then I(t) is decreasing, I(;) < 1 and by (101) I(0) > 1, thus there exists (a
unique) solution 6,  of (103) such that 6, > 6, .
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6 Periodically varying environment

Now we consider an important particular case of the main problem (1)—(4)
when the environment is periodically changing. In this section and in the
rest of the paper, it is assumed that the vital rates, regulating function and
dispersion coefficients are time-dependent and periodic with a period T > 0.
The boundary-initial value problem (1)—(4) is now in a T-periodic domain %,
where B(t +T) = B(t), t € R, under the periodicity assumption that

m(a,t+7T) =m(a,t),
M(v,a,t+T) = M(v,a,t), (105)

D(a,t +T) = D(a,t)
for any 1 < k,j < N. Throughout this section, we assume that the conditions

(H1)-(H5) are satisfied.

Notice that the existence and uniqueness of a solution n(a, t) to the periodic
problem follows from the general result given by Proposition 6 and it is given
explicitly by (46). Note also that n(a,t) need not to be periodic in ¢ but it

is natural to expect that n(a,t) converges to a T-periodic function p(t) for ¢
sufficient large, where p(t) solves the associated characteristic equation

Kp(t) = p(t), teR. (106)
Here the operator K is defined by
Kp(t) := /OOO m(a,t)®(a;p,t —a)da, teR, 1<k<N
and @(z; p,y) denotes the (unique) solution h(z) of the initial value problem

Lh(z) = —M(h(z), 2,2+ y)h(z) + S0 D(z, 2 + y)h(),
h(0) = p(y),
where the initial condition
p € Cr(Ry,RY) = {p e C(Ry,RY) : p(t +T) = p(t)}.

We shall assume that the nonnegative cone Cr (R, Rf ) is equipped with
the supremum norm ||p(t)|lc(jo,77)- It follows from the uniqueness results of
section 4.2 that the function @(z; p,y) is T-periodic in y.

A function p € Cr(R, ,RY) is said to be an upper (resp. lower) solution to

(106) if p > Kp (resp. p < Kp). It follows from Lemma 5 and condition (H4),

(107)

it follows that IC has a bounded range:

IK(p)lleqo,r)y < wa. (108)

In particular, any solution of the characteristic equation (106) is bounded by
wa.

Recall that a (nonlinear) operator is called absolutely continuous if it is
continuous and maps bounded sets into relatively compact sets.



Global stability of an age-structured population model... 45

Lemma 15 K : Cr(R,RY) = Cr(R,,RY) is an absolutely continuous op-
erator.

Proof By the Arzela-Ascoli theorem it suffices to show that the family of
functions

{Kp:peCr(Ry,RY) and ||p(t)|cqo.r) < R}

is uniformly bounded and equicontinuous for any R > 0. The first property
is by (108). In order to prove that the family is equicontinuous, we estimate
IKp(t1) — Kp(ta)| for |ty — ta] < 6, and for any p € Cr(R_,RY) such that
lle(®)lleqo,ryy < R. To this end, we assume that 7 :=t; —t; > 0 is such that

T<0 < %min{am,bl — A},

where a,,, A, and by are the structure constants in (H1) and (H4). Rewriting

Am
Kp(te) = / m(a,t2)P(a,tz — a; p)da

m

Ap—T
= / m(a+7,t1 +7)P(a+ 7,t1 —a;p)da
a.

m—T

and using the property that m(a,t;) = 0 for any a outside [a,, A, for i = 1,2
we obtain component-wise estimates

A,
(op(t))e — (Ron ()i < / mi(a+ b1 +7) — ma(a, £2)|Br(a + 7 — a; p) da

am /2

We have by (43) that for any 7 > 0 and t; € R

Am

Am Am Wy 1
—a < L da< — da =
/am/2 D (a+T,t1—a;p)da < /am/z (@t )i da < wq /am/2 i da =: C1

where C depends only on the structural constants. Next, since my(a,t) is a
T-periodic in ¢, by (H4) my, is uniformly continuous on the strip [a,,, 4,,] X R.
Since supp my, C [am, Am] xR, there exists o > 0 such that forany 1 < k < N,
a € [0,A,,] and || < d2 one has the inequality

|mg(a+7,t1 +7) —mg(a, t1)] < T

€

-
This yields I < €/2. In order to estimate I, we notice that @y (z) := P (z, t1 —
a; p) is the solution of the initial problem (107). Notice that by (42)

max [P eqou < VNeNIPIPlp]o < Cp := RVNENIPIP,
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Let

C3 := max{My(v,a,t) : 0<v < Cp,0<
:=max{M;(v,a,t): 0<v<Cp,0<

1(b1+An), 0<t<T}
(b1 + Ap), 0 <t < oo},

where the latter equality is by the periodicity. Therefore, applying the mean
value theorem to (107) we obtain for any 0 < 7 < x9 < A, + d; and for some
€ € (x1,22) that

@) — Bul)] _
To — IT1 -

(IMy(25(E), € ti—a)[+N[D])C2 < (C3+N[D[)C2 =: C4,

where Cy4 depends only on the structure conditions and R. This readily implies
I2 S C4Am||mHoo<51
Choosing §; small enough, yields the desired conclusion.

Proposition 13 For any p™(t) such that pT(t) > ws - 1, where wy is defined
by (51), the limit

0(t) := lim K'(pT(t))
1—> 00
exists and is a solution to the characteristic equation (106). Furthermore, the
limit 6(t) does not depend on a particular choice of pT(t) and it is the mai-
mal solution to equation (106) in the sense that if p(t) is any solution to the
characteristic equation (106) then p(t) < 0(t). Furthermore, if p~(t) is a lower
solution then 6(t) > p~ ().

Proof Since KpT(t) < ws -1y < p*(t) and by the monotonicity of K we get:
Kt p(t) = KIKp™ (1) < K7p* (1),

which implies that {p()(#)} is a non-increasing sequence. The sequence is
bounded from below because K pT > 0, therefore there exists a pointwise
lim; 00 K7pT () =: 6(t). The sequence {p)(¢)} is uniformly bounded by the
constant we. Applying Lemma 15 to family {p,(j )(t)} implies that the conver-
gence is in fact uniform on each compact subset of R. Thus 6 is a nonnegative
continuous T-periodic solution of (106). The rest of the proof is analogous to
the proof of Proposition 9.

In the remaining part of this section we additionally assume that addition-
ally condition (H6) holds. In that case, due to the periodicity, the infimum in
(H6) can be replaced by the minimum. Then arguing similarly to Lemma 10,
one can verify that for any p(t) € Cp(R,,RY) and 0 < A\; < Ao,

1
XIC()\lp) > )TQIC()\Q,O),
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hence the corresponding net reproductive operator is well-defined defined by

-
Hop Jlim

1 . oo
— = M —
n )\IC()\p) /o m(a,t)Y (a;p,t — a)da,

where Y (z,y; p) is the solution of the linear system

dY (x,y; p)
dx
Y (0,y;p) = p(y).

= (D(z,z+y) - M(0,2,2+y))Y (x,2 + y; p),

Let Ry denote the largest eigenvalue of %, and let 6 = 6(t) € Cp(R +RY)
be the maximal solution of equation (106). Then the following results are
established similarly to Theorem 1, Theorem 2 and Theorem 3 respectively.

Theorem 4 If Ry < 1, then the characteristic equation (106) has no nontriv-
ial solutions (in particular, @ =0). If Ry > 1, then 6 >> 0 is the only nontrivial
solution of equation (106).

Theorem 5 If F£(t) # 0 and x(t) is a solution to (48) then lim; o x(t) =
o(t).

Theorem 6 Let P(t) = fOB(t) n(a,t)da be the total multipatch population. If
Ry <1, then P(t) - 0 ast — oco. If Ry > 1, then

t—o0

b
lim P(t) :/0 #(a;0) da,

where 0 is the mazimal solution to the characteristic equation (1006).

7 Irregularly varying environment

In order to study asymptotic behavior of the solution to the model (1)—(4) in
the case when temporal variation is irregular, we assume that the vital rates,
regulating function and dispersion coeflicients are bounded from below and
above by equiperiodic functions for large ¢. These periodic functions define two
auxiliary periodic problems, whose solutions provide upper and lower bounds
to a solution of the original problem. This leads us to two-side estimates of a
solution to the original problem for large t.

More precisely, throughout this section we shall suppose that there exists
Ty > 0 and T-periodic functions mf, M, ,;t and D,jfj such that for any a > 0
and t > T}

<
M*(a,t) < M(a,t) < M~ (a,t), (109)
<



48 V. Kozlov, S. Radosavljevic, V. Tkachev, U. Wennergren

As in Section 6, one can consider the corresponding characteristic equations
K¥p"(t) = p"(t), teR,
where v denote — or +, and the operators K" are defined component-wise by

Iz”p”(t)::/ m"(a,t)®"(a,t —a;p”)da, teR,, 1<k<N, (110)
0

and @”(z,y; p) is the unique solution of the system

d®” (z,y; V(@Y v v v
% = —MY(@"(z,y; p), v, x + y)&" (z,y; p) + D” (2,2 + y) 2" (z, y; p),

¥ (0,5 p) = p(y),
with p € Cr(R, ,RY). Then by Proposition 6
P (1) = K7 (1) + FUE(),
where
t
KYp(t) = / m”(a,t)®"(a; p,t — a) da,
0

o (111)
Fri(t) = / m”(a,t)¥"(a;f,a —t) da.

Also let us denote by %Oi and RS—L the corresponding net reproductive operators
and basic reproduction numbers. The main result of this section states that
a solution of the population problem in an irregularly changing environment
can be estimated by the corresponding solutions of the associated periodically
varying population problems.

Theorem 7 Let x(t) be a solution to equation (48). Then the following di-
chotomy holds:

(i) If Rf <1, then lim;_,o x(t) = 0.
(i) If Ry > 1 and F~£(t) # 0, then for any € > 0 there exists To > 0 such
that

p~(t)—e<x@t)<pt(t)+e Vit > To, (112)
where p*(t) are solutions to (110).

Proof Without loss of generality 77 > B(0). Let R > 2wy and let us define
{xY(t)};>0 and {ng)(t)}jzo iteratively for ¢t > T} by

XU = KD (@) + FE@), X)) = R
X =P ), XY =R,

where the operators K and F are defined by (49) and (50) respectively.
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Arguing as in the proof of Proposition 7, we obtain the existence of the limit
lim; 00 X9 (¢) = x(t), where x(t) is a solution to (48). Also by Proposition 13,
lim; o0 ng) (t) = x*(t), where x T (t) is the maximal solution to (110). We will
prove by induction that for any j > 0 there holds

XD < XD @), VE>Ti+jAnm. (113)

For j = 0 the claim follows from x(9(¢) = X(+O) (t) = R for t > Ty. Next,
by our choice of Ty, Ff(t) = F+f(t) = 0 for t > Tj. Since &(0;x,y) =
@i(O;Xg?),y) = R for any y > 0 and the structure parameters are estimated
by (109), one easily deduces from the definition of ¥ (x, y; p) that &(a; x(©), ¢t —
a) < @*(a;xf),t —a) fora>0and t—a>T;. Since

t Am
XM (t) = / m(a, t)®(a; XV, t —a)da = / m(a, t)®(a; X', t — a) da
0 a

m

and t —a > T, for all a € [am,, Ap] and t > Ty + A,,, we obtain

t t
x(t) = / m(a, t)d(a; \'*, t—a) da < / m* (a, )8 (a; ¥\, t—a) da = x\"(¢).
0 0

This proves the induction assumption for j = 1. Now suppose that the in-
duction claim holds for some j > 1. Arguing similarly, we obtain for any
t>Ti+ (j +1)A, that

D (1) = KD (1) < /Cx(f)(t) < K*Xf)(t) = X(frl)(t),

which proves (113). Therefore, passing to the limit we obtain

x(0) = lim X9 (1) < lim x{(8) = x* (2). (114)
j—o0 j—o0
If Rf <1, then by Theorem 5 lim;_, o, x*(t) = 0, hence (114) implies (i).
To proceed with (ii) notice that (114) already yields the upper estimate in
(112). It remains to show that there exists a lower solution x~(¢) to x(t) =

Z; x(t). We use auxiliary sequence {X(_j)(t)} given by
W) =2 xDw. P =o.

to define function

()
_ x=(t), 0<t<T
X (t) = (115)
)\pi(t), t>"1T,

where p~ is a solution to the characteristic equation l%‘p_ (t) = p~(¢) and
A > 0 is sufficiently small.

Notice first that the sequence {X(_j) (t)} is nondecreasing in j and that each
X(f)(t) satisfies X(f)(t) < ZxY(t), ie., it is a lower solution to equation
x(t) = & x(t). Hence, x(t) defined by (115) is a lower solution in the
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interval ¢ € [0, T3] for sufficiently large j. Now suppose that ¢ € [T1,T1 + A
By (H1) we have F~f(t) = 0 and 27 x~(t) = K~ x(¢). Thus, (110) and
(115) imply that

Am
K= 0= [ mene @t - a)da= (0
t—T1
= /0 m~ (a,t)(P (a; Ap",t —a) = AP (a;p ,t —a)) da (116)

Am .
+ / m(a,t)(P(a; X9t — a) — AP~ (a;p~,t — a)) da. (117)

_’1"1

Arguing similarly to the proof of Theorem 2, yields that integrals (116) and
(117) are nonnegative. This proves that x = (¢t) < £~ x~ (¢) fort € [Ty, Th1+A.).

For t > T; + A,,, we have that F~f(t) = 0, and £ x~(t) = K~ x (1),
hence

Am
(K™ x™—x")i(t) = /0 my, (a,t)(Py, (a; Ap~ ,t—a)—=AD, (a;p~,t—a))da > 0.

This proves that function x ™ (¢) defined by (115) is a lower solution of equation
x(t) = Z~x(t). Therefore,

X~ (t) <x(t), t=>0. (118)

If Ry > 1, then Ry > 1 and characteristic equations (110) have nontrivial
solutions p*(t). Then by virtue of Theorem 5, lim; o, x~(t) = p~(t) and
limy 00 X1 (t) = p*(¢). Passing to the limit in (113) and (118) yields (112).

8 Applications

In this section we consider two simple applications of our approach showing
how dispersion promotes survival of a population on sink patches. In the usual
situation, a habitat is a mixture of sources and sinks. Our first example shows
that permanence on all patches is possible if the patches are connected and
if emigration from sources is sufficiently small and does not cause extinction
of a local subpopulation. Some researchers indicate that survival of migrating
species is possible even if all occupied patches are sinks, see [30]. Taking migra-
tory birds as an example, we demonstrate that this is possible under certain
conditions.

8.1 A single source and multiple sinks

In order to demonstrate the influence of dispersion on persistence of popula-
tion, we compare a system with IV isolated patches with the corresponding
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system with dispersion. Recall that in the isolated case, D(a,t) = 0 implying
by (79) that the basic reproduction number of the kth patch is given by

R = / (@) Ty (v) da,
0

where IT;(v) = e~ Jo #(¥) 4 ig the survival probability.
In this case the spectrum of the net reproductive operator is

spec(Zy) = {Rél), ce R(()N)}.

We assume that R(()l) > 1 and R(()k) < 1, for k > 2. In the biological terms, this
is equivalent to saying that the first patch is a source and all other patches
are sinks. Without migration, the population will persist on the first patch
and become extinct on all other patches. For details about the age-structured
logistic model that we used to describe isolated patches, we refer readers to
[34]. Under the made assumptions,

*

lim pl(t) = P15

t—o0

lim pi(t) =0, 2<k<N

)
t—o00

where p7 > 0 is uniquely determined by

/OOO mi(@)h(v) .

T (- Ih(o) ™= "

Now let us allow a small migration between patches and assume that there
also holds Rél) > 1 and Rék) < 1, for k > 2. Let us suppose that the dispersion
coefficients

D(a) = £B(a),

where &€ > 0 is a small number and the parameters By;(a) satisfy conjecture
(H3). Then the standard linearization argument shows that the solution to the
corresponding time-independent model

ng o) —M(a)p(a; p) + eBla)p(aip), ¢(0:p) = p, (119)
is given by
o N (s
or(ain) =) (e [ D mBu 7 ds | +0()
j=1

Therefore, the net reproductive operator takes the form

o0 a N ) S
Boph = B pct e [ i@ (o) [ 30 0iB(0) 7 dsda+ O(E)
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Then latter relation yields
Ry = diag(R(()l), ce RSN)) + B+ 0(e?)

Now, recall that if A is a symmetric matrix and x is an eigenvector with
a simple eigenvalue A then the corresponding perturbed eigenvalue of A + ¢B
(B may not be symmetric) is given by

A+ e+ O(€?), p = 2'Bx/|z|*.

For € = 0, the largest eigenvalue is R(()l) with the eigenvector e; = (1,0, ...,0).
The perturbed eigenvalue, which will be the basic reproduction number for
the net reproductive operator %, is

Ro—RY + 5/ (@)1 (v) Bui (a) da + O(2),
0

thus Ry > 1 for small enough ¢ > 0 provided that tyhe function Bji(a) < 0
everywhere and strictly negative in at least one point of the support of mj.
Thus shows that survival on all patches is possible if emigration from the
source is sufficiently small.

8.2 Multiple sinks, without a source

Now consider the extreme situation when a population inhabits two patches
and the basic reproduction number on each patch is less or equal to one. We
will demonstrate that, even in this case, there is a chance of survival if the
structure parameters are suitably chosen.

A realistic example for this kind of situation is a population of migratory
birds. Their habitats consists of two patches: breeding range (characterized by
the high birth rate in summer and high death rate in winter) and non-breeding
range (low birth and death rates). Thus, the breeding range is a sink because
of the winter conditions, and the non-breeding range is a sink because of too
few births.

Let the death rates p; > po > 0 be constant on the supports suppm; =
[c1,d1] and suppmg = [cz, da], respectively, where ¢;,d; will be chosen later.
In addition, suppose that

di
R(()k) = mi(a)e ™™ da=1, k=12,

Ck

This implies extinction of population on both patches if there is no disper-
sal. If the dispersion matrix D satisfies

-1 1
D =¢B, B:( ) 1),
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then the solution to the system (119) for N = 2 is given by
er(a; p) = e (o + eh(a, p) + O(e?)), k=1,2,

where

dhld(a,P) =—p + e(;ﬂ*#z)ap% hy (O) =0,
0.

a

7dh2d(5’p) = —py +eltzmrap, - py(0)

A solution to this system is given by

hl(avp) = —p1a+ #11M2 (e(m_u2)a - 1)/)27
Mziul (e(.u‘Q_,U‘l)a — 1)p1.

ha(a, p) = —p2a +

Then, the net reproductive operator satisfies

dp
(Zop)k = pr +¢€ mg(a)e " hy(a, p)da + O(?), k=1,2.

Ck

In the matrix form this becomes

Rop = p+ePp+O0(p), (120)
where
1 fdl m1(a)e_”la'(e(“l_“’2)(171) da
P = d (a)e#2%( (hg—p1)a 1) “ e
2 mala)e € -
ch : p2— 1 da -1

Thus, to show that Ry > 1, it is sufficient to show that &p > 0 for some
choice of parameters and certain vector p.
Using

w(z)22_2(62—1—2):14——4———&—...

it follows that the functions h; and hs can be written as:

hi(a, p) = (p2 = pr)a+ a?(uy — p2)((pa — p2)a)p2,

ha(a, p) = (p1 — p2)a + a®(p2 — )Y ((p2 — pa)a)pr.
Sine the function z(z) monotonically increases from 0 to oo, there exists a
unique ¢* such that ¢* (g1 — p2)((1 — p2)c™) = 1. Suppose that da < ¢* < ¢;.

Let us choose parameters p; > p2 > 0 such that hq(a,p) > 0 for a > ¢; and
ha(a, p) > 0 for a < da, that is

p1— p2 < alpy — p2)((p1 — po)a)pz, for a>cy,
p1 — p2 > a(p — p2)Y((p2 — p)a)pr,  for a < ds,
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or equivalently,

% — 1 <a(pr — p2)Y((p1 — p2)a), for a> ¢,

L= % > a(p — p2)Y((u2 — p1)a), for a < ds.

We put p; = 1 and choose py < % and ¢; and dy as solutions to equations:

i —1=ci(p1 — p2) (11 — p2)er)

and

1= pa = da(p1 — p2)p((p2 — p1)dz).

It follows that &Zp > 0 and hence Zyp > p. The latter implies that that Ry >
1, thus %, has an eigenvalue greater than one, which proves the permanence
of population on both patches.
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